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Abstract

Large vision language models (VLMs) are in-001
creasingly used to solve tasks involving non-002
natural images such as charts, figures and di-003
agrams. While VLMs often exhibit impres-004
sive capabilities in processing these images,005
there remains a gap in evaluation. Indeed,006
despite the fact that non-natural images play007
a significant role in many real-world applica-008
tions, the vast majority of current benchmarks009
still focuses on natural images. We take a010
step toward closing this gap by introducing011
the CoDePlot benchmark, a challenging, novel012
and realistic dataset of 3k (chart, code) pairs013
obtained via heavy VLM-based filtering of014
permissively licensed Python Notebooks from015
Github. Along with our benchmark, we in-016
troduce a fine-grained rating system for com-017
paring two charts according to different as-018
pects (e.g., style and faithfulness), which al-019
lows VLMs-as-a-judge to obtain a high cor-020
relation with human raters. Using this sys-021
tem, we find that chart code generation is hard022
even for the highest-performing VLMs, with023
Gemini 2.0 Flash scoring at 82.6% and the024
best Open Weight model lagging behind at025
49.9% on the hard benchmark examples. Fi-026
nally, we introduce a training method which027
views chart code generation as Inverse Ren-028
dering to improve VLMs on CoDePlot. We029
use Inverse Rendering Training to train a small030
PaliGemma-3B model to score 57.8% — bet-031
ter than its substantially larger counterparts.032

1 Introduction033

Recent years have seen a shift from text-only large034

language models (LLMs) toward models capable035

of processing additional modalities such as images036

and audio. In particular, vision-language mod-037

els (VLMs) trained on images and text have be-038

come an active area of research, as attested by039

the release of commercial models such as Gem-040

ini (Gemini Team Google, 2023) and GPT4 (Ope-041

nAI, 2024) as well as Open Weights models such as042

Generate the
code to create
a plot that
exactly
matches the
given image...

VLM

Fine-Grained
VLM Raters

Figure 1: CoDePlot entails a dataset of (code, chart)
pairs and a fine-grained chart comparison scheme.

PaliGemma (Beyer et al., 2024), Qwen2-VL (Yang 043

et al., 2024) and Llama 3.2 (Grattafiori et al., 2024). 044

These models obtain strong performance on visual 045

understanding tasks, including image captioning, 046

visual question answering and image segmentation. 047

However, a gap in evaluation persists: evaluation 048

typically strongly focuses on natural images, al- 049

though a large portion of images is non-natural; 050

this includes charts, figures and diagrams (e.g., Hsu 051

et al., 2021). We endeavour toward closing this gap 052

by introducing CoDePlot, a benchmark consisting 053

of (code, chart) pairs scraped from permissively 054

licensed Python Notebooks on Github.1 We heav- 055

ily filter the (code, chart) pairs using an automatic 056

VLM-based assessment to create a challenging, re- 057

alistic and novel dataset divided into 2,744 easy 058

1https://github.com
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and 214 hard examples. The task associated with059

