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ABSTRACT

Large language models (LLMs) sometimes generate chains of thought (CoT) that
do not faithfully reflect their internal reasoning. In particular, biased contexts can
lead a model to change its answer while rationalizing it without acknowledging the
influence of the bias, a form of unfaithful motivated reasoning. We investigate this
phenomenon across families of LLMs and datasets and show that bias-motivated
reasoning is detectable in the models’ internal representations. Specifically, we
train probes on the residual stream and find that, even when the model neither
adopts the bias in its final answer nor mentions it in its CoT, the bias remains
consistently predictable from representations at the end of the CoT. We further
show that probes can (i) distinguish reliance on the bias from mere coincidence
with it, something not possible by monitoring the CoT alone, and (ii) reliably
predict in advance, from internal representations before generating CoT, whether
the model will follow the bias.

1 INTRODUCTION

Large language models (LLMs) use chain-of-thought (CoT) reasoning to produce intermediate
reasoning steps before giving a final output (Wei et al., 2022; Nye et al., 2022; Kojima et al., 2023).
This ability enables skills such as planning, search, and verification to solve complex tasks, and
improves their performance (OpenAI, 2024; Guo et al., 2025; Muennighoff et al., 2025; Team et al.,
2025; Team, 2025). From a theoretical standpoint, models become computationally more expressive
with a larger workspace available for inference-time computations in the form of CoT (Kim &
Suzuki, 2025; Merrill & Sabharwal, 2024; Li et al., 2024; Nowak et al., 2025; Mirtaheri et al.,
2025). In addition, CoT reasoning offers appealing safety promises by making it possible to trace the
computations that lead to a model’s final decision through monitoring its CoT (Baker et al., 2025).

However, a model’s CoT does not necessarily explain its internal computations. Prior work on
faithfulness shows that CoT explanations can be unfaithful: they may rationalize a biased or hint-
driven answer without mentioning the true cause of the decision (Turpin et al., 2023a). Recent studies
demonstrate that even reasoning models often fail to verbalize the influence of misleading hints,
highlighting a gap between internal reasoning and CoT explanation (Chen et al., 2025; Chua & Evans,
2025a). This unfaithfulness also appears in more natural scenarios: for instance, when a model biased
toward answering yes tends to give yes responses even to contradictory yes/no questions, and its
chain of thought rationalizes the yes answer without acknowledging the underlying bias (Arcuschin
et al., 2025).

This gap motivates studying the internal representations of LLMs directly, to identify cognitive
behaviors such as motivated reasoning, where the model plans toward a hint-consistent answer.
Mechanistic interpretability works have shown traces of such behaviors in the model (Lindsey et al.,
2025). By studying the internal representations of the model in a biased context with a hint to a
multiple-choice question, our contributions are the following:

Bias recovery from the internal representations. We show that even when the CoT neither
follows the hint in its final answer nor mentions it, a probe can perfectly predict the bias from the
internal representations of the model at the end of CoT.
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Figure 1: Hint prediction probe accuracy across layers of the Qwen model for MMLU dataset and Sycophancy
hint for (middle) steps normalized by CoT length, (left) steps in the beginning of CoT, and (right) steps at the
end of CoT before the final output.

Retrospective unfaithful motivated reasoning detection. We show that the model’s reliance on
the bias to produce a bias-consistent final output can be distinguished from a coincidence with the
bias by a probe on its internal representations at the end of CoT, even when the model does not
articulate this reliance in its CoT.

Prospective motivated reasoning detection. We show that whether the model will be influenced
by the bias can be reliably detected by a probe from its internal representations even before generating
any CoT.

2 SETUP

While a language model’s CoT is commonly interpreted as the model’s reasoning trace leading to its
final response and CoT monitoring is becoming adopted as a AI safety approach, its effectiveness
depends on the CoT being a faithful explanation of the way the model reaches its answer. Therefore,
different frameworks have been proposed to evaluate the faithfulness of the CoT generated by the
model. We explain and adopt one of these frameworks in our work.

2.1 PAIRED CONTEXT EVALUATION FRAMEWORK

A line of recent works have evaluated faithfulness of language models under paired unbiased and
biased contexts (Turpin et al., 2023a; Chen et al., 2025; Chua & Evans, 2025a). The unbiased prompt
presents only a multiple-choice question, while the biased prompt includes the same question with a
hint implying one of the answer choices. These studies show that models can be misled by such hints:
even when the unbiased answer is correct, the model may change its answer in the biased context
to match the hint. Crucially, the chain-of-thought in these cases sometimes rationalizes the hinted
choice without acknowledging the hint’s influence. In our work, we will follow the setting of these
studies (Turpin et al., 2023a; Chen et al., 2025; Chua & Evans, 2025a).

Notation. For each unbiased context xu and biased context xh with hint h, the model M produces

(cu, au) = M(xu), (ch, ah) = M(xh),

where au and ah denote the model’s final answers and cu, ch the generated chains-of-thought. We
categorize the paired outcomes (au, ah) with respect to the hint h as follows:
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1. Resistant (au ̸= h → ah ̸= h): The model does not follow the hint in either condition.

