
Published as a conference paper at ICLR 2024

EXPRESSIVITY OF RELU-NETWORKS
UNDER CONVEX RELAXATIONS

Maximilian Baader∗, Mark Niklas Müller∗, Yuhao Mao & Martin Vechev
Department of Computer Science
ETH Zurich, Switzerland
{mbaader,mark.mueller,yuhao.mao,martin.vechev}@inf.ethz.ch

ABSTRACT

Convex relaxations are a key component of training and certifying provably safe
neural networks. However, despite substantial progress, a wide and poorly under-
stood accuracy gap to standard networks remains, raising the question of whether
this is due to fundamental limitations of convex relaxations. Initial work focused
on the simple and widely used IBP relaxation. It revealed that some univariate,
convex, continuous piecewise linear (CPWL) functions cannot be encoded by any
ReLU network such that its IBP-analysis is precise. To explore whether this lim-
itation is shared by more advanced convex relaxations, we conduct the first in-
depth study on the expressive power of ReLU networks across all commonly used
convex relaxations. We show that: (i) more advanced relaxations allow a larger
class of univariate functions to be expressed as precisely analyzable ReLU net-
works, (ii) more precise relaxations can allow exponentially larger solution spaces
of ReLU networks encoding the same functions, and (iii) even using the most pre-
cise single-neuron relaxations, it is impossible to construct precisely analyzable
ReLU networks that express multivariate, convex, monotone CPWL functions.

1 INTRODUCTION

Table 1: Expressivity of different relaxations. Novel results
are red ✗ and green ✓. Previous results are in black (✗, ?).
M: monotone, C: convex, MC: monotone and convex.

X Relaxation CPWL M-CPWL C-CPWL MC-CPWL

R

IBP ✗ ✓ ✗ ✓
DEEPPOLY-0 ? ✓ ✓ ✓
DEEPPOLY-1 ? ✓ ✓ ✓
∆ ? ✓ ✓ ✓
Multi-Neuron∞ ✓ ✓ ✓ ✓

Rd ∆ ✗ ✗ ✗ ✗

With the increased deployment of
neural networks in mission-critical
applications, formal robustness guar-
antees against adversarial examples
(Biggio et al., 2013; Szegedy et al.,
2014) have become an important
and active field of research. Many
popular certification methods (Zhang
et al., 2018; Singh et al., 2018;
2019a;b) provide such safety guaran-
tees by using convex relaxations to
compute over-approximations of a network’s reachable set w.r.t. an adversary specification. How-
ever, despite significant progress, a wide and poorly understood accuracy gap between robust and
conventional networks remains. This raises the fundamental question:

Is the expressivity of ReLU-networks under convex relaxations fundamentally limited?

Investigating this question, Mirman et al. (2022) prove that, the class of convex, continuous-
piecewise-linear (CPWL) functions cannot be encoded as ReLU-networks such that their analysis
with the simple IBP-relaxation (Gehr et al., 2018; Gowal et al., 2018), is precise.

This Work: Expressivity of Common Relaxations To investigate whether this limitation of IBP
is fundamental to all single-neuron convex relaxations, we conduct the first in-depth study on the
expressive power of ReLU networks under all commonly used relaxations. To this end, we consider
CPWL functions, naturally represented by ReLU networks, and two common restrictions, convexity
and monotonicity. We illustrate key findings in Table 1, showing novel results as red ✗ and green ✓.

∗Equal contribution.

1

Published as a conference paper at ICLR 2024

Key Results on Univariate Functions In this work, we prove the following key results:

• The most precise single-neuron relaxation, ∆ (Wong & Kolter (2018)), and the popular
DEEPPOLY-relaxation (Singh et al., 2019b; Zhang et al., 2018) do not share IBP’s limita-
tion and can express univariate, convex, CPWL functions precisely.

• All considered relaxations, including IBP, can express univariate, monotone, CPWL func-
tions precisely.

• The ∆-relaxation permits an exponentially larger network solution space for convex CPWL
functions compared to the less precise DEEPPOLY-relaxation.

• Multi-neuron relaxations (Singh et al., 2019a; Müller et al., 2022) can express all univariate,
CPWL functions precisely using a single layer.

Having thus shown that, for univariate functions, the expressivity of ReLU networks under convex
relaxations is not fundamentally limited, we turn our analysis to multivariate functions.

Key Results on Multivariate Functions In this setting, we prove the following result:

• No single-neuron convex relaxation can precisely express even the heavily restricted class
of multivariate, convex, monotone, CPWL functions.

Interestingly, the exact analysis of such monotone functions on box input regions is trivial, mak-
ing the failure of convex relaxations even more surprising. In fact, CPWL functions as simple as
f(x, y) = max(x, y) = y + ReLU(x − y) cannot be encoded by any finite ReLU network such
that its ∆-analysis is precise. We thus conclude that, for multivariate functions, the expressivity of
ReLU networks under single-neuron convex relaxations is fundamentally limited.

Implications of our Results for Certified Training While we believe our results to be of general
interest, they have particularly interesting implications for certified training. In this area, all state-
of-the-art methods (Müller et al., 2023; Mao et al., 2023; Palma et al., 2023) are based on the simple
IBP-relaxation even though it induces strong regularisation which severely reduces accuracy. While
Jovanović et al. (2022) show that more precise relaxations induce significantly harder optimization
problems, it remains an open question whether solving these would actually yield networks with
better performance. Our results represent a major step towards answering this question.

Specifically in the univariate setting, we show that more precise relaxations increase expressivity
(see Table 1) and lead to larger network solution spaces (compare Theorems 11 and 15). Thus, we
hypothesize that using them during training yields a larger effective hypothesis space for the same
network architecture. Importantly, this implies that networks with higher performance could indeed
be obtained if we can overcome the optimization issues described by Jovanović et al. (2022).

However, in the multivariate setting, perhaps surprisingly, we show that even the most precise single-
neuron relaxations severely limit expressivity (see Corollary 21). This highlights the need for further
study of more precise analysis methods such as multi-neuron or non-convex relaxations.

2 BACKGROUND ON CONVEX RELAXATIONS

Notation We denote vectors with bold lower-case letters a ∈ Rn, matrices with bold upper-case
letters A ∈ Rn×d, and sets with upper-case calligraphic letters A ⊂ R. Inequalities a ≥ b between
vectors are elementwise. We refer to a hyperrectangle B ⊂ Rn as a box. Further, we consider
general (finite) ReLU networks h with arbitrary skip connections, including CNNs and ResNets.

2.1 CONVEX RELAXATIONS IN NEURAL NETWORK CERTIFICATION

We call a classifier H : X → Y locally robust around an input x ∈ X if it predicts the same, correct
class y ∈ Y for all similar inputs Bϵp(x) := {x′ ∈ X | ∥x − x′∥p ≤ ϵ}. To prove that a classifier
is locally robust, we thus have to show that H(x′) = H(x) = y,∀x′ ∈ B. For a neural network
predicting H(x) := argmaxi h(x)i, this is equivalent to showing that the logit of the target class is
always greater than that of all other classes, i.e., 0 < minx′∈B,i̸=y h(x

′)y − h(x′)i. As solving this
non-convex optimization problem exactly is generally NP-complete (Katz et al., 2017), state-of-the-
art neural network verifiers (Brix et al., 2023) relax it to an efficiently solvable convex optimization

2

Published as a conference paper at ICLR 2024

problem. To this end, we replace the non-linear activation functions with convex relaxations in their
input-output space, allowing us to compute linear bounds on the output h(x):

{Alix+ bli}i∈L ≤ h(x) ≤ {Aujx+ buj}j∈U ,

for some input region Bϵp(x), with index sets L and U . These bounds can in-turn be bounded by
ly = minx∈B maxi∈L(Alix+ bli) ∈ R and uy analogously. Hence, we have ly ≤ h(x) ≤ uy .

v

y

l u

Figure 1: IBP-relaxation of a ReLU
with bounded inputs v ∈ [l, u].

IBP Interval bound propagation (Mirman et al., 2018; Gehr
et al., 2018; Gowal et al., 2018) only considers elementwise, con-
stant bounds of the form l ≤ v ≤ u. Affine layers y = Wv+ b
are thus also relaxed as
W (l+u)−|W |(u−l)

2 + b ≤Wv + b ≤ W (l+u)+|W |(u−l)
2 + b,

where | · | the elementwise absolute value. ReLU functions are
relaxed by their concrete lower and upper bounds ReLU(l) ≤
ReLU(v) ≤ ReLU(u), illustrated in Fig. 1.

v

y

DP-1

DP-0

l u

y ≤ u
u−l (v − l)

y ≥ 0

y ≥ v

Figure 2: DEEPPOLY-1 (blue) and
DEEPPOLY-0 (green) ReLU abstrac-
tion with bounded inputs v ∈ [l, u].

DeepPoly (DP) DeepPoly, introduced by Singh et al. (2019b),
is mathematically identical to CROWN (Zhang et al., 2018) and
based on recursively deriving linear bounds of the form

Alx+ al ≤ v ≤ Aux+ au

on the outputs of every layer. While this allows affine layers
to be handled exactly, ReLU layers y = ReLU(v) are relaxed
neuron-wise, using one of the two relaxations illustrated in Fig. 2

λv ≤ ReLU(v) ≤ (v − l)
u

u− l
,

where product and division are elementwise. Typically, the
lower-bound slope λ ∈ {0, 1} is chosen depending on the input
bounds l and u. In this work, however, we analyze the relax-
ations obtained by always choosing the same lower-bound, which we denote with DEEPPOLY-0
(DP-0, green in Fig. 2) and DEEPPOLY-1 (DP-1, blue).

v

y

l u

y ≤ u
u−l (v − l)

y ≥ 0

y ≥ v

Figure 3: ∆-relaxation of a ReLU
with bounded inputs v ∈ [l, u].

