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Abstract

The task of visual forecasting deals with pre-
dicting future events from a sequence of in-
put images. Purely pixel-based approaches
find this challenging due to the presence of ab-
stract concepts and temporal events at differ-
ent timescales. In this paper, we present an ap-
proach that combines image captioning with
pre-trained language models to predict visual
futures. By leveraging language as an inter-
mediate medium, our model is able to perform
more effective temporal reasoning on two dif-
ferent tasks — visual story cloze and action
forecasting. Despite making the final predic-
tions using only the generated captions, our
approach outperforms state-of-the-art systems
by 4% and 6% respectively on the two tasks.
We find that our model consistently picks im-
ages/actions that are semantically relevant to
the given image sequence instead of simply re-
lying on visual similarity.’

1 Introduction

Predicting future events based on past observations
is useful for autonomous agents to navigate the
world. Several recent works in computer vision
and reinforcement learning have developed mod-
els that learn to predict or generate future obser-
vations (Xu et al., 2018; Isola et al., 2017; Ebert
et al., 2018), with one goal being to use such predic-
tions to inform control policies (Ha and Schmidhu-
ber, 2018; Hafner et al., 2019a; Schrittwieser et al.,
2020; Hafner et al., 2019b).

However, such approaches usually work directly
on pixel-based inputs (or build on top of visual
features from pre-trained models), which makes it
challenging to accurately capture and reason over
varying levels of temporal abstraction. In this pa-
per, we explore the use of natural language as a
medium for predicting visual futures, building on
recent insights that pre-trained language models

!Code provided in supplementary material.

can perform temporal reasoning (Vashishtha et al.,
2020; Han et al., 2020). Specifically, we first use
image captioning to describe frames in a sequence
of images, and then train a model that can reason
temporally over the generated captions to predict
future events. For the latter, we make use of pre-
trained language models such as RoBertA (Liu
et al., 2019) and fine-tune them to predict the re-
quired quantity in the future (e.g. picture that com-
pletes a story or an anticipated action). As our
experiments show, our use of captions allows for
temporal reasoning over a diverse set of abstract
concepts and timescales.

We compare our method with existing models
on two tasks — (1) visual story cloze, where the
goal is to pick an image that completes a sequence
of images to form a coherent story, and (2) action
forecasting, where a model has to predict a future
action. Surprisingly, despite not using image fea-
tures to make the final predictions and relying only
on captions, our approach outperforms the base-
lines on both tasks, by 4% and 6%, respectively.
Our analysis reveals that most of this gain comes
from the language model leveraging the high level
concepts in the generated captions to predict se-
mantically coherent future events.

2 Related Work

Future forecasting in vision and NLP Recent
work has explored ideas around generating future
images (Villegas et al., 2019; Ha and Schmidhu-
ber, 2018; Hafner et al., 2019a; Schrittwieser et al.,
2020; Hafner et al., 2019b), inferring trajectories
and future actions based on past observations (Zeng
et al., 2017), or predicting temporal orderings (Sig-
urdsson et al., 2016). These approaches require
learning good visual feature representations that
can capture temporal structure, which inherently
makes it challenging to model long-range temporal
events since capabilities like object tracking (Yil-
maz et al., 2006) and optical flow (Fortun et al.,
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Figure 1: (Left) Visual forecasting for Story Cloze: given a set of 4 context images, a model is tasked to predict the
most likely future image among 5 candidate images. Pixel-based approaches such as (Zeng et al., 2017) make an
incorrect prediction (dy4) since they rely heavily on visual similarities rather than semantic consistency or temporal
reasoning (e.g. "cooking on the grill" results in a "plate of cooked chicken"). Our approach generates captions for
all the images and uses the generated text to rank all the candidate completions with a language model (right).

2015) are more suited for prediction over shorter
timescales (~ 10-20 seconds). In our work, we
leverage the textual modality to better reason over
various timescales (e.g. minutes, hours, days).