CoDePlot is chart code generation: given an im-060

age of a chart, generate the code used to create061

the chart. Figure 1 shows an example of the hard062

subset along with the corresponding predictions063

of state-of-the-art VLMs. Chart code generation064

requires multiple capabilities, including recovering065

the data underlying the chart (Liu et al., 2023a),066

compositional understanding of chart elements as067

well as code generation. Chart code generation is068

orthogonal to higher-level semantic tasks such as069

chart question answering (Masry et al., 2022).070

Evaluation of chart code generation poses a sub-071

stantial challenge: We need to compare the images072

of the ground truth chart and the chart generated073

from the predicted code, but traditional image sim-074

ilarity metric such as pixel-space mean squared075

error and SSIM (Wang et al., 2004) are too low-076

level for this task (Wu et al., 2024). Prior work thus077

resorts to using an VLM-as-a-judge tasked with rat-078

ing the similarity of the two chart images from 1079

to 10 (Wu et al., 2024). However, the VLM judge080

in this scenario only exhibits moderate correlation081

with human judgements. A single overall score082

also does not permit easily interpreting the rating083

results. To solve these problems, we introduce a084

fine-grained evaluation scheme for comparing two085

charts. We break down chart similarity into eight086

categories rated on a Likert scale (Likert, 1932)087

from 1 to 4. The ratings can then be averaged088

to obtain a single score. Besides providing more089

interpretable results, our rating scheme also per-090

mits VLMs-as-a-judge to obtain a correlation with091

human judgements on par with the correlation be-092

tween human annotators (Section 7).093

The CoDePlot benchmark is challenging, even094

for the strongest VLMs: the highest average score095

is 82.6%, achieved by Gemini 2.0 Flash, with096

Claude 3.5 Sonnet and GPT-4o behind. The hardest097

category (faithfulness, i.e., accuracy of the depicted098

data) is even more challenging at a maximum score099

of 66.9%. Open Weight VLMs substantially un-100

derperform commercial ones: Qwen2-VL-72B and101

Llama 3.2 90B Vision achieve average scores of102

27.9% and 49.9%, respectively. To close this gap,103

we propose a way to generate diverse synthetic data104

for the chart code generation task by viewing it as105

Inverse Rendering (Section 5): this allows fine-106

tuning a PaliGemma (Beyer et al., 2024) model107

to perform competitively for its size at 84.2% and108

57.8% average score on the easy and hard splits,109

respectively, with only 3B parameters. Finally, we 110

conduct a thorough analysis of the VLMs’ pre- 111

dictions on CoDePlot, finding low contamination, 112

common failure modes and the ability of VLMs to 113

iteratively improve their predictions, among other 114

insights (c.f. Section 7). 115

Contributions 1) We introduce a dataset of 3k 116

realistic high-quality (code, chart) pairs from 117

Github Notebooks containing Python code divided 118

into an easy and a hard split along with the associ- 119

ated benchmark task of generating the code used to 120

produce the charts. 2) We propose a fine-grained 121

set of evaluation criteria for comparing a reference 122

and a ground-truth chart to enable nuanced com- 123

parison of predictions while also enabling VLMs- 124

as-a-judge to achieve a correlation to human raters 125

on par with humans. 3) We show how viewing the 126

chart code generation task as inverse rendering en- 127

ables training a competitive fine-tuned PaliGemma 128

model purely on synthetic data for this task and 129

release the fine-tuned model. 130

2 Related Work 131

Vision Language Models. VLMs such as 132

CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 133

2023) are contrastively trained on image-text pairs. 134

These models are capable of computing the sim- 135

ilarity between an (image, text) pair, but are not 136

capable of generating text on their own. Thus, it 137

has become common practice to fuse them with 138

a pretrained text decoder; e.g., PaliGemma has 139

been trained by fusing a SigLIP vision encoder 140

with the Gemma-2B language model (Beyer et al., 141

2024). Fuyu (Bavishi et al., 2023) and EVE (Diao 142

et al., 2024) explore an alternative approach di- 143

rectly combining image and text in a single decoder- 144

style model. Commerical models including Gem- 145

ini (Gemini Team Google, 2023), GPT4 (OpenAI, 146

2024) and Claude 3.5 Sonnet (Anthropic, 2024) 147

can also process images, however, their architec- 148

tural details are not public. Some existing VLMs 149

have been fine-tuned for processing charts, includ- 150

ing ChartLlama (Han et al., 2023), ChartAssis- 151

tant (Meng et al., 2024), ChartInstruct (Masry et al., 152

2024a) and ChartGemma (Masry et al., 2024b). 153

These models are not well suited to the chart code 154

generation task out-of-the-box since they have not 155

been trained on code. 156

Related Benchmarks. Benchmarks on chart un- 157

derstanding include PlotQA (Methani et al., 2020) 158
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and ChartQA (Masry et al., 2022), where the task is159

visual question answering (e.g. answering “What160

is the peak value of the orange line?”) based on161

chart images. HumanEval (Chen et al., 2021) and162

MBPP (Austin et al., 2021) are commonly used163

to evaluate coding performance. HumanEval and164

MBPP consist of a set of natural language prompts165

specifying desired function behavior and corre-166

sponding unit tests. They assess code generation167

capabilities by testing whether the code snippet168

generated for the given prompt is functionally cor-169

rect (i.e., passes all unit tests). The recently re-170

leased HumanEval-V augments the HumanEval-171

style problem setup with additional input images172

required to solve the coding tasks (however, these173

are not necessarily charts; Zhang et al., 2024).174

The Plot2Code dataset (Wu et al., 2024) is the175

first to combine chart understanding and coding176

by introducing the chart code generation task (the177

same task as in CoDePlot) based on chart images178

scraped from the matplotlib2 example gallery and179

their corresponding code snippets. While being180

a first step toward measuring chart code genera-181

tion capabilities, we hypothesize (i) evaluating on182

Plot2Code is not robust due to its small size (132183

examples), (ii) being sourced from example gallery184

charts, Plot2Code does not match the distribution185

of charts occurring in the wild and (iii) the met-186

rics used in Plot2Code (mainly, a single overall187

VLM-as-a-judge rating) do not adequately capture188

all aspects of chart code generation. Moreover,189

we find evidence toward substantial contamination190

on Plot2Code (c.f. Section 7), presumably due to191

the charts from the example gallery being copied192

and re-uploaded to other platforms (e.g., Github)193

many times over and becoming a part of the train-194

ing data prone to being memorized. Finally, while195

Plot2Code only covers matplotlib, we extend cover-196

age to the popular seaborn library (Waskom, 2021).197

3 Benchmark Construction198

Initial Collection. We start from the raw data199

source used for creating the MatCha training200

data (Liu et al., 2023b) consisting of (chart, code)201

pairs obtained by crawling all GitHub IPython202

Notebooks with appropriate licenses and, for cells203

which have an image as output, storing the cell204

code and the image. The raw dataset consists of205

20M (chart, code) pairs. However, the vast majority206

of code snippets are not executable on their own:207

2https://matplotlib.org

Easy Hard

Num. Examples 2744 214
Bar 818 39
Contour 6 6
Line 1293 106
Pie 227 7
Scatter 311 34
Misc. 89 22

Code
Lines 25 ± 21 42 ± 34

Image
Width 661 ± 244 798 ± 340
Height 486 ± 129 581 ± 267

Table 1: Evaluation dataset statistics. The value follow-
ing ± indicates a single standard deviation.

