
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PAIRFLOW: CLOSED-FORM SOURCE-TARGET COU-
PLING FOR FEW-STEP GENERATION IN DISCRETE FLOW
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce PAIRFLOW, a lightweight preprocessing step for training Discrete
Flow Models (DFMs) to achieve few-step sampling without requiring a pretrained
teacher. DFMs have recently emerged as a new class of generative models for
discrete data, offering strong performance. However, they suffer from slow sam-
pling due to their iterative nature. Existing acceleration methods largely depend on
finetuning, which introduces substantial additional training overhead. PAIRFLOW
addresses this issue with a lightweight preprocessing step. Inspired by ReFlow
and its extension to DFMs, we train DFMs from coupled samples of source and
target distributions, without requiring any pretrained teacher. At the core of our
approach is a closed-form inversion for DFMs, which allows efficient construction
of paired source–target samples. Despite its extremely low cost, taking only up to
1.7% of the compute needed for full model training, PAIRFLOW matches or even
surpasses the performance of two-stage training involving finetuning. Furthermore,
models trained with our framework provide stronger base models for subsequent
distillation, yielding further acceleration after finetuning. Experiments on molecular
data as well as binary and RGB images demonstrate the broad applicability and
effectiveness of our approach.

1 INTRODUCTION

Discrete Flow Models (DFMs) (Campbell et al., 2024; Gat et al., 2024) have recently emerged as a
promising class of generative models, extending the idea of Flow Models (FMs) for continuous data
to the discrete domain. By adapting flow-based principles to categorical structures, DFMs provide
a principled and efficient way to capture complex discrete distributions through iterative sampling.
They have shown success across a variety of applications, particularly in scientific domains such as
molecule generation (Ramakrishnan et al., 2014; Irwin et al., 2012), where DFMs offer a natural
framework for modeling chemical structures and generating novel candidates.

Analogous to FMs in the continuous domain, a key challenge of DFMs is the long computation
time for generation due to their iterative sampling nature. Recent work (Deschenaux & Gulcehre,
2025; Hayakawa et al., 2025; Sahoo et al., 2025; Yoo et al., 2025) have sought to accelerate the
generative process through distillation-based finetuning, which builds on ideas originally developed
for continuous flow matching. Notably, ReFlow (Liu & Gong, 2023a) is a well-known technique for
FMs that pairs samples from the source (prior) distribution and the target distribution by running
the generative process of a pretrained model and using the resulting pairs for finetuning. Recently,
this idea has also been extended to DFMs (Yoo et al., 2025) to reduce conditional total correlation
through finetuning, thereby enabling few-step generation.

Despite these promising results in acceleration, distillation-based methods incur substantial finetuning
overhead, amounting to about 10–20% of the time required to train the base model from scratch. In
other words, the gain in generation speed comes at the expense of considerable additional training cost.
To our knowledge, no prior work has addressed this training-time cost when pursuing inference-time
acceleration. This raises a natural question: can we achieve speedups comparable to distillation-based
approaches while requiring only a lightweight preprocessing phase that requires orders of magnitude
less compute, on the order of tens of GPU minutes?
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We propose PAIRFLOW, a training framework for DFMs that enables few-step sampling by con-
structing paired source–target samples using closed-form velocities. While inspired by ReDi-style
coupling-driven training, our approach eliminates the need for a pretrained teacher by using
closed-form formulations and achieves acceleration without finetuning. The algorithm for com-
puting source–target pairs is fully parallelizable and requires at most 1.7% of compute needed for
full model training. Despite relying only on a lightweight preprocessing step, PAIRFLOW attains
performance comparable to, or even superior to state-of-the-art distillation-based techniques, which
can require up to 143 times more computation. Furthermore, models trained with our technique
provide stronger bases for subsequent distillation, delivering additional performance gains while
incurring only minimal preprocessing cost.

At the core of our framework is the simulation of probability paths connecting source (prior) and target
(data) distributions in discrete spaces, made possible by closed-form expressions of velocities. While
closed-form forward velocities have been studied for flow models in continuous domains (Karras et al.,
2022; Bertrand et al., 2025), they have, to the best of our knowledge, neither been explored for DFMs
nor applied to identifying suitable source–target pairs in the context of distillation-based acceleration,
as in ReDi (Yoo et al., 2025). In this work, we investigate this idea for the first time. For DFMs,
with a particular focus on uniform-state models (Sahoo et al., 2025; Schiff et al., 2025) equipped
with a self-correcting mechanism, we show that the closed-form forward velocity is determined
by the Hamming distance, which measures the number of differing tokens between two sequences.
Using this velocity, samples from the source (latent) distribution can be mapped to given target
samples. However, because multiple source samples may map to the same target, covering all targets
through coupling would require an impractically large number of source samples. To overcome
this, we derive the corresponding backward velocity in closed form and leverage it to simulate
backward probability paths that efficiently map data points to source points, making pair discovery
computationally efficient.

In our experiments, we show that the proposed framework enables few-step sampling across diverse
discrete domains, including molecular data (Ramakrishnan et al., 2014; Irwin et al., 2012) and 2D
images, exemplified by MNIST-Binary (LeCun et al., 2002) and CIFAR-10 (Krizhevsky et al., 2009).
On the QM9 (Ramakrishnan et al., 2014) and ZINC-250k (Irwin et al., 2012) datasets, PAIRFLOW
not only improves the base model but also performs comparably to, or even better than, distilled
models that require up to 143× more compute during finetuning, compared to our lightweight
preprocessing algorithm. Similar improvements are observed on MNIST-Binary, where models
paired with PAIRFLOW achieve performance comparable to those using DCD (Sahoo et al., 2025)
and ReDi (Yoo et al., 2025), while being up to 35× faster. Furthermore, after subsequent distillation,
base models trained with pairs generated by our method consistently achieve higher performance,
underscoring the importance of well-constructed source–target pairings.

2 RELATED WORK

2.1 DISCRETE FLOW MODELS

The concept of Flow Matching (Lipman et al., 2023) has recently been extended to the discrete
flow-based models (Gat et al., 2024; Campbell et al., 2024; Sahoo et al., 2024; Schiff et al., 2025),
demonstrating its flexibility across high-dimensional and structured data (Bai et al., 2025; Chang
et al., 2022; Weber et al., 2024; Arriola et al., 2025; Nie et al.; Yu et al., 2023; Lee et al., 2025;
Campbell et al., 2024; Wang et al., 2025). Among these, uniform-state models (Sahoo et al., 2025;
Schiff et al., 2025) have been studied for their self-correcting properties, which enable recovery
from errors introduced during parallel decoding. However, their performance degrades markedly in
few-step settings, posing a key limitation for efficient generation under tight compute budgets.

2.2 ACCELERATING DISCRETE FLOW MODELS

Several approaches have been proposed to accelerate sampling with DFMs. Park et al. (2024) directly
optimize sampling timesteps for improved parallelism while mitigating decoding errors. Hayakawa
et al. (2025) highlight the importance of capturing dimensional correlations for faster sampling and
introduce mixture models to this end, at the cost of additional loss terms that complicate optimization.
Another line of work adapts techniques from continuous domains, as in Sahoo et al. (2025), that
propose a discrete analogue of Consistency Distillation (CD) (Song et al., 2023) by leveraging the
duality between uniform-state and continuous Gaussian models. Most relevant to our approach is
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ReDi (Yoo et al., 2025), which draws inspiration from the concept of straight flows in ReFlow (Liu &
Gong, 2023a) and iteratively optimizes pairs of data and noise samples.

3 PRELIMINARIES

In this section, we provide a brief overview of flow matching for generative modeling of discrete
data (Sec. 3.1), followed by a rectification technique (Yoo et al., 2025) that enables faster generation
(Sec. 3.2) by reducing total correlation errors.

3.1 DISCRETE FLOW MATCHING

The goal of Discrete Flow Matching (DFM) (Campbell et al., 2024; Gat et al., 2024) is to learn a
probability path pt(·) that connects a known, easy-to-sample source distribution p(x) to an unknown
target distribution q(x), both defined over a discrete state space. Once pt(·) is known, samples from q
can be generated by drawing x0 ∼ p and transporting it along the path.

Specifically, consider a sequence x = (x1, x2, . . . , xN ) of N tokens, where each token takes values
in a vocabulary V = {1, 2, . . . ,K} of size K. A sequence x then resides in the product space VN .
We denote by ∆K = {p ∈ RK |

∑
i pi = 1, pi ≥ 0} the probability simplex of dimension K − 1, on

which distributions over V are defined.

Given a target probability path pt(x) : VN × [0, 1] → [0, 1] with an associated velocity field
vt(x) : VN × [0, 1] → RN×K , we introduce a network pθ1|t(x) : VN × [0, 1] → (∆K)N to
approximate vt(x). Its parameters θ are optimized via the DFM objective (Gat et al., 2024):

LDFM(θ) = −
∑

i∈{1,...,N}

Et∼U [0,1],x0∼p,x1∼q,z∼pt(x|x0,x1) log p
θ
1|t(x

i
1|z), (1)

where pθ1|t(x
i
1|z) denotes the learned probability denoiser, which predicts the categorical distribution

of the clean token xi
1 given an intermediate sequence z. Here, the conditional probability path

pt(z|x0, x1) generates samples z by interpolating between a data point x1 ∼ q and a source sample
x0 ∼ p. Assuming independence across tokens in sequence x, the conditional density factorizes as

pt(z|x0, x1) =

N∏
i=1

pt(z
i|x0, x1). (2)

As token-wise conditional paths pt(zi|x0, x1), Gat et al. (2024) employ the mixture path of form:

pt(z
i|x0, x1) = (1− κt)δx0

(zi) + κtδx1
(zi), (3)

where the scheduler κt = κ(t) is a monotonically increasing function over t ∈ [0, 1] satisfying
κ0 = 0 and κ1 = 1. For notational convenience, given x, y ∈ VN , we define the Dirac delta δy(x) as

δy(x) =

N∏
i=1

δyi(xi), where δyi(xi) =

{
1 xi = yi

0 xi ̸= yi
. (4)

We also use the shorthand δy(x
i) = δyi(xi) . After optimizing θ, the learned model parameterizes an

approximation of the marginal velocity field:

vθt (x
i, z) =

κ̇t

1− κt

[
pθ1|t(x

i|z)− δz(x
i)
]
, (5)

where κ̇t =
∂κt

∂t . This learned velocity field vθt (x
i, z) then transports samples over the interval [0, 1]

to simulate trajectories along pt(·) and thereby generate samples. Each update step is defined as:

xi
t+h ∼ Cat

(
xi
t+h; δxi

t
(·) + h · vθt (xi

t+h, xt)
)
, (6)

where h > 0 is the step size.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 STRAIGHTENING PROBABILITY PATHS FOR ACCELERATED SAMPLING

The concept of straight probability paths was originally introduced in the continuous domain to
enable accelerated sampling. Prior work (Liu & Gong, 2023b) identified curved probability paths as
a key challenge in few-step sampling: when velocity fields are evaluated only at coarse time steps,
numerical integration deviates from the true trajectories. Liu & Gong (2023b) addressed this issue
through “rectification,” in which a student flow model is trained on source–target pairs generated by a
teacher model, effectively yielding significantly straighter probability paths.

In the discrete setting, this challenge of path curvature translates to capturing the statistical correla-
tions between tokens. Since DFMs approximate exponentially large joint transitions through fully
factorized per-token updates, a mismatch inevitably arises between the true joint transition and its
product-form approximation. This discrepancy becomes especially detrimental during few-step gen-
eration, where highly correlated tokens must be updated simultaneously. To address this, prior works
have primarily relied on distillation-based approaches (Hayakawa et al., 2025; Sahoo et al., 2025;
Deschenaux & Gulcehre, 2025), aiming to better capture these correlations by explicitly transferring
multi-step dependencies from a stronger teacher model.

Yoo et al. (2025) formalized this factorization mismatch via conditional Total Correlation (TC),
defined as:

TCπ(xs|xt) = Ext

[
DKL

(
ps|t(xs|xt)∥

N∏
i=1

ps|t(x
i
s|xt)

)]
, (7)

which serves as a metric for the factorization error. Crucially, Yoo et al. (2025) interpret this factoriza-
tion error as the discrete analog of path curvature: minimizing TC is equivalent to “straightening” the
trajectory by decoupling token transitions. Analogous to ReFlow (Liu & Gong, 2023b), which rectifies
continuous paths, they demonstrate that reducing Eqn. 7 requires iteratively refining the source–target
coupling π(x0, x1). To achieve this, they employ an iterative distillation process, alternating between
generating improved pairs using the current model and optimizing LDFM. This procedure effectively
finds a “statistically straight” coupling that enables efficient few-step generation.

