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Abstract

Federated learning (FL) is a distributed machine learning paradigm which enables1

jointly training a global model without sharing clients’ data. However, its repetitive2

server-client communication gives room for possible backdoor attacks which mis-3

leads the global model into a targeted misprediction when a specific trigger pattern4

is presented. In response to such backdoor threats on federated learning, various5

defense measures have been proposed. In this paper, we study whether the current6

defense mechanisms truly neutralize the backdoor threats from federated learning7

in a practical setting by proposing a new federated backdoor attack framework for8

possible countermeasures. Different from traditional training (on triggered data)9

and rescaling (the malicious client model) based backdoor injection, the proposed10

backdoor attack framework (1) directly modifies (a small proportion of) local model11

weights to inject the backdoor trigger via sign flips; (2) jointly optimize the trigger12

pattern with the client model, thus is more persistent and stealthy for circumventing13

existing defenses. In a case study, we examine the strength and weaknesses of14

several recent federated backdoor defenses from three major categories and provide15

suggestions to the practitioners when training federated models in practice.16

1 Introduction17

In recent years, Federated Learning (FL) [22, 38] prevails as a new distributed machine learning18

paradigm, where many clients collaboratively train a global model without sharing clients’ data. FL19

techniques have been widely applied to various real-world applications including keyword spotting20

[17], activity prediction on mobile devices [10, 36], smart sensing on edge devices [12], etc. Despite21

FL’s collaborative training capability, it usually deals with heterogeneous (non-i.i.d.) data distribution22

among clients and its formulation naturally leads to repetitive synchronization between the server23

and the clients. This gives room for attacks from potential malicious clients. Particularly, backdoor24

attack [8], which aims to mislead the model into a targeted misprediction when a specific trigger25

pattern is presented by stealthy data poisoning, can be easily implemented and hard to detect from the26

server’s perspective. The feasibility of backdoor attacks on plain federated learning has been studied27

in [3, 2, 35]. Such backdoor attacks can be effectively implemented by replacing the global FL model28

with the attackers’ malicious model through carefully scaling model updates with well-designed29

triggers, and the attacks can successfully evade many different FL setups [22, 37].30

The possible backdoor attacks in federated learning arouse a large number of interest on possible31

defenses that could mitigate the backdoor threats. Based on the different defense mechanisms they32

adopt, the federated backdoor defenses can be classified into three major categories: model-refinement,33

robust-aggregation, and certified-robustness. Model-refinement defenses attempt to refine the global34

model to erase the possible backdoor, through methods such as fine-tuning [33] or distillation [20, 29].35

Intuitively, distillation or pruning-based FL can also be more robust to current federated backdoor36
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attacks as recent studies on backdoor defenses [19, 21] have shown that such methods are effective in37

removing backdoor from general (non-FL) backdoored models. On the other hand, different from38

FedAvg [22] and its variants [13, 18, 31], the robust-aggregation defenses exclude the malicious39

(ambiguous) weights and gradients from suspicious clients through anomaly detection, or dynamically40

re-weight clients’ importance based on certain distance metrics (geometric median, etc.). Examples41

include Krum [4], Trimmed Mean [37], Bulyan [9] and Robust Learning Rate [24]. Note that some42

of the robust-aggregation defenses are originally proposed for defending model poisoning attack43

(Byzantine robustness) yet they may also be used for defending backdoors. The last kind, certified44

robustness aims at providing certified robustness guarantees that for each test example, i.e., the45

prediction would not change even some features in local training data of malicious clients have46

been modified within certain constraint. For example, CRFL [34] exploits clipping and smoothing47

on model parameters, which yields a sample-wise robustness certification with magnitude-limited48

backdoor trigger patterns. Provable FL [5] learns multiple global models, each with a random client49

subset and takes majority voting in prediction, which shows provably secure against malicious clients.50

There exist many constraints and limitations for defenses from these three major categories. First, the51

effectiveness of the model-refinement defenses relies on whether the refinement procedure fully erase52

the backdoor. Adversaries may actually design robust backdoor patterns that are persistent, stealthy53

and thus hard to erase. Second, robust aggregation defenses are usually based on i.i.d. assumptions of54

each participant’s training data, which does not hold for the general federated learning scenario where55

participant’s data are usually non-i.i.d. Existing attacks [2] have shown that in certain cases, such56

defense techniques make the attack even more effective. Moreover, to effectively reduce the attack57

success rate of the possible backdoor attacks, one usually needs to enforce stronger robust aggregation58

rules, which can in turn largely hurt the normal federated training progress. Lastly, certified robustness59

approaches enjoy theoretical robust guarantees, yet also have strong requirements and limitations60

such as a large amount of model training or a strict limit on the magnitude of the trigger pattern. Also,61

certified defenses usually lead to relatively worse empirical model performances.62

We propose a new federated backdoor attack that is more persistent and stealthy for circumventing63

most existing defenses. We summarize our main contributions and findings as follows:64

• We propose a more persistent and stealthy federated backdoor attack. Instead of traditional65

training (on triggered data) and rescaling (the malicious client model) based backdoor injection,66

our attack selectively flips the signs of a small proportion of network weights and jointly67

optimizes the trigger pattern with the model.68

• The proposed attack does not explicitly scale the updated weights (gradients) and can be69

universally applied to various architectures beyond convolutional neural networks, which is of70

independent interest to general backdoor attack and defense studies.71

• We examine the effectiveness of recent federated backdoor defenses from three major categories72

and give practical guidelines for the choice of the backdoor defenses for different settings.73

2 Proposed Approach74

2.1 Preliminaries75

Federated Learning Setup Suppose we have K participating clients, each of which has its own76

dataset Di with size ni and N =
∑

i ni. At the t-th federated training round, the server send the77

current global model θt to a randomly-selected subset of m clients. The clients will then perform K78

steps of local training to obtain θi,K
t based on the global model θt, and send the updates θi,K

t − θt79

back to the server. In the standard FedAvg [22] method, the server adopts a sample-weighted80

aggregation rule to average the m received updates:81

θt+1 = θt +
1

N

m∑
i=1

ni(θ
i,K
t − θt) (2.1)