Triangle-Relaxation (∆) In contrast to the above convex re-
laxations, the ∆-relaxation (Wong & Kolter, 2018; Dvijotham
et al., 2018; Salman et al., 2019; Qin et al., 2019) maintains mul-
tiple linear upper- and lower-bounds on every network activation
v. We write

Al1x+ al1 ,

...
Alnx+ aln ,

 ≤ v ≤

Au1

x+ au1
,

...
Aun

x+ aun
.

Unstable ReLU activation y = ReLU(v) with l < 0 < u are relaxed with their convex hull as
illustrated in Fig. 3

0

v

}
≤ ReLU(v) ≤ (v − l)

u

u− l
,

where again, product and division are elementwise. Note that this can lead to an exponential growth
(with the depth of the network) in the number of constraints for any given activation.

2-neuron single-neuron

v1

v2

y2

v1

v2

y2

Figure 4: Comparison of a 2-neuron
(green) and single-neuron (blue) re-
laxation projected into y2-v1-v2-
space for ReLU activations yi =
ReLU(vi).

Multi-Neuron Relaxation (MN) All methods introduced so
far relax activation functions neuron-wise and are thus limited
in precision by the (single neuron) convex relaxation barrier
(Salman et al., 2019), i.e., the activation function’s convex hull
in their input-output space.

Multi-neuron relaxations, in contrast, compute the convex hull in
the joint input-output space of multiple neurons in the same layer
(Singh et al., 2019a; Müller et al., 2022), or consider multiple
inputs jointly (Tjandraatmadja et al., 2020). We illustrate the
increase in tightness in Fig. 4 for a group of just k = 2 neurons.

3

Published as a conference paper at ICLR 2024

2.2 DEFINITIONS

We now define the most important concepts for this work.

Definition 1 (CPWL). We denote the set of continuous piecewise linear functions f : X → Y by
CPWL(X ,Y). Further, if X is some interval I ⊂ R, then we enumerate the points where f changes
slope and call them xi, where 0 ≤ i ≤ n, i < j implies xi < xj , and X = [x0, xn].

All CPWL functions f : I → R satisfy f(x) = f(xi) + (x − xi)
f(xi+1)−f(xi)

xi+1−xi
for x ∈ [xi, xi+1].

We denote by M-CPWL, C-CPWL, and MC-CPWL the class of monotone (M), convex (C), and
monotone & convex (MC) CPWL functions, respectively. We say a network h encodes a function f
if and only if they are equal on all inputs x ∈ X :

Definition 2 (Encoding). A neural network h : X → Y encodes a function f : X → Y if and only
if for all x ∈ X we have h(x) = f(x).

In the following, D denotes a convex relaxation and can be IBP, DEEPPOLY-0 (DP-0), DEEPPOLY-
1 (DP-1), ∆, or Multi-Neuron (MN). We now call the over-approximation of a network’s graph (set
of input-output tuples) obtained with domain D its D-analysis:

Definition 3 (Analysis). Let h : X →Y be a network, D a convex relaxation, and B ⊂ X an input
box. We denote by hD(B) the polytope in h’s input-output space containing the graph {(x, h(x)) |
x ∈ B}⊆hD(B)⊆X ×Y of h on B, as obtained with D and refer to it as the D-analysis of h on B.

For Y ⊆ R, we denote the interval bounds of f on B by [f(B), f(B)] :=

[minx∈B f(x),maxx∈B f(x)] and, similarly, the interval bounds implied by hD(B) as
[hD(B), hD(B)] := [min(x,y)∈hD(B) y,max(x,y)∈hD(B) y].

As any D-analysis of h captures the set of all possible outputs h(x),x ∈ B, it is of key interest to
us to investigate when the analysis does not lose precision. Specifically, whether the linear output
bounds hD(B) do not exceed the interval bounds of f on B anywhere on B:

Definition 4 (Precise). Let h be a network encoding f : X → Y and D a convex relaxation. We say
that the D-analysis is precise for h if it yields precise lower and upper bounds, that is for all boxes
B ⊂ X we have that [hD(B), hD(B)] = [f(B), f(B)].

In this work, we investigate the expressivity of ReLU-networks, that is, which function class they
can encode such that their D-analysis is precise. Specifically:

Definition 5 (Expressivity). Let D be a convex relaxation, F a set of functions, and N a set of
networks. We say that N can D-express F precisely, if and only if, for all f ∈ F , there exists a
network h ∈ N , such that h encodes f and its D-analysis is precise.

We can often replace (sub-)networks to encode the same function but yield a (strictly) more precise
analysis in terms of the obtained input-output polytope:

Definition 6 (Replacement). Let h and h′ be ReLU networks, B a box, and D some convex relax-
ation. We say h′ can replace h with respect to D, if h′D(B) ⊆ hD(B) for all B and write h

D
⇝ h′.

3 RELATED WORK

Below, we give a brief overview of the most relevant related work.

Expressing CPWL Functions He et al. (2020) show that ReLU networks require at least 2 layers
to encode CPWL functions in Rd (for d ≥ 2) with ⌈log2(d+ 1)⌉ layers always being sufficient.

Expressivity with IBP Baader et al. (2020) show that for any continuous function f : Γ ⊂ Rn →
R over a compact domain Γ and ϵ > 0, there exists a finite ReLU network h, such that its IBP-
analysis for any input box B ⊂ Γ, denoted by hIBP(B), is precise up to an ϵ-error:

[f(B) + ϵ, f(B)− ϵ] ⊆ hIBP(B) ⊆ [f(B)− ϵ, f(B) + ϵ].

4

Published as a conference paper at ICLR 2024

An equivalent result immediately follows for all strictly more precise domains such as DP-0, ∆,
and MN. Wang et al. (2022) propose a more efficient construction, generalize this result to squash-
able activation functions, and provide first results on the hardness of constructing such networks.
However, as these results require network widths going to∞ for approximation errors ϵ → 0 and
IBP-based methods fail empirically for realistic networks, the study of exact encodings is crucial.

Investigating what class of functions allows for an exact IBP-analysis, Mirman et al. (2022) show
that for any function with points of non-invertibility, i.e., x = 0 for f(x) = |x|, there does not exist
a ReLU network IBP-expressing this function.

Certified Training Certified training methods typically optimize an upper bound on the worst-
case loss over some adversary specification computed via convex relaxations. Surprisingly, using
the imprecise IBP-relaxation (Mirman et al., 2018; Gowal et al., 2018) consistently yields better
performance than tighter relaxations (Wong et al., 2018; Zhang et al., 2020; Balunović & Vechev,
2020). Jovanović et al. (2022) investigate this paradox and identify two key properties of the worst-
case loss approximation, continuity and sensitivity, required for effective optimization, with only
IBP possessing both. However, the heavy regularization that makes IBP trained networks amenable
to certification also severely reduces their standard accuracy (Mao et al., 2024).

Neural Network Certification We distinguish complete certification methods, which, given suf-
ficient time, can decide any property, i.e., always compute precise bounds, and incomplete methods,
which sacrifice precision for speed. Salman et al. (2019) unify a range of incomplete certifica-
tion methods including IBP, DEEPPOLY, and ∆, and show that their precision is limited by that
of the ∆-relaxation. They observe that for a wide range of networks and even when using the
∆-relaxation, a substantial certification gap between the upper- and lower-bounds on robust accu-
racy remains. Semidefinite programming based methods (Dathathri et al., 2020; Raghunathan et al.,
2018) increase tightness at the cost of computational efficiency.

Early, complete certification methods directly leveraged off-the-shelf SMT (Katz et al., 2017; Ehlers,
2017) or MILP solvers (Dutta et al., 2018; Tjeng et al., 2019), limiting their applicability to small
networks. To improve scalability, Bunel et al. (2020) formulate a branch-and-bound (BaB) frame-
work, that recursively splits the certification problem into easier subproblems until they can be
decided by cheap incomplete methods. This concept has been widely adopted and improved using
more efficient solvers (Xu et al., 2021; Wang et al., 2021) and tighter constraints (Palma et al., 2021;
Ferrari et al., 2022; Zhang et al., 2022).

4 CONVEX RELAXATIONS FOR UNIVARIATE FUNCTIONS

In this section, we differentiate all convex relaxations that are commonly used for neural network
certification (IBP, DP-0, DP-1, ∆, and MN) in terms of their expressivity, i.e., with respect to the
function classes they can analyze precisely when encoded by a ReLU network.

We first show that finite-depth ReLU networks can IBP-express M-CPWL functions precisely (The-
orem 9). This construction can be applied directly to the strictly more precise DP-0 and ∆ relaxation
and with slight modification also to DP-1. We, then, show that while finite ReLU networks can both
DP-0- and ∆-express M-CPWL and C-CPWL functions, the solution space is exponentially larger
when using the more precise ∆-analysis. Finally, we show that single-layer ReLU networks can
MN-express arbitrary CPWL functions. We defer all proofs and supplementary lemmata to App. B.

4.1 BOX

v

y

l u

β

x1x0

Figure 5: IBP-analysis of the step function
β − ReLU(β − β

x1−x0
ReLU(x− x0)).

To show that M-CPWL functions can be IBP-expressed,
we begin by constructing a step function, illustrated in
(Fig. 5), as a two-layer ReLU network that can be IBP-
expressed:

Lemma 7 (Step Function). Let β ∈ R≥0 and f ∈
CPWL(I,R) s.t. f(x) = 0 for x < x0, f(x) = β
for x > x1 and linear in between. Then, ϕx0,x1,β(x) =

β − ReLU(β − β
x1−x0

ReLU(x− x0)) encodes f .

