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Abstract

Despite the promise of synthesizing high-fidelity
videos, Diffusion Transformers (DiTs) with 3D
full attention suffer from expensive inference due
to the complexity of attention computation and
numerous sampling steps. For example, the pop-
ular Open-Sora-Plan model consumes more than
9 minutes for generating a single video of 29
frames. This paper addresses the inefficiency is-
sue from two aspects: 1) Prune the 3D full at-
tention based on the redundancy within video
data; We identify a prevalent tile-style repetitive
pattern in the 3D attention maps for video data,
and advocate a new family of sparse 3D attention
that holds a linear complexity w.r.t. the number
of video frames. 2) Shorten the sampling pro-
cess by adopting existing multi-step consistency
distillation; We split the entire sampling trajec-
tory into several segments and perform consis-
tency distillation within each one to activate few-
step generation capacities. We further devise a
three-stage training pipeline to conjoin the low-
complexity attention and few-step generation ca-
pacities. Notably, with 0.1% pretraining data, we
turn the Open-Sora-Plan-1.2 model into an effi-
cient one that is 7.4 × −7.8× faster for 29 and
93 frames 720p video generation with a marginal
performance trade-off in VBench. In addition,
we demonstrate that our approach is amenable
to distributed inference, achieving an additional
3.91× speedup when running on 4 GPUs with
sequence parallelism. The anonymous code is
available at https://anonymous.4open.
science/r/efficient-vdit-95ZB.

1. Introduction
Diffusion Transformers (DiTs) based video generators can
synthesize long-horizon, high-resolution, and high-fidelity
videos (Peebles & Xie, 2023; OpenAI, 2024; Kuaishou,
2024; Lab & etc., 2024; Zheng et al., 2024; Esser et al.,
2023; Yang et al., 2024b). The 3D attention is a core mod-
ule of such models. It flattens both the spatial and tempo-
ral axes of the video data into one long sequence for at-

tention computation and reports state-of-the-art generation
quality (Lab & etc., 2024; Yang et al., 2024b; Huang et al.,
2024). Computation of 3D attention often consumes the
majority of the time during the entire forward propagation
of a 3D DiT, especially with long sequences when gener-
ating extended videos. Thus, existing 3D DiTs suffer from
prohibitively slow inference due to the slow attention com-
putation and the multi-step diffusion sampling procedure.

This paper tackles the issue by simultaneously sparsifying
3D attention and reducing sampling steps to accelerate 3D
DiTs. To explore the redundancies in video data (recall
that by nature videos can be efficiently compressed), we
examine 3D DiT attention states and identify an intriguing
phenomenon, referred to as the Attention Tile. As shown
in Fig. 1a, the attention maps exhibit uniformly distributed
and repetitive tile blocks, where each tile block represents
the attention between latent frames1. This repetitive pattern
suggests that not every latent frame needs to attend to all
others. Moreover, the Attention Tile pattern is almost in-
dependent of specific input (Fig. 1d). With these, we pro-
pose a solution that replaces the original attention with a
fixed set of sparse attention mask during inference (§3.3).
Specifically, we constrain each latent frame to only attend
to a constant number of other latent frames, which reduces
the complexity of attention computation from quadratic to
linear.

We then consider shortening the sampling process of a
video from 3D DiT to further amplify the acceleration ef-
fect. Inspired by the recent advance in diffusion distilla-
tion (Salimans & Ho, 2022; Song et al., 2023; Kim et al.,
2023; Liu et al., 2023b; Sauer et al., 2023; Yin et al., 2024;
Heek et al., 2024; Xie et al., 2024), we adopt a simple yet
effective multi-step consistency distillation (MCD) (Heek
et al., 2024) technique into our approach to achieve the ef-
ficient generation of compelling videos. In particular, we
split the entire sampling trajectory into adjacent segments
and perform consistency distillation within each one. We
also progressively decrease the number of segments to im-
prove the generation quality at rare steps.

Due to the orthogonality between sparse attention and
MCD, a naive combination is possible, such as directly dis-

1we use the term latent because DiTs compute in the latent
space of VAEs (Rombach et al., 2022b).
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Figure 1: We observe the Attention Tile pattern in 3D DiTs. (a) the attention map can be broken down into smaller repetitive
blocks. (b) These blocks can be classified into two types, where attention weights on the diagonal blocks are noticeably
larger than on off-diagonal ones. (c) These blocks exhibit locality, where the attention score differences between the first
frame and later frames gradually increases. (d) The block structure is stable across different data points, but varies across
layers. We randomly select 2 prompts (one landscape and one portrait) and record the important positions in the attention
map that accounted for 90% (95%, 99%) of the total. We printed the proportion of stable overlap of important positions
across layers.

tilling a sparse student 3D DiT from a pre-trained model.
However, the initial gap between the sparse student and
the teacher can be large so that the training suffers from a
cold start. To tackle this issue, we introduce a more refined
model acceleration process named EFFICIENT-VDIT. Ini-
tially, MCD is utilized to generate a student model with
the same architecture but fewer sampling steps than the
teacher. Subsequently, we determine the optimal sparse at-
tention pattern for each head of the student and then ap-
ply a knowledge distillation procedure to the sparse model
to maintain performance. With 0.1% the pretraining data,
we train Open-Sora-Plan-1.2 models into variants that are
7.8× and 7.4× faster, with a marginal performance trade-
off in VBench. (Huang et al., 2024). In addition, we pro-
vide evidence that our approach is amenable to advances
in distributed inference systems, achieving an additional
3.91× speedup when running on 4 GPUs.

In summary, our contribution are:

1. We discover and analyze the phenomenon of Atten-
tion Tile in 3D full attention DiTs, and propose a fam-
ily of sparse attention mask with linear complexity to
address the redundancy.

2. We design a framework EFFICIENT-VDIT based on
our analysis of Attention Tile, which turns pre-trained
3D DiT to a fast variant in a data efficient manner.

3. We evaluate on two Open-Sora-Plan 1.2 models for
29 frames and 93 frames generation. EFFICIENT-
VDIT achieves up to 7.8× speedup with little per-
formance trade-off on VBench and CD-FVD. We
further demonstrate the potential of integrating our
method with advanced distributed inference tech-
niques, achieving additional 3.91× with 4 GPUs.

2. Related Work
Video Diffusion Transformers There is a rich line of re-
search in diffusion based models for video generation (Ho
et al., 2022; He et al., 2022; Luo et al., 2023; Wang et al.,
2023c; Ge et al., 2023a; Chen et al., 2024b; Guo et al.,
2023; 2024). More recently, Peebles & Xie (2023) intro-
duces the architecture of Diffusion Transformers (DiTs),
and several popular video generation models have been de-
veloped using the DiTs backbone, for instance, Ma et al.
(2024); Zheng et al. (2024); Lab & etc. (2024); Yang et al.
(2024b). More specifically, Lab & etc. (2024); Yang et al.
(2024b) has explored the use of 3D Full Attention Trans-
formers, which jointly model spatial and temporal relation-
ship, instead of previous models that separately model spa-
tial and temporal relationship (e.g. one Transformer layer
with spatial attention and the other with temporal atten-
tion (Zheng et al., 2024; Ma et al., 2024)). The design
of 3D full attention has gained increasing popularity due
to their promising performance. In this work, we tackle
the efficiency problem specifically for 3D full attention
diffusion Transformers. In addition, there is a line of re-
search that combines video diffusion model with sequen-
tial or autoregressive generation. These methods may also
achieve speedup due to their use of shorter sequence length.
EFFICIENT-VDIT aims to speedup in a single diffusion for-
ward, which is compatible with orthogonal to autoregres-
sive manner methods (Henschel et al., 2024; Xiang et al.,
2024; Chen et al., 2024a; Valevski et al., 2024).