Backdoor Attacks in FL Assume there exists one or several malicious clients with goal to82

manipulate local updates to inject a backdoor trigger into the global model such that when the trigger83

pattern appears in the inference stage, the global model would give preset target predictions ytarget.84

In the meantime, the malicious clients do not want to tamper with the model’s normal prediction85

accuracy on clean tasks (to keep stealthy). Therefore, the malicious client has the following objectives:86

87
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min
θ

Ltrain(x,x
′, ytarget,θ) :=

1

ni

ni∑
k=1

ℓ(fθ(xk), yk) + λ · ℓ(fθ(x′
k), ytarget) + α · ||θ − θt−1||22, (2.2)

where x′
k = (1−m)⊙ xk +m⊙∆ is the backdoored data and ∆ denotes the associated trigger88

pattern, m denotes the trigger location mask, and ⊙ denotes the element-wise product. The first89

term in (2.2) is the common empirical risk minimization while the second term aims at injecting the90

backdoor trigger into the model. The third term is usually employed to enhance the attack stealthiness91

by minimizing the distance to the global model. λ and α control the trade-off between the three tasks.92

Threat Model We suppose that the malicious attackers have full control of their local training93

processes, such as backdoor data injection, trigger pattern, and local optimization. The scenario is94

practical since the server can only get the trained model from clients without the information on how95

the model is trained. Correspondingly, an malicious attacker is unable to influence the operations96

conducted on the central server such as changing the aggregation rules.97

2.2 Focused Flip Federated Backdoor Attack98

In this section, we propose Focused-Flip Federated Backdoor Attack (F3BA), in which the malicious99

clients only compromise a small fraction of the least important model parameters through focused100

weight sign manipulation. The goal of such weight sign manipulation is to cause a strong activation101

difference in each layer led by the presence of the trigger pattern while keeping the modification102

footprint and influence on model accuracy minimal. A sketch of our proposed attack is illustrated103

in Figure 1. Let’s denote the current global model as θi,0
t := {w[1]

t ,w
[2]
t , ..,w

[L]
t } and each layer’s104

output as z[1](·), z[2](·), .., z[L](·). Generally, our attack can be divided into three steps:105

convolutional layer 𝐰 𝟏
resized 𝚫 layer#1

0.1
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Figure 1: A sketch of our proposed Focused Flip Federated Backdoor Attack.

Step 1: Search candidate parameters for manipulation. We only manipulate a small fraction106

of candidate parameters in the model that are of the least importance to the normal task to make it107

have a slight impact on the natural accuracy. Specifically, we introduce movement-based importance108

score to identify candidate parameters for manipulation, which is inspired by the movement pruning109

[27]. Specifically, the importance of each parameter S[j]
t is related to both its weight and gradient:110

S
[j]
t = − ∂Lg

∂w
[j]
t

⊙w
[j]
t , where Lg is the global training loss and ⊙ denotes the elementwise product1.111

We make two major changes on S
[j]
t for our federated backdoor attack:112

• In our federated setting, it is hard to obtain the global loss Lg since the attack is carried only on113

the malicious workers. We simply approximate the partial derivative with the model difference114

− ∂Lg

∂w
[j]
t

≈ w
[j]
t −w

[j]
t−1. When t = 0 we simply randomly generate the importance score2 S

[j]
0 ;115

• To handle defense mechanisms with different emphasizes, we extend it into two importance metrics116

and choose3 the one that best exploits the weakness of the defense:117

Directional Criteria: S
[j]
t = (w

[j]
t −w

[j]
t−1)⊙w

[j]
t , (2.3)

Directionless Criteria: S
[j]
t =

∣∣∣(w[j]
t −w

[j]
t−1)⊙w

[j]
t

∣∣∣. (2.4)

Given the importance score S
[j]
t , we choose the least important parameters in each layer as candidate118

parameters. We define m
[j]
s as a mask that selects the s% lowest scores in S

[j]
t and ignore the others.119

In practice, setting s = 1% for the total model parameters is usually sufficient for our attack.120

1More explanations regarding this movement-based importance score can be found in the Appendix.
2In practice, since only a subset of clients participate in the training procedure, the malicious client keeps its

last received global model until next time it is chosen for training and compute the model difference term.
3A detailed discussion on how to choose the appropriate criteria can be found in the Appendix.
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Step 2: Flip the sign of candidate parameters: We manipulate the parameters to enhance their121

sensitivity to the trigger by flipping their signs. Take the simple CNN model as an example4. We start122

flipping from the first convolutional layer. For a given trigger pattern5 ∆, to maximize the activation123

in the next layer, we flip w[1]’s signs if they are different from the trigger’s signs in the same position:124

125

w[1] = m[1]
s ⊙ sign (∆)⊙ |w[1]|+ (1−m[1]

s )⊙w[1], (2.5)

where m
[1]
s is the candidate parameter mask generated in Step 1. Through (2.5), the activation in126

the next layer is indeed enlarged when the trigger pattern is present. For the subsequent layers, we127

flip the signs of the candidate parameters similarly. The only difference is that after the sign-flip in128

the previous layer j − 1, we feed a small set of validation samples xv and compute the activation129

difference of layer j − 1 caused by adding the trigger pattern ∆ on xv:130

δ = σ(z[j−1](x′
v))− σ(z[j−1](xv)), where x′

v = (1−m)⊙ xv +m⊙∆

σ(·) is the activation function for the network (e.g. ReLU function) and x′
v is the backdoor triggered131

validation samples. Similarly, we can flip the signs of the candidate parameters to maximize δ. This132

ensures that the last layer’s activation is also maximized when the trigger pattern is presented.133