Future forecasting in NLP includes story ending
prediction (Mostafazadeh et al., 2016; Cui et al.,
2020; Cai et al., 2017; Chaturvedi et al., 2017; Li
et al., 2019; Chen et al., 2019), temporal ordering
anticipation (Ning et al., 2020, 2018; Zhou et al.,
2019), future information retrieval (Baeza-Yates,
2005), and language models for storytelling (Am-
manabrolu et al., 2019; Li et al., 2019; Yang and
Tiddi, 2020). These works demonstrate the use of
modern language models for temporal modeling of
events, which forms a core part of our hypothesis.
Image captioning in downstream tasks Recent
work has explored the use of image captioning (Lin
et al., 2014; Li et al., 2020; You et al., 2016)
in downstream tasks like visual question answer-
ing (Wu et al., 2019; Fisch et al., 2020) and image
retrieval (Luo et al., 2018). While their primary
goal is to improve captioning and its applicability
to downstream tasks, our focus is on using the gen-
erated captions as a medium to perform temporal
reasoning for predicting visual futures.

3 Our Approach

Task Setup Given a sequence of k£ temporally
ordered images Iy, ..., I, our goal is to predict a
quantity y([+1) where I; ;1 represents a future

image continuing the temporal sequence, and y
represents a property based on that image (e.g. an
action or an image that completes a story). In this
work, we consider only discriminative predictions
and do not generate [, 1.

Prior approaches train a model to directly predict
y(Ir+1) using the input image frames. We wish to
leverage image captioning to assist with this pre-
diction. Therefore, we first caption the set of input
images to produce a set of captions (captioning
systems are described later in Section 3):

¢j = Caption(Iy, ..., I),forj e [1---k] (1)
Note that the generated caption might be condi-
tioned on the entire history of past images.

Once we have captions, we simply concatenate
them together with the relevant separator tokens
and feed them into a pre-trained language model
(L M) such as RoBERTa (Liu et al., 2019) to pre-
dict the required property y:

@:LM([Cl,...,Ck]) (2)
This LM is then fine-tuned using standard loss func-
tions such as cross-entropy loss. The parameters
of the captioning model are held fixed during this
training. Given this general framework, we provide
specific details for tasks below.

Visual Story Cloze In visual story
cloze (Mostafazadeh et al., 2016), the goal



is to predict the image that best completes (or
closes) a story from a set of candidate choices.
Formally, the goal is to predict the right I, from
a set of images that also contain m distractors
Dy, ..., Dy,. We generate captions for all the candi-
dates to obtain ci. 1 and dy, ..., d,,, respectively.
Each of these captions is concatenated with the con-
text captions cy, ..., ¢, and input into the language
model to produce a score, s = LM ([cy, ..., ¢k, C])
where C' € {ck11,d1,...,dn}. These scores are
then optimized with binary cross entropy loss.

Action Forecasting For this task (Patron et al.,
2010), y(Ix+1) is an action in the future to be pre-
dicted. We pass the context captions ¢y, ..., ¢, into
the language model to predict y and fine-tune the
language model with standard cross-entropy loss.

Converting Images to Captions We consider
two options for generating captions:

1. Independent image captioning: Here, we gen-
erate captions for each image independently, i.e.
¢; = Caption(I;). We use Oscar (Li et al., 2020),
a state-of-the-art image captioning approach pre-
trained on millions of aligned image text corpora
(Sharma et al., 2018; Plummer et al., 2015; Hudson
and Manning, 2019) and finetuned on COCO cap-
tions (Lin et al., 2014), and label the model as "Os-
car(pretrained)". For story cloze, we also finetuned
an Oscar variant on captions from the training data
and label this variant as "Oscar(finetuned)".