they depend on data obtained from previous cells 208

(such as the outputs of a training run) or external 209

data (such as a dataset obtained from some URL). 210

As a first step, we filter the dataset to keep only 211

code snippets which are executable in a sandboxed 212

Python environment; this removes >99% of the 213

(chart, code) pairs, reducing the size of the dataset 214

to 116k executable code snippets and the corre- 215

sponding charts. After thorough deduplication via 216

MinHash (Broder, 1997), ~37k pairs remain. 217

VLM Filtering. The 37k executable and dedupli- 218

cated pairs form the basis of our dataset. To create 219

a challenging and diverse set to evaluate on, we 220

further filter the dataset using a VLM (in pratice, 221

Gemini 1.5 Flash; Gemini Team Google, 2023). 222

We formulate multiple axes among which to mea- 223

sure the quality of an example: (i) Informativeness, 224

(ii) Visual Appeal, (iii) Realisticness, (iv) Complete- 225

ness and (v) Complexity and prompt the VLM to 226

rate examples on a scale from 1-10 in each category 227

(prompt in Appendix A). We keep the examples 228

with a harmonic mean of (i)-(iv) ≥ 7.5 and fur- 229

ther divide the dataset into easy (Complexity ≤ 5) 230

and hard (Complexity > 5) examples. Alongside 231

prompting for the quality scores we also prompt the 232

VLM to describe the chart type as free-form text. 233

We then cluster the chart type responses by key- 234

words to obtain 6 categories to divide the examples 235

into. Table 1 shows summary statistics of our eval- 236

uation dataset and Figure 2 shows representative 237

examples of each of the different categories. 238

4 Metrics 239

Evaluating performance of a chart code generation 240

model is challenging. We need a way to measure 241

the similarity of the ground truth chart and the chart 242
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Code

Image

Category

scatter

bar

contour

n = 100
t = np.linspace(0.1, 1.0, n) / 1000.0
d = np.linspace(10.0, 30.0, n) / 1000.0

T, D = np.meshgrid(t, d)
T_plt, D_plt = np.meshgrid(
    t * 1000.0, d * 1000.0
)
sigma = 2.0 * 1.0e6  # [Pa]

P = sigma * (2 * T) / D  # [Pa]
P = P / 133.3223684  # [Pa]->[mmHg]

lvls = np.linspace(0, 3200, 20)

cf = plt.contourf(
    T_plt,
    D_plt, P,
    levels=lvls
)
cp = plt.contour(
    T_plt, D_plt, P, levels=lvls, colors="k"
)

[...]

plt.rcParams["font.size"] = 13
plt.rcParams["font.weight"] = "bold"
# set width of bar
barWidth = 0.11
# set height of bar
bars1 = [0.82, 0.53, 0.64]
bars2 = [0.63, 0.41, 0.52]

[...]

# Make the plot
plt.bar(
    r1,
    bars1,
    color="black",
    width=barWidth,
    edgecolor="white",
    label="StoryGraph",
    hatch="\\",
)

[...]

gdp_cap = [...]
life_exp = [...]
pop = [...]
col = [...]

plt.scatter(
    x=gdp_cap,
    y=life_exp,
    s=np.array(pop) * 2,
    c=col,
    alpha=0.8,
)

plt.xscale("log")
plt.xlabel("GDP [USD]")
plt.ylabel("Life expectancy")
plt.title("World development index 2007")
plt.xticks(
    [1000, 10000, 100000],
    ["1k", "10k", "100k"]
)

[...]

contourscatter

Figure 2: Examples in the hard split of the CoDePlot benchmark.

which is the result of running the predicted code.243

Plot2Code (Wu et al., 2024) introduces a metric to244

measure whether text elements in the two charts245

align in terms of position and text value (referred246

to as text match score), and a metric relying on247

an VLM-as-a-judge to rate the similarity of two248

plots on a scale of one to ten. These scalar metrics249

are necessarily reductive (Keeney, 1993): there are250

many different ways in which two charts can be251

similar (or dissimilar). For example, it is not clear252

whether two charts which contain the same data253

but display it in different ways should be rated as254

more or less similar than two charts which present255

different data in the same way. In line with our256

approach to data filtering (Section 3), we thus pro-257

pose evaluating across multiple axes: we create258

a fine-grained set of eight different categories ac-259

cording to which two charts can be similar, and260

employ an VLM-as-a-judge to evaluate similarity261

along these categories. The rating scheme encom-262

passes the categories Chart Type, Axes, Title, Leg-263

end, Supplementary Elements, Arrangement, Style264

and Faithfulness. Each category is rated on a Likert265

scale as either 1 (incorrect), 2 (partially correct),266

3 (mostly correct) or 4 (correct). Details on each267

category can be found in Table 2, and a set of com-268

prehensive guidelines for comparing along these269

categories in Appendix A. Our fine-grained rat-270

ing scheme disambiguates the comparison of two271

charts; analogously, prior research has introduced272

effective fine-grained rating schemes for different273

specialized areas (Burchardt, 2013; Lo et al., 2022).274

Category Description

Chart Type Does the chart use the same chart type
as the ground truth?

Axes Does the chart use the same axes as the
ground truth?

Title Does the chart use the same title as the
ground truth?

Legend Does the chart use the same legend as
the ground truth?

Supplementary
Elements

Does the chart use the same supplemen-
tary elements as the ground truth? Sup-
plementary elements are all text and vi-
sual elements which are not in the other
categories (including subtitles, annota-
tions, markers, . . . )

Arrangement Is the placement of the visual elements
in the chart consistent with the ground
truth?

Style Does the chart use the same color palette,
font, fills and decorations as the ground
truth?

Faithfulness Is the information communicated by the
chart consistent with the ground truth?

Table 2: Fine-grained chart comparison categories and
their description; Appendix A contains our guidelines
for rating along these categories.

Fine-grained evaluation has also been shown to be 275

more suited toward LLMs-as-a-judge than a single 276

overall score on natural language text tasks (Ye 277

et al., 2024); we confirm the same is true for VLMs 278

later in Section 7. 279

5 Inverse Rendering Training 280

Inspired by approaches to neural inverse render- 281

ing (Sengupta et al., 2019; Tewari et al., 2022, 282
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    Github Notebook Data

Charts

[...] Write code to recreate the chart. You are 
given an incomplete code snippet as hint [...]