Step 3: Model training: Although we have maximized the network’s activation for the backdoor134

trigger in Step 2, the local model training step is still necessary due to: 1) the flipped parameters135

only maximize the activation but have not associated with the target label ytarget, and the training step136

using (2.2) would bind the trigger to the target label; 2) flipping the signs of the parameter will lead to137

a quite different model update compared with other benign clients and a further training step largely138

mitigates this issue. Broadly speaking, Focused Flip greatly boosts training-based backdoor attacks,139

whereas its time overhead is negligible as the flipping operation does not depend on backpropagation.140

141

2.3 Optimize the trigger pattern142

To further improve the effectiveness of our proposed F3BA, we equip the attack with trigger pattern143

optimization6, i.e., instead of using a fixed trigger, we optimize the trigger to fit our attack. Specifically,144

trigger optimization happens in the middle of Step 2 and repeats for P iterations: in each iteration,145

we first conduct the same focused-flip procedure for w[1]. Then we draw batches of training data xp146

and generate the corresponding triggered data x′
p using the current trigger ∆. We feed both the clean147

samples xp and the triggered samples x′
p to the first layer and design the trigger optimization loss to148

maximize the activation difference:149

max
∆

Ltrig(xp,∆) := ∥σ(z[1](xp)− σ(z[1](x′
p))∥22, where x′

p = (1−m)⊙ xp +m⊙∆.

In practice, we optimize Ltrig via simple gradient ascent. It is noteworthy that since the pattern ∆ is150

being optimized in each iteration, we need to re-flip the candidate parameters in w[1] to follow such151

changes. The remaining steps for flipping the following layers are the same as before.152

3 Evaluating the State-of-the-Art Federated Backdoor Defenses153

We evaluate F3BA with trigger optimization on several state-of-the-art federated backdoor defenses154

(3 model-refinement defenses, 3 robust-aggregation defenses, and 1 certified defense) and compare155

with the distributed backdoor attack (DBA) [35]. We test on CIFAR-10 [15] and Tiny-ImageNet156

[16] with a plain CNN and Resnet-18 model respectively under the non-i.i.d. data distributions. The157

performances of the federated backdoor attacks is measured by two metrics: Attack Success Rate158

(ASR), i.e., the proportion of the triggered samples classified as target labels and Natural Accuracy159

(ACC), i.e., prediction accuracy on the natural clean examples. We test the global model after each160

round of aggregation: we use the clean test dataset to evaluate ACC, average all the optimized triggers161

as a global trigger and attached it to the test dataset for ASR evaluation..162

3.1 Attacking Model-Refinement Defenses163

FedDF [20] performs server-side model fusion, i.e. distill the next round global model using the164

outputs of all the clients’ models on the unlabeled data. Specifically, FedDF ensembles all the client165

models θi,K
t together as the teacher model, and use it to distill the next round global model.166

4Note that it also applies to fully connected layers with simple modifications.
5If the size of the trigger is not aligned with w[1], we simply resize it into the same size as w[1]

6The detailed algorithm for trigger optimization can be found in the Appendix.
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Figure 2: ASR and ACC of F3BA and DBA
against Model-Refinement Defenses.

FedRAD [29] defends by giving each client a median-167

based score, which measures the frequency that the168

client output logits become the median for class pre-169

dictions. The distillation part is similar to FedDF.170

FedMV Pruning [33] is a distributed pruning scheme171

to mitigate backdoor attacks in FL, where each client172

provides ranks for all filters in the last convolutional173

layer based on their activation values on local test sam-174

ples. The server averages the received rankings, and175

prunes the filters of the global model’s last convolu-176

tional layer with large averaged rankings. Besides,177

FedMV Pruning erases the outlier weights (far from178

the average parameter weight) every few rounds.179

Results: From Figure 2, both DBA and F3BA pene-180

trate the three defenses on the CIFAR-10 with closed181

ACC. On the Tiny-ImageNet dataset, the DBA’s ASR182

soon decreases as the training proceeds, suggesting183

the benign updates overpower the malicious ones and184

dominate in global updates. F3BA still evades all185

three defenses with higher accuracy. Standalone from186

ensemble distillation, FedMV pruning causes sudden187

ACC loss in some rounds due to setting some weights188

with large magnitudes to zero, and these weights can189

be important to the main task.190

3.2 Attacking Robust-Aggregation Defenses191

Bulyan [9] is one of the strongest Byzantine-resilient robust aggregation algorithms originally192

designed for model poisoning attacks.193

Figure 3: ASR and ACC of F3BA and DBA
against Robust Aggregation Defenses.

It works by ensuring that each coordinate is agreed on194

by a majority of vectors selected by a Byzantine resilient195

aggregation rule. It requires that for each aggregation,196

the total number of clients n satisfy n ≥ 4f + 3, f is197

the number of malicious clients. To efficiently evade198

Bulyan, we replace directional criteria (eq. (2.3)) with199

directionless criteria (eq. (2.4)) to find candidate pa-200

rameters with small magnitudes and updates7 Robust201

LR [24] adjusts the servers’ learning rate based on the202

sign of clients’ updates: it requires a sufficient number203

of votes on the signs of the update for each dimension204

to move towards a certain direction. For dimensions205

where the sum of signs is below the threshold, Robust206

LR maximizes the loss. For other dimensions, it tries to207

minimize the loss as usual.208

DeepSight [26] aims to filter malicious clients to miti-209

gate the backdoor: it clusters clients with different met-210

rics and removes the cluster whose identified malicious211

clients exceeds a threshold. Specifically, 1) it inspects212

the output probabilities of local models on random inputs213

xrand to decide whether its training samples concentrate214

on a particular class (likely backdoors); 2) it applies215

DBSCAN [6] to cluster clients and excludes the entire216

cluster if the number of potentially malicious clients217

exceeds a threshold.218

7The reason of this choice are discussed in the Appendix.
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Results: Bulyan’s iterative exclusion of anomaly updates undermines the evasion of F3BA. By219

applying directionless criteria when flipping parameters, F3BA boosts its stealthiness and achieves220

high ASR. For Robust LR, Bulyan exploits the restriction of its voting mechanism and hacks into it.221

DeepSight can not defend F3BA under the extremely non-i.i.d data distribution either. In comparison,222

DBA fails on Tiny-Imagenet Dataset under all three defenses under the same client numbers and data223

heterogeneity.224

3.3 Attacking Certified-robustness225

CRFL [34] gives each sample a certificated radius RAD that the prediction would not change if (part226

of) local training data is modified with backdoor magnitude ||∆|| < RAD. It provides robustness227

guarantee through clipping and perturbing in training and parameter-smoothed testing.228

Figure 4: ACC and ASR of F3BA and DBA against
CRFL with σ = 0.001.

