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ABSTRACT

Deep learning approaches have demonstrated the ability to design protein se-
quences given backbone structures (Dauparas et al., 2022; Hsu et al., 2022;
Zheng et al., 2023; Mahajan et al., 2023; Dreyer et al., 2023; Høie et al.,
2023). While these approaches have been applied in silico to designing antibody
complementarity-determining regions (CDRs), they have yet to be validated in
vitro for designing antibody binders, which is the true measure of success for
antibody design. Here we describe IgDesign™, a deep learning method for anti-
body CDR design, and demonstrate its robustness with successful binder design
for 8 diverse therapeutic antigens. The model is tasked with designing heavy
chain CDR3 (HCDR3) or all three heavy chain CDRs (HCDR123) using native
backbone structures of antibody-antigen complexes, along with the antigen and
antibody framework (FWR) sequences as context. For each of the 8 antigens,
we design 100 HCDR3s and 100 HCDR123s, scaffold them into the native an-
tibody’s variable region, and screen them for binding against the antigen using
surface plasmon resonance (SPR). As a baseline, we screen 100 HCDR3s taken
from the model’s training set and paired with the native HCDR1 and HCDR2. We
observe that both HCDR3 design and HCDR123 design outperform this HCDR3-
only baseline. IgDesign is the first experimentally validated antibody inverse fold-
ing model. It can design antibody binders to multiple therapeutic antigens with
high success rates and, in some cases, improved affinities over clinically validated
reference antibodies. Antibody inverse folding has applications to both de novo
antibody design and lead optimization, making IgDesign a valuable tool for ac-
celerating drug development and enabling therapeutic design. Furthermore, we
present evidence that the data generated in this study have the potential to serve as
a useful benchmark of diverse antibody-antigen interactions1.

1 INTRODUCTION

Protein inverse folding is the problem of predicting sequences that fold into a structure of interest.
Recently, several generative models for this task have been proposed (Dauparas et al., 2022; Hsu

∗Equal contribution.
1Data Availability: Datasets will be released upon formal publication.
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et al., 2022; Zheng et al., 2023; Mahajan et al., 2023; Dreyer et al., 2023). These models have
broad applications to the protein engineering space. In particular, ProteinMPNN (Dauparas et al.,
2022) has been successfully applied to applications including de novo binder design (Watson et al.,
2023), de novo luciferase design (Yeh et al., 2023), and design of soluble analogs of membrane pro-
teins (Goverde et al., 2023). Furthermore, ProteinMPNN has been shown to be superior to Rosetta
at protein binder design (Bennett et al., 2023). Multiple other protein inverse folding models have
been introduced. ESM-IF1 (Hsu et al., 2022) uses a GVP-GNN architecture (Jing et al., 2021). LM-
Design (Zheng et al., 2023) combines ProteinMPNN with the ESM protein language models (Rives
et al., 2021; Lin et al., 2022).

Antibodies have become a major class of therapeutics as a result of their attractive drug-like proper-
ties (Castelli et al., 2019). Antibody design, in particular design of the hypervariable CDRs primarily
involved in antigen binding (Akbar et al., 2021), using generative models is of great interest due to
potential drug development applications. Correspondingly, antibody inverse folding has become a
relevant problem. We note that LM-Design was evaluated in silico on antibody CDRs and Mahajan
et. al (Mahajan et al., 2023) evaluate the impact of fine-tuning on antibodies, antibody-antigen in-
terfaces, and general protein interfaces for CDR design. AbMPNN (Dreyer et al., 2023) describes
an antibody-specific inverse folding model created by fine-tuning ProteinMPNN on antibody struc-
tures, such as those in the Structural Antibody Database (SAbDab) (Dunbar et al., 2014). Simi-
larly, AntiFold (Høie et al., 2023) is an antibody-specific inverse folding model based on ESM-IF1.
AbMPNN and AntiFold were compared in silico to ProteinMPNN and shown to have higher amino
acid recovery (AAR) on antibody CDRs, however they have not been shown to produce antibody
binders in vitro.

Our study introduces IgDesign, a generative antibody inverse folding model based on LM-Design,
and the first such model to be validated in vitro for antibody binder design. We present extensive
wet lab validation of IgDesign’s ability to design binders against 8 diverse therapeutic antigens.
Specifically, we show that IgDesign is able to design both HCDR3 and all three HCDRs (HCDR123)
of a reference antibody2 and preserve binding, as measured by surface plasmon resonance (SPR), to
the target antigen with high success rates. We compare IgDesign to a baseline of HCDR3s sampled
from the model’s training set and observe that for HCDR3 design, the model outperforms on 8 out
of 8 antigens. For HCDR123 design, the model outperforms this HCDR3-only baseline on 7 out of
8 antigens. Overall, we demonstrate, with in vitro validation, that inverse folding can be a successful
component of an antibody design pipeline (Figure 1).

2 METHODS

IgDesign Model To understand whether the success of ProteinMPNN (Dauparas et al., 2022)
could be used in the antibody design field, we devised IgMPNN, a version specifically trained for
antibodies. IgMPNN is similar to AbMPNN (Dreyer et al., 2023), however we note two key dif-
ferences between the models: (1) IgMPNN is provided antigen sequence and antibody framework
(FWR) sequences as context during training. (2) IgMPNN decodes antibody CDRs in sequential
order during training: HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, LCDR3. During inference,
any order of CDRs can be specified. Within each CDR, the decoding order is random as done
in (Dauparas et al., 2022). We include additional details on IgMPNN in the Appendix.