Accelerating diffusion inference Many work in diffusion
models have been proposed to reduce the number of sam-
pling steps to accelerate diffusion inference (Song et al.,
2020; Lu et al., 2022a;b) (Liu et al., 2024). Song et al.
(2023) proposes the consistency models which distills mul-
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Figure 2: EFFICIENT-VDIT takes in a pre-trained 3D Full Attention video diffusion transformer(DiT), with slow inference
speed and high fidelity. It then operates on three stages to greatly accelerate the inference while maintaining the fidelity. In
Stage 1, we modify the multi-step consistency distillation framework from (Heek et al., 2024) to the video domain, which
turned a DiT model to a CM model with stable training. In Stage 2, EFFICIENT-VDIT performs a searching algorithm
to find the best sparse attention pattern for each layer. In stage 3, EFFICIENT-VDIT performs a knowledge distillation
procedure to optimize the fidelity of the sparse DiT. At the end, EFFICIENT-VDIT outputs a DiT with linear attention, high
fidelity and fastest inference speed.

tiple steps ODE to one step. Wang et al. (2023b) extends
CMs to video generation model. Li et al. (2024b) further
extends the idea with reward model to speed up video diffu-
sion model inference. Another line of research that acceler-
ates diffusion models inference utilize multiple devices (Li
et al., 2024c; Wang et al., 2024a; Chen et al., 2024d; Zhao
et al., 2024). These works exploit the redundancy between
denoising steps and use stale activations in distributed in-
ference to hide communication overhead, and are naturally
incompatible with work that reduce the redundancy be-
tween steps. In this work, we exploit the redundancy in
attention computation, which is orthogonal to works that
leverage distributed acceleration and redundancy between
denoising steps. Our pipeline integrates a multi-step CM
approach (Xie et al., 2024) by default, and in experiment,
we show that it can also seaminglessly integrate with par-
allel inference.

Sparsity in Transformer inference has been investigated
in the context of Large Language Models (LLMs) infer-
ence, which can be decomposed into pre-filling and de-
coding stages (Yu et al., 2022). StreamingLLM discovers
the pattern of Attention Sink, and keeps a combination of
first few tokens and recent decoded tokens during decoding
phrase (Xiao et al., 2023). Zhang et al. (2024a;b) adap-
tively identify the most significant tokens during test time.
Video DiTs have different workload than LLMs, where
DiTs perform a single forward in each diffusion step with-
out a decoding phrase. In particular, our paper is among the
first to explore sparse attention in the context of 3D Full At-
tention DiTs. In addition, our finding that Attention Tile is
data-independent motivates us to design a solution which
does not require inference time adaptive searching, which
is a bottleneck in work such as Zhang et al. (2024b). Spar-
sity has also been studied in Gan and other diffusion-based
models, yet we focus on the new architecture 3D DiT (Li

et al., 2020; 2022). A recent paper (Wang et al., 2024b)
also discusses the redundancy in DiTs models, but no per-
formance has been shown.

3. EFFICIENT-VDIT
EFFICIENT-VDIT is a framework that takes in a 3D full at-
tention DiT model T , and outputs a DiT that runs efficiently
during inference TFast. EFFICIENT-VDIT consists of three
stages. The first stage (§3.2) performs a multi-step consis-
tency distillation and outputs TMCM, following the method
developed in image diffusion models (Xie et al., 2024). The
second stage (§3.3) takes in TMCM, performs a one-time
search to decide the optimal sparse attention mask for each
layer, and outputs a model TSparse with the optimal sparse
attention mask. The last step(§3.4) performs a knowledge
distillation to preserve the model performance, using TMCM
as the teacher and TSparse as the student, following the dis-
tillation design in (Gu et al., 2024; Jiao et al., 2019).

In this section, we first introduce the characteristics of At-
tention Tile that motivate the design of the sparse pat-
terns in Section 3.1. Then, we will introduce the frame-
work EFFICIENT-VDIT by stages.

3.1. Preliminary: Characteristics of Attention Tile

In §1, we briefly describe that the attention map consists
of repetitive tile blocks. In this section, we dive into three
characteristics that lead to our design and usage of a family
of sparse attention masks.

Large Diagonals Tile blocks on the main diagonals has
higher attention scores than off-diagonal ones. In Fig-
ure 1(b), we plot the attention scores at the main diagonal
tile blocks, compared to attention scores at the off-diagonal
blocks, on Open-Sora-Plan-1.2 model (Lab & etc., 2024).

3
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Figure 3: Exemplar attention mask (2 : 6). It maintains the
attention in the main diagonals and against 2 global refer-
ence latent frames. Tile blocks in white are not computed.

We find that on average the main diagonal blocks contain
values 2.80× higher than the off-diagonal ones. This sug-
gests a separate treatment of tile blocks on and off the main
diagonals.

Locality Off-diagonal tile blocks are similar, but the sim-
ilarity decreases with further distance. In Figure 1(c), we
plot the relative differences between the first latent frame
and subsequent latent frames. We find that the differences
increase monotonically. This indicates a need to retain the
computation of several tile blocks (i.e. more than one) to
accommodate information in distant tile blocks.

Data Independent The structure of the tile is relatively sta-
ble across different inputs. We plot the overlap of indices
for largest attention scores for different prompts. We ob-
serve that roughly 90% of them coincide. This suggests
reusing a fixed set of attention masks during inference for
different inputs.

Motivated by the above characteristics, we develop a fam-
ily of sparse attention masks where we keep the attention
computation in the main diagonal and the attention with a
constant number of global reference latent frames. Figure 3
visualizes one instance of the attention mask. The formu-
lation will be introduce formally in § 3.3.

3.2. Stage 1: Multi-Step Consistency Distillation

We follow (Xie et al., 2024) to perform a multi-step latent
consistency distillation(MLCD) procedure to obtain TMCM
as classic CM map from an arbitrary ODE trajectory state
to the endpoint. MLCD generalize CM by dividing the
entire ODE trajectory in latent space into S segments and
carrying out consistency distillation for each segment inde-
pendently which reduce the difficulty for training dramat-
ically. MLCD obtains a set of milestone states marked as
{tsstep}Ss=0. The loss for MLCD is:

LMLCD =

∥∥∥∥DDIM
(
ztm , fθ(ztm , tm), tm, tsstep

)
−nograd

(
DDIM

(
ztn , fθ(ztn , tn), tn, t

s
step

))∥∥∥∥2
2

(1)

where s is uniformly sampled from {0, . . . , S}, tm is uni-
formly sampled from [tsstep, t

s+1
step ], tn is uniformly sampled

from [tsstep, tm], DDIM(ztm , fθ(ztm , tm), tm, tsstep) means
one-step DDIM transformation from state ztm at timestep
tm to timestep tsstep with the estimated denoised image
fθ(ztm , tm) and nograd refers to one-step diffusion with-
out guidance scale.

3.3. Stage 2: Layer-wise Search for optimal Sparse
attention mask

Sparse Attention Masks Following our analysis in §3.1,
a desired sparse attention mask should separately treat on
and off diagonal tile blocks, leverages the repetitive pattern
in off-diagonal tile blocks while considering locality. In
this paper, we aim on a family of masks that achieve lin-
ear compute complexity while prioritizing simplicity and
implementation efficiency. Specifically, we simply keep
tile blocks in the main diagonals(marked as golden color
in Figure 3). For off-diagonal tile blocks, we keep a con-
stant number of k latent frames, and only retain attention
between against these “global reference frames” (mark as
blue color in Figure 3). Since k is constant, the overall
complexity of the attention is linear with respect to the
number of latent frames. For simplicity, we choose these
k reference frames uniformly from all F latent frames. For
clarity, we denote a mask with two numbers - k : F − k.
For example, the example figure 3 shows an attention mask
of 2 : 6.
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Figure 4: Search results for Open-Sora-Plan v1.2 model (29
frames). We verify that different layers have different sparsity
in 3D video DiTs.