Figure 5: ACC and ASR of F3BA against CRFL
with different σ.

Results: To test the defense performance of CRFL, we adjust the variance σ for CRFL and test with229

backdoor attacks. Figure 4 shows that using the same level of noise σ = 0.001, F3BA reaches the230

ASR of nearly 100% and DBA fails on Tiny-Imagenet. If we further increase variance to provide231

larger RAD for F3BA that completely covers the norm of the trigger in each round as in Figure 5,232

CRFL can defend the F3BA yet with a huge sacrifice on accuracy.233

4 Takeaway for Practitioners234

From the results in Section 3, current federated backdoor defenses, represented by the three categories,235

all have their own Achilles’ heel facing stealthier and more adaptive attacks such as F3BA: model-236

refinement defenses enhance the global model’s robustness towards data drift while fail to erase the237

backdoor in malicious updates; certain robust-aggregation (e.g., Bulyan, Robust LR) and certified-238

robustness (e.g., CRFL) defenses achieve acceptable backdoor defense capabilities when imposing239

strong intervention mechanisms such as introducing large random noise or reversing global updates.240

However, such strong interventions also inevitably hurt the model’s natural accuracy. Overall, we241

recommend the practitioners to adopt Bulyan or CRFL in the cases where the natural accuracy is242

already satisfiable or is less important, as they are the most helpful in defending against backdoors.243

5 Conclusions244

In this paper, we propose F3BA to backdoor federated learning. Our attack does not require explicitly245

scaling malicious uploaded clients’ local updates but instead flips the weights of some unimportant246

model parameters for the main task. With F3BA, we evaluate the current state-of-the-art backdoor247

defenses in federated learning. In most of the tests, F3BA is able to evade and reach a high attack248

success rate. From this we argue that despite providing some robustness, the current stage of backdoor249

defenses still expose the vulnerability to the advanced backdoor attacks.250
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A Additional Related Work350

There are a large body of works on federated learning. In this section, we only review the most351

relevant works in general FL as well as the backdoor attack and defenses of federated learning.352

Federated Learning: Federated Learning [14] was proposed for improving the communication353

efficiency in distributed settings. FedAvg [22] works by averaging local SGD updates, of which the354

variants have also been proposed such as SCAFFOLD [13], FedProx [18], FedNova [31]. [25, 32]355

proposed adaptive federated optimization methods for better adaptivity. Recently, new aggregation356

strategies such as neuron alignment [28] or ensemble distillation [20] has also been proposed.357

Backdoor Attacks on Federated Learning: [2] injects backdoor by predicting the global model358

updates and replacing them with the one that was embedded with backdoors. [3] aims to achieve359

both global model convergence and targeted poisoning attack by explicitly boosting the malicious360

updates and alternatively minimizing backdoor objectives and the stealth metric. [30] shows that361

robustness to backdoors implies model robustness to adversarial examples and proposed edge-case362

backdoors. DBA [35] decomposes the trigger pattern into sub-patterns and distributing them for363

several malicious clients to implant. With known aggregation rules, malicious clients also speculate364

the global update direction and modify it for the specified direction for backdoor task [7].365

Backdoor Defenses on Federated Learning: In federated learning, the server does not have access366

to the clients’ local data, so some defenses based on data inspection (removing training data with367

backdoors) [11] are not applicable. Robust Learning Rate [24] flips the signs of some dimensions of368

global updates. [33] designs a federated pruning method to remove redundant neurons for backdoor369

defense. [34] proposed a certified defense that exploits clipping and smoothing for better model370

smoothness. BAFFLE [1] uses a set of validating clients, refreshed in each training round, to371

determine whether the global updates have been subject to a backdoor injection. Recent work [26]372

identifies suspicious model updates via clustering-based similarity estimations.373

B Extensions to Other Network Architectures374

The flip operation can be similarly extended to other network architectures as the candidate weights375

selection (Step 1) and the model training (Step 3) are not relevant to the model architecture at all.376

Therefore, we only need to adapt the sign flipping part (Step 2). For CNN, we resize the trigger377

and flip the sign of the candidate parameters to maximize the convolution layer’s activation. The378

same strategy applies for any dot product based operation (convolution can be seen as a special dot379

product). Take MLP as an example, assume the first layer’s weight is w[1]. We flip these weights’380

signs by w[1] = m
[1]
s ⊙ sign (x′

in − xin)⊙|w[1]|+(1−m
[1]
s )⊙w[1], (x′

in and xin is the flatten input381

sample with and without trigger, and the non-zero elements of x′
in − xin only take place on pixels382

with the trigger.) The Equation is similar to Equation 2.5 except that we do not need to resize the383

trigger as in CNN. The sign flipping of the rest layers follows the same.384

C Algorithms385

C.1 Focused-Flip Federated Backdoor Attack386

We summarize our F3BA algorithm as pseudo-code in Algorithm 1. Specifically, our F3BA method387

searches for candidate parameters (Line 6 - Line 9) based on directional or directionless criteria, such388

that it is difficult to remove these backdoor-related parameters by coarse-scale model-refinement or389

9



aggregation rules on the server. After each time flipping candidate parameters in a certain layer, the390

same validation samples xv are required (Line 12) to calculate the activation difference (Line 15) for391

flipping candidate parameters in the following layers.392

Algorithm 1 Focused-Flip Federated Backdoor Attack (F3BA)

1: Input: σ(·): activation function
2: α: learning rate for backdoor training
3: K: local training iterations
4: Ltrain: loss function for backdoor training
5: Malicious client i receives θi,0

t := {w[1],w[2], ..,w[L]} from the server. Let us denote each
layer’s output as z[1](·), z[2](·), .., z[L](·).