The CDR design protocol in IgDesign is based on the approach of combining a structure encoder and
sequence decoder as proposed in LM-Design (Zheng et al., 2023). We first execute a forward pass
through IgMPNN, as described above. This allows us to access the final node embeddings as well
as the model’s logits. We sample the maximum likelihood estimate of those logits in order to obtain
a single tokenized sequence. We provide this sequence as input to the ESM2-3B protein language
model (Lin et al., 2022)3 and extract the embeddings before the final projection head. We then apply
a BottleNeck Adapter layer (Houlsby et al., 2019), in which cross-attention is computed by using
the final node embeddings from IgMPNN as keys and the embeddings from ESM2-3B as queries
and values. This new set of embeddings is passed through the final projection head of ESM2-3B
and projected out to logits. Finally, these logits are summed with the logits from IgMPNN.

2The term reference antibody refers to the antibody in the ground truth antibody-antigen complex used for
inverse folding.

3We make an argument for why potential data leakage from ESM is not a concern in the Appendix.
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Figure 1: Overview of in silico (top) and in vitro (bottom) workflow for antibody inverse folding.
(Top) Antibody-antigen complex crystal structures are processed into structure features (antibody
variable-region and antigen coordinates) and sequence features (antigen and antibody framework se-
quences). Features are inputted to IgDesign which outputs CDR sequences. CDR loops are colored
in the processed structure (PDB:1N8Z (Cho et al., 2003)). (Bottom) Libraries of inverse folding
antibody designs are sent to the wet lab for screening. The screening workflow consists of cloning,
expression, surface plasmon resonance (SPR), and sequencing. Designed binders are validated and
their affinities are measured.

Data and training IgMPNN is pretrained on proteins from the PDB (Berman, 2000) split at 40%
sequence identity (referred to here as the General PDB dataset). Following pretraining, IgMPNN
is fine-tuned on antibody-antigen complexes from SAbDab (Dunbar et al., 2014) and IgDesign is
fine-tuned on said antibody-antigen complexes using IgMPNN (pretrained and fine-tuned) as its
structural encoder. For splitting the antibody data we do an antigen holdout at 40% sequence identity.
We remove all structures in SAbDab from our General PDB dataset to avoid data leakage. We
include additional details on data curation and splitting in the Appendix.

For each antigen, we train a new set of IgMPNN and IgDesign models with said antigen and its
homologs held out to prevent data leakage. We ensure that the HCDR3 of the reference antibody is
not in the training set (Table 1). All models are trained with the Adam optimizer (Kingma & Ba,
2014) using a learning rate of 10−3.

Antibody library design We selected 8 diverse therapeutic antigens each with a reference an-
tibody binder and an antibody-antigen complex structure in our curated SAbDab dataset. The
antibody-antigen pairs selected for this study are listed in Table 2 with PDB IDs provided for the
structures used (with the exception of Antigen 1). The 3D backbone coordinates were used as
input to IgDesign, along with the antigen sequence and antibody FWR sequences. At inference
time, we generated sequences in the following order: HCDR3, HCDR1, HCDR2, LCDR1, LCDR2,
LCDR3. For each antigen, we generated 1 million sequences and filtered to the 100 HCDR3s and
100 HCDR123s with lowest cross-entropy loss for in vitro assessment.

As a baseline, we sampled 100 HCDR3s from the training set (a subset of SAbDab) of each IgDesign
model. SAbDab HCDR3s represent a rigorous baseline since they match the training distribution
of the model and are paired with the native HCDR1 and HCDR2. In total, we designed 8 libraries
of antibodies, one for each target antigen. Each antigen specific library includes 100 IgDesign
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HCDR3s, 100 IgDesign HCDR123s, and 100 SAbDab HCDR3s as a baseline. For each library,
we included controls to confirm the SPR assay’s ability to accurately label known binders and non-
binders. Additional details, including a discussion of the baseline, are in the Appendix.

In vitro screening Antibodies were screened for binding against their target antigens using SPR.
We give a detailed overview of our wet lab workflow in the Appendix. At a high level, this workflow
involves four steps: (1) Cloning DNA corresponding to the designed antibodies into E. coli plasmids
(2) Expressing the antibodies in the corresponding E. coli (3) SPR: screening the expressed antibod-
ies for binding against their target antigens (4) Sequencing the antibodies to determine amino acid
identities. After receiving the SPR and sequencing data for each library, we label antibody variants
that bind in all SPR replicates as binders and otherwise label them as non-binders. For binders, the
reported affinities are the average (mean) across replicates. We show sensorgrams for controls and
select model-designed sequences in the Appendix.

3 RESULTS

Amino acid recovery (AAR) We compute AAR, the percentage of the designed sequence that
matches the native sequence, for each CDR using IgMPNN, IgDesign, and ProteinMPNN (Dau-
paras et al., 2022) as an in silico baseline4 We also evaluate “ProteinMPNN (Filtered),” which is
ProteinMPNN evaluated on antibodies not in its training set. We compute both 1-shot AAR, the
AAR of one sample from the model, and 100-shot AAR, the maximum AAR of 100 samples from
the model. For each of the 8 antigens, we trained a model with said antigen held out and computed
test set AARs. To estimate model performances, we compare mean test set AARs, that is the mean
computed over each model’s test set. We show the distribution of mean test set 1-shot AARs for
HCDRs in Figure 11, for LCDRs in Figure 12, and for 100-shot AAR in Figures 13, 14. IgMPNN
and IgDesign outperform ProteinMPNN and ProteinMPNN (Filtered) in all cases (Mann-Whitney
U test (MWU) (Mann & Whitney, 1947), p < 2e-4). IgDesign outperforms IgMPNN (MWU, p <
7e-4) on LCDR1 (100-shot AAR) and LCDR3 (1-shot AAR and 100-shot AAR). We compare test
set AARs on the ACVR2B data split in Figures 15, 16, 17, 18.