Layer-wise Searching For Attention Masks Previous
studies has suggested that different layers exhibit different
amount of sparsity (Wang et al., 2023a; Ge et al., 2023b;
Yang et al., 2024a). Using the MSE difference of the final
hidden states as a guidance, we develop a searching method
to find the best combinations of attention masks across lay-
ers (Algorithm 1). Intuitively, we first perform a profiling
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Algorithm 1 Searching for the optimal set of sparse atten-
tion masks
Require: Available mask list from dense to sparse

[Mask1,Mask2, ...,Maskn], teacher model MT , stu-
dent model M , loss function L, number of timestep
samples m.

Require: Forward function FORWARD, threshold r, which
is the maximum tolerance for L.

Require:
1: for each layer l in model layers do
2: Initialize best mask← None
3: for i from 1 to n do ▷ From dense to sparse
4: Apply Maski to the current layer M (l)

5: Initialize Lmax
i ← −∞

6: for each timestep t sampled m times from
Uniform(0, 1) do

7: ŷ ← FORWARD(M (l)
T , Maski, t)

8: Compute Li(t)← L(y, ŷ)
9: Update Lmax

i ← max(Lmax
i ,Li(t))

10: end for
11: if Lmax

i < r then
12: best mask← Maski ▷ Update the best

mask within threshold
13: else
14: break
15: end if
16: end for
17: Assign best mask to the current layer M (l)

18: end for

process on TMCM . The profiling step loops over layers,
and greedily selects the largest k which does not incur a
higher MSE difference than a predefined threshold r. A
dynamic programming based alternative is also described
in Appendix A, where given a runtime constraint, the min-
imum possible maximum loss difference is computed. In
the experiment section ( § 4), we show evidence that this
is a key to maintaining video quality. For simplicity, we
apply the greedy version of the search throughout the main
paper. Fig. 4 shows an exemplar algorithm output.

3.4. Stage 3: Knowledge Distillation with TTCM

Stage 2 introduces performance drop since we significantly
modify the attention mask. In Stage 3, we apply the method
of knowledge distillation, using the model with full atten-
tion TMCM as the teacher, and the model with sparse at-
tention TSparse as the student (Hinton, 2015). We follow a
similar design as knowledge distillation methods in Trans-
former models for Languages (Gu et al., 2024; Jiao et al.,
2019), which combines the loss from attention output and

hidden states output, over L total layers.

Ltotal =
1

L

(
L∑

i=1

(
L(i)

attention + L
(i)
mlp

))
+ λLdiffusion, (2)

where each term is defined as follows:

Attention Loss Lattention: To calculate L(i)
attention, we apply

the MSE loss between the output of the student’s self-
attention layer Ô

(i)
attn and the teacher’s self-attention layer

output Õ(i)
attn:

L(i)
attention = MSE(Ô(i)

attn, Õ
(i)
attn). (3)

MLP Loss Lmlp: We calculate L(i)
mlp as the MSE be-

tween the outputs of the student’s MLP layer Ô(i)
mlp and the

teacher’s MLP layer output Õ(i)
mlp:

L(i)
mlp = MSE(Ô(i)

mlp, Õ
(i)
mlp). (4)

In addition, we keep the diffusion loss Ldiffusion for the stu-
dent model. In practice, we observed that the diffusion
loss tends to be an order of magnitude smaller compared
to other losses. To balance the contribution of the diffu-
sion loss during the training process, we scale it by a factor
λ, ensuring it has a comparable impact on the overall loss
function.

4. Experiment
We first present our experiment settings and evaluation
metrics in §4.1. We then discuss system performance in
§4.2, demonstrating the effectiveness on a single GPU and
applicable to multiple GPUs. In §4.3, we compare the
video quality with and without variants of our methods with
VBench and CD-FVD (Huang et al., 2024; Ge et al., 2024).
Finally, we show visualization results in §4.4 of the gener-
ation quality for the original model, the MLCD model, and
the final model.

4.1. Experiment setup

Models. We use the 29 and 93 frames models of the pop-
ular 3D DiT based Open-Sora-Plan family (Lab & etc.,
2024). The model uses VAE inherits weights from the
SD2.1 VAE (Rombach et al., 2022a), with a compression
ratio of 4x8x8 (temporal, height and width). For the text
encoder, it uses mt5-XXL as the language model, and it
incorporates RoPE as the positional encoding (Xue, 2020;
Su et al., 2024). In addition to the VAE encoder, videos are
further processed by a patch embedding layer that down-
samples the spatial dimensions by a factor of 2. The videos

5
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tokens are finally flattened into a one-dimensional sequence
across the frame, width, and height dimensions.

Metrics. We evaluate video quality using VBench
and Content-Debiased Frechet Video Distance (CD-
FVD) (Huang et al., 2024; Ge et al., 2024). VBench as-
sesses the quality of video generation by aligning closely
with human perception , computed for each frame of the
video and then averaged across all frames, providing a
comprehensive assessment. CD-FVD measures the dis-
tance between the distributions of generated and real videos
toward per-frame quality over temporal realism.

Baselines. We consider two models as the major base-
lines: the original Open-Sora-Plan model and the model
after consistency distillation. Following the default set-
tings of Open-Sora-Plan models (Lab & etc., 2024), we use
100 DDIM steps for the original model, which is consis-
tent across all experiments and training in the paper. For
the MLCD model, we select the checkpoint with 20 infer-
ence steps as we empirically find that it achieves the best
qualitative result.

Implementation details. We use FlexAttention from Py-
Torch 2.5.0 (Ansel et al., 2024) as the attention backend.
We provide a more detailed description on how to leverage
FlexAttention to implement our method in Appendix B. We
generate videos based on the VBench standard prompt list
for VBench evaluation. To avoid potential data contamina-
tion in CD-FVD evaluation, we use a set of 2000 samples
from the Panda-70M (Chen et al., 2024c) test set to build
our real-world data comparison. As we use the CD-FVD
score between real-world data and generated videos to eval-
uate the capacity of DiT models, the prompt style needs to
align with the real-world data clip samples. Therefore, we
randomly select prompts from the Panda-70M test set cap-
tion list for video generation by the models.

Training details. All models are trained using the
first 2000 samples from the Open-Sora-Plan’s mixkit
dataset.The global batch size is set to 2, and training is con-
ducted for a total of 10000 steps, equivalent to 10 epochs of
dataset. The learning rate is 1e-5, and the gradient accumu-
lation steps is set to 1. The diffusion scale factor λ is 100.
The MLCD model is trained with 100 DDIM steps of the
original model. The final model is trained with a 20-step
MLCD model checkpoint.

4.2. System Performance

The major target of EFFICIENT-VDIT accelerates inference
in a single GPU by using multi-step consistency distillation
and sparse attention. In §4.2.1, we demonstrate the system
speedup with various settings. In addition, we demonstrate
an advantage of our method that it can be seaminglessly
integrate with advanced parallel method, i.e. sequence par-

Table 1: Speedup with different masks.

Frames Mask Sparsity (%) Time(ms) Speedup

29

full 0.00 58.36 1.00×
4:4 17.60 46.52 1.25×
3:5 29.88 40.08 1.46×
2:6 45.47 31.35 1.86×
1:7 64.38 20.65 2.83×

93

full 0.00 523.61 1.00×
12:12 21.51 397.72 1.32×
8:16 40.30 303.90 1.72×
6:18 51.88 244.13 2.14×
4:20 64.98 179.74 2.91×
3:21 72.05 142.77 3.67×

allelism, in §4.2.2.