2. Story captioning: We experiment with with
Reco-RL (Hu et al., 2020) and AREL (Wang et al.,
2018) storytelling models that jointly produce cap-
tions for an entire sequence of images. Given the
Story operator, which extracts the last sentence
from the generated story of the input image se-
quence, we generate text for the context and dis-
tractor images as follows:

c; = Story([11, ..., I;])forj e [1---5]
dy, = Story([11; I2; I3; 14; Dy]|)fork € [1---4]

4 Experiments

Datasets: For visual story cloze, we follow (Zeng
et al., 2017) and construct the future prediction
task through storylines from the Visual Storytelling
Dataset (Huang et al., 2016). The dataset consists
of temporally-ordered sequence of 5 photos from a
large subset of Flickr albums and provides GT sto-
ries and captions. Following Zeng et al. (2017), we
randomly select 1 storyline from each album and

Validation Test
Model R@11 R@31 R@11 R@31
GAIL (Zengetal., 2017) 24.77  65.80 22.48 64.95
Nearest Neighbor 22.67 63.09 24.26 62.27
LSTM 19.96 58.58 21.68  59.11
Oscar(finetuned) + ROBERTa 29.66 68.54 28.39 69.14
Oscar(pretrained) + RoOBERTa  29.15 68.54 26.80 67.26
AREL + RoBERTa 27.38  64.79 2297 62.08
ReCo-RL + RoBERTa 25.67  64.79  23.96  63.66
Human Baseline - - 31.00 -
Random 20.00 60.00 20.00 60.00

Table 1: Summary of results on the future image pre-
diction task on both the validation and test splits.t indi-
cates higher is better. | indicates lower is better.

sample 4 distractor images from the same Flickr al-
bum. Using the original split, we get 8024 training,
1011 testing, and 998 validation storylines.

For action forecasting, we use the TV Human
Interactions dataset (Patron et al., 2010), with 300
videos of 4 interactive actions ("Hug", "Kiss",
"HighFive", "HandShake"), with a 50-50 split be-
tween train/test. We follow the same setup in Zeng
et al. (2017) and use context images upto 1 second
before the start of the action. We sample 3 images
from the context images to make the prediction.
Baselines: We compare with several baselines, fol-
lowing Zeng et al. (2017):

1. LSTM (Hochreiter and Schmidhuber, 1997):
This uses ResNet-101 (He et al., 2016) features
for the context images to predict y(/;+1).

2. Nearest Neighbor(NN): We extract ResNet-101
features for all candidates and pick candidate with
the lowest L2 difference with the context feature.
3. GAIL (Zeng et al., 2017): This leverages Gen-
eral Adversarial Imitation Learning (GAIL) (Ho
and Ermon, 2016) to model sequences of images
(details in appendix A.5).

We also collected human baseline performances for
the tasks (details in Appendix A.2).

Evaluation metrics: We rank scores of all the can-
didates for y(Ij1), calculate the rank of the GT
candidate and report Recall@k. We setk to 1, 3 for
visual story cloze and 1 for action forecasting.
Pre-trained LMs: We experiment with the pre-
trained and randomly initialized variants of the
RoBERTa (Liu et al., 2019), GPT-2 (Radford et al.,
2018) and BERT (Devlin et al., 2019) LMs.

5 Results

Visual story cloze. From Table 1, we see that our
best model, Oscar(finetuned) + RoBERTa, outper-
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Figure 2: Comparing predictions on samples from the test split across different variants (GAIL in dashed pur-
ple, NN in dashed red, our Oscar(finetuned) + RoBERTa model in green) with captions generated from Os-
car(finetuned). Our model predicts candidates which are most likely to occur in the future by leveraging the
concepts in the captions, as opposed to the vision baselines which predict candidates which are visually similar to

the context images (Best viewed in color).