In vitro binding rates We assess IgDesign’s ability to generate binders to each therapeutic antigen
by measuring its in vitro binding rate, which is the percentage of designs that bind as assessed by
SPR. As shown in Figure 2 and Tables 3, 4, IgDesign HCDR3s bind statistically significantly more
often than SAbDab baseline HCDR3s for 7 out of 8 antigens (Fisher’s exact test (FE) (Fisher, 1922),
p < 3e-3) 5. IgDesign HCDR123s bind statistically significantly more often than the baseline for 3
out of 8 antigens (FE, p < 3e-3). For two targets, Antigen 1 and C5, the SAbDab HCDR3 baseline
contained a single low-affinity binder. In contrast, IgDesign produced HCDR3 binders for 8 out of
8 targets and HCDR123 binders for 7 out of 8 targets (all but IL17A). We emphasize the impact
of designing HCDR123s with high binding rates as we are comparing to an HCDR3-only baseline.
IgDesign’s significant outperformance vs. the baseline suggests it has learned to extrapolate from
its training set.

In vitro binding affinities and diversity metrics We show binding affinities and diversity met-
rics for binders against each antigen from IgDesign as well as the SAbDab HCDR3 baseline in
Figures 19, 20, 21, 22, 23, 24, 25, 26. For each of these figures, we show, for binders, affinity in
subfigure A, affinity vs. HCDR3 edit distance in subfigure C, and affinity vs. HCDR123 edit dis-
tance in subfigure E. The reference antibody affinity is shown with a dashed black line. For affinities
we report − log10(KD) (M). In subfigures B, D, and F we report diversity metrics, specifically the
HCDR3 edit distances for all screened variants (binders and non-binders), the pairwise HCDR3 edit
distances between IgDesign binders (HCDR3 and HCDR123), and the pairwise HCDR123 distances
between IgDesign HCDR123 binders.

For 5 out of 8 antigens (Antigen 1, IL36R, FXI, ACVR2B, and TNFRSF9), IgDesign generates
binders with equal or higher affinities to the reference antibody. For these 5 targets, several designed

4We include details on the ProteinMPNN in silico baseline in the Appendix.
5We require p ¡ 3e-3 for statistical significance as we are considering α = 0.05 power with N = 16

Fisher’s exact tests (8 antigens, HCDR3/HCDR123 vs. SAbDab). Hypothesis correction requires p < α/N =
0.003125.
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Figure 2: Binding rates across all antigens for IgDesign HCDR3 (red) and HCDR123 (blue)
vs. SAbDab HCDR3 baseline (black). Binding rate is defined as the percentage of sequences that
bind to the target antigen as assessed by SPR. Baseline binding rate is 0% for antigens 2, 4, 5, 6, 7,
and 8. IgDesign significantly outperforms the SAbDab baseline at antibody binder design.

binders have affinities within one order of magnitude of the reference antibody’s affinity. This
suggests that IgDesign can be used for lead optimization, in particular affinity maturation, either
by designing HCDRs or via an efficient evolution approach (Shanker et al., 2023; Hie et al., 2023)
by ranking HCDR mutants conditional on a backbone structure. For the other 3 out of 8 antigens
(C5, TSLP, IL17A), the binders are 2 or more orders of magnitude lower affinity than reference,
motivating future work to improve the model.

From the diversity metrics, we see that, in general, lower HCDR3 edit distance and thus higher
AAR corresponds to higher binding rates. For IgDesign binders we see a trend of the ratio of
binders to non-binders decreasing as edit distance increases, with some exceptions. We also see that
the SAbDab baseline HCDR3 edit distances tend to be higher than IgDesign HCDR3 edit distances
and the success rates of the former strategy are significant lower than those of the latter. That being
said, we note that the two SAbDab HCDR3 binders are not on the low end of HCDR3 edit distances.
When comparing edit distances amongst IgDesign binders we see diversity within the population of
designed sequences as well.

4 DISCUSSION

Here we have presented IgDesign, an antibody inverse folding model developed by combining (1)
ideas from protein inverse folding models and language models such as ProteinMPNN, LM-Design,
and ESM2, (2) an antibody-specific framing of the problem with antigen and antibody FWR se-
quences provided as context, and (3) fine-tuning on antibody-antigen complexes. We demonstrate
IgDesign’s ability to consistently design binders against multiple target antigens with confirma-
tion using SPR. We present the first in vitro validation of using inverse folding to design antibody
binders to a diverse set of therapeutic antigens. The binders generated by IgDesign produce a dataset
of diverse antibody-antigen interactions with the potential to be used for benchmarking models and
learning more about the underlying binding mechanisms. Demonstrating the success of antibody
inverse folding is key to advancing the field since models such as IgDesign can be broadly applied
to antibody development efforts.
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A MODELING METHODS

A.1 IGMPNN

IgMPNN takes as input the 3D coordinates of the backbone residues of an antibody-antigen com-
plex. We define a protein graph as a directed graph where residues are represented as nodes and
share edges with their k nearest neighbors. We use k = 48 in all of our experiments. We initialize
the node features xi and edge features etij in our protein graph using the following features from
(Dauparas et al., 2022): (1) Distances between Cα-Cα atoms, (2) Relative Cα-Cα-Cα frame ori-
entations and rotations, (3) Backbone dihedral angles, (4) Binary features that determine relative
chain positions, and (5) Relative position encodings. Our featurization differs from Dauparas et al.
(2022) in two ways: (1) We do not assume access to any side chain atoms and thus we do not include
any pairwise distance features involving side chain atoms. (2) We include embedded residue type
features for all antigen residues and antibody framework residues. We replace the antibody CDR
residue embeddings with zero vectors.