6: for j = 1 to L do
7: Compute S

[j]
t based on Equation (2.3) or Equation (2.4)

8: Compute m
[j]
s as a mask that selects s% lowest scores in S

[j]
t

9: end for
10: Resize ∆ to the size of w[1] and get ∆∗

11: w[1] = m
[1]
s ⊙ sign (∆∗)⊙ |w[1]|+ (1−m

[1]
s )⊙w[1]

12: Sample a batch of validation data xv from Di

13: for j = 2 to L do
14: x′

v = (1−m)⊙ xv +m⊙∆ //backdoor generation
15: δ = σ(z[j−1](x′

v))− σ(z[j−1](xv))
16: Resize δ to the size of w[j] and get δ∗

17: w[j] = m
[i]
s ⊙ sign (δ∗)⊙ |w[j]|+ (1−m

[j]
s )⊙w[j]

18: end for
19: for k = 1 to K do
20: Sample a batch of training data xk from Di

21: x′
k = (1−m)⊙ xk +m⊙∆ //backdoor generation

22: θi,k
t = θi,k−1

t − α∇θLtrain(xk,x
′
k, ytarget,θ

i,k−1
t )

23: end for

C.2 Focused-Flip Federated Backdoor Attack With Trigger Optimization393

We also summarize the more advanced F3BA with trigger pattern optimization in Algorithm 2. The394

major difference compared with Algorithm 1 lies in the trigger optimization part (Line 14 - Line 19),395

where the first layer is repetitively flipped (Line 17) based on the signs of trigger pattern in the same396

position after each optimization step. After the trigger is optimized, the focused flip of the first layer397

is also finished, and the rest part (flipping the following layers) is the same as Algorithm 2.398

D Discussion on Selection Criterion of the Candidate Parameters399

As shown in Eq. (2.3) and Eq. (2.4), we have two possible criteria (Directional or Directionless) for400

the selection of candidate parameters. In our paper, we set the Directional Criteria as the default401

setting for F3BA. Though it works well in most cases such as when attacking model-refinement402

defenses, we find that for some robust aggregation defenses (e.g., Bulyan), we need to adjust it to fit403

better. In this section, we discuss these two criteria: what are the meanings of the two criteria and404

how to pick the right one to use in different situations.405

We first talk about the Directional Criteria, which is our default setting.406

Directional Criteria target parameters that are moving significantly far away from 0 (and consider407

that as important 8 weight). To see this, note that we will obtain a large importance score under two408

scenarios: (1) when the r-th element in w
[j]
t is increasing, i.e.,

[
∂Lg

∂w
[j]
t

]
r
< 0, and

[
w

[j]
t

]
r
> 0; (2)409

when the r-th element in w
[j]
t is decreasing, i.e.,

[
∂Lg

∂w
[j]
t

]
r
> 0, and

[
w

[j]
t

]
r
< 0. Both scenarios410

8Assume that we train the model from scratch, i.e., a model with all zero parameters. All important weights
that significantly affect model accuracy will eventually move to either positive values or negative values.
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Algorithm 2 Focused-Flip Federated Backdoor Attack with Trigger Optimization (F3BA-TrigOpt)

1: Input: σ(·): activation function
2: α: learning rate for backdoor training
3: η: learning rate for trigger optimization
4: K: local training iterations
5: P : trigger optimization iterations
6: Ltrain: loss function for backdoor training
7: Ltrig: loss function for trigger optimization
8: Malicious client i receives θi,0

t := {w[1],w[2], ..,w[L]} from the server. Let us denote each
layer’s output as z[1](·), z[2](·), .., z[L](·).

9: for j = 1 to L do
10: Compute S

[j]
t based on Equation (2.3) or Equation (2.4)

11: Compute m
[j]
s as a mask that selects s% lowest scores in S

[j]
t

12: end for
13: for p = 1 to P do
14: Resize ∆ to the size of w[1] and get ∆∗

15: w[1] = m
[1]
s ⊙ sign (∆∗)⊙ |w[1]|+ (1−m

[1]
s )⊙w[1]

16: Sample a batch of training data xp from Di

17: x′
p = (1−m)⊙ xp +m⊙∆ //backdoor generation

18: Ltrig(xp,x
′
p) = ∥σ(z[1](xp)− σ(z[1](x′

p))∥22
19: ∆ = ∆+ η · ∇∆Ltrig(xp,x

′
p)

20: end for
21: for j = 2 to L do
22: Sample a batch of validation data xv from Di

23: x′
v = (1−m)⊙ xv +m⊙∆ //backdoor generation

24: δ = σ(z[j−1](xv))− σ(z[j−1](x′
v))

25: Resize δ to the size of w[j] and get δ∗

26: w[j] = m
[j]
s ⊙ sign (δ∗)⊙ |w[j]|+ (1−m

[j]
s )⊙w[j]

27: end for
28: for k = 1 to K do
29: Sample a batch of training data xk from Di

30: x′
k = (1−m)⊙ xk +m⊙∆ //backdoor generation

31: θi,k
t = θi,k−1

t − α∇θLtrain(xk,x
′
k, ytarget,θ

i,k−1
t )

32: end for

suggest that
[
w

[j]
t

]
r

is moving away from 0. On the contrary, when the parameter weight and its411

derivative is the same sign, the criterion regards this parameter as not important for its main task.412

F3BA exploits these unimportant parameters (moving towards 0) and flips their signs to mount a413

strong and persistent attack without damaging performance on the main task.414

Despite having little influence on the main task, this criterion tends to select parameters with the415

largest absolute values on weights or updates (approximations to the derivatives) as candidates.416