4.2.1. EFFICIENT-VDIT SPEEDUP ON A SINGLE GPU

We test our approach on a single A100-SXM 80GB GPU.
Table 1 shows the computation time for a single sparse at-
tention kernel, while Table 2 presents the average execu-
tion time of all layers after layerwise search in Algorithm
1. ‘2:6’ refers to 2 global reference frames in Fig.3. Spar-
sity refers to the proportion of elements in the kernel that
can be skipped. During testing, we consider only the at-
tention operation, where the inputs are query, key, value,
and mask, and the output is the attention output. We do
not account for the time of VAE, T5, or embedding layers.
The measurement method involves 25 warmup iterations,
followed by 100 runs. The median of the 20th to 80th per-
centile performance is used as the final result.

In Table 1, we observe that as the sparsity increases, the
computation time decreases significantly. For instance,
with a 2:6 attention mask, corresponding to a sparsity level
of 45.47%, the execution time reduces to 31.35 ms, result-
ing in a 1.86× speedup compared to the full mask. In Table
2, the effect of increasing threshold r on speedup is evident.
As r increases, the sparsity grows, leading to a greater re-
duction in computation time and a corresponding increase
in speedup. For example, with r = 0.050, the sparsity
reaches 37.78%, achieving a speedup of 1.64×. When
r is further increased to 0.400, the sparsity level rises to
55.07%, and the speedup improves to 2.25×. This positive
correlation between r, sparsity, and speedup highlights the
efficiency gains that can be achieved by leveraging higher
sparsity levels.

4.2.2. EFFICIENT-VDIT SPEEDUP IN DISTRIBUTED
SETTING

EFFICIENT-VDIT utilize sparse attention and consistency
distillation to achieve speedup. These methods are orthog-
onal to the recent advances in distributed systems, mainly
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Table 2: Open-Sora-Plan with 29 frames and 720p resolution results on VBench, CD-FVD metrics and kernel speedup
evalutation. ‘r=0.1’ indicates that this checkpoint is trained using the layerwise search strategy described in Algorithm 1,
with a threshold of r=0.1. We selects some dimensions for analysis, with the remaining dimensions provide in the Table 6.
We also shows kernel different speedup with threshold r.

Model Final
Score ↑ Aesthetic

Quality
Motion

Smoothness
Temporal
Flickering

Object
Class

Subject
Consistency CD-FVD ↓ Sparsity (%) Kernel

Time(ms)
Kernel

Speedup Speedup

Base 76.12% 58.34% 99.43% 99.28% 64.72% 98.45% 172.64 0.00 58.36 1.00× 1.00×
MLCD 76.81% 58.92% 99.41% 99.42% 63.37% 98.37% 190.50 0.00 58.36 1.00× 5.00×

Oursr=0.025 76.14% 57.21% 99.37% 99.49% 60.36% 98.26% 186.84 23.51 43.50 1.34× 5.85×
Oursr=0.050 76.01% 57.57% 99.15% 99.56% 58.70% 97.58% 195.55 37.78 35.58 1.64× 6.60×
Oursr=0.100 76.00% 56.59% 99.13% 99.54% 57.12% 97.73% 204.13 45.08 31.54 1.85× 7.05×
Oursr=0.200 75.02% 55.71% 99.03% 99.50% 55.22% 97.28% 223.75 51.55 27.91 2.09× 7.50×
Oursr=0.400 75.30% 55.79% 98.93% 99.46% 54.98% 97.71% 231.68 55.07 25.96 2.25× 7.80×

sequence parallelism based solution in LLMs (Liu et al.,
2023a; Li et al., 2024a; Jacobs et al., 2023) and model par-
allelism (or with hybrid sequence parallelism) based solu-
tion in diffusion Transformers (Li et al., 2024c; Wang et al.,
2024a; Chen et al., 2024d). We consider sequence paral-
lelism in this section for is simplicity and empirical lower
overhead (Li et al., 2024a;c; Xue et al., 2024).

Implementation We utilize the All-to-All communica-
tion primitives to implement sequence parallelism (Jacobs
et al., 2023). In the attention computation, the system parti-
tions the operations along the head dimension while keep-
ing the entire sequence intact on each GPU, allowing a sim-
ple implementation of EFFICIENT-VDIT by applying the
same attention mask as in the one GPU setting 2. As a
result, EFFICIENT-VDIT is natively compatible with All-
to-All sequence parallelism.

We conduct a scaling experiment with sequence paral-
lelism on 4x A100-SXM 80GB GPUs, interconnected with
NVLink. We observe a speedup of 3.68× - 3.91× for 29
and 93 frames generation on 4 GPUs, which is close to a
theoretical speedup of 4× (Table 3). If reported 29 frames
generation on multi-GPUs, Oursr=0.100 can achieve 25.8x
speedup on 4 GPUs and 13.0x speedup on 2 GPUs.

Table 3: EFFICIENT-VDIT with sequence parallelism on
Open-Sora-Plan model. Time as wall-clock-time per step.

Frames # GPUs Time (s) Speedup

29
1 5.56 1.00×
2 2.98 1.87×
4 1.52 3.68×

93
1 39.06 1.00×
2 20.00 1.95×
4 10.02 3.91×

2The difference is that the attention mask is applied to fewer
number of attention heads.

4.3. Video Quality benchmark

In this section, we first evaluate EFFICIENT-VDIT with lay-
erwise searching on CD-FVD and VBench (Huang et al.,
2024; Ge et al., 2024). We compare with the baseline of
the original Open-Sora-Plan 1.2 model, and the model we
obtain only using the MLCD method. We then conduct two
ablation experiments to understand the effectiveness of the
MLCD method, and our layerwise searching algorithm.

Table 2 demonstrates the main result of the 29 frames
model. In VBench, We find that the results of all our
search models are within 1% final score against the Base
model with no noticeable drop in several key dimensions.
At higher acceleration ratios, such as Oursr=0.400, the
model maintains stable performance, with minimal devia-
tions from the Base model, demonstrating the robustness of
our approach while achieving significant speedups. How-
ever, we note that the imaging quality and subject class
are lower than those of the base model. The reason why
the VBench score remains within 1% difference is that our
model improves the dynamic degree. With more sparsity,
our pipeline has the characteristics of being able to cap-
ture richer motions between frames, but trading off some
degrees of aesthetic quality and subject class accuracy.

In CD-FVD, our models with smaller acceleration ratios
achieve better scores than MLCD model. For example,
Oursr=0.025 achieves a score of 186.84 with a speedup
of 5.85×, outperforming the MLCD model. As the ac-
celeration ratio increases, the score degrades as expected.
Oursr=0.400 reaches a score of 231.68 with a speedup of
7.80×, showing a trade-off between acceleration and per-
formance. Our models maintain performance with minimal
performance drop and achieve a significant speedup.

Extension to MM-DiT architecture We demonstrate our
method’s generalizability by applying it to CogVideoX-
5B (Yang et al., 2024b), which is based on the MM-DiT
architecture that differs from Open-Sora-Plan’s cross at-
tention module, where its attention module concatenates
text tokens with video token. For MM-DiT, we only ap-
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ply sparse mask to the video-video part considering that
the text tokens length are very small compared to video
tokens. Our approach achieves comparable performance,
maintaining the final VBench score within 1% of the base-
line as shown in Table 4. Detailed analysis and additional
results can be found in Appendix E.

Table 4: CogVideoX-5B with 49 frames and 480p resolu-
tion results on VBench.