Synthetic
Code Snippet

Inverse Rendering
Training

Rendering

VLM

Incomplete
Code Snippets

Gemini
1.5 Flash

Rendered
Chart

Figure 3: Synthetic data generation for Inverse Rendering Training: an existing VLM is prompted to generate a
code snippet, conditioned on an existing chart and a corresponding incomplete code snippet, which is then rendered
via the Python interpreter. The resulting (rendered chart, synthetic code) snippet is used to train another VLM.

Model Execution Rate Type Axes Title Leg. Supp. Arr. Sty. Fai. Avg.

Easy

Qwen2-VL-72B 65.0 55.5 43.6 49.0 48.0 39.7 43.5 30.1 36.1 43.1
Llama 3.2 90B Vision 91.6 78.5 69.7 72.7 74.3 58.2 64.7 49.5 55.0 64.7
PaliGemma-3B-IR (ours) 92.1 91.0 82.6 90.0 88.8 85.5 84.2 84.2 70.1 84.2
Gemini 1.5 Flash 86.1 84.7 77.3 83.2 82.4 79.6 77.5 77.4 66.2 78.3
Gemini 2.0 Flash 96.4 96.2 91.3 95.2 95.2 93.0 92.3 91.0 82.3 91.8
GPT-4o 93.7 92.6 81.6 90.4 88.5 81.7 81.9 73.0 67.7 81.5
Claude 3.5 Sonnet 94.2 92.0 81.1 89.5 89.0 68.2 77.8 65.2 75.3 79.0

Hard

Qwen2-VL-72B 54.2 38.3 30.4 36.5 30.4 25.7 26.3 19.6 16.3 27.9
Llama 3.2 90B Vision 84.1 65.1 56.5 62.5 59.9 41.4 46.1 36.3 33.6 49.9
PaliGemma-3B-IR (ours) 71.5 67.0 60.7 66.4 63.6 55.2 55.5 57.0 38.0 57.8
Gemini 1.5 Flash 71.5 66.4 61.7 67.0 64.2 59.0 55.8 57.3 45.7 59.6
Gemini 2.0 Flash 91.1 89.8 83.5 88.8 87.4 82.3 81.1 82.1 66.9 82.6
GPT-4o 89.3 86.1 73.4 81.7 78.1 71.3 70.3 61.6 54.6 71.9
Claude 3.5 Sonnet 93.0 91.6 80.6 86.6 81.0 66.3 72.8 58.6 65.5 75.1

Table 3: Results of multiple Open Weight models (indicated via italics) and commercial models on the easy and
hard splits of our evaluation dataset. Ratings are computed by using an ensembled Gemini Flash as the judge.

among others), we propose viewing chart code gen-283

eration as an inverse rendering task. Traditionally,284

inverse rendering is concerned with recovering the285

properties (e.g., lighting, geometry) of a scene from286

one or more images. In chart code generation, we287

are tasked with recovering an abstract representa-288

tion (i.e., the code) of a chart, knowing it has been289

rendered via the Python interpreter. In this case,290

we can view the generated chart image as the scene,291

and the underlying code as the property to recover.292

The chart code generation task then becomes the293

task of reversing the rendering conducted by the294

Python interpreter. Neural approaches to inverse295

rendering have been driven to a substantial extent296

by differentiable rendering (c.f. Kato et al., 2020).297

The Python interpreter, however, is not differen-298

tiable. Nonetheless, the Inverse Rendering perspec-299

tive allows proposing a way to generate synthetic300

data for the chart code generation task.301

Synthetic Inverse Rendering Data Generation.302

Our method hinges on the fact that there already ex-303

ist VLMs which are proficient at generating Python304

code, even though they are not necessarily adept 305

at chart code generation (as shown by the results 306

on our benchmark; c.f. Section 6). Thus, we can 307

prompt a VLM to generate the Python code for ren- 308

dering a source chart, execute the synthetic code 309

to obtain a synthetic chart, and use the resulting 310

(rendered chart, synthetic code) pair to train a VLM 311

to produce the synthetic code, conditioned on the 312

rendered chart. This amounts to an inverse render- 313

ing process: Upon data creation, we run a forward 314

pass through the Python interpreter to map code 315

→ chart, then, during training, the VLM learns the 316

inverse chart→ code mapping. However, in prac- 317

tice, unconditionally prompting the VLM leads to 318

highly similar generations, making it necessary to 319

condition on an external source of diversity (Chan 320

et al., 2024). We condition generation on the same 321

raw corpus used to create the CoDePlot dataset (c.f. 322

Section 3), but use only unexecutable code snippets 323

(code snippets relying on external variables, web 324

URLs, etc.) to ensure there is no overlap with the 325

evaluation data. The data generation and training 326

process is illustrated in Figure 3. 327

5



0 2 4 6 8 10 12

Other

Timeout

Unexecutable

Invalid Library Usage

Shape Error

Gemini 2.0 Flash
Claude 3.5 Sonnet
GPT-4o

Figure 4: Error groups of a manual error analysis con-
ducted on the errors made by the highest-scoring VLMs
on the hard CoDePlot split. Shape errors (e.g., incom-
patible number of x/y data points) are predominant.