Generally, it helps backdoor FL systems where a low proportion of malicious clients need to compete417

with a large number of benign ones, but also be defended by robust aggregation methods that filter418

extreme weights (updates). Therefore, we also propose the Directionless Criteria for such situations.419

Directionless Criteria target parameters with the smallest magnitudes on both their parameter420

weights and updates. When a parameter’s weight (update) is closer to 0 compared with other421

parameters, it would less likely to be regarded as an outlier or potentially malicious update. When the422

data are non-i.i.d distributed, the proposed local updates can not reach an agreement on the signs of423

some coordinates. In this circumstance, smaller |w[j]
t | and smaller | ∂Lg

∂w
[j]
t

| separately ensure that the424

candidate parameters would not be too large or small among all proposed ones before and after being425

flipped, ensuring stealth of the attack.426

In summary, as a complement to directional criteria, directionless criteria bypass the robust aggrega-427

tion defenses based on filtering or changing the extreme values of model parameters.428
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Figure 6: Attack success rate and accuracy against Robust LR and Bulyan on CIFAR-10 and Tiny
imagenet datasets with directional and directionless criteria. 20 clients, 4 malicious.

In Figure 6, we show two examples: Robust LR and Bulyan, under F3BA attack using directional429

and directionless criteria respectively. From Figure 6, we can observe that using directional criteria430

in Robust LR helps reach a higher ASR in fewer rounds compared with directionless criteria while431

using the same directional criteria in Bulyan directly leads to failure of attack (Directionless Criteria432

is needed here). We argue that the gap in attack effectiveness with two criteria may be attributed433

to the defense mechanism. For Robust LR, since it does not put constraints on a single proposed434

update but the signs of all proposed ones, we can use directional criteria to reach a stronger attack.435

For Bulyan, however, the directional criterion makes the updates of flipped parameters become larger,436

with a higher probability to be excluded from the aggregation. To keep the malicious updates stealthy437

after being flipped, we turn to apply the directionless criteria.438

E Additional Experimental Details439

E.1 General Experimental Settings440

We evaluate the attacks on two classification datasets with non-i.i.d. data distributions: CIFAR-441

10 [15] and Tiny-ImageNet [16]. To simulate non-i.i.d. training data and supply the server with442

unbalanced samples from each class for model refinement, we divide the training images (in both443

datasets) using a Dirichlet distribution [23] with a concentration hyperparameter h. A shared global444

model is trained by all participants each round for aggregation. We evaluate CIFAR-10 and Tiny445

Imagenet dataset separately with a simple CNN (2 convolutional layers and 2 fully connected layers)446

and Resnet-18. Each participating client selected in one round will train for local epochs using SGD447

with the learning rate of η = 0.001 for both CIFAR and Tiny ImageNet. To ensure that the backdoor448

trigger is practical and hard to notice by human eyes, we limit the size of the trigger to a small 3× 3449

square on the CIFAR-10 dataset, and 4 × 4 for the Tiny ImageNet dataset. For F3BA, we set the450

trigger optimization iteration P = 10 and η = 0.1. We apply different candidate parameter selection451

porportions 1% and 0.1% respectively for convolutional layers and fully-connected layers.452

E.2 Discussion On Experimental Settings453

We first test the effect of our proposed attack on plain FedAvg [22] without any defensive measures.454

Specifically, we compare our complete F3BA attack with trigger optimization in Algorithm 2 with a455

recent proposed, distributed backdoor attack (DBA) [35]. The main idea of DBA is to partition the456

trigger into multiple parts and distribute the backdoor injection task to several malicious clients by457

these sub-triggers. This ensures that the resulting malicious updates are less noticeable and more458

stealthy compared to standard federated backdoor attacks. We follow the same setting (e.g. number459

of total and malicious clients, local training epochs, learning rate η, concentration hyperparameter h)460

as the experiment of DBA for the attack of plain FedAvg.461

As Figure 7, both F3BA and DBA can easily break FedAvg, and F3BA reaches a higher ASR without462

noticable ACC loss. Though quickly observe the difference between centralized and distributed463

attacks, we argure that the DBA’s experimental setting strongly facilitate the attack of DBA: all464

malicious clients are consistently selected in the total 100 clients and clients’ data is very unevenly465

distributed (the concentration hyper-parameter h is 0.1). Benign participants are randomly selected466

to form a total of selected 10 participants in each round. The malicious clients train 5 local epochs467
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Figure 7: Attack success rate and accuracy of F3BA and DBA against plain FedAvg on CIFAR-10
and Tiny-ImageNet datasets under the setting of DBA experiment.

(including both clean and backdoored samples), more than 2 in benign clients. These settings hinder468

the accumulation of benign updates thus making them unable to compete with the malicious updates.469

We put our control experiments on these elements and the corresponding adjustments in Section ??470

and the attack settings of Section 3 to give a preciser and more fair evaluation on the effectiveness of471

backdoor defences.472

E.3 Additional Details on the Defense Baselines473

FedDF [20] leverages unlabeled data or artificially generated samples from a GAN’s generator to474

achieve robust server-side model fusion, aggregate knowledge from all received (heterogeneous)475

client models. Formally, in the t-th round, the server first obtains a global model θt+1 with standard476

FedAvg as equation 2.1.477

FedDF distills the global model with the ensembled logit predictions on clean unlabeled samples from478

each client’s model, hence overcoming the limitation of the number of data samples and eliminating479

the effect of data drift.480

FedRAD [29] utilizes median-based scoring along with knowledge distillation for ensemble dis-481

tillation. In the t-th round with K participating clients, the median-based scoring assigns the i-th482

client a score si by counting how many times it gave the prediction for a server-side dataset xs. For483

a classification task with M probable classes C = [c1, c2, ..., cM ] and a sample x in xs, the i−th484

client’s logits output for cm is denoted as fθi,K
t

(x)[m], and we get its score:485

si =
∑
x∈xs

∑
cm∈C

1(fθi,K
t

(x)[m] = median(FθK
t
(x)[m]))

where FθK
t
(x)[m] = [fθ1,K

t
(x)[m], fθ2,K

t
(x)[m], ..., fθK,K

t
(x)[m]]