Model Final
Score ↑ Aesthetic

Quality
Motion

Smoothness
Temporal
Flickering Speedup

Base 77.91% 57.91% 97.83% 97.34% 1.00×
Oursr=5 77.15% 51.18% 96.67% 97.18% 1.34×

Order of MLCD and KD We claim that knowledge distil-
lation and consistency distillation are orthogonal processes.
To verify this, we conducted an ablation experiment on
the distillation order. We first applied attention distilla-
tion based on the original model, then used this model to
perform multi-step latent consistency distillation (MLCD).
The results in Table 5 support our hypothesis, showing min-
imal differences in VBench and CD-FVD scores regardless
of the distillation sequence. We also show qualitative sam-
ples in Appendix Fig. 6 to illustrate the video quality.

Table 5: Quantitative evaluation on distillation order for
MLCD and layerwise knowledge distillation.

Model Final
Score ↑ Aesthetic

Quality
Motion

Smoothness
Temporal
Flickering CD-FVD ↓

MLCD + KD 76.00% 56.59% 99.13% 99.54% 204.13
KD + MLCD 75.50% 56.38% 99.12% 99.40% 203.52

Separate Effect of MLCD and Layerwise Search. We
evaluate the effectiveness of MLCD and our layerwise
search strategy separately. MLCD achieves comparable or
better performance across most VBench metrics (76.81%
overall score) with a 5.00× speedup, maintaining consis-
tent performance after knowledge distillation. For layer-
wise search, compared to uniform masking patterns (e.g.,
4:4, 3:5 splits), our approach with various thresholds (r
= 0.025, 0.050, 0.100) achieves better VBench scores
(¿76.00%) and speedup (7.05× vs. 5.80×), while main-
taining CD-FVD scores below 250. Detailed analysis and
additional results can be found in Appendix D.1.

4.4. Qualitative result

As illustrated in Fig.5, we compare the video results gen-
erated by three methods: the original model, after applying
MLCD, and after knowledge distillation. The generation
settings are consistent with those in Table 2, demonstrating
that both the MLCD and knowledge distillation methods
maintain the original quality and details. More qualitvative
samples are listed in Appendix F.
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Prompt: A woman is standing on a black background and 
talking to the camera.
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Prompt:Two men are sitting at a table in a garage and 
talking to each other.

Figure 5: Qualitative samples of our models. We com-
pare the generation quality between the base model, MLCD
model, and after knowledge distillation. Frames shown
are equally spaced samples from the generated video.
EFFICIENT-VDIT is shortened as ‘E-vdit’ for simplicity.
More samples can be found in Appendix F.

5. Conclusion
In this paper, we first describe the phenomenon of Attention
Tile, and dive into its characteristics of repetitive, large di-
agonals, locality, and data independent. Then we describe
a class of sparse attention pattern tailored to address the
efficiency problem in Attention Tile. Lastly, we introduce
our overall framework that leveraged this class of sparse at-
tention, which further leverages multi-step consistency dis-
tillation, layerwise searching, and knowledge distillation
for faster generation and high performance. Experiments
on two varaints of the Open-Sora-Plan model has demon-
strated that our method can achieve similar performance,
with 0.1% the pre-training data, and up to 7.8× speedup.
Further ablation study has shown that our method can be
natively integrated with advanced parallelism method to
achieve further speedup.

6. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. As highlighted in (Mirsky & Lee,
2020), such generative technologies can impact media au-
thenticity, privacy, and public trust. We acknowledge these
potential impacts and emphasize that our research is in-
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tended to advance the scientific understanding of machine
learning while encouraging responsible development and
deployment of these technologies.
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preprint arXiv:2404.12391, 2024.

Gu, Y., Dong, L., Wei, F., and Huang, M. Minillm:
Knowledge distillation of large language models. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Guo, Y., Yang, C., Rao, A., Agrawala, M., Lin, D., and Dai,
B. Sparsectrl: Adding sparse controls to text-to-video
diffusion models. arXiv preprint arXiv:2311.16933,
2023.

Guo, Y., Yang, C., Rao, A., Liang, Z., Wang, Y., Qiao,
Y., Agrawala, M., Lin, D., and Dai, B. Animatediff:
Animate your personalized text-to-image diffusion mod-
els without specific tuning. International Conference on
Learning Representations, 2024.

He, Y., Yang, T., Zhang, Y., Shan, Y., and Chen, Q. La-
tent video diffusion models for high-fidelity long video
generation. arXiv preprint arXiv:2211.13221, 2022.

Heek, J., Hoogeboom, E., and Salimans, T. Multistep
consistency models. arXiv preprint arXiv:2403.06807,
2024.

Henschel, R., Khachatryan, L., Hayrapetyan, D.,
Poghosyan, H., Tadevosyan, V., Wang, Z., Navasardyan,
S., and Shi, H. Streamingt2v: Consistent, dynamic,
and extendable long video generation from text. arXiv
preprint arXiv:2403.14773, 2024.

Hinton, G. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. Advances in
Neural Information Processing Systems, 35:8633–8646,
2022.

Huang, Z., He, Y., Yu, J., Zhang, F., Si, C., Jiang, Y.,
Zhang, Y., Wu, T., Jin, Q., Chanpaisit, N., et al. Vbench:
Comprehensive benchmark suite for video generative
models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21807–
21818, 2024.

9

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

EFFICIENT-VDIT: Efficient Video Diffusion Transformers with Attention Tile

Jacobs, S. A., Tanaka, M., Zhang, C., Zhang, M., Song,
S. L., Rajbhandari, S., and He, Y. Deepspeed ulysses:
System optimizations for enabling training of extreme
long sequence transformer models. arXiv preprint
arXiv:2309.14509, 2023.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li,
L., Wang, F., and Liu, Q. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida,
Y., Uesaka, T., He, Y., Mitsufuji, Y., and Ermon,
S. Consistency trajectory models: Learning probabil-
ity flow ode trajectory of diffusion. arXiv preprint
arXiv:2310.02279, 2023.

Kuaishou. Kling, 2024. URL https://kling.
kuaishou.com/en. Accessed: [2024].

Lab, P.-Y. and etc., T. A. Open-sora-plan, April 2024.
URL https://doi.org/10.5281/zenodo.
10948109.

Li, D., Shao, R., Xie, A., Xing, E. P., Ma, X., Stoica, I.,
Gonzalez, J. E., and Zhang, H. Distflashattn: Distributed
memory-efficient attention for long-context llms train-
ing. In First Conference on Language Modeling, 2024a.

Li, J., Feng, W., Fu, T.-J., Wang, X., Basu, S., Chen, W.,
and Wang, W. Y. T2v-turbo: Breaking the quality bot-
tleneck of video consistency model with mixed reward
feedback. arXiv preprint arXiv:2405.18750, 2024b.

Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.-Y., and Han, S.
Gan compression: Efficient architectures for interactive
conditional gans. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
5284–5294, 2020.

Li, M., Lin, J., Meng, C., Ermon, S., Han, S., and Zhu, J.-Y.
Efficient spatially sparse inference for conditional gans
and diffusion models. Advances in neural information
processing systems, 35:28858–28873, 2022.

Li, M., Cai, T., Cao, J., Zhang, Q., Cai, H., Bai, J., Jia,
Y., Li, K., and Han, S. Distrifusion: Distributed par-
allel inference for high-resolution diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7183–7193, 2024c.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context. arXiv
preprint arXiv:2310.01889, 2023a.

Liu, H., Xie, Q., Deng, Z., Chen, C., Tang, S., Fu, F., Zha,
Z.-j., and Lu, H. Scott: Accelerating diffusion models
with stochastic consistency distillation. arXiv preprint
arXiv:2403.01505, 2024.