Training. We fine-tune PaliGemma on a dataset328

of 2.6M synthetic (code, chart) pairs created via329

Gemini 1.5 Flash.3 We tune hyperparameters start-330

ing from the settings recommended by Beyer et al.331

(2024); the final values are reported in Appendix B.332

6 Benchmark Results333

We evaluate multiple Open Weight and commer-334

cial models using our fine-grained evaluation, us-335

ing the average scores of eight Gemini calls as the336

judge; we show later in Section 7 that this judge is337

highly correlated with human judgements. Results338

are shown in Table 3, and qualitative examples in339

Appendix D. Our PaliGemma Inverse Rendering340

fine-tune performs competitively, especially on the341

easy split, where it outperforms GPT4-o, Claude342

and Gemini 1.5 Flash (the model used to gener-343

ate its training data). The fine-grained scores also344

permit drawing conclusions about model behavior:345

e.g. GPT-4o outperforms Claude in some cate-346

gories, but has a lower average score due to being347

worse at axes and faithfulness. Furthermore, chart348

type, axes, title and legend are the least challenging,349

while supplementary elements and arrangement350

pose a greater challenge, and style and faithfulness351

are the most challenging. Low faithfulness is partic-352

ularly problematic: it suggests the evaluated VLMs353

are unable to recover the data from the chart; this354

has implications for a wide range of applications.355

7 Discussion356

Unexecutable predicted code follows common357

patterns. We analyzed cases where models do358

not produce a valid chart due to the code not execut-359

ing successfully and manually grouped errors into360

3Gemini 2.0 was not available at the time.

Figure 5: Minimum normalized Levenshtein distances
between eight VLM completions and the ground truth
when prompted with the chart and the first 50% of the
corresponding code snippet.

categories. The results are shown in Figure 4. A 361

substantial portion of the errors made by all models 362

are shape errors, that is, errors where the model e.g. 363

produced arrays of different length for the x and 364

the y axes. This is not surprising: VLMs have been 365

shown to underperform at counting (Golovneva 366

et al., 2024; Sterz et al., 2024), which is an implicit 367

requirement for avoiding shape errors. The CoDe- 368

Plot benchmark may be a useful measure of VLMs’ 369

implicit counting abilities, i.e., the ability to count 370

when it is not the final goal but instead an interme- 371

diate step. Besides shape errors, all models make 372

errors in their usage of the plotting libraries (e.g., 373

passing invalid keyword arguments). GPT-4o and 374

Gemini also sometimes output unexecutable code 375

snippets (e.g., continuing to append elements to the 376

data variables and running out of context length). 377

CoDePlot is not substantially contaminated. 378

To measure how likely VLMs are to have mem- 379

orized our data, we prompt Gemini to complete 380

the code snippet, given the chart and the first 50% 381

(rounded down) of lines of code. We sample eight 382

completions, and use the minimum Levenshtein 383

distance (Yujian and Bo, 2007) to the ground truth 384

code among the eight samples as the measure of 385

contamination.4 Results are shown in Figure 5. 386

18% of Plot2Code examples have an exact match 387

(Levenshtein distance = 0) among the eight com- 388

pletions, while this is the case for 2% and 0% of 389

our easy and hard splits, respectively. This points 390

toward the CoDePlot benchmark being unlikely to 391

be memorized by state-of-the-art VLMs. 392

4Levenshtein distance can act as a proxy for memorization
since the semantics of code are invariant to many surface-
level characteristics (e.g., comments and formatting, but also
swapping two lines as long as they are independent).
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Figure 6: Pearson correlation coefficient between Human annotators and between Humans and VLMs-as-a-judge.
Correlation of the VLMs-as-a-judge with human raters is positively affected by fine-grained rating and ensembling,
where the VLM is called multiple (eight) times, then the results averaged.

Fine-grained evaluation exhibits high inter-393

annotator agreement. We let nine expert human394

annotators evaluate a total of 180 Gemini Flash395

predictions on our evaluation data according to396

our fine-grained evaluation guidelines (details in397

Appendix C). The task was to compare the true398

chart with the chart produced by the predicted code,399

without taking the true and predicted code into ac-400

count.5 Each annotator annotated 20 examples cho-401

sen to partially overlap such that every example is402

annotated by a maximum of five annotators. In ad-403

dition, they were asked to provide a single overall404

chart similarity score (from 1-10). Inter-annotator405

agreement is generally high and consistent across406

multiple metrics (Table 5). Arrangement is the407

category with the lowest agreement: annotators408

might have trouble judging positioning in aggre-409

gate across the chart. Furthermore, averaging the410

scores of the fine-grained categories leads to a met-411

ric with slightly higher inter-annotator agreement412

than the single overall score.413

Fine-grained evaluation is better suited to414

VLMs-as-a-judge than a single overall score.415

To measure how well VLMs-as-a-judge do at rating416

according to our guidelines, we prompt models of417

two different sizes to rate the examples which were418

also human-annotated. We then sequentially substi-419

tute each human annotator’s ratings with the VLM420

rating and average the results to quantify Human↔421

VLM agreement. In addition to performing one call422

of the VLM-as-a-judge for every example, we also423

experiment with ensembling the scores from mul-424

tiple (in practice, eight) calls. Results are shown425

in Figure 6. Our findings are: (i) average fine-426

grained scores exhibit higher inter-annotator agree-427

5We based this decision off of our view that the code is an
intermediate representation which should not affect ratings.