5

Published as a conference paper at ICLR 2024

Lemma 8 (Precise Step). The IBP-analysis of ϕx0,x1,β is precise.

Intuitively, the key to this construction is to leverage that while the IBP-relaxation of the ReLU
function does not capture any relational information, it recovers the exact output interval. By using
two sequential ReLUs, we allow the inner one to cut away the output-half-space f(x) < 0 and the
outer one to cut away the half-space f(x) > β, thus obtaining a precise analysis.

We can now construct arbitrary M-CPWL functions from these step functions, allowing us to show
that they too can be IBP-expressed:

Theorem 9 (Precise Monotone). Finite ReLU networks can IBP-express the set of monotone
CPWL(I,R) functions precisely.

4.2 DEEPPOLY-0

x

y

l u

x

y

l u

x

y

l u

Figure 6: Illustration of two dif-
ferent ReLU network encodings
of the same function unde DP-0-
(top and middle) and ∆-analysis
(bottom).

We show constructively that finite ReLU networks can DP-0-
express C-CPWL functions, by first encoding any such function as
a single-layer ReLU network. We note that the below results equiv-
alently apply to concave functions:

Lemma 10 (Convex encoding). Let f ∈ CPWL(I,R) be convex.
Then f is encoded by

h(x) = b+ cx+

n−1∑
i=1

γi ReLU(±i(x− xi)), (1)

for any choice ±i ∈ {−1, 1}, if b and c are set appropriately, where
αi = f(xi+1)−f(xi)

xi+1−xi
is the slope between points xi and xi+1, and

γi = αi − αi−1 > 0 the slope change at xi+1.

Intuitively, we encode the C-CPWL function f by starting with a
linear function h0 = b + cx, coinciding with one of the linear seg-
ments of f . We then pick one of the points xi where f changes
slope that are adjacent to this segment and add ReLU(±i(x− xi))
changing its activation state at this point. Regardless of ±i, we
now scale this ReLU with γi = αi − αi−1 to introduce the local
change of slope, and update the linear term c← c− γi if the newly
added ReLU affects the segment that the linear function matched
originally. We repeat this process until h encodes f .

We illustrate this in Fig. 6 (top), where we start our construction
with the left-most linear segment. We continue by adding a ReLU,
first at the green and then the red point, and show the DP-0 relax-
ation of the added ReLUs as a shaded area of the same color. We
illustrate the resulting overall DP-0-relaxation, obtained as their point-wise sum, striped grey. Ob-
serve that this always recovers the original linear term as the lower bound (see Fig. 6 top). This
leads to an imprecise output range unless its slope c is 0. If f includes such a constant section with
zero-slope, we can directly apply the above construction, always changing ±i such that the ReLUs
open "outward", i.e., in a direction that does not affect the constant segment. If f does not include
such a constant section but a unique minimum, as in our example, we place two ReLUs at this point,
treating it as a constant section with 0-width and recovering a precise lower bound (see Fig. 6 mid-
dle). Thus finite ReLU networks can DP-0-express C-CPWL functions but do not allow ±i to be
chosen freely. Note that the upper bound is still precise regardless of the choice of ±i.

Theorem 11 (DP-0 Convex). For any convex CPWL function f : I → R, there exists exactly one
network of the form h(x) = b+

∑
i∈I γi ReLU(±i(x− xi)) encoding f , with |I| = n− 1 if f has

slope zero on some segment and otherwise |I| = n, such that its DP-0-analysis is precise, where
γi > 0 for all i.

6

Published as a conference paper at ICLR 2024

4.3 DEEPPOLY-1

To show that DP-1 has the same expressivity as DP-0, we encode a ReLU function as h(x) = x+
ReLU(−x) which under DP-1-analysis yields the same linear bounds as h′(x) = ReLU(x) under
DP-0-analysis. The reverse also holds. Thus, the expressivity of DP-0 and DP-1 is equivalent.

Corollary 12 (DP-1 ReLU). The ReLU network h(x) = x + ReLU(−x) encodes the function
f(x) = ReLU(x) and, the DP-1-analysis of h(x) is identical to the DP-0-analysis of ReLU. Fur-
ther, the DP-0-analysis of h(x) is identical to the DP-1-analysis of ReLU.

It follows directly that any function that can be DP-0-expressed by a finite ReLU network can be
DP-1-expressed by the same ReLU network after substituting every ReLU(x) with x+ReLU(−x):
Corollary 13 (DP-1 Approximation). Finite ReLU networks can DP-1- and DP-0-express the
same function class precisely. In particular, they can DP-1-express the set of convex functions
f ∈ CPWL(I,R) and monotone functions f ∈ CPWL(I,R) precisely.

4.4 TRIANGLE

To show that finite ReLU networks can ∆-express C-CPWL functions, we reuse the construction
from Lemma 10. However, as the ∆-relaxation yields the exact convex hull for ReLU functions, we
first show that the convex hull of a sum of convex functions (such as Eq. (1)) is recovered by the
pointwise sum of their convex hulls:

Lemma 14 (Convex Hull Sum). Given two convex functions f, g : R→ R and the box [l, u]. Then,
the pointwise sum of the convex hullsHf +Hg is identical to the convex hull of the sum of the two
functionsHf+g = Hf +Hg .

This follows directly from the definition and implies that the ∆-analysis is precise for arbitrary
choices of ±i, illustrated in the bottom of Fig. 6:

Theorem 15 (∆ Convex). Let f ∈ CPWL(I,R) be convex. Then, for any network h encoding f
as in Lemma 10, we have that its ∆-analysis is precise. In particular, ±i can be chosen freely.

4.5 MULTI-NEURON-RELAXATIONS

As multi-neuron relaxations yield the exact convex hull of the considered group of neurons (all
within the same layer), it is sufficient to show that we can express arbitrary CPWL functions with
a single-layer network to see that they MN-express CPWL functions. To this end, we use a similar
construction as in Lemma 10, where the lack of convexity removes the positivity constraint on γi.

Theorem 16 (Multi-Neuron Precision). For every f ∈ CPWL(I,R), there exists a single layer
ReLU network h encoding f , such that its MN-analysis (considering all ReLUs jointly) is precise.

5 CONVEX RELAXATIONS FOR MULTIVARIATE FUNCTIONS

x

y

ϵ
U

g = x

g = y

Figure 7: Illustration of the pre-image
of activation pattern changes with ()
and without () functional change of
a ReLU network h encoding the g =
max(x, y) function, as well as the ϵ-
neighborhood U (), in which the only
activation change occurs at x = y.

After having shown in the previous section that, for univari-
ate functions, the expressivity of ReLU networks under con-
vex relaxations is not fundamentally limited, we now turn our
attention to multivariate functions. There, we prove that no
finite ReLU network can ∆-express the maximum function
max: R2 → R precisely (Theorem 20). This directly im-
plies that no single-neuron relaxation can express the class
of multivariate, monotone, and convex CPWL functions pre-
cisely. Note, this negative result generalizes to all relaxations
less precise than ∆, including IBP and DEEPPOLY.

Intuitively, we will argue along the following lines. We first
observe that for any finite ReLU-Network h that encodes the
maximum function, we can find a point (x, y = x) ∈ R2 with
neighborhood U , such that on U , all ReLUs in h either switch
their activation state for x = y or not at all (see Fig. 7). Then,

7

Published as a conference paper at ICLR 2024

z = max(x, y)

z

xy

z ≥ x z ≥ y

z ≤ x+y+1
2

Figure 8: Illustration of z = max(x, y) (left) with its ∆ lower (middle) and upper (right) bounds as obtained
in Theorem 19.

we show that for such a neighborhood, we can ∆-replace the finite ReLU network h with a single
layer consisting of just 2 neurons and a linear term (Theorems 17 and 18). Finally, we show that
no such single-layer network can ∆-express max precisely (Theorem 19), before putting everything
together in Theorem 20. All proofs and support lemmata are again deferred to App. A.

Let us begin by showing that we can express any finite ReLU network using the functional form
of Eq. (2). That is, every i-layer network hi can be written as the sum of an (i − 1)-layer network
hi−1
L and a linear function of a ReLU applied to another (i − 1)-layer network Wi ReLU(hi−1

R).
Further, if, for a given input region U , all ReLUs in the original network switch activation state on
the hyperplane w⊤x = 0 or not at all, then, we can ensure that every ReLU in both (i − 1)-layer
networks change activation state exactly for z := w⊤x = 0.

Theorem 17 (Network Form Coverage). Given a neighborhood U and a finite k-layer ReLU net-
work h such that on U and under ∆-analysis all its ReLUs are either stably active (ReLU(v) = v),
stably inactive (ReLU(v) = 0), or switch activation state for z := w⊤x = 0 with w ∈ Rd, then h
can be represented using the functional form

hi
{R,L} = hi−1

L +Wi ReLU(hi−1
R), h0

{R,L} = b+W0x, (2)

for i = k and such that all ReLUs switch their activation state at {x ∈ X | w⊤x = 0}. Here, L and
R are labels, used to distinguish the possibly different (i-1)-layer networks hi−1 from each other.