4 PAIRFLOW

For DFMs, ReDi (Yoo et al., 2025) improves sample quality in few-step generation by rectifying
source-target pairs. However, it relies on samples from a pretrained model followed by costly
retraining or finetuning. We take this one step further and pose the following question: What if these
pairs could be generated directly from the data, without relying on a pretrained model or sampling
from it?

To address this question, we propose a principled approach for discovering well-aligned source–target
pairs without relying on pretrained models, enabling models trained on such pairs to achieve strong
performance with few-step sampling. Our method, termed PAIRFLOW, leverages closed-form velocity
fields that can be computed directly from the data samples, requiring only prior knowledge of the
source distribution. We assume this distribution to be uniform, a choice extensively studied in recent
work (Sahoo et al., 2025; Schiff et al., 2025), as models trained under this prior naturally acquire
self-correcting properties.

In Sec. 4.1, we introduce the closed-form forward velocity for discrete flow matching (Gat et al.,
2024). In Sec. 4.2, we extend this to the closed-form backward velocity and propose an algorithm for
discovering well-aligned source–target pairs during the preprocessing phase.

4.1 FINDING PAIRS VIA CLOSED-FORM FORWARD VELOCITY FIELDS

As discussed in Sec. 3.1, DFMs (Campbell et al., 2024; Gat et al., 2024) aim to learn a marginal
velocity field vt(·) that induces a probability path pt(·), transporting the source distribution p0(·) to
the target distribution q(·) = p1(·), which is unknown in practice. Instead, we only have access to
a finite dataset of M samples {dm}Mm=1. This empirical distribution q̃(x) can be represented as a
mixture of Dirac deltas centered at the observed samples:

q(x) ≈ q̃(x) =
1

M

M∑
m=1

δdm(x). (8)
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Figure 1: Illustrations of data inversion
in PAIRFLOW and the standard corruption pro-
cess in UDLM. PAIRFLOW achieves a lower
average Hamming distance (6.47 vs. 9.0), pro-
moting straighter paths during training.

Algorithm 1: PAIRFLOW

1 Input: Dataset {dm}Mm=1, Steps T
2 Output: Pairs π = {(x0,m, x1,m)}Mm=1

3 Initialize π ← ∅
4 for m← 1 to M do
5 x1,m ← dm
6 x← x1,m

7 for t← 1 to T do
8 Compute p0|t(·|x) and v̌t(·, x)

from Eqn. 12
9 Sample

z ∼ Cat(z; δx(·)− h · v̌t(·, x))
10 x← z

11 x0,m ← x
12 π ← π ∪ {(x0,m, x1,m)}
13 return π

For continuous domains, Karras et al. (2022); Bertrand et al. (2025) have shown that the velocity field
transporting p0 to q can be derived in closed form when both distributions admit tractable density
expressions. To the best of our knowledge, this idea has not been explored in discrete domains; in the
following, we derive the closed-form velocity field for discrete domains for the first time.

We base our framework on the assumption of a uniform prior distribution over the discrete state
space VN , defined as p0(x) = UN , where U = Cat

(
·; 1

K

)
denotes the uniform distribution over the

dictionary V . For the empirical target distribution q̃(x) introduced in Eqn. 8, we show in App. A.1
that the closed-form denoiser p1|t(xi|z) and its associated velocity field v̂t(x

i, z) are given by:

p1|t(x
i|z) =

∑M
m=1 δdi

m
(xi)γ−h(dm,z)∑M

m=1 γ
−h(dm,z)

=⇒ v̂t(x
i, z) =

κ̇t

1− κt

[
p1|t(x

i|z)− δz(x
i)
]

(9)

where γ = (1+(K−1)κt)/(1−κt), K denotes the vocabulary size, and h(s, z) = N−
∑N

i=1 δsi(z
i)

is the Hamming distance between sequences s and z, i.e., the number of positions at which they differ.
The token-wise denoiser p1|t(xi|z) above is a weighted mixture of Dirac deltas, where sequences
closer to z under the Hamming distance contribute more. Intuitively, the forward velocity field
v̂t(x

i, z) pulls each token toward those from dataset sequences most similar to z. The most direct
way to construct source-target pairs using v̂t(x

i, z) is to sample x0 ∼ p0(x) and evolve it along the
velocity field until it reaches a dataset point x1. In practice, however, the generated data points fail
to fully cover q̃(x), requiring an impractically large number of source samples to achieve sufficient
coverage. Our empirical results, reported in App. C.1, support this claim and motivate the exploration
of a more efficient alternative, which we present in the following section.

4.2 FINDING PAIRS VIA CLOSED-FORM BACKWARD VELOCITY FIELDS

We address this issue by backtracing trajectories along pt(·), starting from q̃(x) and progressing
toward the source distribution p0(·). Unlike the forward construction in Sec. 4.1, this guarantees
that all data points in q̃(x) are included in the resulting pairs by design. As illustrated at the top
of Fig. 1, PAIRFLOW inverts data samples toward the source distribution, assumed to be uniform.
Unlike the standard corruption process used by UDLM (Schiff et al., 2025) shown at the bottom
of Fig. 1, the source samples obtained by PAIRFLOW remain closer to the original data in terms of
Hamming distance. This helps the model learn to recover data with fewer token transitions during
training, effectively approximating the straight probability paths explored in ReFlow (Liu & Gong,
2023a) and ReDi (Yoo et al., 2025).

The remaining challenge is to derive the closed-form backward velocity that governs this process.
This can be obtained by following a construction analogous to Sec. 4.1. Specifically, we first derive
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Table 1: Dataset and training statistics. N denotes the number of tokens per sample, K the dictionary
size, |X1| the dataset size, and T∗ the runtime of each method (in minutes, measured in wall-clock
time with RTX A6000). The numbers in parentheses are the proportion of time relative to TBase.

Dataset N K |X1| TBase TDCD TReDi TPAIRFLOW

MNIST-Binary 768 2 60,000 80 (100.0%) 40 (50.0%) 49 (61.0%) 1.4 (1.7%)
CIFAR-10 3,072 256 100,000 6720 (100.0%) 360 (5.3%) 468 (6.9%) 20 (0.3%)
QM9 32 40 127,190 450 (100.0%) 115 (24.8%) 100 (22.2%) 0.8 (0.2%)
ZINC-250k 72 74 224,568 1,110 (100.0%) 211 (19.0%) 194 (17.4%) 13 (1.2%)

the closed-form noise predictor p0|t(xi|z):

p0|t(x
i|z) = δz(x

i)− κt(Kδxi(zi)− 1)

1 + (K − 1)κt

∑M
m=1 δdi

m
(zi)γ−h(dm,z)∑M

m=1 γ
−h(dm,z)

, (10)

with a detailed derivation provided in App. A.2. Substituting this into the definition of the backward
velocity field from Gat et al. (2024)

v̌t(x
i, z) =

κ̇t

κt

[
δz(x

i)− p0|t(x
i|z)
]
, (11)

we obtain the desired closed-form expression

v̌t(x
i, z) =

κ̇t(Kδxi(zi)− 1)

1 + (K − 1)κt

∑M
m=1 δdi

m
(zi)γ−h(dm,z)∑M

m=1 γ
−h(dm,z)

. (12)

The second term in Eqn. 10 computes the conditional likelihood of the i-th token taking value xi ∈ V
given the current sequence z, marginalized over all dataset {dm}Mm=1. The contribution of each data
sample dm is determined by its proximity to z under the Hamming distance h(dm, z), assigning
higher weight to tokens with greater local consensus. Consequently, updating with v̌t(x

i, z) pushes
the sample away from the data distribution and toward the source distribution p0(x). Using v̌t(x

i, z),
we construct pairs {(x0,m, x1,m)}Mm=1 by initializing from data points {dm}Mm=1 (equivalently,
{x1,m}Mm=1) and iteratively applying the backward update rule in Eqn. 6 for a fixed number of
iterations T . The overall procedure is summarized in Alg. 1.

5 EXPERIMENTAL RESULTS

We validate the effectiveness of the proposed method and the source–target pairs it discovers across
several discrete generative modeling benchmarks involving molecular data and images. We first
summarize the experimental setup in Sec. 5.1. In Sec. 5.2 and Sec. 5.3, we compare our method
against baselines in molecular and image generation, respectively. In Sec. 5.4, we further demonstrate
that models trained with pairs discovered by our method not only achieve improved performance
directly, but also benefit subsequent distillation phases, as the resulting base model provides a stronger
initialization for existing distillation techniques.

5.1 EXPERIMENT SETUP

Baselines. Across multiple benchmarks, we compare our approach against state-of-the-art discrete
flow models, including MDLM (Sahoo et al., 2024) and UDLM (Schiff et al., 2025). Since our method
is based on a uniform source distribution, we adopt UDLM (Schiff et al., 2025), the leading uniform-
state model, as our base and denote UDLM trained with pairs generated by Alg. 1 as PAIRFLOW
throughout the remainder of this section. In addition, we compare against these models augmented
with distillation-based techniques that require additional finetuning, Discrete Consistency Distillation
(DCD) (Sahoo et al., 2025) and ReDi (Yoo et al., 2025), denoted throughout this section by the suffixes
“+ DCD” and “+ ReDi”. The detailed training setups of these models, such as hyperparameters, are
provided in App. B. Additionally, we report the performance of the same base model trained on pairs
formed by each data point and a source sample randomly drawn from the uniform distribution with
our detailed experimental results in App. D.
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Figure 2: Step-wise performance analysis on the QM9 dataset (Ramakrishnan et al., 2014). Each plot
reports the number of valid (left), unique (middle), and novel (right) SMILES strings (Weininger,
1988) out of 1,024 generated samples. Best viewed when zoomed in.

Benchmarks. We evaluate our method across a diverse set of discrete generative modeling bench-
marks, covering both molecule and image generation tasks. For molecule generation, we experiment
with the QM9 (Ramakrishnan et al., 2014) and ZINC-250k (Irwin et al., 2012) datasets. For image
generation, we use the MNIST dataset (LeCun et al., 2002) with binarized pixel values (denoted
MNIST-Binary) and the CIFAR-10 dataset (Krizhevsky et al., 2009), where pixel intensities are scaled
to 8-bit integers, and horizontal flip augmentation is applied. Dataset statistics, including sample size,
vocabulary size, and overall dataset size, are summarized in Tab. 1.

Evaluation Setup. For molecular generation, we follow Schiff et al. (2025) and evaluate the
validity, uniqueness, and novelty of generated molecules. Specifically, we sample 1,024 SMILES
strings (Weininger, 1988), convert them into molecular graphs, and compute these metrics. All results
are averaged over 10 trials, with further details provided in App. D. For image generation, we report
Fréchet Inception Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al.,
2016). FID is computed with 1,000 images for MNIST-Binary, and both FID and IS are computed
with 5,000 generated images for CIFAR-10. The training dataset is used as the reference for FID
computation. Across all experiments, we vary the number of sampling steps to evaluate performance
in both low- and high-NFE settings. In particular, we generate samples using 1 − 64 steps for
molecular benchmarks (QM9 and ZINC-250k) and MNIST-Binary benchmark, and 8− 1024 steps
for CIFAR-10 (Krizhevsky et al., 2009), as models yielded excessively high FIDs under extremely
low-step settings.

5.2 MOLECULE GENERATION

We begin by benchmarking unconditional molecule generation, where models are tasked with
generating SMILES strings (Weininger, 1988) that represent molecules. As illustrated in Fig. 2
and Fig. 3, which summarize validity (left), uniqueness (middle), and novelty (right), PAIRFLOW
consistently improves upon its base model UDLM (Schiff et al., 2025), yielding substantial gains in
few-step settings. It facilitates 1-step generation on QM9 (Ramakrishnan et al., 2014), a challenging
setting that requires capturing all token-wise dependencies simultaneously. In this case, validity
increases from 17.5 to 223.4, corresponding to a 12.8× improvement. Similar trends are observed
in the 2-step and 4-step settings, with validity improving by 231% and 47.6%, respectively. As
shown in Fig. 2 (left), this improvement is particularly significant: the 2-step and 4-step validities
of PAIRFLOW are comparable to the 4-step and 8-step validities achieved by UDLM (Schiff et al.,
2025). Comparable improvements are also seen on the ZINC-250k (Irwin et al., 2012) dataset.