Category LLM RMSE SSIM cBLEU cBLEU
+SSIM

Type 0.81 -0.05 0.06 0.15 0.15
Axes 0.63 -0.12 -0.25 0.16 -0.07
Title 0.68 0.14 0.26 0.16 0.24
Leg. 0.63 -0.31 0.22 -0.12 0.05
Supp. 0.55 -0.20 0.24 0.28 0.33
Arr 0.57 -0.30 0.15 0.04 0.13
Sty. 0.54 -0.35 0.15 -0.03 0.07
Fai. 0.74 0.13 0.15 0.31 0.33

Average 0.85 -0.20 0.11 0.23 0.25

Single Score 0.69 0.02 0.15 0.28 0.30

Table 4: Pearson correlation of automatic metrics to
human ratings. LLM refers to using a Gemini 1.5 Flash
ensemble as judge. cBLEU+SSIM is the sum of Code-
BLEU (Ren et al., 2020) and SSIM (Wang et al., 2004).

Category α r ρ

Chart Type 0.58 0.80 0.79
Axes 0.54 0.65 0.61
Title 1.00 1.00 1.00
Legend 0.86 0.86 0.78
Supp. Elements 0.76 0.85 0.86
Arrangement 0.38 0.37 0.41
Style 0.60 0.63 0.63
Faithfulness 0.80 0.82 0.82

Average 0.84 0.82 0.77

Single Overall Score 0.74 0.77 0.73

Table 5: Inter-annotator agreement measured via Krip-
pendorff (2011)’s α, Pearson r and Spearman ρ.

ment than a single overall score (as also shown in 428

Table 5), (ii) average fine-grained scores lead to 429

higher Human↔ VLM agreement and (iii) aver- 430

age fine-grained scores benefit substantially more 431

from ensembling multiple calls, enabling even the 432

smaller Gemini Flash to attain human-level agree- 433

ment, while this is not the case for the single over- 434

all score. We thus conclude that comparing two 435

charts via ensembling multiple fine-grained scores 436
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Figure 7: Sensitivity of multiple VLMs to different
prompting strategies. In Image-First/Text-First the or-
der of the image/text in the prompt is adapted. In Text-
First Zero-Shot CoT the VLM is prompted to first plan
out the necessary steps, then write the code.

from smaller VLMs is the best method, while also437

tending to be cheaper than a single call to a larger438

VLM.6 In Table 4, we confirm that the ensembled439

fine-grained VLM-as-a-judge has higher correla-440

tion with human ratings than the lower-level RMSE,441

SSIM and CodeBLEU (Ren et al., 2020).442

Variations in the prompt affect models differ-443

ently. Following the Plot2Code benchmark (Wu444

et al., 2024), the prompt in our main experiments445

has the instructions first and the input chart image446

second. We also test the reverse: putting the im-447

age first, and the instructions second. Furthermore,448

we analyze prompting the model to plan its steps449

before writing the code, akin to Zero-Shot Chain-450

of-Thought prompting (Kojima et al., 2022). The451

effect of these two dimensions of variation is shown452

in Figure 7. The optimal prompting strategy varies453

heavily across models: the Llama 3.2, GPT-4o,454

and Qwen2 models benefit from putting the image455

first, while Claude and Gemini perform better in456

the text-first setting.7 Zero-Shot CoT improves per-457

formance for Qwen2 and Gemini, but decreases458

performance for the other models. The prompts459

are shown in Appendix A. The results from this460

analysis highlight the difficulty of fairly comparing461

different VLMs. However, our main observation462

that the CoDePlot benchmark is challenging for all463

existing VLMs is not affected by these findings.464

VLMs are capable of iteratively improving465

their answers. For humans, a natural way to466

6At the time of writing, this is the case for the Gemini
Family: eight calls to Gemini Flash are cheaper than one call
to Gemini Pro (https://ai.google.dev/pricing).

7The sensitivity to text/image order has already been ob-
served by Wardle and Susnjak (2024), who found that the task
plays a role, but did not observe differences across models.

Model R0 R1 R2

Avg.
Score

Gemini 2.0 Flash 82.6 84.6 87.0
Claude 3.5 Sonnet 75.1 79.5 81.1
GPT-4o 71.9 77.5 79.5

Exec.
Rate

Gemini 2.0 Flash 91.1 92.5 95.3
Claude 3.5 Sonnet 93.0 97.2 98.1
GPT-4o 89.3 93.4 94.9

Table 6: Average LLM scores when iteratively refining
the previous iterations’ predictions. R0 are the initial
predictions (no refinement).

solve the chart code generation task would be to 467

write some initial code, look at the chart it produces, 468

then iteratively refine the code until the produced 469

chart matches the ground truth chart. Conversely, 470

in many cases, humans would presumably not be 471

able to solve the task without the continuous feed- 472

back from the Python interpreter. We thus also 473

test a setup where the VLM is able to iteratively 474

improve its prediction: we run multiple rounds of 475

refinement, where the VLM is given its previously 476

produced code alongside the input image, as well 477

as either (a) the chart produced by rendering the 478

predicted code or (b) the error produced by running 479

the predicted code, if the code did not success- 480

fully produce a chart (prompts in Appendix A). As 481

shown in Table 6, iterative refinement improves the 482

predictions: the first round is especially effective, 483

but more rounds lead to continued improvements. 484

8 Conclusion 485

We have introduced the CoDePlot benchmark: a 486

challenging benchmark of highly realistic charts 487

with the associated task of chart code generation. 488

By employing VLMs-as-a-judge which use a fine- 489

grained rating scheme specifically designed to com- 490

pare two charts, we found that this is a challenging 491

task for state-of-the-art VLMs, with the best one 492

achieving an average score of 82.6%. We have veri- 493

fied the credibility of our rating scheme by confirm- 494

ing that VLMs-as-a-judge obtain high correlation 495

with human judgements, especially if the judge is 496

ensembled. Furthermore, we introduced Inverse 497

Rendering Training for chart code generation, a 498

way to obtain synthetic data for this task, which 499

allowed fine-tuning a small PaliGemma-3B model 500

to perform competitively with an average score of 501

57.8% on CoDePlot. Finally, we thoroughly ana- 502

lyzed the models’ predictions on CoDePlot, finding 503

low contamination, common error patterns and the 504

ability of the VLMs to iteratively improve their 505

predictions, among other insights. 506
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Limitations507