Our initial features, x0, then get passed into our message passing neural network encoder. Our
network has multiple message passing phases during which the hidden state of each node in the
graph hti and edge etij is updated according to:
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where fθ is our message update function, fϕ is our node update function, fψ is our edge update
function, and N(i) is the set of neighboring nodes for a given node i in the graph. We use 128 as our
hidden node dimension throughout the network. IgMPNN utilizes three encoder layers, performing
message passing node updates and edge updates. The output is fed into the decoder, which has
three layers. The decoder performs message passing to update the node representations according
to: mt+1

i =
∑
j∈N(hi)

fγ(e
t
ij , h

t
j ,Mĥtj), where fγ is our decoder message update function. The

ground truth context, ĥtj , which is an embedding of the ground truth residues, is provided as input
only when it is allowed by our causal decoding mask, M. The decoder is masked to prevent the
model from incorporating information from nodes that have yet to be decoded while allowing the
decoder to access information from nodes that have already been decoded. When decoding a given
residue during training time, instead of accessing the embeddings for predicted residues at previ-
ously decoded positions, the decoder accesses embeddings for ground truth residues at previously
decoded positions. The model decodes antibody CDRs in sequential order during training: HCDR1,
HCDR2, HCDR3, LCDR1, LCDR2, LCDR3. During inference, a different order of CDRs can be
specified. Within each CDR, the decoding order is random as done in Dauparas et al. (2022). We
project the final node embeddings to logits and train the model using cross-entropy loss.

A.2 DISCUSSION OF ESM AND POTENTIAL DATA LEAKAGE

Data leakage from ESM (Rives et al., 2021; Lin et al., 2022) is a concern that was originally raised
for general protein inverse folding with LM-Design (Zheng et al., 2023). The authors presented an
argument against this concern6. It has also been noted that the number of antibody-related sequences
ESM has been trained on is in the thousands compared to the multiple tens of millions of proteins
in its training set (Hie et al., 2023), which suggests it is less likely to observe leakage for antibody
design compared to general protein design. Furthermore, our in silico results show that IgMPNN,
which does not use ESM, achieves comparable HCDR AARs to IgDesign, implying that information
is not being leaked from ESM. Finally, we consider data leakage for ProteinMPNN (Dauparas et al.,
2022), noting in our in silico results that despite training on ¿80% of the antibody-antigen complexes
in the relevant test sets, ProteinMPNN still underperforms both IgMPNN and IgDesign. While
ProteinMPNN and ESM are considerably different models, this example motivates the fact that
models can ignore elements of their training sets.

A.3 PROTEINMPNN in silico BASELINE

We perform an in silico baseline against ProteinMPNN by taking the open source implementation of
the model7 and running inference on the antibody-antigen complexes in the test sets of the IgDesign
models we trained. Inference is run with default parameters directly from the PDB files8. We
generate 100 sequences for each complex. We then parse the CDRs from these sequences and
compute AARs, specifically 1-shot AAR being the AAR of the CDRs in the first sample and 100-
shot AAR being the maximum AAR for each CDR amongst the 100 samples.

We investigated the training set of ProteinMPNN and noted that a significant portion of
SAbDab (Dunbar et al., 2014) is in the training set. Indeed, nearly 25,000 non-unique PDB IDs from
SAbDab are contained in ProteinMPNN’s training set. The model is primarily trained on individ-
ual chains from these complexes (i.e., heavy chains, light chains, or antigens treated as monomers).
This results in ≈80% of our test set complexes being contained in ProteinMPNN’s training set. Be-
cause of this, we also compute the “ProteinMPNN (Filtered)” baseline by restricting to antibodies
contained in IgDesign’s test sets that are not contained in ProteinMPNN’s training set as monomers
(i.e., if the heavy or light chain appears in ProteinMPNN’s training set as a monomer it will not be
considered in this baseline).

Interestingly, despite this data leakage, IgDesign outperforms ProteinMPNN with statistical signifi-
cance on every CDR. Furthermore, ProteinMPNN and ProteinMPNN (Filtered) perform comparably
to each other.

6https://github.com/BytedProtein/ByProt/issues/3
7https://github.com/dauparas/ProteinMPNN
8https://github.com/dauparas/ProteinMPNN/blob/main/examples/submit example 3.sh
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B DATA CURATION AND SPLITTING

The Structural Antibody Database (SAbDab) (Dunbar et al., 2014) was retrieved on December 6th,
2022. The corresponding PDB files were downloaded from RSCB PDB (Berman, 2000). To gener-
ate a high quality dataset used in training we applied the following filters:

• Drop entries without a heavy antibody chain.
• Drop entries without an antigen.
• Drop entries where the PDB id, heavy, light, and antigen chains are repeated (duplicated).
• Drop entries where one of the heavy CDRs is too short (shorter than 5 amino acids for

HCDR1 and HCDR2, shorter than 7 amino acids for HCDR3).
• Drop entries where one of the heavy CDRs is too long (longer than 26 amino acids for any

of the HCDRs).
• Drop entries where more than 10% of heavy chain residues are missing from the structure.
• Drop entries where more than 25% of antigen residues are missing from the structure.

After filtering there were 6933 entries left in the database. To split the dataset, we use a 40% antigen
sequence identity holdout. Specifically, we applied sequence clustering to the antigen sequences
using mmseqs2 (Steinegger & Söding, 2017) version 13.45111, with the following parameters: min-
seq-id=0.4, cov-mode=1, cluster-mode=2, cluster-reassign=true. We use these cluster annotations
when splitting the data into train, validation, and test folds (assigning an entire cluster to one of the
three subsets).

The General PDB dataset is created from a selection of PDB files available in the RSCB
PDB (Berman, 2000) database. We made the selection using the Graphein library (version 1.0) (Ja-
masb et al., 2022), downloading all PDB structures where each chain is longer than 40 and shorter
than 500 amino acids. We further filtered out any structures containing chains with missing back-
bone atoms. Finally, we removed all PDBs contained in SAbDab to avoid leakage. This resulted in a
dataset with 74734 entries. We then applied sequence clustering using mmseqs2 with the same set of
parameters used for clustering the SAbDab dataset (min-seq-id=0.4, cov-mode=1, cluster-mode=2,
cluster-reassign=true). As with SAbDab, we use these cluster annotations when splitting the data
into train, validation, and test folds (assigning an entire cluster to one of the three subsets).