Remarkably, PAIRFLOW introduces minimal overhead—less than 2% of the training cost as
shown in Tab. 1—and requires no pretrained models, yet achieves performance comparable
to, and in some cases surpassing, models distilled from the same base using DCD (Sahoo et al.,
2025) and ReDi (Yoo et al., 2025), both of which rely on pretrained models and finetuning. On both
QM9 (Ramakrishnan et al., 2014) and ZINC-250k (Irwin et al., 2012), PAIRFLOW consistently out-
performs UDLM + ReDi across all few-step settings, achieving substantially higher 2-step validities
on QM9 (232.4 vs. 416.0) and ZINC-250k (75.9 vs. 146.3). At the same time, PAIRFLOW matches
the performance of UDLM + DCD, with comparable 2-step validities on QM9 (416.0 vs. 530.8).
This is particularly notable given that the additional preprocessing cost of PAIRFLOW amounts to only
0.69% on QM9 (Ramakrishnan et al., 2014) and 6.16% on ZINC-250k (Irwin et al., 2012), relative
to the full cost of DCD (Sahoo et al., 2025). Detailed numerical results with standard deviations are
reported in App. D.
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Figure 3: Step-wise performance analysis on the ZINC-250k dataset (Irwin et al., 2012). Each plot
reports the number of valid (left), unique (middle), and novel (right) SMILES strings (Weininger,
1988) out of 1,024 generated samples. Best viewed when zoomed in.

Figure 4: Step-wise performance analysis on discretized image datasets. From left to right: FID on
MNIST-Binary (LeCun et al., 2002), FID on CIFAR-10 (Krizhevsky et al., 2009), and Inception
Scores (IS) on CIFAR-10. Best viewed when zoomed in.
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Figure 5: Qualitative results of 1-step generation on MNIST-Binary (28× 28; left) and 64-step (top
right) and 256-step (bottom right) generation on CIFAR-10 (32× 32).

5.3 IMAGE GENERATION

We further extend our experiments to image domains where each pixel has discretized intensities.
As in Sec. 5.2, we evaluate model performance across multiple sampling steps and summarize the
results in Fig. 4. Qualitative samples for MNIST-Binary and CIFAR-10 are shown in Fig. 5. Both
qualitative and quantitative results show that PAIRFLOW improves the performance of UDLM (Schiff
et al., 2025) and, in few-step settings, achieves performance comparable to DCD (Sahoo et al., 2025).
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Figure 6: Step-wise performance analysis of distilled models on molecular and image datasets. From
left to right: number of valid molecules on QM9, number of valid molecules on ZINC-250k, and FID
on MNIST-Binary.

On MNIST-Binary (Fig. 4, left), PAIRFLOW achieves an FID of 40.59 in the 1-step setting, equiva-
lently a 68.9% improvement over UDLM (Schiff et al., 2025). Consistent gains are observed across
other few-step settings as well: at 2 steps, FID is reduced by 63.3% (15.61 vs. 42.54), and at 4
steps by 24.4% (8.51 vs. 11.25). On CIFAR-10 (Krizhevsky et al., 2009), where FID (Heusel et al.,
2017) and IS (Salimans et al., 2016) are reported in Fig. 4 (middle and right), PAIRFLOW likewise
outperforms the base UDLM, validating the effectiveness of the discovered source–target pairs.

As in molecular generation (Sec. 5.2), PAIRFLOW performs comparable to distillation-based accel-
eration methods. On MNIST-Binary, it achieves a lower FID than UDLM+DCD in the 1-step setting
(40.59 vs. 53.84) and comparable performance at 2 steps (15.61 vs. 16.09). Likewise, PAIRFLOW
performs competitively with UDLM+ReDi at 2 steps (15.61 vs. 10.36), while requiring substantially
less compute than both. As summarized in Tab. 1, DCD (Sahoo et al., 2025) requires 40 minutes
(TDCD) and ReDi (Yoo et al., 2025) takes 49 minutes, whereas the preprocessing phase of PAIRFLOW
completes in just 1.4 minutes (TPAIRFLOW), yielding 28.6× and 35× speedups, respectively. On the
CIFAR-10 benchmark, both DCD (Sahoo et al., 2025) and ReDi (Yoo et al., 2025) degrade model per-
formance, as indicated by the higher FID in Fig. 4 (middle) and lower IS in Fig. 4 (right). The results
in Tab. 13 suggest that, overall, acceleration methods do not work well on CIFAR-10. We hypothesize
that this issue arises from the low performance of the teacher model, which negatively affects the
student model when applying acceleration methods. Detailed results are reported in App. D.

5.4 DISTILLING MODELS TRAINED WITH ALIGNED PAIRS

While PAIRFLOW alone achieves performance comparable to, or even exceeding, distillation-based
techniques (Yoo et al., 2025; Sahoo et al., 2025), as shown in Sec. 5.2 and Sec. 5.3, we further
emphasize that it also serves as a strong initialization for subsequent distillation, yielding even greater
performance gains when combined with existing methods. Crucially, this incurs negligible additional
cost relative to the overall time required for distillation.

We validate this by distilling PAIRFLOW, trained on QM9 (Ramakrishnan et al., 2014), ZINC-
250k (Irwin et al., 2012), and MNIST-Binary, using DCD (Sahoo et al., 2025) and ReDi (Yoo
et al., 2025), and comparing their performance against distilled models whose teachers were the
base UDLM (Schiff et al., 2025). As shown in Fig. 6, student models distilled from PAIRFLOW,
denoted PAIRFLOW+DCD and PAIRFLOW+ReDi, push the frontier of performance previously
achieved by distillation-based techniques. For example, on the QM9 dataset (Ramakrishnan et al.,
2014), PAIRFLOW+DCD substantially improves validity over UDLM+DCD (453.8 vs. 323 for 1
step, 685.8 vs. 530.8 for 2 steps). A similar trend is observed for PAIRFLOW+ReDi on ZINC-
250k (Irwin et al., 2012), yielding higher scores in both 1-step (46.3 vs. 0.7) and 2-step (221.5 vs.
75.9) generation. Importantly, as summarized in Tab. 1, these gains are achieved at only minimal
additional preprocessing cost: 3.15% of the average runtime of distillation on MNIST-Binary, 0.77%
on QM9, and 6.42% on ZINC-250k.

6 CONCLUSION

We have presented PAIRFLOW, a novel approach to accelerating the generative process of Discrete
Flow Models (DFMs) through a lightweight preprocessing step performed prior to training. Our
preprocessing, which couples source and target samples, requires only up to 1.7% of the base model
training cost, making it at least 20× more efficient than finetuning, while still achieving comparable
or even superior performance. The key enabler is the closed-form inversion, which eliminates the
need for a pretrained teacher model.
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A PROOF FOR CLOSED-FORM INVERSION

In this section, we present the detailed derivations of the closed-form forward velocity Eqn. 9 and
backward velocity Eqn. 12 introduced in Sec. 4. Sec. A.1 provides the proof of the closed-form
forward velocity, while Sec. A.2 presents the proof of the closed-form backward velocity. Both
derivations are based on the assumption of a uniform source distribution.

A.1 PROOF OF CLOSED-FORM FORWARD VELOCITY IN DISCRETE FLOW MODELS

Let x, z ∈ VN be sequences of tokens xi, zi ∈ V for i ∈ 1, . . . , N , where each token takes values
from the discrete vocabulary V = {1, . . . ,K}. We begin with the expression of the forward velocity
given in Eqn. 9:

v̂t(x
i, z) =

κ̇t

1− κt

[
p1|t(x

i|z)− δz(x
i)
]
. (13)

We first derive the closed-form expression for the probability denoiser p1|t(xi|z):
Using Bayes’ rule,

p1|t(x
i|z) =

∑
x0,x1

δxi
1
(xi) pt(x0, x1|z) (14)

=
∑
x0,x1

δxi
1
(xi)

pt(x0, x1, z)

pt(z)
(15)

=

∑
x0,x1

δxi
1
(xi) pt(x0, x1, z)∑

x0,x1
pt(x0, x1, z)

. (16)

We factor the joint as

pt(x0, x1, z) ∝ p0(x0) p1(x1) pt(z|x0, x1) (17)

pt(z|x0, x1) =

N∏
j=1

[
κt δxj

1
(zj) + (1− κt) δxj

0
(zj)

]
(18)

and use the empirical target

p1(x1) =
1

M

M∑
m=1

δdm
(x1) (Eqn. 8). (19)

Since p0(x0) is constant, it cancels between the numerator and denominator of Eqn. 16, yielding

p1|t(x
i|z) =

∑
x0,x1

δxi
1
(xi) p1(x1) pt(z|x0, x1)∑

x0,x1
p1(x1) pt(z|x0, x1)

=

∑M
m=1

∑
x0

δdi
m
(xi)

∏N
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

]∑M
m=1

∑
x0

∏N
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

] . (20)

According to this expression, the probability denoiser p1|t(xi|z) can be interpreted as a weighted
sum over all data points x1, given by the term∑

x0

∏
j

[
κtδxj

1
(zj) + (1− κt)δxj

0
(zj)

]
. (21)

Let h(s, z) denote the Hamming distance between two sequences s and z, defined as

h(s, z) = N −
∑
j

δsj (z
j), (22)
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and let h+(s, z) represent the similarity between the sequences, defined as

h+(s, z) =
∑
j

δsj (z
j) = N − h(s, z). (23)

The weight is computed only when dim coincides with the target token xi (i.e., δdi
m
(xi) = 1). In this

case, the term can be expressed as:∑
x0

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(24)

=

h+(dm,z)∑
k=0

(
h+(dm, z)

k

)
(1− κt)

N−h+(dm,z)
((K − 1)κt)

h+(dm,z)−k
. (25)

To understand this transition, we first note that dm and z are fixed in this scope, while x0 is independent
across each dimension and follows a uniform distribution. This implies that we only need to consider
x0. For an arbitrary dimension j, the cases can be divided into four possibilities, and the corresponding
values of

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
are as follows:

Case 1. djm = zj , xj
0 = zj ,

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= 1.

Case 2. djm = zj , xj
0 ̸= zj ,

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= κt.

Case 3. djm ̸= zj , xj
0 = zj ,

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= 1− κt.

Case 4. djm ̸= zj , xj
0 ̸= zj ,

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= 0.

Note that Case 4 makes the term inside the product
[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
equal to zero.