Liu, X., Zhang, X., Ma, J., Peng, J., et al. Instaflow: One
step is enough for high-quality diffusion-based text-to-
image generation. In The Twelfth International Confer-
ence on Learning Representations, 2023b.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Luo, Z., Chen, D., Zhang, Y., Huang, Y., Wang, L., Shen,
Y., Zhao, D., Zhou, J., and Tan, T. Videofusion: De-
composed diffusion models for high-quality video gen-
eration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2023.

Ma, X., Wang, Y., Jia, G., Chen, X., Liu, Z., Li, Y.-F., Chen,
C., and Qiao, Y. Latte: Latent diffusion transformer
for video generation. arXiv preprint arXiv:2401.03048,
2024.

Mirsky, Y. and Lee, W. The creation and detection of deep-
fakes: A survey. ACM Computing Surveys, 2020. doi:
10.1145/3425780.

OpenAI. Sora, 2024. URL https://openai.com/
index/sora/. Accessed: [2024].

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, June 2022a.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022b.

Salimans, T. and Ho, J. Progressive distillation for
fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Sauer, A., Lorenz, D., Blattmann, A., and Rombach,
R. Adversarial diffusion distillation. arXiv preprint
arXiv:2311.17042, 2023.

10

https://kling.kuaishou.com/en
https://kling.kuaishou.com/en
https://doi.org/10.5281/zenodo.10948109
https://doi.org/10.5281/zenodo.10948109
https://openai.com/index/sora/
https://openai.com/index/sora/


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

EFFICIENT-VDIT: Efficient Video Diffusion Transformers with Attention Tile

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. arXiv preprint arXiv:2303.01469, 2023.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Ro-
former: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 568:127063, 2024.

Valevski, D., Leviathan, Y., Arar, M., and Fruchter, S.
Diffusion models are real-time game engines. arXiv
preprint arXiv:2408.14837, 2024.

Wang, H., Agarwal, S., Tanaka, Y., Xing, E., Papailiopou-
los, D., et al. Cuttlefish: Low-rank model training with-
out all the tuning. Proceedings of Machine Learning and
Systems, 5:578–605, 2023a.

Wang, J., Fang, J., Li, A., and Yang, P. Pipefu-
sion: Displaced patch pipeline parallelism for infer-
ence of diffusion transformer models. arXiv preprint
arXiv:2405.14430, 2024a.

Wang, J., Ma, A., Feng, J., Leng, D., Yin, Y., and Liang, X.
Qihoo-t2x: An efficiency-focused diffusion transformer
via proxy tokens for text-to-any-task. arXiv preprint
arXiv:2409.04005, 2024b.

Wang, X., Zhang, S., Zhang, H., Liu, Y., Zhang, Y., Gao,
C., and Sang, N. Videolcm: Video latent consistency
model. arXiv preprint arXiv:2312.09109, 2023b.

Wang, Y., Chen, X., Ma, X., Zhou, S., Huang, Z., Wang,
Y., Yang, C., He, Y., Yu, J., Yang, P., et al. Lavie: High-
quality video generation with cascaded latent diffusion
models. arXiv preprint arXiv:2309.15103, 2023c.

Xiang, J., Liu, G., Gu, Y., Gao, Q., Ning, Y., Zha, Y., Feng,
Z., Tao, T., Hao, S., Shi, Y., et al. Pandora: Towards
general world model with natural language actions and
video states. arXiv preprint arXiv:2406.09455, 2024.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Xie, Q., Liao, Z., Deng, Z., Tang, S., Lu, H., et al.
Mlcm: Multistep consistency distillation of latent dif-
fusion model. arXiv preprint arXiv:2406.05768, 2024.

Xue, F., Chen, Y., Li, D., Hu, Q., Zhu, L., Li, X., Fang, Y.,
Tang, H., Yang, S., Liu, Z., et al. Longvila: Scaling long-
context visual language models for long videos. arXiv
preprint arXiv:2408.10188, 2024.

Xue, L. mt5: A massively multilingual pre-trained text-
to-text transformer. arXiv preprint arXiv:2010.11934,
2020.

Yang, D., Han, X., Gao, Y., Hu, Y., Zhang, S., and
Zhao, H. Pyramidinfer: Pyramid kv cache compres-
sion for high-throughput llm inference. arXiv preprint
arXiv:2405.12532, 2024a.

Yang, Z., Teng, J., Zheng, W., Ding, M., Huang, S.,
Xu, J., Yang, Y., Hong, W., Zhang, X., Feng, G.,
et al. Cogvideox: Text-to-video diffusion models with
an expert transformer. arXiv preprint arXiv:2408.06072,
2024b.

Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand, F.,
Freeman, W. T., and Park, T. One-step diffusion with
distribution matching distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6613–6623, 2024.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pp. 521–538, 2022.

Zhang, Z., Liu, S., Chen, R., Kailkhura, B., Chen, B., and
Wang, A. Q-hitter: A better token oracle for efficient llm
inference via sparse-quantized kv cache. Proceedings of
Machine Learning and Systems, 6:381–394, 2024a.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
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A. Extened layerwise search algorithm
In this section, we explore how to balance the trade-off between inference speedup and output image quality. Intuitively,
as the attention map becomes sparser, the inference time decreases, but the output image quality also degrades. With this
model, we can answer the key question: Given a target speedup or inference time, how can we achieve the highest
possible image quality?

This problem is well-suited to latency constrained case because, in real-world applications, speedup can be precisely
measured. Adjusting the generation quality within these constraints is therefore meaningful. Additionally, solving this
problem allows us to approximate continuous speedup ratios as closely as possible using discrete masks, further validating
the robustness of our algorithm.

A.1. Estimation and Quantitative Analysis

The inference time can be quantitatively computed. Given time limitation Ttarget. Suppose we have a series of masks
M1,M2, . . . ,Mk. For each mask, we can pre-profile its runtime as T1, T2, . . . , Tk. If layer j uses mask aj ∈ [1, k], the
total inference time is given by T =

∑
j Taj

≤ Ttarget.

On the other hand, quantifying image quality is challenging. To address this, we make an assumption: the impact of
different layers on image quality is additive. We use the loss as the value function, representing the output image quality
as L =

∑
j Lj,aj

, where Lj,aj
denotes the loss value when layer j uses mask type aj .

A.2. Lagrangian Relaxation Method

By introducing a Lagrange multiplier λ, we construct the Lagrangian function:

L(λ) =
∑
j

Lj,aj
+ λ

∑
j

Taj
− Ttarget

 . (5)

Our goal is to minimize L(λ), that is:

min
aj

L(λ) = min
aj

∑
j

Lj,aj
+ λ

∑
j

Taj

− λTtarget. (6)

Since Ttarget is a constant, the optimization problem can be simplified into independent subproblems for each layer j:

min
aj

(
Lj,aj + λTaj

)
. (7)

A.3. Lagrangian Subgradient Method

Input: Initial Lagrange multiplier λ(0), learning rate αt, maximum iterations N .
Output: Approximate optimal solution {aj} and Lagrange multiplier λ.

1. Initialization: Set iteration counter t = 0.

2. While t < N and not converged:

(a) Step 1: Solve Subproblems
For each layer j, solve the subproblem:

a
(t)
j = argmin

aj

(
Lj,aj

+ λ(t)Taj

)
. (8)
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(b) Step 2: Calculate Subgradient
Compute the subgradient:

g(t) =
∑
j

T
a
(t)
j
− Ttarget. (9)

(c) Step 3: Update Lagrange Multiplier
Update λ using the subgradient:

λ(t+1) = λ(t) + αtg
(t). (10)

(d) Update t = t+ 1.