Table 1: Minimum edit distances between HCDRs of reference antibodies and antigen data
splits used for training. Note that the reference antibody’s HCDR3 is never present in the training
set. While HCDR1 and HCDR2 may be contained in the training set this is expected due to these
being lower diversity regions relative to HCDR3. Furthermore, we note that the minimum edit
distance between all three HCDRs is always greater than the sum of the minimum edit distances for
each HCDR.

Antigen Minimum Edit Distance Mean Edit Distance
HCDR1 HCDR2 HCDR3 HCDRs HCDR1 HCDR2 HCDR3 HCDRs

Antigen 1 0 2 2 9 4.2 5.6 10.8 20.5

IL36R 1 2 7 13 5.2 5.7 12.7 23.6

C5 1 0 5 10 4.7 4.8 12.1 21.6

TSLP 1 0 6 9 4.7 5.7 13.0 23.4

IL17A 0 2 8 13 4.5 5.6 13.3 23.4

FXI 1 1 4 11 4.4 4.6 11.9 20.9

ACVR2B 1 2 2 6 4.6 4.8 10.7 20.1

TNFRSF9 0 0 2 7 4.7 5.3 10.5 20.5
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Table 2: PDB IDs and chain IDs for antibody-antigen complexes. PDBs are sourced from RCSB
PDB. Structures were selected by quality as measured by resolution and chain IDs, in the cases
where multiple were present, were chosen to minimize missing residues in the antibody variable
domain and antigen structures.

Antigen Reference Antibody PDB ID Heavy Chain ID Light Chain ID Antigen Chain ID
Antigen 1 Antibody 1 N/A N/A N/A N/A

IL36R Spesoslimab 6U6U H L R

C5 Eculizumab 5I5K H L B

TSLP Tezepelumab 5J13 C B A

IL17A Afasevikumab 6PPG B A G

FXI Osocimab 6HHC H L A

ACVR2B Bimagrumab 5NGV H L A

TNFRSF9 Utomilumab 6A3W A B C
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C ADDITIONAL DETAILS ON ANTIBODY LIBRARY DESIGN

We make note of additional details for antibody library design:

• For each of the 8 target antigens we trained IgDesign with a SAbDab split holding out said
antigen.

• As mentioned in the main text, we generated sequences in the following order: HCDR3,
HCDR1, HCDR2, LCDR1, LCDR2, LCDR3. We selected this order to prevent the model
from conditioning on potentially false CDR predictions when predicting HCDR3. We note
that the model is never provided ground truth CDR sequences at inference time.

• For generating sequences with IgDesign we used weighted random sampling after applying
softmax with a temperature of T = 0.5 to the model’s logits.

• As a baseline, we sampled 100 HCDR3s from the training set (a subset of SAbDab) of each
IgDesign model. We required these HCDR3s to have the same length as the HCDR3 of the
reference antibody. If there were fewer than 100 such HCDR3s, we first took HCDR3s
from the validation set with matching lengths then, if needed, we took HCDR3s 1 residue
longer or shorter from the training set.

• We included controls for the SPR assay to confirm its ability to properly label known
binders and non-binders. In particular, for each experiment we included a monoclonal
antibody (mAb) positive control (except for Antigen 1), a fragment antigen-binding (Fab)
positive control and, and a Fab negative control. While we do not disclose the target anti-
gens or the reference antibodies we do present sensorgrams for the controls, an IgDesign
binder, and an IgDesign non-binder in the Appendix.

Discussion of the in vitro baseline We describe the construction of the baseline above. The ob-
jective of the baseline is to compare to IgDesign’s binding rates and demonstrate that the model is
relying on its input features (antibody-antigen complex structure, antigen sequence, antibody FWR
sequences) and that it has learned to extrapolate from its training set of HCDRs. By sampling
HCDR3s from the model’s training set, we can effectively answer these questions. The success
rates of the baseline are low. In fact, they are 0% for 6 out of 8 antigens and for the remaining 2 each
baseline population contains only 1 binder, which corresponds to a success rate of ≈ 1.5% (Table 3).
Given IgDesign’s outperformance vs. the baseline, we can conclude that the model has learned to
extrapolate by relying on its input features.

We note that there are multiple other baselines of interest. The SAbDab HCDR3 baseline does not
utilize IgDesign’s input features for sampling sequences. As a result, while we can determine that
the model uses these features we cannot determine how effectively it uses these features. A baseline
using a protein inverse folding model such as ProteinMPNN (Dauparas et al., 2022) or an antibody
inverse folding model such as AbMPNN (Dreyer et al., 2023) would help answer this question. Sim-
ilarly, baselines using protein language models such as ESM (Rives et al., 2021; Lin et al., 2022) or
antibody language models such as IgLM (Shuai et al., 2021) would help assess the importance of
the structure features. There are, however, some shortcomings of these baselines compared to our
SAbDAb HCDR3 baseline. Firstly, we do not have a guarantee that the CDRs generated by these
models are realistic. Indeed, AbMPNN shows that ProteinMPNN’s CDR designs have substantially
lower designability and accuracy (as measured by AAR) compared to AbMPNN. We show similar
results for AAR with IgDesign outperforming ProteinMPNN. Secondly, as this study demonstrates
the first effort at multi-antigen in vitro validation of antibody inverse folding, we do not yet have an
existing antibody inverse folding model that has been validated to compare against. Having experi-
mentally validated antibody inverse folding, future work can consider additional baselines including
the models suggested above as well as both our SAbDAb baseline and our model, IgDesign.
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D WET LAB WORKFLOW

D.1 CLONING

Antibody variants are cloned and expressed in fragment antigen-binding (Fab) format. To produce
SPR datasets, DNA variants spanning HCDR1 to HCDR3 are purchased as single-stranded DNA
(ssDNA) oligo pools (Twist Bioscience). For each residue, codons are randomly selected uniformly
from the codons that translate into said residue.