Thus, we only need to consider x0 for which no dimension falls into Case 4. Among the |K|N
possible choices of x0, only |K|h+(dm,z) satisfy xj

0 = zj for all dimensions where djm ̸= zj . We then
classify the remaining cases according to the Hamming distance between x0 and dm. Note that the
maximum value of h+(x0, dm) is h+(dm, z). Let k denote an integer in the range 0 to h+(dm, z).
Then, the number of x0 satisfying h+(x0, dm) = k is

(
h+(dm,z)

k

)
(K− 1)h+(dm,z)−k, and in this case

the product term becomes∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= (κt)

h+(dm,z)−k(1− κt)
N−h+(dm,z). (26)

We can then arrive at the equation above by summing over all possible k. Resuming the proof, the
term can be further simplified as follows:∑

x0

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(27)

=

h+(dm,z)∑
k=0

(
h+(dm, z)

k

)
(1− κt)

N−h+(dm,z)
((K − 1)κt)

h+(dm,z)−k (28)

= (1− κt)
N−h+(dm,z)

h+(dm,z)∑
k=0

(
h+(dm, z)

k

)
((K − 1)κt)

k (29)

= (1− κt)
N

(
(K − 1)κt + 1

1− κt

)h+(dm,z)

(30)

= (1− κt)
N

(
1 +

κt

1− κt
K

)h+(dm,z)

. (31)
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We define γ := 1 + κt

1−κt
K, and by substituting this simplified expression into the noise predictor

above, we finally obtain Eqn. 10.

p1|t(x
i|z) =

∑M
m=1 δdi

m
(xi)

∑
x0

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
∑M

m=1

∑
x0

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

] (32)

=

∑M
m=1 δdi

m
(xi) (1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)

∑M
m=1 (1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)

(33)

=

∑M
m=1 δdi

m
(xi)

(
1 + κt

1−κt
K
)h+(dm,z)

∑M
m=1

(
1 + κt

1−κt
K
)h+(dm,z)

(34)

=

∑M
m=1 δdi

m
(xi)γ−h(dm,z)∑M

m=1 γ
−h(dm,z)

. (35)

A.2 PROOF OF CLOSED-FORM BACKWARD VELOCITY IN DISCRETE FLOW MODELS

Similarly to the proof of the closed-form forward velocity in Sec. A.1, we start from the backward
velocity in Eqn. 11:

v̌t(x
i, z) =

κ̇t

κt

[
δzi(xi)− p0|t(x

i|z)
]
. (36)

We derive the closed-form noise predictor as follows:

p0|t(x
i|z) =

∑
x0,x1

δxi
0
(xi)pt(x0, x1|z) (37)

=
∑
x0,x1

δxi
0
(xi)

pt(x0, x1, z)

pt(z)
(38)

=

∑
x0,x1

δxi
0
(xi)pt(x0, x1, z)

pt(z)
(39)

=

∑
x0,x1

δxi
0
(xi)pt(x0, x1, z)∑

x0,x1
pt(x0, x1, z)

, (40)

The last expression is further expanded to:

p0|t(x
i|z) =

∑
x0,x1

δxi
0
(xi)pt(x0, x1, z)∑

x0,x1
pt(x0, x1, z)

(41)

=

∑
x0,x1

δxi
0
(xi) p1(x1) pt(z|x0, x1)∑

x0,x1
p1(x1) pt(z|x0, x1)

(42)

=

∑M
m=1

∑
x0

δxi
0
(xi)

∏N
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

]∑M
m=1

∑
x0

∏N
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

] . (43)

For the denominator, we use the same formula as in Eqn. 24:

∑
x0

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= (1− κt)

N

(
1 +

κt

1− κt
K

)h+(dm,z)

. (44)
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To simplify the numerator, we decompose the expression by separating the i-th dimension:∑
x0

δxi
0
(xi)

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(45)

=
∑

x0 with
xi
0=xi

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(46)

=
∑

x0 with
xi
0=xi

[
κtδdi

m
(zi) + (1− κt)δxi

0
(zi)

]∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(47)

=
∑

x0 with
xi
0=xi

[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(48)

=
[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]︸ ︷︷ ︸
(□)

∑
x0 with
xi
0=xi

∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
︸ ︷︷ ︸

(△)

. (49)

We can break it down into four cases for the i-th dimension term, along with their corresponding
values for the (□) part.

Case 1. dim = zi, zi = xi,
[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]
= 1.

Case 2. dim = zi, zi ̸= xi,
[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]
= κt.

Case 3. dim ̸= zi, zi = xi,
[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]
= 1− κt.

Case 4. dim ̸= zi, zi ̸= xi,
[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]
= 0.

The main difference here is that, for the numerator, we only consider x0 such that xi
0 = xi. Case 4

makes the entire product term zero, so it is excluded. For remaining dimension j ̸= i, the Hamming
distance between x1 and z is fixed for this term, it can be treated as a constant. we can follow the
same logical flow as derivation of Eqn. 26 in Sec. A.1 to parse the term in each the three cases with
additional constraint: x0 with xi

0 = xi. Note that the following equations correspond to the (△) part,
restricted to the dimensions j ̸= i.

Case 1. Same as dimension N − 1 with h+(dm, z)− 1 since dim = zi:

(1− κt)
(N−1)−(h+(dm,z)−1)

h+(dm,z)−1∑
k=0

(
h+(dm, z)− 1

k

)
((K − 1)κt)

h+(dm,z)−1−k

(50)

= (1− κt)
N−h+(dm,z) (1 + (K − 1)κt)

h+(dm,z) −1
. (51)

Case 2. Same as dimension N − 1 with h+(dm, z)− 1 (same as above):

(1− κt)
(N−1)−(h+(dm,z)−1)

h+(dm,z)−1∑
k=0

(
h+(dm, z)− 1

k

)
((K − 1)κt)

h+(dm,z)−1−k

(52)

= (1− κt)
N−h+(dm,z) (1 + (K − 1)κt)

h+(dm,z) −1
. (53)

Case 3. Same as dimension N − 1 with h+(dm, z) since dim ̸= zi:

(1− κt)
(N−1)−h+(dm,z)

h+(dm,z)∑
k=0

(
h+(dm, z)

k

)
((K − 1)κt)

h+(dm,z)−k (54)

= (1− κt)
N−h+(dm,z) −1 (1 + (K − 1)κt)

h+(dm,z)
. (55)
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Case 4. Do not need to consider for dimension j ̸= i because
[
κtδdi

m
(zi) + (1− κt)δxi

0
(zi)

]
= 0.

Note that the denominator corresponds to the same term derived in Sec. A.1. We divide the analysis
into two categories. First, we consider the case where zi = xi, which corresponds to Cases 1 and
3. The joint expression, incorporating both the j = i (□) and j ̸= i (△) cases, can be written as
δdi

m
(zi) · Case 1 +

(
1− δdi

m
(zi)

)
· Case 3. The sum of these two cases can be written as:

∑M
m=1

[
δdi

m
(zi) 1

1−κt
+ (1− δdi

m
(zi))

(
1 + κt

1−κt
K
)]

(1− κt)
N
(
1 + κt

1−κt
K
)h+(dm,z)−1

∑M
m=1 (1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)

(56)

=

∑M
m=1

[
δdi

m
(zi) 1

1−κt
+ (1− δdi

m
(zi))

(
1 + κt

1−κt
K
)](

1 + κt

1−κt
K
)h+(dm,z)−1

∑M
m=1

(
1 + κt

1−κt
K
)h+(dm,z)

(57)

=

∑M
m=1

[
δdi

m
(zi) 1

1−κt+Kκt
+ (1− δdi

m
(zi))

] (
1 + κt

1−κt
K
)h+(dm,z)

∑M
m=1

(
1 + κt

1−κt
K
)h+(dm,z)

. (58)

We define γ := 1 + κt

1−κt
K,

=

∑M
m=1

[
δdi

m
(zi) 1

1−κt+Kκt
+ (1− δdi

m
(zi))

]
γh+(dm,z)∑M

m=1 γ
h+(dm,z)

(59)

=

M∑
m=1

[
δdi

m
(zi)

1

1− κt +Kκt
+ (1− δdi

m
(zi))

]
γh+(dm,z)∑M

m=1 γ
h+(dm,z)

(60)

= 1− κt(K − 1)

1− κt +Kκt

M∑
m=1

δdi
m
(zi)

γh+(dm,z)∑M
m=1 γ

h+(dm,z)
. (61)

Second, when zi ̸= xi, the expression of Case 2 can be simplified as follows:∑M
m=1 δdi

m
(zi) κt

1−κt
(1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)−1

∑M
m=1 (1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)

(62)

=

∑M
m=1 δdi

m
(zi) κt

1−κt

(
1 + κt

1−κt
K
)h+(dm,z)−1

∑M
m=1

(
1 + κt

1−κt
K
)h+(dm,z)

(63)

=

∑M
m=1 δdi

m
(zi) κt

1−κt+Kκt

(
1 + κt

1−κt
K
)h+(dm,z)

∑M
m=1

(
1 + κt

1−κt
K
)h+(dm,z)

(64)

=

∑M
m=1 δdi

m
(zi) κt

1−κt+Kκt
γh+(dm,z)∑M

m=1 γ
h+(dm,z)

(65)

=

M∑
m=1

δdi
m
(zi)

κt

1− κt +Kκt

γh+(dm,z)∑M
m=1 γ

h+(dm,z)
(66)

=
κt

1− κt +Kκt

M∑
m=1

δdi
m
(zi)

γh+(dm,z)∑M
m=1 γ

h+(dm,z)
. (67)
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We can then express the closed-form backward velocity as follows:

v̌t(x
i, z) =

κ̇t

κt

[
δzi(xi)− p0|t(x

i|z)
]

(68)

=


κ̇t(K−1)

1−κt+Kκt

∑M
m=1 δdi

m
(zi) γh+(dm,z)∑M

m=1 γh+(dm,z) if xi = zi

−κ̇t

1−κt+Kκt

∑M
m=1 δdi

m
(zi) γh+(dm,z)∑M

m=1 γh+(dm,z) otherwise
(69)

=
κ̇t(δxi(zi)K − 1)

1− κt +Kκt

M∑
m=1

δdi
m
(zi)

γ−h(dm,z)∑M
m=1 γ

−h(dm,z)
. (70)

Since κt = 1 for t = 1, then γ →∞. So this equation is formally is not defined at t = 1. Nevertheless,
as limt→1, the weighted sum over power of γ is dominated by the maximum term, which converges
to 1. Hence, the expression can be rigorously interpreted as limt→1 v̌t(x

i, z), and in practice, this
limiting value is used for sampling at t = 1.

B EXPERIMENT DETAILS

In Tab. 2, we summarize the hyperparameters used in the experiments presented in Sec. 5, covering
both training and finetuning configurations for each dataset. All reported samples were generated
using the greedy-tail denoiser described in (Sahoo et al., 2025). We employed an implementation of
the closed-form backward velocity that is optimized at the CUDA level.

For the CIFAR-10 dataset, we follow the same setting as baseline (Schiff et al., 2025). Tab. 3 reports
the FID and IS of baseline and PAIRFLOW measured with 1,000 steps and 50K samples, which are
consistent with the results reported in Tab. 6 of (Schiff et al., 2025) and PAIRFLOW outperforms it.

Table 2: Summary of the training settings used in Sec. 5. Specifically, “Sampling Steps” under PAIR-
FLOW and ReDi (Yoo et al., 2025) indicate the number of steps taken to generate pairs, “Teacher
Update Period” under DCD (Sahoo et al., 2025) denotes the number of fine-tuning iterations between
updates, when the teacher model is replaced by the current student model. “# Pairs” under ReDi (Yoo
et al., 2025) denotes the number of pairs for the fine-tuning.

MNIST-Binary QM9 CIFAR10 ZINC-250k

Training Iterations 10K 50K 300K 200K
Data Dimension 28× 28 32 32× 32× 3 72
Batch Size 256 1024 512 256
Network Architecture U-Net Transformer U-Net Transformer
Parameter Count 25.8M 92.4M 35.8M 92.4M

PAIRFLOW

Sampling Steps 20 20 20 64

DCD (Sahoo et al., 2025)

Training Iterations 5K 10K 50K 30K
Teacher Update Period 1K 2K 10K 5K

ReDi (Yoo et al., 2025)

Training Iterations 5K 10K 50K 30K
# Pairs 10K 20K 10K 20K
Sampling Steps 256 256 1024 256

C ADDITIONAL EXPERIMENTS

C.1 COVERAGE OF TRAINING DATASET BY SAMPLING WITH FORWARD VELOCITY

As discussed in Sec. 4.1, constructing pairs using the closed-form forward velocity with a training
dataset of size |X1| incurs significantly higher cost to achieve full coverage compared to using
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Table 3: FID (Heusel et al., 2017) and
IS (Salimans et al., 2016) of UDLM (Schiff
et al., 2025) and PAIRFLOW on the CIFAR-10
dataset (Krizhevsky et al., 2009).

FID IS

UDLM 33.65 6.96
PAIRFLOW 28.07 7.37

Table 4: Total Correlation measure with pairs
sampled from UDLM (Schiff et al., 2025) and
PAIRFLOW trained on QM9 (Ramakrishnan
et al., 2014).

Total Correlation

UDLM 31.87
PAIRFLOW 30.72

Table 5: Summary of training set sizes |X1| for each dataset, the number of unique samples k̄ obtained
by simulating paths using the closed-form forward velocity in Eqn. 9, and the corresponding coverage
values: empirical (COV) and theoretically predicted (COVPred).