486
Then FedRAD normalizes si ← si/

∑K
i=1(si) to let all the clients’ scores adding up to 1, and487

aggregates local models. The major difference between FedDF and FedRAD during distillation is that488

the median FθK
t
[m] is used instead of 1

K

∑
i∈[K] fθi,K

t+1
(xj)[m] to generate the m-th logit of teacher489

model’s soft labels.490

FedMV Pruning [33] lets each client provide a ranking of all p filters in its last convolutional layer491

based on their averaged activation values and decide which filters would ultimately be pruned in the492

global model. Suppose each client has a test dataset xtest, and the activations of its last convolutional493

layer is σ(xtest) = [σ1(xtest), σ2(xtest), ..., σp(xtest)]. The i-th client get the ranks of the p filterRi,K494

based on the ascending order of σ(xtest)
i,K (the smallest σ(·) means the smallest rank), and sends495

R[i,K] with its local model θ[i,K] for each round. The server averages the received rankings by filters496

RK = avg({Ri,K}1≤i≤K) As a result, the server obtains a global ranking for all the filters in the497

last convolutional layers.498

Bulyan[9] argues that any current gradient aggregation rules (e.g. Krum, GeoMED, BRUTE), where499

the aggregated vector is the result of a distance minimization scheme, can not defend the proposed500

malicious updates that is highly-divergent on only a few coordinates while keeping the others closed.501

In view of this, more than a combination of these rules, Bulyan bounds the aggregated updates around502

the median of all proposed updates at each coordinate and excludes those potentially malicious503

updates that disagree a lot. The two steps of Bulyan can be formalized as follows:504
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(1). Choose the updates closest to other updates among the proposed local updates. For pairwise505

distance, this would be the sum of Euclidean distance to other models. Move the chosen update from506

the “received set” to the “selection set”, noted S . Repeat the procedure until get n− 2f updates in S .507

(2). Aggregate n−4f updates closest to the median by coordinate. Hence for each i ∈ [1...d] (Suppose508

the uploaded models has d dimensions), The resulting update G = θt − θt−1 = (G[1]...G[d]), so509

that for each of its coordinates G[·]:510

∀i ∈[1, ..., d], G[i] =
1

n− 4f

∑
X∈M[i]

X[i]

where M[i] = argmin
R⊂S,|R|=n−4f

(
∑
X∈R

|X[i]−median[i]|) (E.1)

median[i] = argmin
m=Yi,Y ∈S

(
∑
Z∈S
|m−Zi|)

Simply stated: each i-th coordinate of G equals to the average of the n− 4f closest i-th coordinates511

to the median of the n− 2f selected updates.512

Robust LR requires a sufficient number of proposed updates with the same signs to decide the513

global optimization direction. It assumes that the direction of proposed updates for benign clients514

and malicious clients is in most cases inconsistent, hence the presence of malicious clients would515

change the distribution of the signs of all proposed local updates. For each dimension with the sum of516

signs of updates fewer than a pre-defined threshold β, the learning rate is multiplied by −1. With the517

number of adversarial agents sufficiently below β, Robust LR is expected to move the global model518

from the backdoored model to the benign one. Since Robust LR only adjusts the learning rate, the519

approach is agnostic to the aggregation rules. For example, it can trivially work with update clipping520

and noise addition.521

DeepSight [26] inspects the output probabilities fθi,K (xrand) ∈ Rd0×dc (dc is the number of classes)522

of the i-th local model θi,K on d0 given random d1-dimensional inputs xrand ∈ Rd0×d1 . After inspect523

the model’s sample-wise average (f̄θi,K (Xrand)) =
∑n0

p=1(fθi,K (Xrand[p])) ∈ Rdc and label the524

potentially malicious clients, DeepSight applies DBSCAN on participant clients [6] three times525

with distance matrices Dbias, Dconv, Dprob ∈ RK×K (assume all the local models have the same526

architecture with L layers).527

• Dbias[i, j] = 1− cosine(ui,K,[L]
t+1 ,u

j,K,[L]
t ), ui,K,[L]

t+1 is the update of the i-th local update in their528

last layers.529

• Dconv[i, j] = ||wi,K,[L]
t+1 −w

j,K,[L]
t || is the Euclidean distance of the i-th and j-th local models’530

last layers wi,K,[L]
t+1 and w

j,K,[L]
t531

• Dprob[i, j] = ||f̄θi,K (xrand)− f̄θj,K (xrand)|| is the Euclidean distance of clients’ output proba-532

bilities for the global random vectors.533

After get three clustering result vectors Rebias, Reconv, Reprob ∈ RK (For example, Rebias[i] is the i-th534

local model’s cluster label based on Dbias), DeepSight defines a new distance matrix Dfinal as:535

Dfinal[i, j] =
∑

r∈Res

1(r[i] = r[j]) where Res = {Rebias, Reconv, Reprob}

DeepSight performs DBSCAN the last time according to Dfinal[i, j] and get Refinal. Based on Refinal,536

the cluster with potentially malicious clients more than a given proportion threshold would be537

excluded from the next round of aggregation.538

CRFL[34] clips the training-time global model parameters Clipρt
(θt) = θt/max (1 , ||θt ||

ρt
) so that539

its norm is bounded by ρt, and then add isotropic Gaussian noise θ̃t ← Clipρt
(θt) + ϵt , where540

ϵt ∼ N (0, σ2
t I). Aligned with the training time Gaussian noise (perturbing), CRFL adopts the same541