We can now leverage the fact that all ReLUs change activation state at the same point to simplify
the sum of ReLUs to a linear term plus a single ReLU:

∑
i ai ReLU(wiz)

∆
⇝ γz + αReLU(z) for

some γ, α ∈ R (Lemma 22). This allows us to further simplify a ReLU applied to such a sum of
ReLUs: ReLU(γ+αReLU(z))

∆
⇝ γ′z+α′ ReLU(z) (Lemma 23). These two replacements allow

us to recursively reduce the depth of networks in the form of Eq. (2) until just a single layer is left:

Theorem 18 (Network Simplification). Let hk be a network as in Theorem 17 such that all ReLUs
change activation state at z := w⊤x = 0 with w ∈ Rd. We have

hk = hk−1
L +W ReLU(hk−1

R)
∆
⇝ h(x) = b+Wx+ αReLU(z),

where h0(x) = b0 +W0x and all ReLU change state exactly at {x ∈ X | w⊤x = 0}.

Note that, hk, hk−1
L and h map to R, while hk−1

R maps to the space of some hidden layer Rn. Next,
we show directly via contradiction that single-layer ReLU networks of this form cannot ∆-express
the maximum function, illustrating the resulting (imprecise) bounds in Fig. 8:

Theorem 19 (Triangle max). ReLU-networks of the form h(x, y) = b+wxx+wyy+αReLU(x−
y) can not ∆-express the function max: R2 → R.

Proof. We consider the input region B = [0, 1]2 and constrain our parameters by considering the
following: For x = y = 0, we have f(0, 0) = 0 = b = h(0, 0). For x < y, we have f(x, y) =
y = wxx + wyy = h(x, y) and thus wx = 0, wy = 1. Finally for x > y, we have f(x, y) = x =
y + α(x− y) = h(x, y) and thus α = 1. Hence we have h(x, y) = y +ReLU(x− y).

0

x− y

}
≤ ReLU(x− y) ≤ 1

2 (x− y + 1) =⇒
y

x

}
≤ h(x, y) ≤ 1

2 (x+ y + 1).

The maximum of the upper bound is attained at x = y = 1, where we get h∆(B) = 3
2 which is

larger than max(B) = 1 (see Fig. 8). □

8

Published as a conference paper at ICLR 2024

To show that no ReLU network can ∆-express max it remains to argue how we can find a U such
that all ReLUs switch their activation state at {x ∈ X | w⊤x = 0} or not at all:

Theorem 20 (∆ Impossibility max). Finite ReLU networks can not ∆-express the function max.

Proof. We will prove this theorem via contradiction in four steps. Assume there exists a finite ReLU
network h that ∆-expresses max precisely.

First – Locality We argue this point in three steps:
1. There exists a point (x, y = x) with an ϵ-neighborhood U ′ such that one of the following

holds for any ReLU(v) with input v = hv(x, y) of the network h:

• the ReLU is always active, i.e., ∀(x, y) ∈ U,ReLU(v) = v,

• the ReLU is never active, i.e., ∀(x, y) ∈ U,ReLU(v) = 0, or

• the ReLU changes activation state for x = y, i.e., ∃v′ ∈ R, s.t.,ReLU(v) =
ReLU(v′(x− y)).

This follows directly from the fact that finite ReLU networks divide their input space into
finitely many linear regions (see the illustration in Fig. 7).

2. Further, there exists an ϵ-neighborhood U of (x, y) such that the above holds under IBP-
analysis, as it depends continuously on the input bounds and becomes exact for any network
when the input bounds describe a point.

3. Via rescaling and translation, we can assume that the point (x, y) is at 0 and that the neigh-
borhood U covers [−1, 1]2.

Second – Network Form On the neighborhood U , any finite ReLU-network h can, w.r.t. ∆, be
represented by hk = hk−1 + W ReLU(hk−1), h0(v) = b + Wv with biases b ∈ Rdk , weight
matrices W ∈ Rdk×dk−1 , where all ReLUs change activation state exactly for x = y (Theorem 17).

Third – Network Replacements We can replace hk w.r.t. ∆ with the single layer network
h′(x, y) = b+W (x, y)⊤ + αR(x− y) (Theorem 18).

Fourth – Conclusion There exists no network of this form encoding the max-function such that its
∆-analysis is precise on the interval [0, 1]2 (Theorem 19).

This concludes the proof. □

As max belongs to the class of multivariate, convex, monotone, CPWL functions, it follows directly
from Theorem 20 that no finite ReLU network can ∆-express this class precisely:

Corollary 21 (∆ Impossibility). Finite ReLU networks can not ∆-express the set of convex, mono-
tone, CPWL functions mapping from some box I ⊂ R2 to R.

6 CONCLUSION

We conduct the first in-depth study on the expressivity of ReLU networks under all commonly used
convex relaxations and find that: (i) more precise relaxations (∆, DP-0 or DP-1) allow a larger
class of univariate functions (C-CPWL and M-CPWL) to be expressed precisely than the simple
IBP-relaxation (M-CPWL), (ii) for the same function class (C-CPWL), a more precise relaxation
(∆ vs DP-0 or DP-1), can allow an exponentially larger solution space of ReLU networks, (iii) MN-
relaxations allow single-layer networks to express all univariate CPWL functions, (iv) even the most
precise single-neuron relaxation (∆) is too imprecise to express multivariate, convex, monotone
CPWL functions precisely with finite ReLU networks, despite their exact analysis being trivial.

While more precise domains improve expressivity for univariate functions, all single-neuron convex-
relaxations are fundamentally limited in the multivariate setting. Surprisingly, even simple functions
that can be encoded with a single neuron h = y+ReLU(x−y) = max(x, y), can not be ∆-expressed
precisely using any finite ReLU network. This highlights not only the importance of recent, more
precise multi-neuron- and BaB-based neural network certification methods but also suggests more
precise methods might be needed for training.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We would like to thank our anonymous reviewers for their constructive comments and insightful
questions.

This work has been done as part of the EU grant ELSA (European Lighthouse on Secure and Safe AI,
grant agreement no. 101070617). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or European Commission. Neither
the European Union nor the European Commission can be held responsible for them.

The work has received funding from the Swiss State Secretariat for Education, Research and Inno-
vation (SERI).

10

Published as a conference paper at ICLR 2024

REFERENCES

Maximilian Baader, Matthew Mirman, and Martin T. Vechev. Universal approximation with certified
networks. In Proc. of ICLR, 2020.

Mislav Balunović and Martin T. Vechev. Adversarial training and provable defenses: Bridging the
gap. In Proc. of ICLR, 2020.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Proc of
ECML PKDD, volume 8190, 2013. doi: 10.1007/978-3-642-40994-3_25.

Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and Changliu Liu. First
three years of the international verification of neural networks competition (VNN-COMP). CoRR,
abs/2301.05815, 2023. doi: 10.48550/ARXIV.2301.05815. URL https://doi.org/10.48550/
arXiv.2301.05815.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res., 21,
2020.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Ue-
sato, Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian J. Goodfellow, Percy Liang, and
Pushmeet Kohli. Enabling certification of verification-agnostic networks via memory-efficient
semidefinite programming. In Proc. of NeurIPS, 2020.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis
for deep feedforward neural networks. In NASA Formal Methods - 10th International Symposium,
NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings, volume 10811, 2018. doi:
10.1007/978-3-319-77935-5_9.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet Kohli.
A dual approach to scalable verification of deep networks. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, Au-
gust 6-10, 2018, 2018.

Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
Automated Technology for Verification and Analysis - 15th International Symposium, ATVA
2017, Pune, India, October 3-6, 2017, Proceedings, volume 10482, 2017. doi: 10.1007/
978-3-319-68167-2_19.

Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, and Martin T. Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In Proc. of ICLR, 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin T. Vechev. AI2: safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, 2018. doi: 10.1109/SP.2018.00058.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. ArXiv preprint, abs/1810.12715, 2018.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite
elements. Journal of Computational Mathematics, 38(3), 2020. ISSN 1991-7139. doi: https:
//doi.org/10.4208/jcm.1901-m2018-0160.

Nikola Jovanović, Mislav Balunović, Maximilian Baader, and Martin T. Vechev. On the paradox of
certified training. Trans. Mach. Learn. Res., 2022, 2022.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. ArXiv preprint, abs/1702.01135, 2017.

11

https://doi.org/10.48550/arXiv.2301.05815
https://doi.org/10.48550/arXiv.2301.05815

Published as a conference paper at ICLR 2024

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. TAPS: connecting certified
and adversarial training. CoRR, abs/2305.04574, 2023. doi: 10.48550/arXiv.2305.04574.

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Understanding certified
training with interval bound propagation. In Proc. of. ICLR, 2024.

Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
provably robust neural networks. In Proc. of ICML, volume 80, 2018.

Matthew Mirman, Maximilian Baader, and Martin T. Vechev. The fundamental limits of neural
networks for interval certified robustness. Trans. Mach. Learn. Res., 2022, 2022.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin T. Vechev.
PRIMA: general and precise neural network certification via scalable convex hull approximations.
Proc. ACM Program. Lang., 6(POPL), 2022. doi: 10.1145/3498704.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. Certified training: Small
boxes are all you need. In Proc. of ICLR, 2023.

Alessandro De Palma, Harkirat S. Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
Scaling the convex barrier with active sets. In Proc. of ICLR, 2021.

Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M. Pawan Kumar, Robert Stanforth,
and Alessio Lomuscio. Expressive losses for verified robustness via convex combinations. CoRR,
abs/2305.13991, 2023. doi: 10.48550/arXiv.2305.13991.