QM9 ZINC-250k MNIST-Binary CIFAR-10

|X1| 127,190 224,568 60,000 100,000
k̄ 77,104 140,779 37,711 63,117
COV 60.62% 62.68% 62.85% 63.11%

COVPred 63.21%

the backward velocity. Let k denote the number of source samples drawn from the source (prior)
distribution, assumed to be uniform in our work. The probability that a given element in the training

set is selected is
(
1− 1

|X1|

)k
. Accordingly, we denote by k̄ the number of unique samples among

the k draws, whose expectation is:
∑|X1|

i=1

[
1− (1− 1

|X1| )
k
]
= |X1|

[
1− (1− 1

|X1| )
k
]
. In addition,

we define the coverage as the ratio between the number of unique elements obtained through this
sampling procedure and the training set size: COV = k̄/|X1|.
To validate our claim in Sec. 4.1, we sample k = |X1| data points x1 by transporting source samples
x0, independently drawn from the uniform distribution, along the velocity field defined in Eqn. 9.
Using these samples, we evaluate the coverage following the definition above. The dataset sizes,
number of unique samples among the generated samples, and the empirical and theoretical coverages
are summarized in Tab. 5. These findings indicate that, even when sampling the same number
of points as the training set size, only about 63% of the training distribution can be recovered in
practice. Achieving full coverage would therefore require a substantially larger number of samples,
introducing significantly higher computational cost. Motivated by this finding, we instead propose
tracing backward from data samples, using a closed-form velocity field that we derive for this purpose
(Sec. 4.2).

C.2 TOTAL CORRELATION ANALYSIS OF CLOSED-FORM VELOCITY

As in Sec. 3.2, Yoo et al. (2025) demonstrated that iteratively refining the joint distribution of source-
target pairs in discrete flow models improves few-step performance by reducing the total correlation of
the model. In this section, we measure the total correlation following their methodology. Specifically,
we perform sampling with neural networks, including UDLM (Schiff et al., 2025) and PAIRFLOW
trained on QM9 (Ramakrishnan et al., 2014), starting from identical initial states x0 but with varying
random seeds. We randomly select 20,000 initial states x0, and for each x0, we generate 10 samples
with a step size of 256. As shown in Tab. 4, PAIRFLOW achieves a lower total correlation, consistent
with the improved performance observed in few-step sampling, as discussed above.

D DETAILED EXPERIMENTAL RESULTS

In this section, we provide the detailed experimental results corresponding to those summarized
in Sec. 5. For the molecular datasets (QM9 (Ramakrishnan et al., 2014) and ZINC-250k (Irwin et al.,
2012)), we generate 1,024 samples across varying timesteps and evaluate validity, uniqueness, and
novelty. Reported values are averaged over 10 trials, with standard deviations also included. For the
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image domain, we report FID on MNIST-Binary (LeCun et al., 2002), and both FID (Heusel et al.,
2017) and IS (Salimans et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009). Detailed experimental
settings are provided in Sec. 5.1.

Results on QM9 are presented in Tables 6, 7, and 8, reporting validity, uniqueness, and novelty,
respectively. Corresponding results on ZINC-250k are shown in Tables 9, 10, and 11. Finally, results
for the image datasets are summarized in Tab. 12 (FID on MNIST-Binary) and Tab. 13 (FID and IS
on CIFAR-10). The FID measured on MNIST-Binary (LeCun et al., 2002), FID and IS measured on
CIFAR-10 (Krizhevsky et al., 2009), are summarized in Tab. 12 and Tab. 13, respectively.
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Table 6: Validity scores (↑) on QM9 (Ramakrishnan et al., 2014) for various methods across different
steps. Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64

MDLM 51.4±5.7 80.0±11.1 154.8±10.0 347.5±11.5 530.0±11.6 662.9±16.5 736.4±16.4
UDLM 17.5±3.2 125.5±11.8 497.6±8.3 826.6±10.3 953.5±6.1 991.9±4.2 1000.1±3.5
Random 47.1±5.7 194.6±8.2 554.2±13.3 858.3±17.5 962.0±6.7 989.9±7.6 998.6±5.3
PAIRFLOW 223.4±12.7 416.0±12.4 734.9±7.2 921.5±11.0 977.1±3.9 990.9±5.9 1000.2±4.5

UDLM + DCD 323.0±19.5 530.8±20.0 816.6±14.4 941.1±8.5 981.0±4.8 993.0±3.6 999.4±4.7
PAIRFLOW + DCD 453.8±16.4 685.8±16.7 891.6±11.9 963.1±7.8 983.7±8.5 989.3±3.5 993.2±5.7

UDLM + Redi 59.7±8.8 232.4±9.2 588.4±15.8 849.6±14.2 940.5±8.5 967.5±5.2 978.8±5.2
PAIRFLOW + Redi 361.0±115.2 512.6±44.2 775.7±10.0 929.1±11.6 976.2±4.5 985.6±6.7 993.1±7.1

Table 7: Uniqueness scores (↑) on QM9 (Ramakrishnan et al., 2014) for various methods across
different steps. Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64

MDLM 18.9±3.0 28.8±3.3 87.4±8.4 254.7±10.3 443.8±16.4 591.0±18.6 666.9±17.5
UDLM 17.5±3.2 125.4±11.7 495.0±8.2 819.5±11.4 943.0±5.7 979.1±5.0 990.0±4.7
Random 47.1±5.7 194.5±8.1 551.2±12.5 853.1±16.9 953.5±7.8 981.1±6.7 989.6±5.7
PAIRFLOW 223.0±12.3 414.7±12.0 731.4±6.9 917.4±11.8 971.6±4.3 986.2±5.3 994.8±5.2

UDLM + DCD 320.9±18.7 528.0±19.7 808.5±12.7 932.3±8.1 970.9±5.8 978.3±4.9 987.2±4.3
PAIRFLOW + DCD 451.8±15.7 681.6±16.5 886.5±12.6 957.8±7.6 978.7±9.1 983.4±3.9 989.0±5.3

UDLM + Redi 59.7±8.8 231.6±9.5 581.0±15.1 834.7±11.4 917.5±9.6 944.8±6.2 956.1±5.2
PAIRFLOW + Redi 359.5±113.1 507.7±43.0 765.3±8.8 913.5±10.2 959.7±5.8 968.8±8.4 973.0±9.6

Table 8: Novelty scores (↑) on QM9 (Ramakrishnan et al., 2014) for various methods across different
steps. Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64

MDLM 15.4±3.1 23.6±2.6 56.3±5.2 127.4±9.4 172.2±12.4 206.5±7.4 193.6±10.4
UDLM 13.8±2.9 52.0±8.2 120.0±3.8 152.4±9.1 144.2±12.4 147.2±9.7 145.1±9.0
Random 26.9±5.0 66.5±7.1 128.8±13.0 156.8±10.6 145.5±9.1 146.5±7.0 150.1±8.7
PAIRFLOW 68.8±7.8 85.6±10.0 109.2±7.8 96.8±9.9 106.5±12.5 108.9±9.4 110.0±9.9

UDLM + DCD 145.9±7.9 137.5±9.8 185.5±10.9 186.2±13.7 173.4±15.5 168.0±10.4 165.4±11.6
PAIRFLOW + DCD 110.3±6.3 136.1±12.0 146.2±12.9 139.2±9.6 131.8±11.7 140.1±9.6 133.2±7.9

UDLM + Redi 31.4±8.0 73.3±7.1 110.4±12.2 126.8±8.9 116.3±8.4 120.2±9.0 117.6±7.1
PAIRFLOW + Redi 84.2±11.3 92.0±6.9 101.1±9.6 98.6±8.4 98.8±13.9 95.8±8.3 98.9±7.5

Table 9: Validity scores (↑) on ZINC-250k (Irwin et al., 2012) for various methods across different
steps. Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64

MDLM 15.0±4.0 79.4±4.7 194.6±15.1 351.3±20.6 463.7±17.7 553.9±10.7 610.1±17.6
UDLM 0.3±0.5 65.2±8.2 435.7±14.4 775.1±19.5 887.3±12.7 921.5±8.5 937.3±3.9
Random 0.6±0.9 68.3±10.7 351.2±15.8 569.4±16.6 611.0±16.3 602.4±13.3 571.0±13.2
PAIRFLOW 9.9±2.3 146.3±10.4 533.9±13.9 799.4±9.2 873.2±14.1 901.0±14.2 907.8±7.7

UDLM + DCD 25.7±4.7 323.9±12.5 718.2±13.5 873.5±8.4 919.8±10.0 933.1±5.9 942.2±4.3
PAIRFLOW + DCD 114.9±14.3 436.3±16.5 725.1±11.5 858.2±10.0 896.5±8.2 900.9±9.5 907.1±13.7

UDLM + Redi 0.7±0.8 75.9±7.9 424.8±16.6 734.4±8.6 856.3±11.3 892.2±10.4 900.1±10.8
PAIRFLOW + Redi 46.3±6.3 221.5±11.0 562.8±12.7 793.6±8.4 869.3±14.2 897.4±9.1 907.0±10.5
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Table 10: Uniqueness scores (↑) on ZINC-250k (Irwin et al., 2012) for various methods across
different steps. Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64

MDLM 7.4±2.7 32.7±2.4 105.1±8.3 256.0±18.3 392.6±16.6 511.3±14.0 582.4±17.3
UDLM 0.3±0.5 65.2±8.2 435.7±14.4 775.1±19.5 887.3±12.7 921.5±8.5 937.2±3.8
Random 0.6±0.9 68.3±10.7 351.2±15.8 569.4±16.6 611.0±16.3 602.4±13.3 571.0±13.2
PAIRFLOW 9.9±2.3 146.3±10.4 533.9±13.9 799.4±9.2 873.2±14.1 901.0±14.2 907.8±7.7

UDLM + DCD 25.7±4.7 323.9±12.5 718.2±13.5 873.5±8.4 919.8±10.0 933.1±5.9 942.2±4.3
PAIRFLOW + DCD 114.9±14.3 436.3±16.5 725.1±11.5 858.2±10.0 896.5±8.2 900.9±9.5 907.1±13.7

UDLM + Redi 0.7±0.8 75.9±7.9 424.8±16.6 734.3±8.7 856.3±11.3 892.2±10.4 900.0±10.9
PAIRFLOW + Redi 46.3±6.3 221.5±11.0 562.8±12.7 793.6±8.4 869.3±14.2 897.4±9.1 907.0±10.5

Table 11: Novelty scores (↑) on ZINC-250k (Irwin et al., 2012) for various methods across different
steps. Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64

MDLM 3.8±2.7 24.2±2.6 84.5±7.4 228.3±17.1 372.0±15.2 494.5±15.2 569.3±17.1
UDLM 0.3±0.5 65.2±8.2 435.7±14.4 775.1±19.5 887.3±12.7 921.3±8.8 936.9±4.1
Random 0.6±0.9 68.3±10.7 351.2±15.8 569.4±16.6 611.0±16.3 602.4±13.3 571.0±13.2
PAIRFLOW 9.9±2.3 146.3±10.4 533.9±13.9 799.4±9.2 873.2±14.1 901.0±14.2 907.8±7.7

UDLM + DCD 25.7±4.7 323.9±12.5 718.2±13.5 873.5±8.4 919.7±9.9 933.0±5.8 942.2±4.3
PAIRFLOW + DCD 114.9±14.3 436.3±16.5 725.1±11.5 858.2±10.0 896.4±8.3 900.9±9.5 907.1±13.7

UDLM + Redi 0.7±0.8 75.9±7.9 424.8±16.6 734.3±8.7 856.3±11.3 892.1±10.5 900.0±10.9
PAIRFLOW + Redi 46.3±6.3 221.5±11.0 562.8±12.7 793.5±8.3 869.3±14.2 897.4±9.1 907.0±10.5

Table 12: FID (↓) on MNIST-Binary (LeCun et al., 2002) for various methods across different steps.
Best values per column are bolded.

Method 1 2 4 8 16 32 64

MDLM 204.64 159.26 103.74 54.41 28.51 12.31 7.01
UDLM 130.57 42.54 11.25 5.70 4.69 4.77 5.01
Random 128.57 36.59 9.41 5.60 5.00 5.10 5.19
PAIRFLOW 40.58 15.61 8.50 5.97 5.55 5.24 5.17

UDLM + DCD 53.84 16.09 8.06 7.46 7.12 6.52 6.65
PAIRFLOW + DCD 19.51 14.20 11.47 9.28 7.75 7.82 8.42

UDLM + ReDi 18.44 10.35 8.11 6.65 6.56 6.55 6.49
PAIRFLOW + ReDi 12.90 9.38 8.54 6.85 6.79 6.96 6.94

E EXPERIMENT ON CONTINUOUS FLOW MATCHING

Alongside our main experiments in the discrete setting, we also demonstrate the potential of our
method to extend to continuous domains, as illustrated by the toy experiment presented below. Here,
we denote by PAIRFLOW a continuous flow model trained on source–target pairs constructed using
the continuous variant of the algorithm described in Sec. 4.2.