One limitation of our dataset construction process508

is that the data comes from public sources, so it509

is possible that VLMs have already seen the data510

during their training process. However, by analyz-511

ing contamination (Section 7), we found that our512

dataset has likely not been seen in this form dur-513

ing training. Another limitation is the choice of514

prompting methods: for simplicity and scalability515

we have opted to use the same prompt to evalu-516

ate all VLMs in our main results, however, we517

also found substantial variation in which prompt-518

ing method works best for any given VLM (c.f.519

Section 7). Future work could investigate system-520

atic ways to mitigate the prompt variance of LLM521

and VLM evaluation. A limitation of our synthetic522

training dataset is becoming dated quickly as new523

VLMs get released (e.g., during this work, Gemini524

2.0 was released, making Gemini 1.5 outdated),525

however, we provide full details to re-generate the526

dataset with more up-to-date VLMs to mitigate this527

limitation. Finally, although our VLMs-as-a-judge528

exhibit high correlation with human raters, they529

can likely not completely replace humans due to530

potential subtle biases (Li et al., 2025).531
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A Prompt Templates730

Default Prompt

You are a helpful assistant that can generate Python

code using matplotlib and seaborn. Generate the

code to create a plot that exactly matches the given

image. The generated code should be surrounded by

```python and ```
731

Prompt for the VLM-as-a-judge

Your job is to compare two plots and rate their
similarity according to some guidelines. The
guidelines are as follows:

Guidelines for annotating charts for their similarity
to a reference (‘ground truth’) chart.

Annotations are on a scale of 1-4, and n/a if the crite-
rion is not applicable.
1: incorrect
2: partially correct
3: mostly correct
4: correct

In general, choose incorrect if the criterion is not
fulfilled at all, partially correct if the criterion is <=
50% fulfilled, mostly correct if it is >50% fulfilled
and correct if it is completely fulfilled.

See below for the criteria and examples.

Choose n/a for the questions P1 if the given element
is not present in the ground truth chart. The questions
in P2, P3, and F1 should only be rated as n/a in
exceptional circumstances, for example if there is no
data to rate in the ground truth plot.

P1: Consistency Does the chart use the same visual
elements as the ground truth? Rate questions in this
category irrespective of the placement of the element
(placement is rated in “P2: Arrangement”). Focus on
the aspects pertaining to the content of the element,
for example text of the title, number of ticks and tick
values of the axis. Do not rate the style (style is rated
in “P3: Style”), unless it plays a major role in the
content of the element, for example if all-black lines
instead of colored lines make the elements of the
legend indistinguishable.

1. Chart Type: Does the chart use the same chart
type as the ground truth?
- Choose “mostly correct” for example if the data is

732

present in a scatter plot but an overlaid line chart is
missing.
- Choose "partially correct" for example if 1/2
subplots use the correct chart type.
2. Axes: Does the chart use the same axes as the
ground truth?
- Some charts (like pie charts) typically don’t have
axes, choose "n/a" in this case.
- Choose “mostly correct” if e.g. x and y axis are
present but both the tick labels are incorrect.
- Choose "partially correct" for example if the y axis
is missing but present in the ground truth.
3. Title: Does the chart use the same title as the
ground truth?
- Choose “mostly correct” for example if the title is
“Count of customers per month” when the true title is
“Monthly count of customers”.
- Choose "partially correct" for example if the title is
“Customers” when the true title is “Monthly count of
customers”
4. Legend: Does the chart use the same legend as the
ground truth?
- Choose “mostly correct” for example if the legend
has 1/4 items missing.
- Choose "partially correct" for example if the legend
has 1/2 items missing.
5. Supp. Elements: Does the chart use the same
supplementary elements as the ground truth?
Supplementary elements are all text and visual
elements in the chart which are not in the other
categories (including subtitles, annotations, markers,
. . . )
- Choose “mostly correct” for example if a subtitle
with the same semantics (but different wording) is
present.
- Choose “mostly correct” for example if 1/3 scatter
plot categories use a different marker.
- Choose "partially correct" for example if a subtitle
is present but an annotation containing text and an
arrow is missing.
- Choose "partially correct" for example if the
connection between points in a scatter/line plot is
missing.

P2: Arrangement The question in this category
rates whether the placement of the visual elements
is consistent with the ground truth. It is intended
to measure in aggregate how many of the visual
elements from P1 are placed correctly.

1. Does the chart place the visual elements in the
same arrangement as the ground truth?
- Make sure to rate the data separately. For example,
if a line is below another although it shouldn’t
be because of incorrect data, this belongs in the
Faithfulness category, not arrangement.
- Choose “mostly correct” for example if the bars in a
stacked bar chart are next to each other instead of on
top of each other (everything else being correct), or
the legend is placed in the wrong corner.
- Choose "partially correct" for reversals such as two
subplots being in the wrong order, or bars being
sorted ascending instead of descending (or vice
versa).
- Choose “no” for example if bars are arranged
randomly instead of ascending/descending.

P3: Style The question in this category rates the
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stylization of the plot. This includes styling of
particular elements (for example a border around
the legend), but does not involve the positioning or
contents. Importantly, this category is not about
the data content. Judge style independently of the
data! For example, if a line is wrongly positioned,
but the color is correct, then the style is correct. The
same holds true e.g. for heatmaps, where the *color
palette* pertains to the style, but the *data* itself is
not part of the style.

1. Does the chart use the same color palette, font,
fills and decorations as the ground truth?
- Weigh text by font size * number of characters, for
example if a large title is in the wrong font (but the
rest is correct), choose "partially correct" instead of
“mostly correct”.
- Choose “mostly correct” for example if 1/3 lines
have the wrong color, the shade of red is wrong (but
the color is correct), or borders are missing.
- Choose "partially correct" for example if the
backdrop, axes and title use the same colors but the
data is shown in different colors.

F1: Faithfulness The question in this category
measures the faithfulness of the underlying data,
irrespective of its placement and visuals.

1. Is the information contained in the chart accurate?
- Choose “correct” if the data contained in the chart
looks correct, up to some small numerical errors, and
there is no additional information not present in the
ground truth.
- Choose “mostly correct” if the data shows the same
trend as in the ground truth (for example line A below
line B except at point C), with similar, but not exactly
the same absolute values.
- Choose "partially correct" if the data exhibits clear
similarities, but is fundamentally different (for exam-
ple cosine instead of sine).
- Choose “incorrect” if the data bears little resem-
blance to the ground truth.

{{true_image}}

Above was the ground truth plot. Below is the plot to
compare against:

{{predicted_image}}

Above is the chart to compare against. First, describe

the contents of each chart in detail, with particular at-

tention to the elements listed in the guidelines. Then,

break down the differences and similarities between

the two charts. Only afterwards is it time to rate the

chart. State your final justification for each category

(before the score), then the score, and output your ver-

dict as JSON contained in a ```json markdown code

block with the keys "chart_type", "axes", "title", "leg-

end", "supp_elements", "arrangement", "style" and

"faithfulness" and the rating "incorrect", "partially

correct", "mostly correct", "correct" or "n/a".
734

Zero-Shot CoT Prompt

You are a helpful assistant that can generate Python

code using matplotlib and seaborn. Generate the

code to create a plot that exactly matches the given

image. The generated code should be surrounded by

