
Predicting Visual Futures with Image Captioning and Pre-Trained
Language Models

Anonymous ACL submission

Abstract

The task of visual forecasting deals with pre-001
dicting future events from a sequence of in-002
put images. Purely pixel-based approaches003
find this challenging due to the presence of ab-004
stract concepts and temporal events at differ-005
ent timescales. In this paper, we present an ap-006
proach that combines image captioning with007
pre-trained language models to predict visual008
futures. By leveraging language as an inter-009
mediate medium, our model is able to perform010
more effective temporal reasoning on two dif-011
ferent tasks – visual story cloze and action012
forecasting. Despite making the final predic-013
tions using only the generated captions, our014
approach outperforms state-of-the-art systems015
by 4% and 6% respectively on the two tasks.016
We find that our model consistently picks im-017
ages/actions that are semantically relevant to018
the given image sequence instead of simply re-019
lying on visual similarity.1020

1 Introduction021

Predicting future events based on past observations022

is useful for autonomous agents to navigate the023

world. Several recent works in computer vision024

and reinforcement learning have developed mod-025

els that learn to predict or generate future obser-026

vations (Xu et al., 2018; Isola et al., 2017; Ebert027

et al., 2018), with one goal being to use such predic-028

tions to inform control policies (Ha and Schmidhu-029

ber, 2018; Hafner et al., 2019a; Schrittwieser et al.,030

2020; Hafner et al., 2019b).031

However, such approaches usually work directly032

on pixel-based inputs (or build on top of visual033

features from pre-trained models), which makes it034

challenging to accurately capture and reason over035

varying levels of temporal abstraction. In this pa-036

per, we explore the use of natural language as a037

medium for predicting visual futures, building on038

recent insights that pre-trained language models039

1Code provided in supplementary material.

can perform temporal reasoning (Vashishtha et al., 040

2020; Han et al., 2020). Specifically, we first use 041

image captioning to describe frames in a sequence 042

of images, and then train a model that can reason 043

temporally over the generated captions to predict 044

future events. For the latter, we make use of pre- 045

trained language models such as RoBertA (Liu 046

et al., 2019) and fine-tune them to predict the re- 047

quired quantity in the future (e.g. picture that com- 048

pletes a story or an anticipated action). As our 049

experiments show, our use of captions allows for 050

temporal reasoning over a diverse set of abstract 051

concepts and timescales. 052

We compare our method with existing models 053

on two tasks – (1) visual story cloze, where the 054

goal is to pick an image that completes a sequence 055

of images to form a coherent story, and (2) action 056

forecasting, where a model has to predict a future 057

action. Surprisingly, despite not using image fea- 058

tures to make the final predictions and relying only 059

on captions, our approach outperforms the base- 060

lines on both tasks, by 4% and 6%, respectively. 061

Our analysis reveals that most of this gain comes 062

from the language model leveraging the high level 063

concepts in the generated captions to predict se- 064

mantically coherent future events. 065

2 Related Work 066

Future forecasting in vision and NLP Recent 067

work has explored ideas around generating future 068

images (Villegas et al., 2019; Ha and Schmidhu- 069

ber, 2018; Hafner et al., 2019a; Schrittwieser et al., 070

2020; Hafner et al., 2019b), inferring trajectories 071

and future actions based on past observations (Zeng 072

et al., 2017), or predicting temporal orderings (Sig- 073

urdsson et al., 2016). These approaches require 074

learning good visual feature representations that 075

can capture temporal structure, which inherently 076

makes it challenging to model long-range temporal 077

events since capabilities like object tracking (Yil- 078

maz et al., 2006) and optical flow (Fortun et al., 079
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Figure 1: (Left) Visual forecasting for Story Cloze: given a set of 4 context images, a model is tasked to predict the
most likely future image among 5 candidate images. Pixel-based approaches such as (Zeng et al., 2017) make an
incorrect prediction (d4) since they rely heavily on visual similarities rather than semantic consistency or temporal
reasoning (e.g. "cooking on the grill" results in a "plate of cooked chicken"). Our approach generates captions for
all the images and uses the generated text to rank all the candidate completions with a language model (right).