Chongli Qin, Krishnamurthy (Dj) Dvijotham, Brendan O’Donoghue, Rudy Bunel, Robert Stanforth,
Sven Gowal, Jonathan Uesato, Grzegorz Swirszcz, and Pushmeet Kohli. Verification of non-linear
specifications for neural networks. In Proc. of ICLR, 2019.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying ro-
bustness to adversarial examples. In Proc. of NeurIPS, 2018.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks. In Proc. of NeurIPS, 2019.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast and
effective robustness certification. In Proc. of NeurIPS, 2018.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. Beyond the single
neuron convex barrier for neural network certification. In Proc. of NeurIPS, 2019a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain for
certifying neural networks. Proc. ACM Program. Lang., 3(POPL), 2019b. doi: 10.1145/3290354.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In Proc. of ICLR, 2014.

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and Juan Pablo
Vielma. The convex relaxation barrier, revisited: Tightened single-neuron relaxations for neural
network verification. In Proc. of NeurIPS, 2020.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In Proc. of ICLR, 2019.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In Proc. of NeurIPS, 2021.

Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. Interval universal approximation
for neural networks. Proc. ACM Program. Lang., 6(POPL), 2022. doi: 10.1145/3498675.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proc. of ICML, volume 80, 2018.

12

Published as a conference paper at ICLR 2024

Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
defenses. In Proc. of NeurIPS, 2018.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In Proc. of ICLR, 2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Proc. of NeurIPS, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
Proc. of ICLR, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. In NeurIPS,
2022.

13

Published as a conference paper at ICLR 2024

A DEFERRED PROOFS ON MULTIVARIATE FUNCTIONS

Theorem 17 (Network Form Coverage). Given a neighborhood U and a finite k-layer ReLU net-
work h such that on U and under ∆-analysis all its ReLUs are either stably active (ReLU(v) = v),
stably inactive (ReLU(v) = 0), or switch activation state for z := w⊤x = 0 with w ∈ Rd, then h
can be represented using the functional form

hi
{R,L} = hi−1

L +Wi ReLU(hi−1
R), h0

{R,L} = b+W0x, (2)

for i = k and such that all ReLUs switch their activation state at {x ∈ X | w⊤x = 0}. Here, L and
R are labels, used to distinguish the possibly different (i-1)-layer networks hi−1 from each other.

Proof. Given Wi ReLU(hi−1
R), we partition the columns of the weight matrix into Wi =

(W+
i |W

−
i |W

±
i), depending on whether the associated ReLU is stably active, stably inactive, or

unstable, respectively. We thus obtain

(W+
i |W

−
i |W

±
i)ReLU(hk−1

R) = W+
i hk−1

R +W±
i ReLU(hk−1

R).

We update hi−1
L,new = hi−1

L + W+
i hi−1

R , by showing that W+
i hi−1

R is still an (i − 1)-layer
network as follows. We recursively update weight matrices Wk,new = W+

i Wk to obtain
W+

i hk = W+
i hk−1 + Wk,new ReLU(hk−1

R) until we have reached k = 1, where we have
W+

i h1 = W+
i bL +W+

i W0,Lv +W1,new ReLU(bR +W0,Rx). □

Lemma 22 (Simplification of ReLU Sums w.r.t. ∆). Let A ∈ Rn×1 and w ∈ Rn. Then, we have

h(z) = A⊤ ReLU(wz)
∆
⇝ h′(z) = γz + αReLU(z),

where γ =
∑

i,wi<0 Aiwi and α =
∑

i,wi>0 Aiwi − γ.

Proof. Both h and h′ are CPWL functions with slope change only at z = 0. Thus they are fully
defined by their value at the points zi ∈ {−1, 0, 1}. Hence, we can show that h and h′ encode
the same function by showing their equivalence on these points: h(0) = 0 = h′(0), h(−1) =∑

i,wi<0−Aiwi = −γ = h′(−1), and h(1) =
∑

i,wi>0 Aiwi = α+ γ. As γz and αReLU(z) are
convex/concave, and their ∆-analysis yields their convex hulls, the pointwise sum of their convex
hulls, i.e. the ∆-analysis of h′, recovers the convex hull of h′ by Lemma 14 and is thus at least as
precise as any convex-relaxation of h. □

Lemma 23 (Simplification of Composed ReLUs w.r.t. ∆). We have

h(z) = ReLU(γz + αReLU(z))
∆
⇝ h′(z) = γ′z + α′ ReLU(z),

where γ′ = −ReLU(−γ) and α′ = ReLU(α+ γ)− γ′.

Proof. We observe that h(z) is convex and piecewise-linear for any z ∈ [l, u] ⊂ R with l < 0 < u
and a slope change only at z = 0. Its convex hull is thus spanned by h(l) = ReLU(γl) = h′(l),
h(0) = h′(0) = 0, and h(u) = ReLU((γ+α)u) = h′(u). We further observe that the ∆-relaxation
of ReLU(z) and z is their convex hull. Finally, the convex hull of the positive sum of convex
functions is equal to the pointwise sum of their individual convex hulls (Lemma 14). Thus, the
triangle-relaxation of h′(z) recovers the convex hull of h(z) and thus the tightest possible convex
relaxation. □

For convex functions f, g : R → R, we define the convex hull Hf ([l, u]) = {(x, y) | x ∈
[l, u], f(x) ≤ y ≤ f(l) + f(u)−f(l)

u−l (x− l)} over [l, u] ⊂ R. Further, we define the convex hull sum
of f and g on [l, u] to beHf +Hg := {(x, y′ + y′′) | (x, y′) ∈ Hf , (x, y

′′) ∈ Hg}.
Lemma 14 (Convex Hull Sum). Given two convex functions f, g : R→ R and the box [l, u]. Then,
the pointwise sum of the convex hullsHf +Hg is identical to the convex hull of the sum of the two
functionsHf+g = Hf +Hg .

Proof. We first show that every point in Hf+g can be obtained from Hf + Hg . Let (x, y) ∈
Hf+g([l, u]). Then we have

(f + g)(x) ≤y ≤ (f + g)(l) + (f+g)(u)−(f+g)(l)
u−l (x− l),

f(x) + g(x) ≤y ≤ f(l) + f(u)−f(l)
u−l (x− l) + g(l) + f(u)−f(l)

u−l (x− l).

14

Published as a conference paper at ICLR 2024

Then we can find a partition of y = y′ + y′′. We know for sure that there exists t ∈ [0, 1] s.t.

y = (1− t)(f + g)(x) + t((f + g)(l) + (f+g)(u)−(f+g)(l)
u−l (x− l)).

Hence if we pick for example

y′ = (1− t)f(x) + t(f(l) + f(u)−f(l)
u−l (x− l)) ∈ Hf

y′′ = (1− t)g(x) + t(g(l) + g(u)−g(l)
u−l (x− l)) ∈ Hg,

we get immediately that (x, y) ∈ Hf +Hg . The other direction is immediate. □

Using Lemma 23, we can show that these networks mapping R2 to R can be simplified further:

Theorem 18 (Network Simplification). Let hk be a network as in Theorem 17 such that all ReLUs
change activation state at z := w⊤x = 0 with w ∈ Rd. We have

hk = hk−1
L +W ReLU(hk−1

R)
∆
⇝ h(x) = b+Wx+ αReLU(z),

where h0(x) = b0 +W0x and all ReLU change state exactly at {x ∈ X | w⊤x = 0}.

Note that, hk, hk−1
L and h map to R, while hk−1

R maps to some Rn.

Proof. We show a more general result on hk with possibly many output dimensions by induction:

Induction Hypothesis: hi ∆
⇝ bi +Wix+αi ReLU(z).

Base Case: h0(x) = b0 +W0x satisfies the form h0(x) = b0 +W0x+α0 ReLU(z) for α0 = 0,
thus we can replace h0(x) by itself.

Induction Step: Using the induction hypothesis, we have Wi ReLU(hi−1
R) = Wi ReLU(bi−1 +

Wi−1x + αi−1 ReLU(z)), which by Theorem 17 only changes its activation state at z = 0. Since
ReLU(0) = 0, we must have bi−1 +Wi−1x = wz for some w (recall that z is the projection of x
on a hyperplane in the input space). Further, applying Lemma 23, we obtain

Wi ReLU(hi−1
R) =Wi ReLU(wz +αi−1 ReLU(z))

∆
⇝γ′

iz +α′
i ReLU(z) = b′i +W ′

ix+α′
i ReLU(z).

Using the induction hypothesis, we can thus rewrite:

hi = hi−1 +Wi ReLU(hi−1
R)

∆
⇝ b+Wx+αi ReLU(z).

□

Theorem 19 (Triangle max). ReLU-networks of the form h(x, y) = b+wxx+wyy+αReLU(x−
y) can not ∆-express the function max: R2 → R.

Proof. We first constrain our parameters by considering the following:

• For x = y = 0, we have f(0, 0) = 0, leading to b = 0 = h(0, 0).

• For x < y, we have f(x, y) = y = wxx+ wyy = h(x, y) and thus wx = 0, wy = 1.

• For x > y, we have f(x, y) = x = y + α(x− y) = h(x, y) and thus α = 1.

Hence we have h(x, y) = y +ReLU(x− y).

0

x− y

}
≤ ReLU(x− y) ≤ 1

2 (x− y + 1)

Adding y results in the following:

y

x

}
≤ h(x, y) ≤ 1

2 (x+ y + 1).

The maximum of the upper bound is attained at x = y = 1, where we get 3
2 which is larger than

max(x, y) = 1 for x, y ∈ [0, 1].

□

15

Published as a conference paper at ICLR 2024

Theorem 24 (Triangle max ℓp). ReLU-networks of the form h(x, y) = b + wxx + wyy +
αReLU(x − y) can not ∆-express the function max: R2 → R for any ℓp-norm bounded per-
turbation with p ≥ 1, i.e., input regions Bϵp(x) := {x′ ∈ X | ∥x− x′∥p ≤ ϵ}.