E.1 CLOSED-FORM VELOCITY IN CONTINUOUS FLOW MATCHING

Setup. Let X0 ∼ p0 (source), X1 ∼ q (target) be independent random variables in RN and consider
the linear probability path

Xt = (1− t)X0 + tX1, t ∈ [0, 1]. (71)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 13: FID (↓) and IS (↑) on CIFAR-10 (Krizhevsky et al., 2009) for various methods across
different timesteps. Best values per column are bolded.

1 2 4 8 16 32 64 128 256 512 1024

Method FID (↓)

MDLM 407.31 359.97 340.43 340.98 321.79 228.34 131.63 77.44 52.89 42.88 39.04
UDLM 340.47 321.98 255.95 151.60 91.31 62.43 49.06 42.26 40.18 37.63 37.60
Random 328.83 314.64 220.16 127.66 82.76 58.42 45.18 39.50 36.78 35.16 35.07
PAIRFLOW 269.87 260.29 192.62 112.78 73.87 52.22 40.06 34.42 33.83 32.42 31.85

UDLM + DCD 318.33 282.38 204.15 108.30 75.56 69.87 74.62 79.35 84.34 85.79 87.87
PAIRFLOW + DCD 223.86 190.15 139.46 95.91 82.11 80.70 86.59 100.16 114.25 123.41 129.45

UDLM + ReDi 251.02 212.20 171.24 148.18 138.18 131.94 125.81 123.77 123.39 121.52 121.06
PAIRFLOW + ReDi 275.09 250.87 184.45 119.04 89.46 74.46 66.22 61.83 61.35 60.10 59.53

Method IS (↑)

MDLM 1.21 1.22 1.24 1.31 1.52 2.47 4.03 5.08 5.66 6.18 6.38
UDLM 1.32 1.48 2.11 3.54 4.85 5.90 6.25 6.56 6.66 6.87 6.81
Random 1.37 1.52 2.47 4.01 5.24 6.08 6.56 6.75 6.87 7.07 7.05
PAIRFLOW 1.72 1.80 2.70 4.27 5.61 6.23 6.86 7.00 7.12 7.14 7.33

UDLM + DCD 1.49 1.60 2.23 3.90 5.09 5.45 5.42 5.16 5.09 5.07 4.84
PAIRFLOW + DCD 2.21 2.38 3.23 4.38 4.99 5.13 4.97 4.48 4.26 3.82 3.81

UDLM + ReDi 1.85 2.35 2.96 3.37 3.52 3.67 3.86 3.96 3.93 3.99 3.94
PAIRFLOW + ReDi 1.80 1.95 2.91 4.18 5.02 5.65 5.88 6.03 6.06 6.09 6.30

Table 14: FID of PAIRFLOW on MNIST (LeCun et al., 2002) with continuous values, measured using
FID over 50K samples across various timesteps. Best values are bolded.

Method 1 2 4 8 16 32 64

CondOT 398.43 91.17 27.34 10.80 5.81 3.99 3.16
PAIRFLOW 74.89 14.40 6.89 3.78 2.70 2.42 2.37

CondOT+RF 32.70 9.12 5.46 4.24 3.93 3.56 3.24
PAIRFLOW+RF 28.61 4.15 3.01 2.87 2.89 2.91 2.94

For flow matching with the linear path Eqn. 71, the optimal velocity field equals the conditional drift:

vt(x) = E [X1 −X0|Xt = x] . (72)

We derive a closed form of Eqn. 72 that is directly computable from p0 and q.

Derivation. By Bayes’ rule with a Dirac constraint for the linear relation Eqn. 71,

p(x0, x1 | Xt = x) ∝ p0(x0) q(x1) δ (x− (1− t)x0 − tx1) . (73)

Integrating out x0 using δ(Ay − b) = |detA|−1 δ
(
y −A−1b

)
with A = (1− t)I gives

p(x1 | Xt = x) ∝ q(x1) (1− t)−D p0

(
x− tx1

1− t

)
. (74)
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Hence,

vt(x) =

∫∫
(x1 − x0) p(x0, x1 | Xt = x) dx0dx1∫∫

p(x0, x1 | Xt = x) dx0 dx1

(75)

=

∫∫
(x1 − x0) p0(x0) q(x1) δ (x− (1− t)x0 − tx1) dx0dx1∫∫

p0(x0) q(x1) δ (x− (1− t)x0 − tx1) dx0 dx1

(76)

=

∫
q(x1) p0

(
x−tx1

1−t

) (
x1 − x−tx1

1−t

)
dx1∫

q(x1) p0

(
x−tx1

1−t

)
,dx1

. (77)

Observing x1 − x−tx1

1−t = x1−x
1−t , we obtain the compact form

vt(x) =
1

1− t

∫
q(x1) p0

(
x−tx1

1−t

)
(x1 − x) dx1∫

q(x1) p0

(
x−tx1

1−t

)
dx1

. (78)

When we have a dataset with samples {dm}Mm=1, the target distribution q is approximated by the
empirical measure q(x1) ≈ 1

M

∑M
m=1 δdm

(x1), then Eqn. 78 reduces as follow:

vt(x) =
1

1− t

∑M
m=1 p0

(
x−tdm

1−t

)
(dm − x)∑M

m=1 p0

(
x−tdm

1−t

) . (79)

When p0 is standard Gaussian, p0(y) = (2π)−D/2 exp
(
− 1

2∥y∥
2
2

)
, the normalizing constants cancel

in Eqn. 79, yielding the closed form velocity:

vt(x) =
1

1− t

∑M
m=1 exp

(
− 1

2

∥∥∥x−tdm

1−t

∥∥∥2
2

)
(dm − x)

∑M
m=1 exp

(
− 1

2

∥∥∥x−tdm

1−t

∥∥∥2
2

) . (80)

This formulation has already been introduced in previous works (Karras et al., 2022; Bertrand et al.,
2025); however, to the best of our knowledge, no prior work has extended this idea to designing
couplings for accelerating flow models using the re-flow technique (Liu & Gong, 2023a). In the
continuous domain, the backward velocity can be obtained directly by flipping the sign of the forward
velocity. In contrast, in the discrete domain, the corresponding expression does not converge as
limt→1, and thus the backward velocity cannot be employed for sampling starting from data points.
Therefore, in this section, we perform experiments using the forward velocity.

E.2 CONTINUOUS FLOW MATCHING ON MNIST

We train rectified flow models on MNIST (LeCun et al., 2002) using two pairing strategies: (i)
independent pairing (baseline) and (ii) closed-form pairing as described in Sec. E.1. We adopt
CondOT (Lipman et al., 2023) as our base flow model, which is originally trained with a independent
pairing. We denote the variant of CondOT trained on pairs generated by the closed-form forward
velocity as PAIRFLOW. To enable a few-step sampling, we subsequently apply rectification distillation
(ReFlow (Liu & Gong, 2023a)) to each pretrained model, denoted by the suffix “+RF”.

We use an NCSN++-style U-Net backbone (Song et al., 2021) with a base width of 64 and 3
downsampling stages (doubling channels at each stage), optimized using Adam (Kingma & Ba, 2014)
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with a learning rate of 2× 10−4. The pretraining takes 500 epochs. The distillation stage requires
200 epochs with a learning rate of 2× 10−5.

Tab. 14 summarizes performance at various sampling steps. Without distillation, closed-form pairing
(PAIRFLOW) yields significantly better FID in the few-step settings and maintains the performance
in the many-step settings, relative to the baseline. With distillation (ReFlow (Liu & Gong, 2023a),
our method still shows better performance: PAIRFLOW+RF achieves a lower FID in every sampling
budget than ReFlow applied to the baseline. These results show that closed-form pairing benefits both
undistilled and distilled flow models, with especially large gains when the sampling steps are small.

E.3 CONTINUOUS RECTIFIED FLOWS ON DIMENSION-VARYING SYNTHETIC DATA

To assess scalability, we construct an N-fold product of the standard two-moons distribution, yielding
a dataset in R2N . We consider dimensions d ∈ {2, 4, 8, 16, 32, 64, 128, 256} (i.e., d = 2N ) and train
rectified flow models with and without closed-form pairing under a common training setup. The
architecture is a simple transformer-based encoder with depth 8, where the hidden size increases with
dimension as 32, 64, 128, 192, 256, 384, 512, 768, respectively.

For the synthetic experiments we report the Chamfer distance (log scale) between 50,000 training
datapoints and 5,000 generated samples. Since the dataset is an N -fold product of 2D two-moons,
Chamfer distance is computed using only the first two coordinates to keep the metric scale consistent
across d and measure fidelity to the base 2D geometry.

Fig. 7 shows the quantitative results. At low dimensions, closed-form pairing yields substantial
improvements over the independently paired baseline. However, as the data dimension increases, we
observe that the magnitude of the improvement decreases. This trend suggests a practical limitation
of closed-form pairing for high-dimensional continuous data.

F ADDITIONAL QUALITATIVE RESULTS

In addition to Fig. 4 in the main paper, we further visualize the 1-step and 2-step generation results
for MNIST-Binary (LeCun et al., 2002) in Fig. 9 and Fig. 10. As discussed in Sec. 5.3, PAIRFLOW
outperforms the base models (Schiff et al., 2025; Sahoo et al., 2024) and achieves comparable
quality to the base models combined with acceleration methods (Sahoo et al., 2025; Yoo et al., 2025).
Additional visualizations for CIFAR-10 (Krizhevsky et al., 2009) with 64- and 256-step generations
are shown in Fig. 8, demonstrating that our method outperforms the other base models.

G THE USE OF LARGE LANGUAGE MODELS

We used a large language model for grammar checking and minor language polishing during the
writing process.

H MORE CLEAR PROOF FOR CLOSED-FORM BACKWARD VELOCITY

In this section, we present a clearer and more refined version of the proof for the closed-form
backward velocity, improving upon the original exposition in Sec. A.2.

H.1 PROOF OF CLOSED-FORM BACKWARD VELOCITY IN DISCRETE FLOW MODELS

Similarly to the proof of the closed-form forward velocity in Sec. A.1, we start from the backward
velocity in Eqn. 11:

v̌t(x
i, z) =

κ̇t

κt

[
δzi(xi)− p0|t(x

i|z)
]
. (81)
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We derive the closed-form noise predictor as follows:

p0|t(x
i|z) =

∑
x0,x1

δxi
0
(xi)pt(x0, x1|z) (82)

=
∑
x0,x1

δxi
0
(xi)

pt(x0, x1, z)

pt(z)
(83)

=

∑
x0,x1

δxi
0
(xi)pt(x0, x1, z)

pt(z)
(84)

=

∑
x0,x1

δxi
0
(xi)pt(x0, x1, z)∑

x0,x1
pt(x0, x1, z)

, (85)

The last expression is further expanded to:

p0|t(x
i|z) =

∑
x0,x1

δxi
0
(xi)pt(x0, x1, z)∑

x0,x1
pt(x0, x1, z)

(86)

=

∑
x0,x1

δxi
0
(xi) p1(x1) pt(z|x0, x1)∑

x0,x1
p1(x1) pt(z|x0, x1)

(87)

=

∑M
m=1

∑
x0

δxi
0
(xi)

∏N
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

]∑M
m=1

∑
x0

∏N
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

] . (88)

For the denominator, we use the same formula as in Eqn. 31:

M∑
m=1

∑
x0

N∏
j=1

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
=

M∑
m=1

(1− κt)
N

(
1 +

κt

1− κt
K

)h+(dm,z)

. (89)

Next, for the numerator, we can rewrite it as:

M∑
m=1

∑
x0

δxi
0
(xi)

N∏
j=1

[
κt δdj

m
(zj) + (1− κt) δxj

0
(zj)

]
(90)

=

M∑
m=1

∑
x0 with
xi
0=xi

∏
j

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
. (91)