2015) are more suited for prediction over shorter080

timescales („ 10-20 seconds). In our work, we081

leverage the textual modality to better reason over082

various timescales (e.g. minutes, hours, days).083

Future forecasting in NLP includes story ending084

prediction (Mostafazadeh et al., 2016; Cui et al.,085

2020; Cai et al., 2017; Chaturvedi et al., 2017; Li086

et al., 2019; Chen et al., 2019), temporal ordering087

anticipation (Ning et al., 2020, 2018; Zhou et al.,088

2019), future information retrieval (Baeza-Yates,089

2005), and language models for storytelling (Am-090

manabrolu et al., 2019; Li et al., 2019; Yang and091

Tiddi, 2020). These works demonstrate the use of092

modern language models for temporal modeling of093

events, which forms a core part of our hypothesis.094

Image captioning in downstream tasks Recent095

work has explored the use of image captioning (Lin096

et al., 2014; Li et al., 2020; You et al., 2016)097

in downstream tasks like visual question answer-098

ing (Wu et al., 2019; Fisch et al., 2020) and image099

retrieval (Luo et al., 2018). While their primary100

goal is to improve captioning and its applicability101

to downstream tasks, our focus is on using the gen-102

erated captions as a medium to perform temporal103

reasoning for predicting visual futures.104

3 Our Approach105

Task Setup Given a sequence of k temporally106

ordered images I1, ..., Ik, our goal is to predict a107

quantity ypIk`1q where Ik`1 represents a future108

image continuing the temporal sequence, and y 109

represents a property based on that image (e.g. an 110

action or an image that completes a story). In this 111

work, we consider only discriminative predictions 112

and do not generate Ik`1. 113

Prior approaches train a model to directly predict 114

ypIk`1q using the input image frames. We wish to 115

leverage image captioning to assist with this pre- 116

diction. Therefore, we first caption the set of input 117

images to produce a set of captions (captioning 118

systems are described later in Section 3): 119

cj “ CaptionpI1, ..., Ijq, for j P r1 ¨ ¨ ¨ ks (1) 120

Note that the generated caption might be condi- 121

tioned on the entire history of past images. 122

Once we have captions, we simply concatenate 123

them together with the relevant separator tokens 124

and feed them into a pre-trained language model 125

(LM ) such as RoBERTa (Liu et al., 2019) to pre- 126

dict the required property ŷ: 127

ŷ “ LMprc1, ..., cksq (2) 128

This LM is then fine-tuned using standard loss func- 129

tions such as cross-entropy loss. The parameters 130

of the captioning model are held fixed during this 131

training. Given this general framework, we provide 132

specific details for tasks below. 133

Visual Story Cloze In visual story 134

cloze (Mostafazadeh et al., 2016), the goal 135
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is to predict the image that best completes (or136

closes) a story from a set of candidate choices.137

Formally, the goal is to predict the right Ik`1 from138

a set of images that also contain m distractors139

D1, ..., Dm. We generate captions for all the candi-140

dates to obtain ck`1 and d1, ..., dm, respectively.141

Each of these captions is concatenated with the con-142

text captions c1, ..., ck and input into the language143

model to produce a score, s “ LMprc1, ..., ck, Csq144

where C P tck`1, d1, ..., dmu. These scores are145

then optimized with binary cross entropy loss.146

Action Forecasting For this task (Patron et al.,147

2010), ypIk`1q is an action in the future to be pre-148

dicted. We pass the context captions c1, ..., ck into149

the language model to predict y and fine-tune the150

language model with standard cross-entropy loss.151

Converting Images to Captions We consider152

two options for generating captions:153

1. Independent image captioning: Here, we gen-154

erate captions for each image independently, i.e.155

cj “ CaptionpIjq. We use Oscar (Li et al., 2020),156

a state-of-the-art image captioning approach pre-157

trained on millions of aligned image text corpora158

(Sharma et al., 2018; Plummer et al., 2015; Hudson159

and Manning, 2019) and finetuned on COCO cap-160

tions (Lin et al., 2014), and label the model as "Os-161

car(pretrained)". For story cloze, we also finetuned162

an Oscar variant on captions from the training data163

and label this variant as "Oscar(finetuned)".164

2. Story captioning: We experiment with with165

Reco-RL (Hu et al., 2020) and AREL (Wang et al.,166

2018) storytelling models that jointly produce cap-167

tions for an entire sequence of images. Given the168

Story operator, which extracts the last sentence169

from the generated story of the input image se-170

quence, we generate text for the context and dis-171

tractor images as follows:172

cj “ StoryprI1, ..., Ijsqfor j P r1 ¨ ¨ ¨ 5s173

174
dk “ StoryprI1; I2; I3; I4;Dksqfor k P r1 ¨ ¨ ¨ 4s175

4 Experiments176

Datasets: For visual story cloze, we follow (Zeng177

et al., 2017) and construct the future prediction178

task through storylines from the Visual Storytelling179

Dataset (Huang et al., 2016). The dataset consists180

of temporally-ordered sequence of 5 photos from a181

large subset of Flickr albums and provides GT sto-182

ries and captions. Following Zeng et al. (2017), we183

randomly select 1 storyline from each album and184

Validation Test
Model R@1 Ò R@3 Ò R@1 Ò R@3 Ò

GAIL (Zeng et al., 2017) 24.77 65.80 22.48 64.95
Nearest Neighbor 22.67 63.09 24.26 62.27
LSTM 19.96 58.58 21.68 59.11