Proof. We first consider the case of p > 1 and f = max(x, y): We again constrain our parameters
as in the proof of Theorem 19 to obtain h(x, y) = y +ReLU(x− y). We consider the input region

Bϵ=0.5
p

([
x0

y0

]
=

[
0.5
0.5

])
. We can now use Hölder’s inequality to compute bounds on the ReLU

input:

−1

2

∥∥∥∥[1
−1

]∥∥∥∥
q︸ ︷︷ ︸

cq :=

= x0 − y0 −
∥∥∥∥[1
−1

]∥∥∥∥
q

ϵ ≤ x− y ≤ x0 − y0 +

∥∥∥∥[1
−1

]∥∥∥∥
q

ϵ =
1

2

∥∥∥∥[1
−1

]∥∥∥∥
q︸ ︷︷ ︸

cq :=

,

where 1
p + 1

q = 1. And thus obtain the following bounds on the ReLU output:

0

x− y

}
≤ ReLU(x− y) ≤ 1

2 (x− y +
cq
2).

Adding y results in the following:
y

x

}
≤ h(x, y) ≤ 1

2 (x+ y +
cq
2).

We can again use Hölder’s inequality to bound the upper bound:

1
2 (x+ y +

cq
2) ≤

1
2 (x0 + y0 +

cq
2) +

∥∥∥∥[11
]∥∥∥∥

q︸ ︷︷ ︸
=cq

ϵ
2 = 1

2 + 1
2cq = 1

2 (1 + 2
1
q) > 1,

Where the last inequality holds due to p > 1 =⇒ q <∞. This upper bound is strictly greater than
maxB0.5

p
max(x, y) = 1.

We now consider the case of p = 1 and the rotated max function f = max(x−y√
2
, x+y√

2
). We choose

the input region B
ϵ=

1√
2

p=1

([
1√
2
0

])
and observe that we recover the setting as discussed in the proof

of Theorem 19 for p = ∞ rotated by 45◦ around the origin and thus obtain the same imprecise
bounds. □

Theorem 20 (∆ Impossibility max). Finite ReLU networks can not ∆-express the function max.

Proof. We will prove this theorem in four steps.

First – Locality

1. There exists a point (x, y = x) with an ϵ-neighborhood U ′ such that one of the following
holds for any ReLU(v) with input v = hv(x, y) of the network h:

• the ReLU is always active, i.e., ∀(x, y) ∈ U,ReLU(v) = v,
• the ReLU is never active, i.e., ∀(x, y) ∈ U,ReLU(v) = 0, or
• the ReLU changes activation state for x = y, i.e., ∃v′ ∈ R, s.t.,ReLU(v) =
ReLU(v′(x− y)).

2. Further, there exists a neighborhood U of (x, y) such that the above holds under ∆-analysis,
as it depends continuously on the input bounds and becomes exact for any network when
the input bounds describe a point.

3. Via rescaling and translation, we can assume that the point (x, y) is at 0 and that the neigh-
borhood U covers [−1, 1]2.

Second – Network Form On the neighborhood U , any finite ReLU-network h can, w.r.t. ∆, be
replaced by hk = hk−1 +W ReLU(hk−1) with biases b ∈ Rdk , weight matrices W ∈ Rdk×dk−1 ,
and h0(v) = b+Wv, where all ReLUs change activation state exactly for x = y (Theorem 17).

16

Published as a conference paper at ICLR 2024

Third – Network Simplifications We can replace hk w.r.t. triangle with b+Wk(x, y)
⊤+αkR(x−

y) (Theorem 18).

Fourth – Conclusion Every finite ReLU network can be replaced w.r.t. ∆ with a single layer
network of the form h1(x, y) = b+W (x, y)⊤+αR(x−y). However, there exists no such network
encoding the max-function such that its ∆-analysis is precise on the interval [0, 1]2 (Theorem 19).

□

Corollary 21 (∆ Impossibility). Finite ReLU networks can not ∆-express the set of convex, mono-
tone, CPWL functions mapping from some box I ⊂ R2 to R.

B DEFERRED PROOFS ON UNIVARIATE FUNCTIONS

B.1 BOX

Lemma 7 (Step Function). Let β ∈ R≥0 and f ∈ CPWL(I,R) s.t. f(x) = 0 for x < x0, f(x) = β

for x > x1 and linear in between. Then, ϕx0,x1,β(x) = β − ReLU(β − β
x1−x0

ReLU(x − x0))
encodes f .

Proof. We prove the theorem by considering the three cases separately:

1. For x ≤ x0 we have

ϕx0,x1,β(x) = −ReLU(− β
x1−x0

ReLU(x− x0) + β) + β

= −ReLU(− β
x1−x0

· 0 + β) + β

= −ReLU(β) + β

= −β + β

= 0.

2. For x0 ≤ x ≤ x1 we have

ϕx0,x1,β(x) = −ReLU(− β
x1−x0

ReLU(x− x0) + β) + β

= −ReLU(− β
x1−x0

(x− x0) + β) + β

= β
x1−x0

(x− x0)− β + β

= β
x1−x0

(x− x0).

3. For x ≥ x1 we have

ϕx0,x1,β(x) = −ReLU(− β
x1−x0

ReLU(x− x0) + β) + β

= −ReLU(− β
x1−x0

(x− x0) + β) + β

= −0 + β

= β.

□

Lemma 8 (Precise Step). The IBP-analysis of ϕx0,x1,β is precise.

17

Published as a conference paper at ICLR 2024

Proof. Consider the box [l, u] ⊆ R.

ϕx0,x1,β([l, u]) = −ReLU(− β
x1−x0

ReLU([l, u]− x0) + β) + β

= −ReLU(− β
x1−x0

ReLU([l − x0, u− x0]) + β) + β

= −ReLU(− β
x1−x0

[ReLU(l − x0),ReLU(u− x0)] + β) + β

= −ReLU([β
x1−x0

ReLU(u− x0),
β

x1−x0
ReLU(l − x0)] + β) + β

= −ReLU([β
x1−x0

ReLU(u− x0) + β, β
x1−x0

ReLU(l − x0) + β]) + β

= −ReLU([β
x1−x0

ReLU(u− x0) + β, β
x1−x0

ReLU(l − x0) + β]) + β

= −[ReLU(β
x1−x0

ReLU(u− x0) + β),ReLU(β
x1−x0

ReLU(l − x0) + β)] + β

= [ReLU(β
x1−x0

ReLU(l − x0) + β),ReLU(β
x1−x0

ReLU(u− x0) + β)] + β

= [ReLU(β
x1−x0

ReLU(l − x0) + β) + β,ReLU(β
x1−x0

ReLU(u− x0) + β) + β]

= [ϕx0,x1,β(l), ϕx0,x1,β(u)].

□

Theorem 9 (Precise Monotone). Finite ReLU networks can IBP-express the set of monotone
CPWL(I,R) functions precisely.

Proof. W.l.o.g. assume f is monotonously increasing. Otherwise, consider −f . Let xi for i ∈
{0, . . . , n} be the set of boundary points of the linear regions of f with x0 < · · · < xn. We claim
that

h(x) = f(x0) +

n−1∑
i=0

ϕxi,xi+1,f(xi+1)−f(xi)(x)

is equal to f on I and that the IBP-analysis of h is precise. We note that f(xi+1)− f(xi) > 0.

We first show f = h on I. For cach x ∈ I pick i ∈ {1, . . . , n} such that xj−1 ≤ x < xj . Then

h(x) = f(x0) +

n−1∑
i=0

ϕxi,xi+1,f(xi+1)−f(xi)(x)

= f(x0) +

j∑
i=0

ϕxi,xi+1,f(xi+1)−f(xi)(x)

= f(x0) +

j−1∑
i=0

ϕxi,xi+1,f(xi+1)−f(xi)(x) + ϕxj ,xj+1,f(xj+1)−f(xj)(x)

= f(x0) +

j−1∑
i=0

[f(xi+1)− f(xi)] +
f(xj+1)−f(xj)

xj+1−xj
x

= f(xj) +
f(xj+1)−f(xj)

xj+1−xj
(x− xj)

= f(x),

where we used the piecewise linearity of f in the last step.

18

Published as a conference paper at ICLR 2024

Now we show that the analysis of IBP of h is precise. Consider the box [l, u] ⊆ I. We have

h([l, u]) = f(x0) +

n∑
i=1

ϕxi,xi+1,f(xi+1)−f(xi)([l, u])

= f(x0) +

n−1∑
i=1

[ϕxi,xi+1,f(xi+1)−f(xi)(l), ϕxi,xi+1,f(xi+1)−f(xi)(u)]

= [f(x0) +

n−1∑
i=1

ϕxi,xi+1,f(xi+1)−f(xi)(l), f(x0) +

n−1∑
i=1

ϕxi,xi+1,f(xi+1)−f(xi)(u)]

= [h(l), h(u)]

= [f(l), f(u)].

□

B.2 DEEPPOLY-0

Lemma 10 (Convex encoding). Let f ∈ CPWL(I,R) be convex. Then f is encoded by

h(x) = b+ cx+

n−1∑
i=1

γi ReLU(±i(x− xi)), (1)

for any choice ±i ∈ {−1, 1}, if b and c are set appropriately, where αi =
f(xi+1)−f(xi)

xi+1−xi
is the slope

between points xi and xi+1, and γi = αi − αi−1 > 0 the slope change at xi+1.