Output: Return the approximate solution {aj} and the final Lagrange multiplier λ.

B. FlexAttention implementation details
The attention we design can be efficiently implemented by the native block-wise computation design in FlexAttention.
Compared to a dynamic implementations, our computations are static, allowing us to leverage static CUDA graphs for
capturing or use PyTorch’s compile=True feature.

FlexAttention employs a block-based mechanism that allows for efficient handling of sparse attention patterns. Specifically,
when an empty block is encountered, the module automatically skips the attention computation, leveraging the sparsity
in the attention matrix to accelerate calculations. The ability to skip computations in this manner results in significant
speedups while maintaining efficient memory usage.

Additionally, FlexAttention is optimized by avoiding the need to materialize the entire mask. This mechanism enables
FlexAttention to operate efficiently on large-scale models without incurring significant memory costs. For example, the
additional memory usage of a model with 32 layers and a 29 frames mask is only 0.278GB, while a 93 frames mask requires
0.715GB of additional memory, which is considered minimal for large-scale models. By not needing to store or process the
full mask, we save both memory and computation time, leading to improved performance, especially in scenarios where
the attention matrix is highly sparse.

C. Supplemental Vbench Evaluation

Table 6: Supplemental VBench evaluation for main result.

Model Multiple
Objects

Human
Action Color Dynamic

Degree
Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

Imaging
Quality

Base 23.25% 54.00% 94.47% 34.72% 43.49% 18.60% 19.88% 18.45% 19.69% 97.64% 64.75%
MLCD 19.21% 56.00% 94.12% 41.67% 40.57% 22.67% 20.46% 18.21% 19.77% 97.98% 65.55%

Oursr=0.025 18.83% 55.00% 96.25% 52.78% 46.02% 12.35% 20.31% 18.17% 19.11% 97.70% 58.90%
Oursr=0.050 11.74% 58.00% 92.11% 58.33% 39.81% 22.31% 20.25% 17.71% 19.45% 97.71% 56.86%
Oursr=0.100 18.98% 56.00% 93.65% 63.89% 43.88% 15.77% 20.20% 17.98% 19.29% 97.55% 54.88%
Oursr=0.200 17.99% 53.00% 51.82% 59.72% 36.14% 13.88% 20.29% 17.97% 18.97% 97.62% 54.07%
Oursr=0.400 15.32% 54.00% 92.64% 65.28% 37.05% 12.06% 20.24% 18.19% 19.22% 97.66% 54.36%
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D. Ablation study
D.1. Ablation study of the effect of MLCD and layerwise search

Effect of MLCD We conduct tests on VBench and CD-FVD, first comparing the differences between the Base model
and the MLCD model, and then evaluating the compatibility of CM with the attention mask. As shown in Table 7, the
MLCD model performs as well as or better than the Base model across most dimensions on VBench, achieving an overall
VBench score of 76.81%. Due to the MLCD model requiring fewer sampling steps than the Base model, it achieves a
5.00× speedup. Furthermore, we observe that the MLCD model, even after undergoing knowledge distillation, maintains
performance without any drop in quality. The VBench score and CD-FVD trends are consistent, indicating that the MLCD
model supports attention mask operations effectively, similar to the original model. Therefore, the MLCD model continues
to deliver high-quality performance while offering significant acceleration benefits.

Table 7: Ablation experiments on the effect of MLCD.

Model Final
Score ↑ Aesthetic

Quality
Motion

Smoothness
Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓ Speedup

Base 76.12% 58.34% 99.43% 99.28% 64.72% 98.45% 64.75% 172.64 1.00×
Base4:4 76.57% 58.64% 99.38% 99.20% 66.38% 98.26% 63.56% 171.62 1.16×
Base3:5 75.53% 55.47% 99.01% 98.96% 62.26% 97.42% 59.67% 197.35 1.26×
Base2:6 76.33% 57.14% 99.06% 99.02% 56.17% 97.58% 61.10% 201.61 1.45×
Base1:7 77.15% 57.53% 98.67% 98.66% 60.68% 96.96% 61.91% 322.28 1.77×

MLCD 76.81% 58.92% 99.41% 99.42% 63.37% 98.37% 65.55% 190.50 5.00×
MLCD4:4 75.90% 57.84% 99.38% 99.50% 63.03% 98.21% 58.47% 175.47 5.80×
MLCD3:5 75.41% 57.19% 99.36% 99.50% 57.04% 98.12% 58.84% 190.92 6.30×
MLCD2:6 75.23% 57.45% 99.29% 99.48% 54.59% 98.37% 57.35% 213.72 7.25×
MLCD1:7 75.84% 56.83% 98.99% 99.23% 52.77% 97.54% 56.42% 294.09 8.85×

Model Multiple
Objects

Human
Action Color Dynamic

Degree
Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

Base 23.25% 54.00% 94.47% 34.72% 43.49% 18.60% 19.88% 18.45% 19.69% 97.64%
Base4:4 32.01% 55.00% 90.94% 43.06% 45.42% 17.30% 20.21% 18.41% 19.48% 97.17%
Base3:5 15.85% 53.00% 88.88% 58.33% 44.38% 14.53% 20.13% 17.46% 18.43% 97.28%
Base2:6 21.65% 56.00% 93.27% 56.94% 49.90% 18.31% 19.87% 18.23% 18.94% 97.27%
Base1:7 17.76% 54.00% 93.02% 75.00% 44.75% 19.99% 19.95% 18.25% 19.41% 97.30%

MLCD 19.21% 56.00% 94.12% 41.67% 40.57% 22.67% 20.46% 18.21% 19.77% 97.98%
MLCD4:4 22.79% 53.00% 92.69% 50.00% 39.80% 17.51% 19.89% 18.32% 19.06% 97.30%
MLCD3:5 22.10% 50.00% 90.82% 43.06% 43.48% 21.44% 19.97% 17.68% 19.75% 97.47%
MLCD2:6 18.60% 53.00% 92.52% 44.44% 43.36% 16.21% 19.89% 17.84% 20.12% 97.70%
MLCD1:7 16.92% 53.00% 91.92% 63.89% 43.27% 17.22% 19.94% 18.56% 19.85% 97.45%

Effect of Layerwise Search We conduct tests on VBench and CD-FVD, selecting the MLCD model as the baseline. We
compare applying a uniform mask across all layers (e.g., 4:4, 3:5) with the layerwise mask from Algorithm 1. As shown
in Table 8, in VBench, using the layerwise mask with (r = 0.025, 0.050, 0.100) achieve a score exceeding 76.00%, sig-
nificantly outperforming the results without layerwise masking, while also providing a better speedup (7.05× vs. 5.80×).
In CD-FVD, the layerwise mask consistently results in scores below 250. However, as sparsity increases, the score with-
out layerwise masking exceeds 250, indicating a decrease in video generation quality. Therefore, the layerwise approach
enhances the quality of generated videos.
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Table 8: Ablation experiments on the effect of our layerwise searching algorithm.