```python and ```. Before writing the code, ensure you

create a detailed plan containing the steps to produce

the given chart. Then, execute these steps by writing

the code.
735

Iterative Refinement Prompt

You are a helpful assistant that can generate Python
code using matplotlib and seaborn. Generate the
code to create a plot that exactly matches the given
image. The generated code should be surrounded by
```python and ```.

{{true_image}}

As helpful additional information, here is the code of
a previous try: {{previous_predicted_code}}

If previous try produced a chart:

The code of the previous try generated the following
image. You can adapt the previous code to fix its
mismatches.

{{previous_predicted_image}}

If previous try produced an error:

The code of the previous try did not execute success-
fully. It executed with the following error: {{previ-
ous_prediction_error}}
You can adapt the previous code to fix its error.

736

Synthetic Code Generation Prompt

{{reference_chart}}

Your task it to write matplotlib code to recreate the
above chart. You are given a hint, which is an incom-
plete fragment of the code rendering the chart:

{{reference_code}}

You will do this task in multiple steps:

First, describe what the chart is about, what are the
subplots and major elements of the chart.

Second, transcribe the chart title, legend, axis labels,
etc.

Third, you will define the data in one of three ways:
(a) If the data is not prohibitively large (say less
than 20 points for each series) or well described
by a mathematical function then define the data
ahead of time exactly (for example as numpy arrays).
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(b) Otherwise, if the data looks like a random
distribution define randomized data instead (for
example using np.random) and use that to generate
the plot. (c) Otherwise, define smaller dummy data
instead and then use it to generate the plot. Your data
should preserve the general look and conclusions of
the plot. Use this only as a last resort if (a) and (b)
are not possible.

Write which way are you choosing and why. When
writing down the data add a comment after each
array describing its length.

Make sure to report the mode you have chosen via
either (a), (b) or (c). Finally output the matplotlib
code rendering the chart. Make sure to include the
labels, and only use matplotlib or seaborn. Do not
use any other plotting library like plotly.

738

B PaliGemma Training739

Hyperparameters740

Parameter Value

Learning Rate 3e-5
Resolution 448 x 448
Batch Size 256
Max. Global Gradient Norm 1.0
Weight Decay 0.0
Num. Epochs 2

Table 7: Hyperparameters used for training the
PaliGemma-3B-IR model.

Hyperparameters used for training the741

PaliGemma-3B-IR model are reported in Table 7.742

C Human Rating Details743

The instructions given to the human annotators744

for fine-grained evaluation were equivalent to the745

VLM-as-a-judge instructions (i.e., “Prompt for the746

VLM-as-a-judge” in Appendix A). The nine expert747

annotators were recruited from the wider research748

group and worked pro bono under the clear under-749

standing that their score annotations would be used750

for research purposes. Given the nature of the task,751

an ethics review was deemed unnecessary.752

D Example Predictions and Ratings753

Fine-grained ratings and predictions on the easy754

and hard CoDePlot splits are shown in Figure 8755

and Figure 9, respectively.756
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Figure 8: Examples of fine-grained ratings and predictions on the easy CoDePlot split.
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Figure 9: Examples of fine-grained ratings and predictions on the hard CoDePlot split.
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