Proof. First, we show that γj = αj − αj−1. Evaluating h(x) for xj ≤ x ≤ xj+1 yields

h(x) = b+ cx+

n−1∑
i=1

γi ReLU(±i(x− xi))

= b+ cx+

n−1∑
i=1

γi ±i (x− xi)[±i = +, xi < x] +

n−1∑
i=1

γi ±i (x− xi)[±i = −, xi > x]

= b+ cx+

n−1∑
i=1

γi(x− xi)[±i = +, xi < x]−
n−1∑
i=1

γi(x− xi)[±i = −, xi > x]

= b+ cx+

j∑
i=1

γi(x− xi)[±i = +]−
n−1∑

i=j+1

γi(x− xi)[±i = −].

The derivative of h evaluated at x for xj ≤ x ≤ xj+1 is αj :

∂h

∂x
(x) = c+

j∑
i=1

γi[±i = +]−
n−1∑

i=j+1

γi[±i = −] = αj .

By choosing ϵ small enough we can ensure that xj + ϵ ∈ [xj , xj+1] and xj− ϵ ∈ [xj−1, xj] and thus

αj − αj−1 =
∂h

∂x
(xj + ϵ)− ∂h

∂x
(xj − ϵ)

=

j∑
i=1

γi[±i = +]−
n−1∑

i=j+1

γi[±i = −]−
j−1∑
i=1

γi[±i = +] +

n−1∑
i=j

γi[±i = −]

= γj [±j = +] + γj [±j = −]
= γj

19

Published as a conference paper at ICLR 2024

Next, we show that one can pick ±i arbitrarily as long as b and c are set appropriately. Pick any
choice of ±i ∈ {−1, 1} and set b and c to

b := f(x0)− x0
f(x1)− f(x0)

x1 − x0
−

n−1∑
i=1

γixi[±i = −] = f(x0)− x0α0 −
n−1∑
i=1

γixi[±i = −]

c := α0 +

n−1∑
i=1

γi[±i = −].

We have h(x) = f(x). Indeed: For any x ∈ [x0, xn] pick j s.t. x ∈ [xj , xj+1]. Then

h(x) = b+ cx+

j∑
i=1

γi(x− xi)[±i = +]−
n−1∑

i=j+1

γi(x− xi)[±i = −]

= b−
j∑

i=1

γixi[±i = +] +

n−1∑
i=j+1

γixi[±i = −]︸ ︷︷ ︸
offset

+x

c+

j∑
i=1

γi[±i = +]−
n−1∑

i=j+1

γi[±i = −]

︸ ︷︷ ︸

linear

.

The offset evaluates to

b−
j∑

i=1

γixi[±i = +] +

n−1∑
i=j+1

γixi[±i = −]

= f(x0)− x0α0 −
n−1∑
i=1

γixi[±i = −]−
j∑

i=1

γixi[±i = +] +

n−1∑
i=j+1

γixi[±i = −]

= f(x0)− x0α0 −
j∑

i=1

γixi[±i = −]−
j∑

i=1

γixi[±i = +]

= f(x0)− x0α0 −
j∑

i=1

γixi

= f(x0)− x0α0 − γ1x1 − γ2x2 − · · · − γjxj

= f(x0)− x0α0 − (α1 − α0)x1 − (α2 − α1)x2 − · · · − (αj − αj−1)xj

= f(x0)− x0α0 + α0x1 − α1x1 + α1x2 − α2x2 − · · ·+ αj−1xj − αjxj

= f(x0) + (x1 − x0)α0 + (x2 − x1)α1 · · ·+ (xj − xj−1)αj−1 − αjxj

= f(x0) + (f(x1)− f(x0)) + (f(x2)− f(x1)) · · ·+ (f(xj)− f(xj−1))− αjxj

= f(xj)− αjxj ,

where we used that γi = αi − αi−1 and αi =
f(xi+1)−f(xi)

xi+1−xi
. The linear part evaluates to

c+

j∑
i=1

γi[±i = +]−
n−1∑

i=j+1

γi[±i = −]

= α0 +

n−1∑
i=1

γi[±i = −] +
j∑

i=1

γi[±i = +]−
n−1∑

i=j+1

γi[±i = −]

= α0 +

j∑
i=1

γi[±i = −] +
j∑

i=1

γi[±i = +]

= α0 +

j∑
i=1

γi

= α0 +

j∑
i=1

αi − αi−1

= αi.

20

Published as a conference paper at ICLR 2024

Combining the results, we get

h(x) = f(xj)− αjxj + xαj = f(xj) + αj(x− xj) = f(x),

by the piecewise linearity of f . □

Lemma 25 (DP-0 Monotone ReLU). The DP-0-analysis of the 1-layer ReLU network h(x) =∑n
i=1 γi ReLU(x− xi) yields

h(x),

h(xj−1) + αj−1(x− xj−1)

}
≤ h(x) ≤

{
h(x), if all ReLUs are stable,
h(u)−h(l)

u−l (x− l) + h(l) otherwise.

where xi ∈ R s.t. 1 ≤ i ≤ n and i < p ⇒ xi < xp, and γi are either all > 0 or all < 0. j is the
smallest i such that xi ≥ l and k is the largest i such that xi < u. Thus, DP-0 analysis for h(x) is
precise.

Proof. W.o.l.g. assume h is monotonously increasing. Otherwise, consider −h.

The cases u < x1 and xn < l are immediate. Choose j as the smallest i such that xi ≥ l and k as
the largest i such that xi < u.

DP-0 yields for ReLU(x− xi) on l ≤ x ≤ u

x− xi if i ≤ j,

0 if j < i < k,

0 if k ≤ i,

 ≤ ReLU(x− xi) ≤

x− xi if i < j,
u−xi

u−l (x− l) if j ≤ i ≤ k,

0 if k < i.

Thus we have

j−1∑
i=1

γi(x− xi) ≤ h(x) ≤
j−1∑
i=1

γi(x− xi) +

k∑
i=j

γi
u−xi

u−l (x− l).

The term
∑j−1

i=1 γi(x− xi) can be simplified as follows

j−1∑
i=1

γi(x− xi) =

j−1∑
i=1

γix−
j−1∑
i=1

γixi

= x

j−1∑
i=1

(αi − αi−1)−
j−1∑
i=1

(αi − αi−1)xi

= x(αj−1 − α0)−
j−1∑
i=1

αixi +

j−1∑
i=1

αi−1xi

= x(αj−1 − α0)−
j−1∑
i=1

αixi +

j−2∑
i=1

αixi+1 + α0x1

= x(αj−1 − α0)− αj−1xj−1 −
j−2∑
i=1

αixi +

j−2∑
i=1

αixi+1 + α0x1

= x(αj−1 − α0)− αj−1xj−1 +

j−2∑
i=1

αi(xi+1 − xi) + α0x1

= αj−1(x− xj−1) + α0(x1 − x) +

j−2∑
i=1

(h(xi+1)− h(xi))

= αj−1(x− xj−1) + α0(x1 − x) + h(xj−1)− h(x1)

= h(xj−1) + αj−1(x− xj−1),

hence we have proven the lower bound.

21

Published as a conference paper at ICLR 2024

Now we consider the upper bound. We evaluate the upper bound at l and u. If the two linear upper
bounds coincide there, they coincide everywhere:

x = l −→
j−1∑
i=1

γi(l − xi) +

k∑
i=j

γi
u−xi

u−l (l − l)

=

j−1∑
i=1

γi(l − xi)

= h(l) = h(u)−h(l)
u−l (l − l) + h(l),

x = u −→
j−1∑
i=1

γi(u− xi) +

k∑
i=j

γi
u−xi

u−l (u− l)

=

j−1∑
i=1

γi(u− xi) +

k∑
i=j

γi(u− xi)

=

k∑
i=1

γi(u− xi)

= h(u) = h(u)−h(l)
u−l (u− l) + h(l),

hence we have proven the upper bound. □

Theorem 11 (DP-0 Convex). For any convex CPWL function f : I → R, there exists exactly one
network of the form h(x) = b+

∑
i∈I γi ReLU(±i(x− xi)) encoding f , with |I| = n− 1 if f has

slope zero on some segment and otherwise |I| = n, such that its DP-0-analysis is precise, where
γi > 0 for all i.

Proof. The proof works as follows:

• If the function is monotonously increasing, we show that using a local argument ±j = +
and if the function is monotonously decreasing, we argue ±j = −. If f has somewhere
zero slope, it will be on a piecewise linear region at the boundary of [x0, xn], in which case
we need 1 neuron less.

• If the function is non-monotone and has slope zero somewhere, then there are two minima
x∗ and x∗∗ that are also switching points. Hence f is for all xj > x∗+x∗∗

2 increasing and
for all xj <

x∗+x∗∗

2 decreasing, so we can reuse the argument from before and need n− 1
neurons for that. Then we argue separately for the ReLU at x∗ and x∗∗.

• If the function is non-monotone and has nowhere slope zero, then there exists a unique
minimum xj . We then show that there is exactly one splitting of γj to ReLU(x− xj) and
ReLU(−x+ xj).

• Finally, we prove that network is precise.

We know that there are finitely many switching points xi, 1 ≤ i ≤ n.

Case 1: f is monotone. W.o.l.g. assume f is monotonously increasing; the proof is similar for
monotonously decreasing f . Assume that ±j = − for some j. Then there exists ϵ > 0 such that for
all x ∈ [xj − ϵ, xj + ϵ], all the ReLUs except ReLU(−x + xj) are stable, i.e., either always 0 or
always active. Further, for such inputs, DP-0 yields

0 ≤ γi ReLU(x− xj) ≤ γj

2 (−x+ xj + ϵ).