Oscar(finetuned) + RoBERTa 29.66 68.54 28.39 69.14
Oscar(pretrained) + RoBERTa 29.15 68.54 26.80 67.26
AREL + RoBERTa 27.38 64.79 22.97 62.08
ReCo-RL + RoBERTa 25.67 64.79 23.96 63.66

Human Baseline - - 31.00 -
Random 20.00 60.00 20.00 60.00

Table 1: Summary of results on the future image pre-
diction task on both the validation and test splits.Ò indi-
cates higher is better. Ó indicates lower is better.

sample 4 distractor images from the same Flickr al- 185

bum. Using the original split, we get 8024 training, 186

1011 testing, and 998 validation storylines. 187

For action forecasting, we use the TV Human 188

Interactions dataset (Patron et al., 2010), with 300 189

videos of 4 interactive actions ("Hug", "Kiss", 190

"HighFive", "HandShake"), with a 50-50 split be- 191

tween train/test. We follow the same setup in Zeng 192

et al. (2017) and use context images upto 1 second 193

before the start of the action. We sample 3 images 194

from the context images to make the prediction. 195

Baselines: We compare with several baselines, fol- 196

lowing Zeng et al. (2017): 197

1. LSTM (Hochreiter and Schmidhuber, 1997): 198

This uses ResNet-101 (He et al., 2016) features 199

for the context images to predict ypIk`1q. 200

2. Nearest Neighbor(NN): We extract ResNet-101 201

features for all candidates and pick candidate with 202

the lowest L2 difference with the context feature. 203

3. GAIL (Zeng et al., 2017): This leverages Gen- 204

eral Adversarial Imitation Learning (GAIL) (Ho 205

and Ermon, 2016) to model sequences of images 206

(details in appendix A.5). 207

We also collected human baseline performances for 208

the tasks (details in Appendix A.2). 209

Evaluation metrics: We rank scores of all the can- 210

didates for y(Ik`1q, calculate the rank of the GT 211

candidate and report Recall@k. We set k to 1, 3 for 212

visual story cloze and 1 for action forecasting. 213

Pre-trained LMs: We experiment with the pre- 214

trained and randomly initialized variants of the 215

RoBERTa (Liu et al., 2019), GPT-2 (Radford et al., 216

2018) and BERT (Devlin et al., 2019) LMs. 217

5 Results 218

Visual story cloze. From Table 1, we see that our 219

best model, Oscar(finetuned) + RoBERTa, outper- 220
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the side of a road 

surrounded by 
trees and bushes. 

a man and a woman 
working in a garden.

a group of 
vegetables that 

are on top of 
each other.

a man sitting 
on the ground 
in the middle 

of a forest.

a plate of food sits 
on a table next to 

a wine glass

a woman running on 
a path next to a lake

a blue house with 
green bushes in 

front of it

a man in a suit is 
standing in front 

of a television

a red car with a 
white sticker on 

the side of it

two women and 
a baby are sitting 

on a couch

a man and a woman 
are sitting at a table 

and eating

a little girl with 
a green pacifier 
in her mouth

two older men 
standing next to a 
fence in a yard

a little boy is sitting 
on a wooden bench

a group of people 
sitting around a table 

eating dinner 

a group of people 
that are sitting 

next to each other

a group of people 
are sitting at a 

table and eating

a man is holding 
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Context DistractorsGT

Figure 2: Comparing predictions on samples from the test split across different variants (GAIL in dashed pur-
ple, NN in dashed red, our Oscar(finetuned) + RoBERTa model in green) with captions generated from Os-
car(finetuned). Our model predicts candidates which are most likely to occur in the future by leveraging the
concepts in the captions, as opposed to the vision baselines which predict candidates which are visually similar to
the context images (Best viewed in color).