The i-th index should be considered separately as xi
0 is set to be equal to xi. Separating the j = i

term from the product yields

M∑
m=1

∑
x0 with
xi
0=xi

[
κtδdi

m
(zi) + (1− κt)δxi

0
(zi)

]∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(92)

=

M∑
m=1

∑
x0 with
xi
0=xi

[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(93)

=

M∑
m=1

[
κtδdi

m
(zi) + (1− κt)δxi(zi)

] ∑
x0 with
xi
0=xi

∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
. (94)

Since the i-th coordinate of x0 is fixed to xi, the summation over x0 with xi
0 = xi no longer depends

on this index. Consequently, when we consider the summation only over the remaining coordinates
j ̸= i, the resulting expression takes exactly the same form as the computation presented in Sec. A.1
(Eqn. 27-Eqn. 31). The only differences are that (i) the effective dimensionality of the product is
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reduced from N to N − 1, and (ii) the matching count term must exclude the i-th coordinate, yielding
h+(dm, z) to h+(dm, z)− δdi

m
(zi). Reflecting these adjustments, we obtain

∑
x0 with
xi
0=xi

∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
= (1− κt)

N−1

(
1 +

κt

1− κt
K

)h+(dm,z)−δdim
(zi)

,

(95)

and
M∑

m=1

[
κtδdi

m
(zi) + (1− κt)δxi(zi)

] ∑
x0 with
xi
0=xi

∏
j ̸=i

[
κtδdj

m
(zj) + (1− κt)δxj

0
(zj)

]
(96)

=

M∑
m=1

[
κtδdi

m
(zi) + (1− κt)δxi(zi)

]
(1− κt)

N−1

(
1 +

κt

1− κt
K

)h+(dm,z)−δdim
(zi)

(97)

=

M∑
m=1

[
κt

1− κt
δdi

m
(zi) + δxi(zi)

]
(1− κt)

N

(
1 +

κt

1− κt
K

)h+(dm,z)−δdim
(zi)

. (98)

Using this nominator, we can denote the closed-form noise predictor:

p0|t(x
i|z) =

∑M
m=1

[
κt

1−κt
δdi

m
(zi) + δxi(zi)

]
(1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)−δdim

(zi)

∑M
m=1 (1− κt)

N
(
1 + κt

1−κt
K
)h+(dm,z)

(99)

=

M∑
m=1

[
κt

1− κt
δdi

m
(zi) + δxi(zi)

] (1 + κt

1−κt
K
)h+(dm,z)−δdim

(zi)

∑M
m′=1

(
1 + κt

1−κt
K
)h+(dm′ ,z)

(100)

=

M∑
m=1

[
κt

1− κt
δdi

m
(zi) + δxi(zi)

] [
1−

Kκt δdi
m
(zi)

1 + (K − 1)κt

]
γh+(dm,z)∑M

m′=1 γ
h+(dm′ ,z)

(101)

= δxi(zi)−
κt

(
Kδxi(zi)− 1

)
1 + (K − 1)κt

M∑
m=1

δdi
m
(zi)

γh+(dm,z)∑M
m′=1 γ

h+(dm′ ,z)
, (102)

where γ := 1 + κt

1−κt
K.

We can then express the closed-form backward velocity as follows:

v̌t(x
i, z) =

κ̇t

κt

[
δzi(xi)− p0|t(x

i|z)
]

(103)

=
κ̇t

(
Kδxi(zi)− 1

)
1 + (K − 1)κt

M∑
m=1

δdi
m
(zi)

γh+(dm,z)∑M
m′=1 γ

h+(dm′ ,z)
(104)

=
κ̇t(Kδxi(zi)− 1)

1 + (K − 1)κt

M∑
m=1

δdi
m
(zi)

γ−h(dm,z)∑M
m′=1 γ

−h(dm′ ,z)
. (105)

Since κt = 1 for t = 1, then γ →∞. So this equation is formally is not defined at t = 1. Nevertheless,
as limt→1, the weighted sum over power of γ is dominated by the maximum term, which converges
to 1. Hence, the expression can be rigorously interpreted as limt→1 v̌t(x

i, z), and in practice, this
limiting value is used for sampling at t = 1.

I RE-FLOW ITERATION RESULTS

This section details the results of applying the iterative re-flow procedure (Liu & Gong, 2023b;
Yoo et al., 2025) on the QM9 dataset (Ramakrishnan et al., 2014). We generated 1,024 samples
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across various timesteps and re-flow iterations, assessing validity, uniqueness, and novelty. The
configuration for subsequent re-flow iterations follows the same protocol as our main experiment.
As shown in Tab. 15, Tab. 16, and Tab. 17, all metrics are averaged over 10 independent runs with
standard deviations provided. We observed that iterative re-flow consistently enhances few-step
generation capabilities. Notably, PAIRFLOW demonstrates superior performance over the baseline; it
outperforms UDLM not only at equivalent iteration levels but also surpasses UDLM with multiple
re-flow iterations even when PAIRFLOW uses one or no additional iterations.

Table 15: validity scores (↑) on QM9 (Ramakrishnan et al., 2014) for UDLM and PAIRFLOW across
varying rectification steps and NFEs (1 to 64). The best and second-best values per column are
highlighted in bold and underlined, respectively.

Method 1 2 4 8 16 32 64

UDLM 17.5±3.2 125.5±11.8 497.6±8.3 826.6±10.3 953.5±6.1 991.9±4.2 1000.1±3.5
+ Re-Flow 59.7±8.8 232.4±9.2 588.4±15.8 849.6±14.2 940.5±8.5 967.5±5.2 978.8±5.2
+ Re-Flow 160.9±11.8 368.0±11.8 673.3±11.2 878.5±11.6 945.4±8.1 967.9±7.4 975.8±8.0
+ Re-Flow 280.2±6.7 470.7±18.6 742.2±18.7 897.9±9.4 945.3±5.2 965.0±5.9 972.6±7.1

PAIRFLOW 223.4±12.7 416.0±12.4 734.9±7.2 921.5±11.0 977.1±3.9 990.9±5.9 1000.2±4.5
+ Re-Flow 361.0±115.2 512.6±44.2 775.7±10.0 929.1±11.6 976.2±4.5 985.6±6.7 993.1±7.1
+ Re-Flow 443.4±13.4 598.6±18.4 823.0±16.0 935.2±7.7 969.0±5.7 984.1±6.0 989.0±3.8
+ Re-Flow 529.2±10.6 688.0±11.3 863.6±9.5 945.9±4.5 975.7±6.1 982.6±7.1 990.2±7.2

Table 16: Uniqueness scores (↑) on QM9 (Ramakrishnan et al., 2014) for UDLM and PAIRFLOW
across varying rectification steps and NFEs (1 to 64). The best and second-best values per column are
highlighted in bold and underlined, respectively.

Method 1 2 4 8 16 32 64

UDLM 17.5±3.2 125.4±11.7 495.0±8.2 819.5±11.4 943.0±5.7 979.1±5.0 990.0±4.7
+ Re-Flow 59.7±8.8 231.6±9.5 581.0±15.1 834.7±11.4 917.5±9.6 944.8±6.2 956.1±5.2
+ Re-Flow 159.4±10.9 363.3±12.2 657.2±9.3 846.3±11.8 910.8±7.3 930.5±9.3 938.8±11.7
+ Re-Flow 275.6±7.2 456.3±17.7 712.1±15.7 856.8±10.3 899.0±4.9 907.0±10.9 918.9±5.7

PAIRFLOW 223.0±12.3 414.7±12.0 731.4±6.9 917.4±11.8 971.6±4.3 986.2±5.3 994.8±5.2
+ Re-Flow 359.5±113.1 507.7±43.0 765.3±8.8 913.5±10.2 959.7±5.8 968.8±8.4 973.0±9.6
+ Re-Flow 437.9±13.8 586.7±17.9 801.0±15.4 906.5±10.1 939.1±6.2 955.9±7.2 960.2±6.5
+ Re-Flow 516.9±10.8 662.8±13.4 828.7±8.4 903.2±4.7 932.5±9.5 942.8±4.8 949.6±8.4

Table 17: Novelty scores (↑) on QM9 (Ramakrishnan et al., 2014) for UDLM and PAIRFLOW across
varying rectification steps and NFEs (1 to 64). The best and second-best values per column are
highlighted in bold and underlined, respectively.

Method 1 2 4 8 16 32 64

UDLM 13.8±2.9 52.0±8.2 120.0±3.8 152.4±9.1 144.2±12.4 147.2±9.7 145.1±9.0
+ Re-Flow 31.4±8.0 73.3±7.1 110.4±12.2 126.8±8.9 116.3±8.4 120.2±9.0 117.6±7.1
+ Re-Flow 61.1±6.5 103.0±8.6 129.0±9.7 124.6±12.5 128.3±5.6 128.4±10.6 122.8±9.4
+ Re-Flow 91.2±9.2 116.4±8.1 127.2±8.3 124.2±9.3 121.9±6.0 117.0±4.9 121.8±8.0

PAIRFLOW 68.8±7.8 85.6±10.0 109.2±7.8 96.8±9.9 106.5±12.5 108.9±9.4 110.0±9.9
+ Re-Flow 84.2±11.3 92.0±6.9 101.1±9.6 98.6±8.4 98.8±13.9 95.8±8.3 98.9±7.5
+ Re-Flow 100.8±7.7 109.5±8.7 101.0±6.8 101.1±7.8 94.5±6.6 95.6±9.6 99.0±8.8
+ Re-Flow 114.6±9.4 108.0±5.9 106.5±8.9 96.2±9.8 95.6±9.0 94.8±7.1 95.7±8.2

J SUBSET PAIRING RESULTS

In this section, we present comprehensive experimental results from applying our subset-partition
pairing technique to the ZINC-250k molecular dataset (Irwin et al., 2012). Following the same
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protocol as our main experiments, we generated 1,024 samples across varying timesteps and par-
tition counts to evaluate validity, uniqueness, and novelty. The only deviation from the standard
method is the pairing strategy; here, we calculate the closed-form backward velocity exclusively
within each subset to reduce the computational cost of Eqn. 10. All reported metrics, summarized
in Tab. 18, Tab. 19, and Tab. 20, are averaged over 10 independent runs with corresponding standard
deviations. Additionally, we report the pairing-time cost for each subset-partition configuration. The
results demonstrate that our subset-pairing algorithm effectively reduces the computational time for
pairing, while maintaining performance comparable to the full-set baseline.

Table 18: Validity scores (↑) on the Zinc-250k dataset (Irwin et al., 2012) evaluated across different
subset partitions and NFEs (1 to 64). The best and second-best values per column are highlighted in
bold and underlined, respectively. TPAIRFLOW denotes the runtime (in minutes) of each configuration,
measured in wall-clock time using an RTX A6000 GPU.

Method TPAIRFLOW 1 2 4 8 16 32 64

UDLM 0 0.3±0.5 65.2±8.2 435.7±14.4 775.1±19.5 887.3±12.7 921.5±8.5 937.3±3.9
Random 0 0.6±0.9 68.3±10.7 351.2±15.8 569.4±16.6 611.0±16.3 602.4±13.3 571.0±13.2

PAIRFLOW (Full) 13m 9.9±2.3 146.3±10.4 533.9±13.9 799.4±9.2 873.2±14.1 901.0±14.2 907.8±7.7
PAIRFLOW (2-Sub) 6m 10.6±2.8 145.7±13.5 530.6±20.3 802.5±6.9 882.6±7.1 902.4±13.4 911.5±9.2
PAIRFLOW (4-Sub) 2.9m 12.1±3.3 142.5±5.2 509.7±11.0 780.9±14.4 858.9±7.9 886.7±8.7 899.0±10.5
PAIRFLOW (8-Sub) 1.5m 12.3±2.5 141.1±6.7 510.9±17.2 766.8±12.6 857.5±8.4 886.9±9.6 896.5±6.3

Table 19: Uniqueness scores (↑) on Zinc-250k (Irwin et al., 2012) evaluated across different subset
partitions and NFEs (1 to 64). The best and second-best values per column are highlighted in bold
and underlined, respectively. TPAIRFLOW denotes the runtime (in minutes) of each configuration.