As f has no minimum, at least one other ReLU need to active at xj : If there would be no other
active ReLU, then f would have a minimum. The active neuron(s) contributes a linear term of the
form βx, β ̸= 0, hence we get for xj − ϵ ≤ x ≤ xj + ϵ and some b ∈ R, DP-0 bounds are

b+ βx ≤ h(x) ≤ b+ βx+ 1
2 (−x+ xj + ϵ).

22

Published as a conference paper at ICLR 2024

We know that for x = xj , we get h(xj) and thus h(xj) = b+βxj . The slope of h at xj−ϵ is β−γj .
Hence, we have h(xj − ϵ) = h(xj)− (β− γj)ϵ > b+ β(xj − ϵ) = h(xj)− βϵ since γjϵ > 0. This
contradicts the assumption that we are precise since the lower bound from DP-0 analysis h(xj)−β
is unequal to the actual lower bound h(xj − ϵ). Hence, we have to have ±j = + for all j.

Case 2: f is not monotone and has slope 0 somewhere. Then, there are two minima which are
also switching points, x∗ and x∗∗. The argument in Case 1 is a local one, hence we can use the
same argument for all i such that xi /∈ {x∗, x∗∗}, so we only need to consider the cases for xj and
xj+1 such that xj = x∗ and xj+1 = x∗∗. Since f is convex, the only possible case is that f is
monotonously decreasing for x < xj and monotonously increasing for x > xj+1, thus we have
±k = − for k < j and ±k = + for k > j + 1. Now we claim that ±j = − and ±j+1 = +:
We have either (±j ,±j+1) = (−,+) or (±j ,±j+1) = (+,−). If not, we would not get a unique
minimum. The second case also leads directly to a contradiction: Not only would the pre-factors
of the two ReLU need to coincide, i.e., γj = γj+1 (otherwise one would not have the minimum
between them), the analysis of h on xj − ϵ ≤ x ≤ xj + ϵ yields (as only the neurons at xj and xj+1

are active there)

0 ≤ R(x− xj) ≤ 1
2 (x− xj + ϵ),

−x+ xj+1 = R(−x+ xj+1)

b+ γj+1(−x+ xj+1) ≤ h(x) ≤ b+ γj+1(−x+ xj+1) +
γj+1

2 (x− xj + ϵ)

Here the lower bound is b− γj+1ϵ < b, thus imprecise.

Case 3: f is not monotone and has slope 0 nowhere. Then, there is one minimum x∗ = xj . For
all xi ̸= xj we can argue as before. So we just need to argue about xj . Assume we only have
one ReLU involving xj . The only unstable ReLU leads to DP-0 lower bound 0, while all others
together lead to a linear term ax + b for some a ̸= 0, thus the overall lower bound from DP-0 is
h(xj) − |a|ϵ < h(xj). Therefore, such network cannot be precise under DP-0 analysis. As one
ReLU is not enough, we can try two at xj , namely γ′

j ReLU(x− xj) and γ′′
j ReLU(−x+ xj). As

around γj no other ReLU is active, it immediately follows that we have γ′
j = αj and γ′′

j = αj−1.

Now we finally prove that the network constructed above is precise. Consider the input l ≤ x ≤ u.
In the case where f is monotone on [l, u], we have the result immediately by using Lemma 25 as all
ReLU with an opposite orientation are inactive. In the case where f is on [l, u] not monotone, the
above construction yields

h(x) = b+
∑

i,±i=−
γi ReLU(−(x− xi)) +

∑
i,±i=+

γi ReLU(x− xi).

We can apply Lemma 25 to
∑

i,±i=− γi ReLU(−(x−xi)) and
∑

i,±i=+ γi ReLU(x−xi) individ-
ually to get

0 ≤
∑

i,±i=−
γi ReLU(−(x− xi)) ≤ h(l)−b

u−l (−x+ u),

0 ≤
∑

i,±i=+

γi ReLU(x− xi) ≤ h(u)−b
u−l (x− l).

Hence the combined bounds are

b ≤ h(x) ≤ h(l) + h(u)−h(l)
u−l (x− l).

Evaluating the upper bounds at x = l and x = u yields h(l) and h(u) respectively, hence the bounds
are precise. □

B.3 DEEPPOLY-1

Corollary 12 (DP-1 ReLU). The ReLU network h(x) = x + ReLU(−x) encodes the function
f(x) = ReLU(x) and, the DP-1-analysis of h(x) is identical to the DP-0-analysis of ReLU. Fur-
ther, the DP-0-analysis of h(x) is identical to the DP-1-analysis of ReLU.

Proof. We first prove that x+ReLU(−x) = ReLU(x).

x+ReLU(−x) = ReLU(x)− ReLU(−x) + ReLU(−x) = ReLU(x).

Next we show that the DP-0-analysis of R(x) coincides with the DP-1-analysis of x+ReLU(−x).

23

Published as a conference paper at ICLR 2024

• Case l ≤ 0 ≤ u, x ∈ [l, u]: We have for DP-0 and ReLU(x):

0 ≤ ReLU(x) ≤ u
u−l (x− l).

For DP-1 and x+ReLU(−x) we have:

−x ≤ ReLU(−x) ≤ l
u−l (x− u),

Hence
0 ≤ x+ReLU(−x) ≤ l

u−l (x− u) + x = u
u−l (x− l).

• Case 0 ≤ l ≤ u, x ∈ [l, u]: We have for DP-0 and ReLU(x):

ReLU(x) = x.

For DP-1 and x+ReLU(−x) we have:

ReLU(−x) = 0,

Hence
x+ReLU(−x) = x.

• Case l ≤ u ≤ 0, x ∈ [l, u]: We have for DP-0 and ReLU(x):

ReLU(x) = 0.

For DP-1 and x+ReLU(−x) we have:

ReLU(−x) = −x,

Hence
x+−x = 0.

To show the opposite, we only need to prove for the case l ≤ 0 ≤ u since DP-0 and DP-1 are
identical when there is no unstable ReLU. For DP-1 and x+ReLU(−x) we have:

0 ≤ ReLU(−x) ≤ l
u−l (x− u),

Hence
x ≤ x+ReLU(−x) ≤ l

u−l (x− u) + x = u
u−l (x− l).

□

Corollary 13 (DP-1 Approximation). Finite ReLU networks can DP-1- and DP-0-express the
same function class precisely. In particular, they can DP-1-express the set of convex functions
f ∈ CPWL(I,R) and monotone functions f ∈ CPWL(I,R) precisely.

Proof. The follows immediately with Corollary 12 and the technique presented in Theorem 11. □

B.4 TRIANGLE

Theorem 15 (∆ Convex). Let f ∈ CPWL(I,R) be convex. Then, for any network h encoding f
as in Lemma 10, we have that its ∆-analysis is precise. In particular, ±i can be chosen freely.

Proof. The ∆ analysis of a ReLU over some input range l ≤ x ≤ u results in the convex hull of
ReLU on that range. With that, we can apply the Lemma 14 over the network h from Lemma 10
modeling f :

h(x) = b+ cx+

n−1∑
i=1

γi ReLU(±i(x− xi))

This is regardless of the choice of ±i a sum of convex functions (γi > 0). With Lemma 14 we get
that the ∆ analysis of h results in the convex hull of h, and thus is precise. □

24

Published as a conference paper at ICLR 2024

B.5 MULTI-NEURON-RELAXATIONS

Theorem 26 (Multi-Neuron Precision). For every f ∈ CPWL(I,R), there exists a single layer
ReLU network h encoding f , such that its multi-neuron analysis (considering all ReLUs jointly) is
precise.

Proof. As the multi-neuron relaxation yields the exact convex hull of all considered neurons in their
input-output space, it remains to show that every f ∈ CPWL(I,R) can be represented using a
single-layer ReLU network.

Recall that every f ∈ CPWL(I,R) can be defined by the points {(xi, yi)}i s.t. xi > xi−1 (Defini-
tion 1). We set h1(x) = (x− x0)

y1−y0

x1−x0
+ y0 and now update it as follows:

hi+1(x) = hi(x) +

(
yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1

)
ReLU(x− xi)

We observe that ReLU(x−xi) = 0 for all xj such that j ≤ i. As h(x) is CPWL, it is now sufficient
to show that h(xi) = yi,∀i.

h(xj) = (x− x0)
y1−y0

x1−x0
+ y0 +

∑
i=1

(
yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1

)
ReLU(x− xi)

= (xj − x0)
y1−y0

x1−x0
+ y0 + xj

j−1∑
i=1

(
yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1

)
−

j−1∑
i=1

(
yi+1 − yi
xi − xi−1

− yi − yi−1

xi − xi−1

)
xi

= (xj − x0)
y1−y0

x1−x0
+ y0 + xj

(
yj − yj−1

xj − xj−1
− y1 − y0

x1 − x0

)
− xj

yj − yj−1

xj − xj−1

+

j−1∑
i=1

yi+1 − yi
xi+1 − xi

(xi+1 − xi) + x1
y1 − y0
x1 − x0

+

j−1∑
i=1

yi − yi−1

xi − xi−1
(xi − xi)

= yj

□

25

	Introduction
	Background on Convex Relaxations
	Convex Relaxations in Neural Network Certification
	Definitions

	Related Work
	Convex Relaxations for Univariate Functions
	Box
	DeepPoly-0
	DeepPoly-1
	Triangle
	Multi-Neuron-Relaxations

	Convex Relaxations for Multivariate Functions
	Conclusion
	Deferred Proofs on Multivariate Functions
	Deferred Proofs on Univariate Functions
	Box
	DeepPoly-0
	DeepPoly-1
	Triangle
	Multi-Neuron-Relaxations