Model R@1

GAIL (Zeng et al., 2017) 45.8
Deep Regression (K “ 3) (Vondrick et al., 2016) 43.6˘ 4.8

Oscar(pretrained) + RoBERTa 52.0˘ 13.1
Oscar(pretrained) + GPT-2 51.0˘ 17.0
Oscar(pretrained) + BERT 49.0˘ 14.5

Human (Vondrick et al., 2016) 71.7
Random 25

Table 2: Performance on the TV Human Interaction
dataset (Baselines from Zeng et al. (2017)).2

forms the closest vision-only baselines, GAIL and221

NN, by more than 4% on both R@1 and R@3222

respectively. This is significant given that R@1223

performance for humans is only „ 31%. The dis-224

tractor images tend to be visually similar to the225

context images as they belong to the same Flickr226

album and might explain why vision baselines,227

which rely mostly on pixel similarity, do worse228

than our models, which are able to leverage lan-229

guage pre-training to predict the most likely con-230

cepts to occur in the future. We note that our ap-231

proach is competitive even without access to GT232

captions(Oscar(pretrained) and Oscar(finetuning)233

differ only by „ 1.5% on R@1). An extensive234

comparison between different pre-trained LMs is235

in Appendix A.1.236

Captions vs Stories (Table 1): The storytelling237

variants (ReCo-RL, AREL) perform much worse238

than the captioning variants. This is likely due239

to the storytelling models generating generic sto-240

ries("They had a great time"), which are accurate241

but not descriptive, as opposed to captioning mod-242

els which tend to generate more descriptive cap-243

tions("Picture of man eating cake in the garden").244

2Standard deviation not available for Zeng et al. (2017)

Qualitative samples (Figure 2): Both rows 245

demonstrate examples where the vision baselines 246

such as NN (marked in red) and GAIL (marked 247

in purple) incorrectly predict candidates that are 248

visually similar to the context images. In contrast, 249

our model (marked in green) encodes all the im- 250

portant concepts in the sequence of images ("eating 251

dinner", "man holding a baby on a couch") through 252

captions and leverages language pretraining to cor- 253

rectly predict the future concept (e.g. "sitting on a 254

couch") that is most likely to occur. 255

Action Forecasting Table 2 shows that our 256

model Oscar(pretrained) + RoBERTa, outperforms 257

the best vision baselines, GAIL, by more than 6% 258

and thus show that language pretraining might be 259

capturing meaningful information about action dy- 260

namics (e.g: "high five" is the likely action follow- 261

ing "two men standing at a table"). 262

6 Conclusion 263

We propose a novel approach that combines im- 264

age captioning with pre-trained language models 265

to predict visual futures. By leveraging language 266

as an intermediate medium, our model is able to 267

perform more effective temporal reasoning on two 268

different tasks – visual story cloze and action fore- 269

casting. Surprisingly our system, which makes 270

final predictions using only the generated captions, 271

outperforms state-of-the-art systems by 4% and 272

6% respectively on the two tasks. Our model suc- 273

cessfully encodes all the important concepts in the 274

sequence of images through captions and leverages 275

language pre-training to correctly predict the con- 276

cepts likely to occur in the future. 277
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A Appendix498

A.1 Varying LMs (Table 3)499

Pre-training significantly improves R@1(3.5% for500

GPT-2, 5.5% for BERT) over randomly initialized501

models, thus validating the need for pre-training.502

All the pre-training approaches tend to perform503

similarly with RoBERTa performing the best.504

A.2 Human Baselines505

We ask annotators on Mechanical Turk platform506

to do the visual story cloze task (Figure 3), i.e507

pick one of the 5 candidate images given 4 context508

images, on 200 samples from the test split. All509

annotators are highly rated and belong to United510

States. We get 3 annotations for each sample and511

measure annotator agreement by calculating the512

number of times 2 or more of the 3 annotators made513

the same prediction. We find that the annotators514

agree 77% of the time. For action forecasting, we515

cite the human study from Vondrick et al. (2016).516

A.3 Qualitative samples (Figure 4)517

Row 1 shows a family having an outdoor barbeque518

party. The first three images show the family play-519

ing with a child and the last image shows an old520

man barbequing. While the vision models predict521

visually similar but semantically unrelated candi-522

dates, our model correctly captures the correlation523

between "a plate of cooked chicken" and "a man524

on the grill". Now, consider row 2 which depicts525

a father-son duo watching a baseball game. While526

our model predicts the wrong candidate, the corre-527

sponding caption "two young boys playing base-528

ball" is a likely event in post-game celebrations.529

530

A.4 Implementation details531

We use a batch size of 16. We use a maximum learn-532

ing rate of 2e-5 and decay to 1e-5 over the length of533

Validation Test
Model R@1 Ò R@3 Ò R@1 Ò R@3 Ò

RoBERTa 29.66 68.54 28.39 69.14
BERT 29.96 70.04 27.30 68.74
GPT-2 29.86 69.04 28.29 68.25
Random init. BERT 26.95 66.03 21.66 64.00
Random init. GPT-2 27.56 67.64 24.83 64.69