Model Final
Score ↑ Aesthetic

Quality
Motion

Smoothness
Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓ Speedup

MLCD 76.81% 58.92% 99.41% 99.42% 63.37% 98.37% 65.55% 190.50 5.00×
MLCD4:4 75.90% 57.84% 99.38% 99.50% 63.03% 98.21% 58.47% 175.47 5.80×
MLCD3:5 75.41% 57.19% 99.36% 99.50% 57.04% 98.12% 58.84% 190.91 6.30×
MLCD2:6 75.23% 57.45% 99.29% 99.48% 54.59% 98.37% 57.35% 213.71 7.25×
MLCD1:7 75.84% 56.83% 98.99% 99.23% 52.77% 97.54% 56.42% 294.09 8.85×

Oursr=0.025 76.14% 57.21% 99.37% 99.49% 60.36% 98.26% 58.90% 186.84 5.85×
Oursr=0.050 76.01% 57.57% 99.15% 99.56% 58.70% 97.58% 56.86% 195.55 6.60×
Oursr=0.100 76.00% 56.59% 99.13% 99.54% 57.12% 97.73% 54.88% 204.13 7.05×
Oursr=0.200 75.02% 55.71% 99.03% 99.50% 55.22% 97.28% 54.07% 223.75 7.50×
Oursr=0.400 75.30% 55.79% 98.93% 99.46% 54.98% 97.71% 54.36% 231.68 7.80×

Model Multiple
Objects

Human
Action Color Dynamic

Degree
Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

MLCD 19.21% 56.00% 94.12% 41.67% 40.57% 22.67% 20.46% 18.21% 19.77% 97.98%
MLCD4:4 22.79% 53.00% 92.69% 50.00% 39.80% 17.51% 19.89% 18.32% 19.06% 97.30%
MLCD3:5 22.10% 50.00% 90.82% 43.06% 43.48% 21.44% 19.97% 17.68% 19.75% 97.47%
MLCD2:6 18.60% 53.00% 92.52% 44.44% 43.36% 16.21% 19.89% 17.84% 20.12% 97.70%
MLCD1:7 16.92% 53.00% 91.92% 63.89% 43.27% 17.22% 19.94% 18.56% 19.85% 97.45%

Oursr=0.025 18.83% 55.00% 96.25% 52.78% 46.02% 12.35% 20.31% 18.17% 19.11% 97.70%
Oursr=0.050 11.74% 58.00% 92.11% 58.33% 39.81% 22.31% 20.25% 17.71% 19.45% 97.71%
Oursr=0.100 18.98% 56.00% 93.65% 63.89% 43.88% 15.77% 20.20% 17.98% 19.29% 97.55%
Oursr=0.200 17.99% 53.00% 51.82% 59.72% 36.14% 13.88% 20.29% 17.97% 18.97% 97.62%
Oursr=0.400 15.32% 54.00% 92.64% 65.28% 37.05% 12.06% 20.24% 18.19% 19.22% 97.66%

Table 9: VBench evaluation result for ablation study on distillation order for MLCD and layerwise knowledge distillation.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓

MLCD + KD 76.00% 56.59% 63.88% 99.13% 99.54% 57.12% 97.73% 54.88% 204.13
KD + MLCD 75.50% 56.38% 54.16% 99.12% 99.40% 54.67% 97.71% 57.97% 203.52

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

MLCD + KD 18.97% 0.56% 93.65% 43.87% 15.77% 20.20% 17.98% 19.29% 97.55%
KD + MLCD 17.22% 0.53% 93.14% 39.87% 17.65% 20.11% 18.01% 19.17% 97.69%
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Figure 6: Qualitative samples of ablation of distillation order. sampled from VBench prompts. We show that both MLCD
and EFFICIENT-VDIT model can simliar quality on these samples. In two consecutive videos, the top shows results from
MLCD + CD model followed by KD + MLCD model.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

EFFICIENT-VDIT: Efficient Video Diffusion Transformers with Attention Tile

E. Attention distill on CogVideoX model
We show that attention distillation also works well on the CogVideoX (Yang et al., 2024b) model. CogVideoX is based
on the MM-DiT architecture, where its attention module concatenates text tokens with video tokens, which differs from
Open-Sora-Plan’s cross attention module. This demonstrates that our method works effectively on both MM-DiT and cross
attention architectures. Our experiments are conducted on the CogVideoX-5B model with 49-frame generation capability.

Implementation Details CogVideoX-5B is profiled using Algorithm 1. For training, the model is trained for a total of
10,000 steps, equivalent to 10 epochs of the dataset. The learning rate is set to 1e-7, and the gradient accumulation step is
set to 1. The diffusion scale factor λ is set to 1.

Kernel Performance We analyze the computation time for a single sparse attention kernel in Table 10. The results show
that as sparsity increases, computation time decreases significantly. For instance, with a 2:11 attention mask, the execution
time reduces to 15.16ms, achieving a 1.72× speedup compared to the full mask.

Table 10: CogvideoX-5B model speedup with different masks.

Mask Sparsity (%) Time(ms) Speedup

full 0.00 26.03 1.00×
1 14.50 24.12 1.08×
2 29.29 23.68 1.10×
3 38.30 20.51 1.27×
4 48.66 17.77 1.47×
6 60.15 14.08 1.85×

12 74.11 9.99 2.60×

Evaluation For quantitative analysis, we show the VBench evaluation results of the knowledge distillation model in Table
11. The results of our model are within 1% of the final score with no noticeable drop in several key dimensions. Our
model achieves comparable performance to the original model. For qualitative analysis, we present sample visualizations
in Figure 7 to demonstrate the video generation quality. These evaluations show that our method maintains similar video
quality while achieving significant speedup, validating its effectiveness across different video diffusion model architectures.

Table 11: CogVideoX-5B with 49 frames and 480p resolution results on VBench. ‘r=4.0’ indicates that this checkpoint
was trained using the layerwise search strategy described in Algorithm 1, with a threshold of r=4.0.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality Speedup

Base 77.91% 57.91% 76.39% 97.83% 97.34% 71.99% 92.27% 57.78% 1.00×
Oursr=5 77.15% 51.18% 86.11% 96.67% 97.18% 77.06% 90.89% 55.75% 1.34×

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

Base 48.62% 84.00% 86.71% 48.47% 38.01% 22.99% 23.22% 26.13% 95.01%
Oursr=5 39.17% 90.00% 83.58% 46.00% 36.92% 23.20% 23.40% 26.02% 93.95%

F. Qualitative samples of dynamic scenes and large-scale motion
In this section, we compare the generation quality between the base model and the distilled model. For a better demonstra-
tion of EFFICIENT-VDIT, we highly recommend viewing the video file in the supplementary material.

For the figures listed below, in Fig. 8, we demonstrate that our model is capable of generating large-scale motion ef-
fects such as centralized radiating explosions. In Figs. 9 and 10, we show a series of samples from VBench prompts,
demonstrating our model’s motion generation capabilities.
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Figure 7: Qualitative samples of CogvideoX-5B (Yang et al., 2024b) distillation from its sample prompts. We show that
our attention distill is capable of MM-DiT model architecture. In two consecutive videos, the top shows results from the
base model, followed by the distillation model.
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Prompt:The blast wave tears through the structure, turning solid walls into 
flying fragments.

 

E
-v

di
t m

od
el

M
L

C
D

 m
od

el
B

as
e 

m
od

el

Prompt:The firestorm implodes, creating a vacuum that pulls everything 
toward a single point.

 

Figure 8: Based on Open-Sora’s examples (Zheng et al., 2024) , we selected dynamic prompts featuring centralized explo-
sions and radiating energy, demonstrating dramatic transitions from focal points to expansive environmental transforma-
tions, emphasizing large-scale motion.
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Figure 9: Qualitative samples of dynamic scenes from VBench prompts. We show that both MLCD and EFFICIENT-
VDIT model can generate dynamic videos while maintaining video quality. In three consecutive videos, the top shows
results from the base model, followed by the MLCD model, and the EFFICIENT-VDIT model.
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Figure 10: Qualitative samples of dynamic scenes from VBench prompts. We show that both MLCD and EFFICIENT-
VDIT model can generate dynamic videos while maintaining video quality. In three consecutive videos, the top shows
results from the base model, followed by the MLCD model, and the EFFICIENT-VDIT model.
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