Method TPAIRFLOW 1 2 4 8 16 32 64

UDLM 0 0.3±0.5 65.2±8.2 435.7±14.4 775.1±19.5 887.3±12.7 921.5±8.5 937.2±3.8
Random 0 0.6±0.9 68.3±10.7 351.2±15.8 569.4±16.6 611.0±16.3 602.4±13.3 571.0±13.2

PAIRFLOW (Full) 13m 9.9±2.3 146.3±10.4 533.9±13.9 799.4±9.2 873.2±14.1 901.0±14.2 907.8±7.7
PAIRFLOW (2-Sub) 6m 10.6±2.8 145.7±13.5 530.6±20.3 802.5±6.9 882.6±7.1 902.4±13.4 911.5±9.2
PAIRFLOW (4-Sub) 2.9m 12.1±3.3 142.5±5.2 509.7±11.0 780.9±14.4 858.9±7.9 886.7±8.7 899.0±10.5
PAIRFLOW (8-Sub) 1.5m 12.3±2.5 141.1±6.7 510.9±17.2 766.8±12.6 857.5±8.4 886.9±9.6 896.5±6.3

Table 20: Novelty scores (↑) on Zinc-250k (Irwin et al., 2012) evaluated across different subset
partitions and NFEs (1 to 64). The best and second-best values per column are highlighted in bold
and underlined, respectively. TPAIRFLOW denotes the runtime (in minutes) of each configuration.

Method TPAIRFLOW 1 2 4 8 16 32 64

UDLM 0 0.3±0.5 65.2±8.2 435.7±14.4 775.1±19.5 887.3±12.7 921.3±8.8 936.9±4.1
Random 0 0.6±0.9 68.3±10.7 351.2±15.8 569.4±16.6 611.0±16.3 602.4±13.3 571.0±13.2

PAIRFLOW (Full) 13m 9.9±2.3 146.3±10.4 533.9±13.9 799.4±9.2 873.2±14.1 901.0±14.2 907.8±7.7
PAIRFLOW (2-Sub) 6m 10.6±2.8 145.7±13.5 530.6±20.3 802.5±6.9 882.6±7.1 902.4±13.4 911.5±9.2
PAIRFLOW (4-Sub) 2.9m 12.1±3.3 142.5±5.2 509.7±11.0 780.9±14.4 858.8±8.0 886.7±8.7 899.0±10.5
PAIRFLOW (8-Sub) 1.5m 12.3±2.5 141.1±6.7 510.9±17.2 766.8±12.6 857.5±8.4 886.9±9.6 896.5±6.3

K APPLICATION FOR MORE COMPLEX SYSTEMS

In this section, we evaluate our method on a higher-dimensional dataset. Specifically, we use the
FFHQ (Karras et al., 2019) dataset, downsampled to 64 × 64. Following the same protocol as in
our main experiments, we generate 5,000 samples across varying timesteps and report the FID
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computed against the training set. The results of this experiment are provided in Tab. 21. All training
hyperparameters are kept identical to those used in the CIFAR-10 experiments described in Section 5.

Table 21: Comparison of FID scores (↓) on FFHQ (Karras et al., 2019) downsampled to 64 × 64
resolution across extended NFE steps (1 to 1024). Best values per column are highlighted in bold.

Method 1 2 4 8 16 32 64 128 256 512 1024

UDLM 403.04 399.26 363.97 273.31 153.71 97.87 74.85 63.93 59.28 55.99 55.30
PAIRFLOW 394.14 368.36 329.13 243.88 140.05 90.85 69.67 59.86 56.52 54.19 53.18

We adopt the LM1B (Chelba et al., 2013) dataset to evaluate our method under a substantially larger
vocabulary size and training corpus. The text corpus is segmented into sequences of varying lengths
(N = 16, 32, 64, 128), while keeping the total number of training samples fixed (|X1| ≈ 3.5M). To
assess generation quality, we compute generative perplexity using GPT-2 Large and entropy on 1,024
generated samples for each NFE setting. The results are summarized in Tab. 22 and Tab. 23. For
training, we follow the network hyperparameter configuration of (Schiff et al., 2025), modifying only
the number of training iterations for each sequence dimensionality.

Table 22: Generative Perplexity (↓) on LM1B (Chelba et al., 2013) measured with GPT2-large across
varying lengths (N ) and their corresponding training iterations (Iter.) over NFE steps 4 to 1024. Best
values are highlighted in bold.

N Iter. Method 4 8 16 32 64 128 256 512 1024

16 200k UDLM 299.18 225.92 207.17 195.82 200.77 197.04 199.12 195.37 198.22
PAIRFLOW 242.22 208.04 200.99 190.36 191.74 199.45 188.84 196.91 198.12

32 200k UDLM 263.93 192.78 167.85 167.49 155.68 150.52 152.40 151.74 154.02
PAIRFLOW 218.48 172.27 156.35 150.53 143.83 145.77 142.54 141.04 147.57

64 400k UDLM 214.07 150.59 130.49 120.19 117.90 116.23 112.24 113.77 115.11
PAIRFLOW 174.78 138.94 123.06 115.71 114.73 112.92 111.29 107.06 110.83

128 600k UDLM 169.61 123.48 105.13 98.94 97.89 94.92 93.75 94.12 93.59
PAIRFLOW 167.90 121.09 102.16 96.61 93.93 91.51 90.21 89.09 89.07

Table 23: Comparison of Entropy (↑) on LM1B (Chelba et al., 2013) across varying lengths (N ) and
training iterations (Iter.) over NFE steps 4 to 1024. Best values are highlighted in bold.

N Iter. Method 4 8 16 32 64 128 256 512 1024

16 200k UDLM 2.46 2.49 2.50 2.50 2.50 2.51 2.50 2.51 2.50
PAIRFLOW 2.48 2.49 2.51 2.52 2.52 2.53 2.52 2.53 2.52

32 200k UDLM 3.05 3.09 3.12 3.13 3.13 3.13 3.13 3.13 3.13
PAIRFLOW 3.06 3.12 3.13 3.14 3.15 3.15 3.15 3.15 3.16

64 400k UDLM 3.57 3.63 3.67 3.68 3.69 3.70 3.70 3.69 3.70
PAIRFLOW 3.57 3.65 3.69 3.70 3.71 3.71 3.71 3.72 3.71

128 600k UDLM 3.98 4.09 4.14 4.16 4.17 4.17 4.17 4.18 4.18
PAIRFLOW 4.00 4.11 4.16 4.18 4.19 4.20 4.20 4.19 4.20

L ANALYSIS FOR THE OVERFITTING IN IMAGE DOMAINS

In this section, we evaluate our method using FID computed on the test sets of two image domains:
CIFAR-10 (Krizhevsky et al., 2009) and MNIST-Binary (LeCun et al., 2002). For CIFAR-10, we
additionally report FID scores measured with DINOv2 (Oquab et al., 2024). The overall results are
summarized in Tab. 24 and Tab. 25. Across all evaluation metrics, the performance trend is consistent
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with our main findings—PAIRFLOW delivers improved generation quality over the baseline, with
especially strong gains in the few-step generation regime.

Table 24: FID and FID-Dino scores (↓) on test dataset for CIFAR-10 (Krizhevsky et al., 2009)
comparison across extended NFE steps (1 to 1024). Best values are bolded.

NFE 1 2 4 8 16 32 64 128 256 512 1024

Method FID (↓)

UDLM 306.45 296.77 266.64 178.11 114.04 80.40 62.70 53.83 50.96 47.61 47.16
PAIRFLOW 235.65 247.18 209.94 137.16 94.24 67.53 51.48 43.79 42.44 40.85 39.92

Method FID-DINOv2 (↓)

UDLM 2448.46 2410.65 1975.58 1344.44 959.39 755.80 646.47 598.53 598.54 553.17 560.75
PAIRFLOW 2059.26 1988.21 1626.08 1127.30 828.09 623.89 530.70 486.59 484.27 470.33 470.05

Table 25: FID scores (↓) on the MNIST-Binary (LeCun et al., 2002) test set across various NFE steps
(1 to 64). Best values are bolded.

Method 1 2 4 8 16 32 64

UDLM 129.05 42.17 11.42 6.18 5.13 5.37 5.50
PAIRFLOW 42.87 17.37 9.62 6.36 5.80 5.51 5.24

UDLM+DCD 57.85 19.23 9.82 8.41 7.87 7.12 7.38
PAIRFLOW+DCD 19.56 13.06 10.90 8.55 7.40 7.22 7.85

UDLM+ReDi 19.08 10.79 8.77 7.01 6.89 6.57 6.61
PAIRFLOW+ReDi 13.73 9.59 8.98 7.24 7.22 6.98 7.12

We further assess potential memorization by measuring nearest-neighbor distances with respect to the
training set. For MNIST-Binary (LeCun et al., 2002), we compute pixel-wise ℓ2 distances, whereas
for CIFAR-10 (Krizhevsky et al., 2009), we evaluate both ℓ2 distance and cosine similarity between
features extracted using DINOv2 (Oquab et al., 2024). As summarized in Tab. 26 and Tab. 27, across
all evaluation settings, the nearest-neighbor distances of PAIRFLOW are comparable to or slightly
larger than those of the baseline. These results support the conclusion that our method does not suffer
from severe overfitting or excessive memorization of the training data.

Table 26: Comparison of ℓ2 and Dino (Oquab et al., 2024) Cosine nearest neighbor distance on the
CIFAR-10 (Krizhevsky et al., 2009) training set across extended NFE steps (1 to 1024). Best values
are bolded.

NFE 1 2 4 8 16 32 64 128 256 512 1024

Metric ℓ2 (↑)

UDLM 7.97 9.13 10.06 10.06 9.40 8.94 8.63 8.41 8.29 8.29 8.22
PAIRFLOW 8.03 8.76 9.42 9.56 9.18 8.75 8.63 8.55 8.51 8.52 8.52

Metric Cosine(DINOv2) (↓)

UDLM 0.242 0.227 0.231 0.241 0.237 0.238 0.235 0.237 0.237 0.235 0.237
PAIRFLOW 0.245 0.228 0.235 0.239 0.236 0.232 0.232 0.230 0.232 0.235 0.233
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Table 27: Comparison of ℓ2 nearest neighbor distance on the MNIST-Binary (LeCun et al., 2002)
training set across extended NFE steps (1 to 64). Best values are bolded.

Method 1 2 4 8 16 32 64

UDLM 8.18 7.06 6.55 6.42 6.27 6.29 6.25
PAIRFLOW 7.36 6.95 6.63 6.42 6.26 6.34 6.30

UDLM+DCD 7.24 6.78 6.57 6.50 6.31 6.40 6.39
PAIRFLOW+DCD 7.64 7.34 7.11 6.91 6.74 6.76 6.79

UDLM+ReDi 7.14 6.81 6.49 6.24 6.10 6.14 6.08
PAIRFLOW+ReDi 6.84 6.57 6.35 6.09 5.95 5.97 5.96

M LIMITATIONS AND FUTURE WORK

We hope this work initiates broader discussion on reducing training compute while still enabling
fast generation in generative models. Such efficiency can have a significant impact, from reducing
energy consumption in training large-scale generative models to contributing to the democratization
of foundation model development.

A natural follow-up question to our work is whether the same idea can be applied to continuous
Flow Matching (FM). We have evaluated this extension on continuous FM models, with results
provided in App. E. Our experiments with synthetic data show that the method is effective for
relatively low-dimensional data, while its advantage a bit diminishes for higher-dimensional data.
We will further investigate the effect of our method on continuous data, where we hypothesize that a
substantially larger number of source–target pairs will be required. Nonetheless, we emphasize that
even in this initial exploration of accelerating flow models through well-aligned pairing, PAIRFLOW
is particularly well-suited for low-dimensional discrete data, which includes many forms of scientific
data such as molecular and protein structures.
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Figure 7: Step-wise performance analysis on synthetic N-fold two-moons. Each plot shows Chamfer
distance (log scale) vs. sampling steps for different dimensions d. Closed-form pairing (PAIRFLOW)
consistently outperforms standard CondOT—especially at few sampling steps—while the margin
shrinks as d increases, indicating diminishing gains in high dimensions.
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Figure 8: Additional qualitative results of 64-step and 256-step generation on CIFAR-10 (32× 32).
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Figure 9: Additional qualitative results of 1-step generation on MNIST-Binary (28× 28).
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Figure 10: Additional qualitative results of 2-step generation on MNIST-Binary (28× 28).
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