Model R@1
GAIL (Zeng et al., 2017) 45.8
Deep Regression (K = 3) (Vondrick et al., 2016) 43.6+ 4.8

Oscar(pretrained) + RoBERTa 52.0 + 13.1
Oscar(pretrained) + GPT-2 51.0 £17.0
Oscar(pretrained) + BERT 49.0 + 14.5

Human (Vondrick et al., 2016) 71.7

Random 25

Table 2: Performance on the TV Human Interaction
dataset (Baselines from Zeng et al. (2017)).>

forms the closest vision-only baselines, GAIL and
NN, by more than 4% on both R@1 and R@3
respectively. This is significant given that R@1
performance for humans is only ~ 31%. The dis-
tractor images tend to be visually similar to the
context images as they belong to the same Flickr
album and might explain why vision baselines,
which rely mostly on pixel similarity, do worse
than our models, which are able to leverage lan-
guage pre-training to predict the most likely con-
cepts to occur in the future. We note that our ap-
proach is competitive even without access to GT
captions(Oscar(pretrained) and Oscar(finetuning)
differ only by ~ 1.5% on R@1). An extensive
comparison between different pre-trained LMs is
in Appendix A.1.

Captions vs Stories (Table 1): The storytelling
variants (ReCo-RL, AREL) perform much worse
than the captioning variants. This is likely due
to the storytelling models generating generic sto-
ries("They had a great time"), which are accurate
but not descriptive, as opposed to captioning mod-
els which tend to generate more descriptive cap-
tions("Picture of man eating cake in the garden").

2Standard deviation not available for Zeng et al. (2017)

Qualitative samples (Figure 2): Both rows
demonstrate examples where the vision baselines
such as NN (marked in red) and GAIL (marked
in purple) incorrectly predict candidates that are
visually similar to the context images. In contrast,
our model (marked in green) encodes all the im-
portant concepts in the sequence of images ("eating
dinner", "man holding a baby on a couch") through
captions and leverages language pretraining to cor-
rectly predict the future concept (e.g. "sitting on a
couch") that is most likely to occur.

Action Forecasting Table 2 shows that our
model Oscar(pretrained) + RoOBERTa, outperforms
the best vision baselines, GAIL, by more than 6%
and thus show that language pretraining might be
capturing meaningful information about action dy-
namics (e.g: "high five" is the likely action follow-
ing "two men standing at a table").

6 Conclusion

We propose a novel approach that combines im-
age captioning with pre-trained language models
to predict visual futures. By leveraging language
as an intermediate medium, our model is able to
perform more effective temporal reasoning on two
different tasks — visual story cloze and action fore-
casting. Surprisingly our system, which makes
final predictions using only the generated captions,
outperforms state-of-the-art systems by 4% and
6% respectively on the two tasks. Our model suc-
cessfully encodes all the important concepts in the
sequence of images through captions and leverages
language pre-training to correctly predict the con-
cepts likely to occur in the future.
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A Appendix

A.1 Varying LMs (Table 3)

Pre-training significantly improves R@1(3.5% for
GPT-2, 5.5% for BERT) over randomly initialized
models, thus validating the need for pre-training.
All the pre-training approaches tend to perform
similarly with RoBERTa performing the best.

A.2 Human Baselines

We ask annotators on Mechanical Turk platform
to do the visual story cloze task (Figure 3), i.e
pick one of the 5 candidate images given 4 context
images, on 200 samples from the test split. All
annotators are highly rated and belong to United
States. We get 3 annotations for each sample and
measure annotator agreement by calculating the
number of times 2 or more of the 3 annotators made
the same prediction. We find that the annotators
agree 77% of the time. For action forecasting, we
cite the human study from Vondrick et al. (2016).

A.3 Qualitative samples (Figure 4)

Row 1 shows a family having an outdoor barbeque
party. The first three images show the family play-
ing with a child and the last image shows an old
man barbequing. While the vision models predict
visually similar but semantically unrelated candi-
dates, our model correctly captures the correlation
between "a plate of cooked chicken" and "a man
on the grill". Now, consider row 2 which depicts
a father-son duo watching a baseball game. While
our model predicts the wrong candidate, the corre-
sponding caption "two young boys playing base-
ball" is a likely event in post-game celebrations.