Table 3: Performance of different pretrained models on
the future image prediction task, with captions gener-
ated from Oscar(finetuned).

training and optimize with Adam (Kingma and Ba, 534

2015). We set the maximum length of the generated 535

caption to 20. We train the visual story cloze exper- 536

iments for 10-20 epochs and the action forecasting 537

experiment for 60 epochs. All are models are im- 538

plemented in PyTorch (Paszke et al., 2019) and we 539

use the Hugging Face transformers library (Wolf 540

et al., 2020) for all pre-trained LMs. 541

A.5 Reproducing Image GAIL Model 542

We recreate the model in Zeng et al. (2017)(Fig- 543

ure 5) for benchmarking and fine-tune components 544

that were not concretely described in the original 545

paper. The overall model architecture uses ResNet- 546

101 as the network φ, an autoencoder as the policy 547

network π, and a discriminator, the latter two of 548

which are described in the supplemental material 549

for (Zeng et al., 2017). During training, we use the 550

Adam optimizer and 10´4 as the initial learning 551

rate for all three models, and decay the learning 552

rate by a factor of 0.1 after every 20 epochs. We 553

also set the batch size to be 16 and use a dropout 554

rate of 0.5 across all dropout layers. Additionally, 555

we freeze the weights of ResNet-101 for the first 556

5 epochs, and unfreeze them afterwards until the 557

end of training. To calculate rewards for the policy 558

network, we set a discount rate 0.99. 559

During training, a batch of sequences of 5 560

temporally-ordered images are fed into φ to pro- 561

duce a batch of sequences of 5 temporally ordered 562

2048-dimensional vectors. We then take the first 563

vector h1 of each sequence in the batch and pass 564

them through the policy network π to produce a 565

corresponding prediction, a2, and feed these into a 566

normal distribution with fixed variance σ2 to pro- 567

duce the predicted state h12. We then repeat this 568

process to produce h13 from h12, h14 from h13, and h15 569

from h14. We treat rht, ht`1s as the ground-truth 570

state-action pair, and rht, h1t`1s as the policy pre- 571

diction state-action pair. 572

During discriminator updates, we compute the dis- 573

criminator loss with binary cross-entropy on the 574

expert trajectory state-action pairs and policy tra- 575

jectory state action pairs, then taking the mean loss 576

across the batch for gradient computation. During 577

policy updates, we employ the Monte Carlo search 578

described in the supplemental material for (Zeng 579

et al., 2017), where we compute the expected return 580

Qph, ht`1q as the sum of all discriminator outputs 581

on the trajectory of states from the policy output. 582

Finally, we compute the policy gradient loss as the 583
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Figure 3: Task interface used to get annotations for the human baseline for the visual cloze task on the Visual Sto-
rytelling dataset (Mostafazadeh et al., 2016). Workers are shown the 4 context images and are asked to determine
which image, among 5 candidates, best completes the narrative defined by the context images.

the little boy is 
looking at the 
woman's hand

a woman in a 
green shirt is 

holding up a fish.

a woman is 
playing with a 
child in a pool

a man that is 
cooking on the grill

a plate of cooked 
chicken and a 
bottle of beer

a woman is looking 
at a small child

a woman in a white 
hat is playing in a pool

a young boy in a 
red shirt playing 

in the grass

a young boy is sitting 
in a chair outside

a group of people 
sitting in seats at a 

baseball game

a group of people 
are sitting in the 

stands at a 
baseball game

a group of baseball 
players that are on 

the field.

a man is holding a 
little girl on his 
shoulders at a 
baseball game

a young boy in a red 
baseball cap 

throwing a baseball

two young boys 
playing a game 

of baseball

a group of baseball 
players that are on 

the field

a young boy in a 
baseball uniform 

standing on a field.

a boy in a red 
baseball cap is 
holding a ball

Context DistractorsGT

Figure 4: Comparing predictions on samples from the test split across different variants (GAIL in dashed pur-
ple, NN in dashed red, our Oscar(finetuned) + RoBERTa model in green) with captions generated from Os-
car(finetuned). Best viewed in color.
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sum of the negative product of the log probabil-584

ity and the expected reward Qph, ht`1q across the585

state trajectory.586
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Figure 5: Shows training loop for image-based GAIL model. Given a sequence of 5 images, the model transforms
them into 2048-dimensional vectors and splits them such that the vectors representing the first 4 images represent
the input states, while the last 4 images represent the expert trajectory. These two sequences are then used to
compute both the discriminator and policy loss.
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