Amplification of the ssDNA oligo pools is carried out by PCR according to Twist Bioscience’s
recommendations, except Q5 high fidelity DNA polymerase (New England Biolabs) is used in place
of KAPA polymerase. Briefly, 25 µL reactions consist of 1x Q5 Mastermix, 0.3 µM each of forward
and reverse primers, and 10 ng oligo pool. Reactions are initially denatured for 3 min at 95◦C,
followed by 13 cycles of: 95◦C for 20 s; 66◦C for 20 s; 72◦C for 15 s; and a final extension of 72◦C
for 1 min. DNA amplification is confirmed by agarose gel electrophoresis, and amplified DNA is
subsequently purified (DNA Clean and Concentrate Kit, Zymo Research).

To generate linearized vector, a two-step PCR is carried out to split our plasmid vector carrying Fab
format antibody into two fragments in a manner that provides cloning overlaps of approximately
25 nucleotides (nt) on the 5’ and 3’ ends of the amplified ssDNA oligo pool libraries, or 40 nt on
the 5’ and 3’ ends of IDT eBlocks. Vector linearization reactions are digested with DpnI (New
England Bioloabs) and purified from a 0.8% agarose gel using the Gel DNA Recovery Kit (Zymo
Research) to eliminate parental vector carry through. Cloning reactions consist of 50 fmol of each
purified vector fragment, either 100 fmol PCR-amplified ssDNA oligo pool or 10 pmol eBlock
library inserts and 1x final concentration NEBuilder HiFi DNA Assembly (New England Biolabs).
Reactions are incubated at 50◦C for 25 min using eBlocks or two hours using PCR-amplified oligo
pools. Assemblies are subsequently purified using the DNA Clean and Concentrate Kit (Zymo
Research). DNA concentrations are measured using a NanoDrop OneC (Thermo Scientific).

For SPR datasets, the E. coli host strain is transformed with the purified assembly reactions and
grown overnight at 30◦C on agar plates containing 50 µg/ml kanamycin and 1 % glucose. Colonies
are picked for QC analysis prior to cultivation for induction.

QC Analysis Quality of antibody variant libraries is assessed by performing rolling circle ampli-
fication (Equiphi29, Thermo Fisher Scientific) on 24 colonies and sequencing using the Illumina
DNA Prep, Tagmentation Kit (Illumina Inc.). Each colony is analyzed for mutations from reference
sequence, presence of multiple variants, misassembly, and matching to a library sequence (Geneious
Prime).

D.2 ANTIBODY EXPRESSION IN E. coli

After transformation and QC of libraries, individual colonies are picked into deep well plates con-
taining 400 µL of Teknova LB Broth 50 µg/mL Kanamycin and incubated at 30◦C and 80 % humid-
ity with 1000 rpm shaking for 24 hours. At the end of the 24 hours, 150 µL samples are centrifuged
(3300 g, 7 min), supernatant decanted from the pre-culture plate, and cell pellets sent for sequence
analysis. 80 µL of the pre-culture is transferred to 400 µL of IBM containing inducers and supple-
ments as described above. Culture is grown for 16 hours at 26◦C and 80 % humidity with 270 rpm
shaking. After 16 hours, 150 µL samples are taken and centrifuged (3300 g, 7 min) into pellets with
supernatant decanting prior to being stored at -80◦C.

D.3 SURFACE PLASMON RESONANCE (SPR)

Sample Preparation Post induction samples are transferred to 96-well plates (Greiner Bio-One),
pelleted and lysed in 50 µL lysis buffer (1X BugBuster protein extraction reagent containing 0.01
KU Benzonase Nuclease and 1X Protease inhibitor cocktail). Plates are incubated for 15-20 min
at 30◦C then centrifuged to remove insoluble debris. After lysis, samples are adjusted with 200
µL SPR running buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20,
0.5 mg/mL BSA) to a final volume of 260 µL and filtered into 96-well plates. Lysed samples are
then transferred from 96-well plates to 384-well plates for high-throughput SPR using a Hamilton
STAR automated liquid handler. Colonies are prepared in two sets of independent replicates prior
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to lysis and each replicate is measured in two separate experimental runs. In some instances, single
replicates are used, as indicated.

SPR High-throughput SPR experiments are conducted on a microfluidic Carterra LSA SPR in-
strument using SPR running buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v
Tween-20, 0.5 mg/mL BSA) and SPR wash buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA,
0.01 % w/v Tween-20). Carterra LSA SAD200M chips are pre-functionalized with 20 µg/mL bi-
otinylated antibody capture reagent for 600 s prior to conducting experiments. Lysed samples in
384-well blocks are immobilized onto chip surfaces for 600 s followed by a 60 s washout step for
baseline stabilization. Antigen binding is conducted using the non-regeneration kinetics method
with a 300 s association phase followed by a 900 s dissociation phase. For analyte injections,
six leading blanks are introduced to create a consistent baseline prior to monitoring antigen bind-
ing kinetics. After the leading blanks, five concentrations of antigen extracellular domain antigen
(ACRO Biosystems, prepared in three-fold serial dilution from a starting concentration of 500 nM),
are injected into the instrument and the time series response was recorded. In most experiments,
measurements on individual DNA variants are repeated four times. Typically each experiment run
consists of two complete measurement cycles (ligand immobilization, leading blank injections, ana-
lyte injections, chip regeneration) which provide two duplicate measurement attempts per clone per
run. In most experiments, technical replicates measured in separate runs further double the number
of measurement attempts per clone to four.