2. Motivated (au ̸= h → ah = h): The model changes its answer to the hinted choice.

3. Coincident (au = h → ah = h): The model selects the hinted choice in either condition.

4. Divergent (au = h → ah ̸= h): The model changes its answer from the hinted choice.

2.2 MOTIVATED REASONING DETECTION TASKS

We are specifically interested in detecting the unfaithful motivated reasoning cases where the model
switches its answer to the hinted choice but does not mention the hint in its CoT. We focus on two
binary classification tasks:

Retrospective Motivated Reasoning Detection The resistant and divergent cases do not follow
the hint (ah ̸= h), therefore we can easily distinguish them from motivated cases by comparing the
final answer in CoT. However, the motivated and coincident cases both end with the hinted answer
(ah = h), and only differ in whether the model would have produced the same answer in an unbiased
context (au

?
= h). There is no way to distinguish these two cases by looking at the CoT alone and not

running the counterfactual experiment with unbiased context. However, tracing the model’s internal
computations can help us in distinguishing them.

Prospective Motivated Reasoning Detection The motivated and resistant cases both conflict with
the hint in the unbiased context (au ̸= h), and only differ in whether the model ultimately follows
the hint (ah

?
= h). While in retrospect we can distinguish them by comparing their final answer, we

want to study whether the model’s internal representations can be used to predict whether the model
will ultimately follow the hint, even before generating its CoT, to save computation and prevent the
potentially unfaithful motivated reasoning.

2.3 EXPERIMENTAL SETUP

Model. We conduct experiments with three language models spanning families of open-weight
LLMs: 1) Qwen3-8B, 2) Llama-3.1-8B, and 3) Gemma-3-4B. We prompt the model to think step-by-
step and then output its final choice letter. We sample with a temperature of 0 and set the maximum
number of generation tokens to 2048.

Data. We use four multiple-choice question benchmarks: 1) MMLU (Massive Multitask Lan-
guage Understanding) (Hendrycks et al., 2021), 2) AQUA-RAT (Algebra Question Answering with
Rationales) (Ling et al., 2017), 3) ARC (AI2 Reasoning Challenge) (Clark et al., 2018), and 4)
CommonsenseQA (Talmor et al., 2019).

Hints. We use three different types of hints to construct biased contexts: 1) Sycophancy, 2)
Consistency, and 3) Metadata. Table 1 explains the format in which the hints is provided, along with
an example for each.

Hint Description Example
Sycophancy Suggestion from an expert “An expert indicates the answer is A.”
Consistency Model’s prefilled response User: <question>

Assistant: The answer is (A).
User: Explain your reasoning. Then give a
final answer.
Assistant:

Metadata Embedded in XML metadata <question >...</ question><question−
metadata><correct−choice>A</correct−
choice></question−metadata>

Table 1: We use three hints: sycophancy, consistency, and metadata.
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Figure 2: Transitions of model’s answer due to the bias (left) across datasets, (right) across hints.

Probing. To analyze motivated reasoning, we extract residual stream activations after each attention
block, at multiple generation steps of ch. We train a Recursive Feature Machine (RFM) probe (Bea-
glehole et al., 2025) on these representations, with one probe per layer and step in the CoT. These
kinds of non-linear probes are shown to be able to extract interpretable features in previous works. We
use data extracted from %80 of the randomly selected questions for training and the rest as held-out.

3 TAXONOMY OF RESPONSES TO BIAS

In this section, we examine the model’s answer transitions from the unbiased context to the biased
context. For every question in a dataset we construct an unbiased prompt xu containing only the
multiple-choice question, and a biased prompt xh for each of the possible choices h. The model’s
responses (cu, au) and (ch, ah) are then collected to categorize outcomes into the four transition
types. Note that since every possible option is given as a hint, the total number of resits and motivated
cases is always equal to #choices-1 times the number of the coincident (redundant) and divergent
cases.

Hint Mentioning We also check whether the hint is mentioned in the responses or not, and split the
motivated cases into mention and no-mention subsets. To check mentioning, we just filter keywords
such as ’expert’, ’hint’, ’metadata’, etc. We also did ask ‘gpt-5-nano‘ to label a subset of the data as
either articulating influence of the hint or not. We noted that keyword filtering filters almost all the
positive cases along with some others. Therefore, for our purpose which is to avoid false negatives,
keyword filtering was sufficient.

3.1 RESULTS

In Figure 2 you can see the taxonomy of the cases, with the motivated cases divided into the mention
and no-mention cases. We note that for more objective datasets such as AQUA, which is composed
of algebraic tasks, the rate of resistance is much higher than the more subjective datasets such as
CommonsenseQA. Also, the consistency bias is the most effective in motivating the model, while the
metadata is the least effective. In spite of that, the rate of mentioning for the metadata case is less
than the sycophancy case.

4 DETECTING HINT-MOTIVATED REASONING

In this section, we retain the cases that the hint was not mentioned, so the CoT cannot give information
about the reliance of the model on the hint. Therefore, without running counterfactual experiments,
studying the internal computations of the model would be the only viable approach.