A.4 Implementation details

We use a batch size of 16. We use a maximum learn-
ing rate of 2e-5 and decay to 1le-5 over the length of

Validation Test
Model R@11 R@31 R@11 R@31
RoBERTa 29.66 68.54 28.39 69.14
BERT 2996 70.04 2730 68.74
GPT-2 29.86 69.04  28.29 68.25
Random init. BERT 26.95 66.03 21.66 64.00
Random init. GPT-2 27.56 67.64  24.83 64.69

Table 3: Performance of different pretrained models on
the future image prediction task, with captions gener-
ated from Oscar(finetuned).

training and optimize with Adam (Kingma and Ba,
2015). We set the maximum length of the generated
caption to 20. We train the visual story cloze exper-
iments for 10-20 epochs and the action forecasting
experiment for 60 epochs. All are models are im-
plemented in PyTorch (Paszke et al., 2019) and we
use the Hugging Face transformers library (Wolf
et al., 2020) for all pre-trained LMs.

A.5 Reproducing Image GAIL Model

We recreate the model in Zeng et al. (2017)(Fig-
ure 5) for benchmarking and fine-tune components
that were not concretely described in the original
paper. The overall model architecture uses ResNet-
101 as the network ¢, an autoencoder as the policy
network 7, and a discriminator, the latter two of
which are described in the supplemental material
for (Zeng et al., 2017). During training, we use the
Adam optimizer and 10~* as the initial learning
rate for all three models, and decay the learning
rate by a factor of 0.1 after every 20 epochs. We
also set the batch size to be 16 and use a dropout
rate of 0.5 across all dropout layers. Additionally,
we freeze the weights of ResNet-101 for the first
5 epochs, and unfreeze them afterwards until the
end of training. To calculate rewards for the policy
network, we set a discount rate 0.99.

During training, a batch of sequences of 5
temporally-ordered images are fed into ¢ to pro-
duce a batch of sequences of 5 temporally ordered
2048-dimensional vectors. We then take the first
vector hy of each sequence in the batch and pass
them through the policy network 7 to produce a
corresponding prediction, as, and feed these into a
normal distribution with fixed variance o to pro-
duce the predicted state h},. We then repeat this
process to produce h4 from hl, b/, from hf, and hi
from h). We treat [hy, hyy1] as the ground-truth
state-action pair, and [hy, b} ;] as the policy pre-
diction state-action pair.

During discriminator updates, we compute the dis-
criminator loss with binary cross-entropy on the
expert trajectory state-action pairs and policy tra-
jectory state action pairs, then taking the mean loss
across the batch for gradient computation. During
policy updates, we employ the Monte Carlo search
described in the supplemental material for (Zeng
et al., 2017), where we compute the expected return
Q(h, hyt1) as the sum of all discriminator outputs
on the trajectory of states from the policy output.
Finally, we compute the policy gradient loss as the



View detailed instructions

Instructions: The given sequence of images describe a visual narrative.

Figure 3: Task interface used to get annotations for the human baseline for the visual cloze task on the Visual Sto-
rytelling dataset (Mostafazadeh et al., 2016). Workers are shown the 4 context images and are asked to determine
which image, among 5 candidates, best completes the narrative defined by the context images.

Context
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woman's hand
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holding up a fish.
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playing with a
child in a pool
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1
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Figure 4: Comparing predictions on samples from the test split across different variants (GAIL in dashed pur-
ple, NN in dashed red, our Oscar(finetuned) + RoBERTa model in green) with captions generated from Os-
car(finetuned). Best viewed in color.



sum of the negative product of the log probabil-
ity and the expected reward Q(h, hy41) across the
state trajectory.
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Figure 5: Shows training loop for image-based GAIL model. Given a sequence of 5 images, the model transforms
them into 2048-dimensional vectors and splits them such that the vectors representing the first 4 images represent
the input states, while the last 4 images represent the expert trajectory. These two sequences are then used to
compute both the discriminator and policy loss.
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