D.4 SEQUENCING

To identify the DNA sequence of individual antibody variants evaluated by SPR, duplicate plates are
provided for sequencing. A portion of the pelleted material is transferred into 96 well PCR (Thermo-
Fisher) plate via pinner (Fisher Scientific) which contains reagents for performing an initial phase
PCR of a two-phase PCR for addition of Illumina adapters and sequencing. Reaction volumes used
are 12.5 µl. During the initial PCR phase, partial Illumina adapters are added to the amplicon via 4
PCR cycles. The second phase PCR adds the remaining portion of the Illumina sequencing adapter
and the Illumina i5 and i7 sample indices. The initial PCR reaction uses 0.45 µM UMI primer
concentration, 6.25 µl Q5 2x master mix (New England Biolabs) and PCR grade H2O. Reactions
are initially denatured at 98◦C for 3 min, followed by 4 cycles of 98◦C for 10 s; 59◦C for 30 s;
72◦C for 30 s; with a final extension of 72◦C for 2 min. Following the initial PCR, 0.5 µM of the
secondary sample index primers are added to each reaction tube. Reactions are then denatured at
98◦C for 3 min, followed by 29 cycles of 98◦C for 10 s; 62◦C for 30 s; 72◦C for 15 s; with a final
extension of 72◦C for 2 min. Reactions are then pooled into a 1.5 mL tube (Eppendorf). Pooled
samples are size selected with a 1x AMPure XP (Beckman Coulter) bead procedure. Resulting DNA
samples are quantified by Qubit fluorometer. Pool size is verified via Tapestation 1000 HS and is
sequenced on an Illumina MiSeq Reagent Kit v3 (2x300 nt) for HCDR1-HCDR3 libraries with 20 %
PhiX.

After sequencing, amplicon reads are merged using Fastp (Chen et al., 2018), trimmed by cutadapt
(Martin, 2011) and each unique sequence enumerated. Next, custom R scripts are applied to calcu-
late sequence frequency ratios between the most abundant and second-most abundant sequence in
each sample. Levenshtein distance is also calculated between the two sequences. These values are
used for downstream filtering to ensure a clonal population is measured by SPR. The most abun-
dant sequence within each sample is compared to the designed sequences and discarded if it does
not match any expected sequence. Dominant sequences are then combined with their companion
Carterra SPR measurements.
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E SENSORGRAMS

We present sensorgrams from the SPR runs for each library. A Fab positive and negative control are
shown as well as a mAb positive control (except in the case of Antigen 1). An IgDesign binder and
non-binder are shown for each antigen.

Antigen 1
Fab Positive Control IgDesign Binder

Fab Negative Control IgDesign Non-Binder

Figure 3: Sensorgrams for Antigen 1. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

IL36R
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 4: Sensorgrams for IL36R. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.
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C5
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 5: Sensorgrams for C5. Positive and negative controls shown behaving as expected. Sample
IgDesign binder and non-binder shown as well.

TSLP
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 6: Sensorgrams for TSLP. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

16



Published at the GEM workshop, ICLR 2024

IL17A
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 7: Sensorgrams for IL17A. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

FXI
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 8: Sensorgrams for FXI. Positive and negative controls shown behaving as expected. Sam-
ple IgDesign binder and non-binder shown as well.
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ACVR2B
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 9: Sensorgrams for ACVR2B. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

TNFRSF9
mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 10: Sensorgrams for TNFRSF9. Positive and negative controls shown behaving as ex-
pected. Sample IgDesign binder and non-binder shown as well.

18



Published at the GEM workshop, ICLR 2024

F AMINO ACID RECOVERY
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Figure 11: Comparison between IgMPNN and IgDesign on mean 1-shot amino acid recovery
(AAR) for heavy chain CDRs (HCDRs). Violin plots comparing distributions of mean 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each HCDR across 8 antigen test sets. Mean 1-shot AAR
is the mean of the 1-shot AARs computed across each test set. The distribution captures the 95%
interval, the white dot represents the median, and the box represents the interquartile range.
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Figure 12: Comparison between IgMPNN and IgDesign on mean 1-shot amino acid recov-
ery (AAR) for light chain CDRs (LCDRs). Violin plots comparing distributions of mean 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each LCDR across 8 antigen test sets. Mean 1-shot AAR is
the mean of the 1-shot AARs computed on each test set. The distribution captures the 95% interval,
the white dot represents the median, and the box represents the interquartile range.
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Figure 13: Comparison between IgMPNN and IgDesign on mean 100-shot amino acid recovery
(AAR) for heavy chain CDRs (HCDRs). Violin plots comparing distributions of mean 100-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each HCDR across 8 antigen test sets. Mean 100-shot AAR
is the mean of the 100-shot AARs computed on each test set. The distribution captures the 95%
interval, the white dot represents the median, and the box represents the interquartile range.
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Figure 14: Comparison between IgMPNN and IgDesign on mean 100-shot amino acid recovery
(AAR) for light chain CDRs (LCDRs). Violin plots comparing distributions of mean 100-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each LCDR across 8 antigen test sets. Mean 100-shot AAR
is the mean of the 100-shot AARs computed on each test set. The distribution captures the 95%
interval, the white dot represents the median, and the box represents the interquartile range.
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Figure 15: Comparison between IgMPNN and IgDesign on 1-shot amino acid recovery (AAR)
for heavy chain CDRS (HCDRs) on antigen 7 test set. Box plots comparing distributions of 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in its training
set (yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split of SAbDab)
for each HCDR.
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Figure 16: Comparison between IgMPNN and IgDesign on 1-shot amino acid recovery (AAR)
for light chain CDRS (LCDRs) on antigen 7 test set. Box plots comparing distributions of 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in its training
set (yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split of SAbDab)
for each LCDR.
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Figure 17: Comparison between IgMPNN and IgDesign on 100-shot amino acid recovery
(AAR) for heavy chain CDRS (HCDRs) on antigen 7 test set. Box plots comparing distributions
of 100-shot AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in
its training set (yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split
of SAbDab) for each HCDR.
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Figure 18: Comparison between IgMPNN and IgDesign on 100-shot amino acid recovery
(AAR) for light chain CDRS (LCDRs) on antigen 7 test set. Box plots comparing distributions
of 100-shot AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in
its training set (yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split
of SAbDab) for each LCDR.
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G In vitro BINDING RATES

Table 3: Binding rates across antigens for IgDesign on HCDR3 and HCDR123 as well as
SAbDab HCDR3 baseline.