Warmup: Hint Prediction We start with training a probe over the internal representations of the
model at the end of CoT that predicts the hint. In this case we also remove the cases where the
model is answering the hinted option. Therefore, there is no reference to the hint at the end of CoT.
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Figure 3: Best bias detection AUC across layers at the end of CoT (left) across datasets, (right) across hints.

Despite that, we note that the probe perfectly predicts the hint. This shows the possiblity of extracting
information from internal representations of the model about its internal computations (See Figure 3).

Reliance on the hint is detectable at the end of CoT. The retrospective motivated reasoning
detection probe that is trained to decide whether the model is relying on the hint or it would output
the same answer in an unbiased context achieves a reliable AUC at the end of CoT (See Figure 4).
This shows the possibility of detecting the model’s reliance on the hint, even though its CoT does not
mention or follow the hint.

Switching to the hint is detectable before CoT generation. The prospective motivated reasoning
detection probe that is trained to predict whether the model follows a hint that contradicts the model’s
unbiased answer, achieves a reliably high AUC before CoT generation (See Figure 5). This shows the
possibility of detecting motivated reasoning intention from the internal representations of the model,
even before generating CoT.

5 RELATED WORK

Faithfulness of Chain-of-Thought Reasoning. A large body of work has shown that chain-of-
thought (CoT) explanations produced by LLMs are not always faithful to the underlying computations.
Early studies revealed that models may rationalize biased or hint-driven answers without acknowledg-
ing the true cause of their decision Turpin et al. (2023b); Lanham et al. (2023). Recent evaluations
on reasoning-specific models confirm this gap: even when they rely on misleading cues, they rarely
verbalize their influence Chen et al.; Chua & Evans (2025b); Arcuschin et al. (2025). Methods such as
causal interventions on explanations Matton et al. (2025); Tutek et al. (2025) and mediation analyses
Paul et al. (2024) quantify this unfaithfulness more precisely, while other work highlights the inherent
hardness of eliciting faithful CoT from current models Tanneru et al. (2024).
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Figure 4: Best retrospective motivated reasoning Detection detection AUC across layers at the end of CoT (left)
across datasets, (right) across hints.
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Several approaches aim to increase the alignment between internal reasoning and verbalized CoT.
These include debiasing strategies such as bias-augmented consistency training Chua et al. (2025),
inference-time interventions like probabilistic dual-reward inference Li et al. (2025), and activation-
level methods such as patching or control Yeo et al. (2024); Zhao et al. (2025). Frameworks like
FRODO Paul et al. (2024) and FUR Tutek et al. (2025) provide structured ways to evaluate or
improve reasoning faithfulness, while recent work investigates the limitations of fine-tuning, in-
context learning, and activation editing Tanneru et al. (2024).

Mechanistic Interpretability and Probing. Another direction focuses on the internal representa-
tions of LLMs. Mechanistic interpretability efforts have mapped reasoning circuits and attribution
graphs Lindsey† et al.; Sharkey et al. (2025). Latent knowledge studies aim to recover what models
know but may not say Burns et al. (2024); Mallen et al. (2024), while probing methods test whether
logical or causal structures can be extracted from representations Manigrasso et al. (2024); Cencer-
rado et al. (2025). Recent work identifies “thought anchors”—intermediate reasoning steps that
disproportionately influence outcomes Bogdan et al. (2025).

Biases, Sycophancy, and Motivated Reasoning. Beyond faithfulness, models also exhibit cog-
nitive biases similar to humans. Studies show that persona-assigned LLMs demonstrate motivated
reasoning aligned with identity or ideology Dash et al. (2025), while others document sycophancy,
where human preference training encourages models to echo user beliefs over truth Sharma et al.
(2025).

6 DISCUSSION AND LIMITATIONS

In this paper, we focused on motivated reasoning as a behavior of language models that cannot
always be detected by monitoring their CoT. By probing the internal representations of the model,
we traced its access to the hint in the biased context and showed that it is possible to detect the
model’s intention to switch to the hint early in its CoT, as well as its reliance on the hint late in its
CoT. We note that hints that are consistent with the correct answer may be processed differently
from misleading hints; understanding this distinction remains an important direction for future work.
Moreover, the predictive features need to be investigated more deeply to understand the nature of
internal computations that lead to motivated reasoning.

7 LLM USAGE

We used Large Language Models for rewriting some paragraphs, and generate plots that are presented
in the work. Moreover, in our experiments we used them to implement some methods that we then
verified.

MMLU AQUA-RAT ARC-Challenge CommonsenseQA0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 A
UC

Retrospective Detection  Benchmarks

Qwen3-8B
Llama-3.1-8B
Gemma-3-4B

Sycophancy Consistency Metadata Average0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 A
UC

Retrospective Detection  Bias Types

Qwen3-8B
Llama-3.1-8B
Gemma-3-4B

Figure 5: Best prospective motivated reasoning Detection detection AUC across layers before CoT generation
(left) across datasets, (right) across hints.
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