Antigen % Binding Rate (Binders / Observations)
IgDesign (HCDR3) IgDesign (HCDR123) SAbDab (HCDR3)

Antigen 1 30.6% (22 / 72) 6.3% (4 / 64) 1.6% (1 / 64)

IL36R 27.9% (17 / 61) 19.6% (11 / 56) 0.0% (0 / 59)

C5 32.3% (20 / 62) 10.4% (7 / 67) 1.5% (1 / 68)

TSLP 96.3% (52 / 54) 92.5% (62 / 67) 0.0% (0 / 54)

IL17A 7.9% (5 / 63) 0.0% (0 / 65) 0.0% (0 / 50)

FXI 61.5% (24 / 39) 20.9% (9 / 43) 0.0% (0 / 33)

ACVR2B 13.0% (10 / 77) 5.9% (4 / 68) 0.0% (0 / 66)

TNFRSF9 22.4% (15 / 67) 24.4% (13 / 58) 0.0% (0 / 59)

Table 4: Fisher’s exact tests across antigens for IgDesign on HCDR3 and HCDR123 vs.
SAbDab HCDR3 baseline. Significant p-values are bolded. At a significance level of α = 0.05
with N = 16 total tests, we require p < α/N = 0.05/16 = 0.003125 ≈ 3e-3 for a significant
result. We note that IgDesign HCDR3 outperforms the baseline 8 out of 8 times and does so signif-
icantly 7 out of 8 times. IgDesign HCDR123 outperforms the baseline 7 out of 8 times and does so
significantly 3 out of 8 times. We note that the baseline is only varying HCDR3 and keeping HCDR1
and HCDR2 fixed to the native sequence whereas IgDesign HCDR123 designs all three HCDRs.

Antigen IgDesign (HCDR3) IgDesign (HCDR123)
Ratio to Baseline p-value Ratio to Baseline p-value

Antigen 1 19.6 2e-6 4.0 0.16

IL36R Inf 3e-6 Inf 2.1e-4
C5 21.9 8e-7 7.1 0.027

TSLP Inf 1e-28 Inf 1e-28
IL17A Inf 0.051 N/A 1.0

FXI Inf 3.2e-9 Inf 4e-3

ACVR2B Inf 1.6e-3 Inf 0.065

TNFRSF9 Inf 3.4e-5 Inf 5.1e-5
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H In vitro BINDING AFFINITIES AND DIVERSITY METRICS

Figure 19: Binding affinities against Antigen 1 and diversity metrics. (A) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present).
Antibody 1 (Fab format) affinity is shown with a black dotted line. (B) HCDR3 edit distances (to
Antibody 1) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of
binders from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders
present) compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign
binders (HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123)
as well as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F
Pairwise HCDR123 edit distance between IgDesign HCDR123 binders.
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Figure 20: Binding affinities against IL36R and diversity metrics. (A) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present).
Spesolimab (Fab format) affinity is shown with a black dotted line. (B) HCDR3 edit distances (to
spesolimab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of
binders from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders
present) compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign
binders (HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123)
as well as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F
Pairwise HCDR123 edit distance between IgDesign HCDR123 binders.
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Figure 21: Binding affinities against C5 and diversity metrics. (A) Affinities of binders from
IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present).
Eculizumab (Fab format) affinity is shown with black dotted line. (B) HCDR3 edit distances (to
eculizumab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of
binders from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders
present) compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign
binders (HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123)
as well as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F
Pairwise HCDR123 edit distance between IgDesign HCDR123 binders.
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Figure 22: Binding affinities against TSLP and diversity metrics. (A) Affinities of binders from
IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present). Teze-
pelumab (Fab format) affinity is shown with black dotted line. (B) HCDR3 edit distances (to teze-
pelumab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present)
compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign binders
(HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123) as well
as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F Pairwise
HCDR123 edit distance between IgDesign HCDR123 binders.
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Figure 23: Binding affinities against IL17A and diversity metrics. (A) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present).
Afasevikumab (Fab format) affinity is shown with black dotted line. (B) HCDR3 edit distances (to
afasevikumab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of
binders from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders
present) compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign
binders (HCDR3 and HCDR123).
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Figure 24: Binding affinities against FXI and diversity metrics. (A) Affinities of binders from
IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present). Os-
ocimab (Fab format) affinity is shown with black dotted line. (B) HCDR3 edit distances (to os-
ocimab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present)
compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign binders
(HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123) as well
as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F Pairwise
HCDR123 edit distance between IgDesign HCDR123 binders.
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Figure 25: Binding affinities against ACVR2B and diversity metrics. (A) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present).
Bimagrumab (Fab format) affinity is shown with black dotted line. (B) HCDR3 edit distances (to
bimagrumab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of
binders from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders
present) compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign
binders (HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123)
as well as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F
Pairwise HCDR123 edit distance between IgDesign HCDR123 binders.
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Figure 26: Binding affinities against TNFRSF9 and diversity metrics. (A) Affinities of binders
from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders present).
Utomilumab (Fab format) affinity is shown with black dotted line. (B) HCDR3 edit distances (to
utomilumab) for binders and non-binders from IgDesign and SAbDab baseline. (C) Affinities of
binders from IgDesign (HCDR3 and HCDR123) as well as SAbDab HCDR3 baseline (if binders
present) compared to HCDR3 edit distance. D Pairwise HCDR3 edit distance between IgDesign
binders (HCDR3 and HCDR123). (E) Affinities of binders from IgDesign (HCDR3 and HCDR123)
as well as SAbDab HCDR3 baseline (if binders present) compared to HCDR123 edit distance. F
Pairwise HCDR123 edit distance between IgDesign HCDR123 binders.
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