Gaussian smoothing measures µ(θ) = N (θ, σ2
T I) M times independently on the tested model, to542

get M sets of noisy model parameters, such that θ̃k
T ← Clipρt

(θt) + ϵkt , runs the classifier with each543

set of noisy model parameters θ̃k
T for one test sample xtest to returns its class counts, with which544

take the voted most probable class and its probability.545
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F Additional Experimental Details546

F.1 General Experimental Settings547

We evaluate the attacks on two classification datasets with non-i.i.d. data distributions: CIFAR-10 [15]548

and Tiny-ImageNet [16]. To simulate non-i.i.d. training data and supply the server with unbalanced549

samples from each class for model refinement, we divide the training images (in both datasets) using550

a Dirichlet distribution [23] with a concentration hyperparameter h (a larger h means a more i.i.d.551

data distribution). A shared global model is trained by all participants each round for aggregation. We552

evaluate CIFAR-10 and Tiny Imagenet dataset separately with a simple CNN (2 convolutional layers553

and 2 fully connected layers) and Resnet-18. Each participating client selected in one round will train554

for local epochs using SGD with the learning rate of η = 0.001 for both CIFAR and Tiny ImageNet.555

To ensure that the backdoor trigger is practical and hard to notice by human eyes, we limit the size556

of the trigger to a small 3 × 3 square on the CIFAR-10 dataset, and 4 × 4 for the Tiny ImageNet557

dataset. For F3BA, we set the trigger optimization iteration P = 10 and η = 0.1. We apply different558

candidate parameter selection porportions 1% and 0.1% respectively for convolutional layers and559

fully-connected layers.560

F.2 Compare with the DBA’s Experimental Setting561

Our goal is to use a realistic experimental settings to fairly and accurately evaluate the real-world562

performance of various federated backdoor defenses in the face of advanced backdoor attacks. We563

believe that it is unrealistic to specify a fixed number of malicious clients in each training round as in564

the experimental setup of DBA. In reality, due to the server’s lack of knowledge on the clients (the565

server cannot know in advance whether a client is benign or malicious), it can only randomly select a566

subset of clients to participate in each training round (the number of malicious clients is unknown).567

In this case, it is more practical to randomly select participating clients among all the clients without568

distinguishing between benign and malicious clients as the experimental setting in F3BA.569

Figure 8: Attack success rate and accuracy of F3BA and DBA against plain FedAvg on CIFAR-10
and Tiny-ImageNet datasets under the setting of DBA.

Figure 9: Attack success rate and accuracy of F3BA and DBA against plain FedAvg on CIFAR-10
and Tiny-ImageNet datasets under the setting of F3BA.

We attack plain FedAvg with F3BA and DBA in the pre-tuned (in DBA) and post-tuned (in F3BA)570

experimental settings. Figure.8 and Figure.9 show that even without any defense, DBA could not571

evade FedAvg on Tiny-Imagenet dataset in the post-tuned setting, while F3BA succeed in both572

datasets for the two settings. Our chosen setting is actually harder and more practical than the setting573
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of DBA. Since all the clients are randomly selected, as Figure.10 shows, the proportion of malicious574

clients among all the participating clients is much less than that in DBA’s setting.575

Figure 10: The proportion of malicious clients of each training round in DBA’s and F3BA’s settings.

F.3 Additional Details on the Defense Baselines576

FedDF [20] leverages unlabeled data or artificially generated samples from a GAN’s generator to577

achieve robust server-side model fusion, aggregate knowledge from all received (heterogeneous)578

client models. Formally, in the t-th round, the server first obtains a global model θt+1 with standard579

FedAvg as equation 2.1580

FedDF distills the global model with the ensembled logit predictions on clean unlabeled samples from581

each client’s model, hence overcoming the limitation of the number of data samples and eliminating582

the effect of data drift.583

FedRAD [29] utilizes median-based scoring along with knowledge distillation for ensemble dis-584

tillation. In the t-th round with K participating clients, the median-based scoring assigns the i-th585

client a score si by counting how many times it gave the prediction for a server-side dataset xs. For586

a classification task with M probable classes C = [c1, c2, ..., cM ] and a sample x in xs, the i−th587

client’s logits output for cm is denoted as fθi,K
t

(x)[m], and we get its score:588

si =
∑
x∈xs

∑
cm∈C

1(fθi,K
t

(x)[m] = median(FθK
t
(x)[m]))

where FθK
t
(x)[m] = [fθ1,K

t
(x)[m], ..., fθK,K

t
(x)[m]]

Then FedRAD normalizes si ← si/
∑K

i=1(si) to let all the clients’ scores adding up to 1, and589

aggregates local models. The major difference between FedDF and FedRAD during distillation is that590

the median FθK
t
[m] is used instead of 1

K

∑
i∈[K] fθi,K

t+1
(xj)[m] to generate the m-th logit of teacher591

model’s soft labels.592

FedMV Pruning [33] lets each client provide a ranking of all p filters in its last convolutional layer593

based on their averaged activation values and decide which filters would ultimately be pruned in the594

global model. Suppose each client has a test dataset xtest, and the activations of its last convolutional595

layer is σ(xtest) = [σ1(xtest), σ2(xtest), ..., σp(xtest)]. The i-th client get the ranks of the p filterRi,K596

based on the ascending order of σ(xtest)
i,K (the smallest σ(·) means the smallest rank), and sends597

R[i,K] with its local model θ[i,K] for each round. The server averages the received rankings by filters598

RK = avg({Ri,K}1≤i≤K). As a result, the server obtains a global ranking for all the filters in the599

last convolutional layers.600

Bulyan [9] argues that any current gradient aggregation rules (e.g. Krum, GeoMED, BRUTE), where601

the aggregated vector is the result of a distance minimization scheme, can not defend the proposed602

malicious updates that is highly-divergent on only a few coordinates while keeping the others closed.603

In view of this, more than a combination of these rules, Bulyan bounds the aggregated updates around604

the median of all proposed updates at each coordinate and excludes those potentially malicious605

updates that disagree a lot. The two steps of Bulyan can be formalized as follows:606

(1). Choose the updates closest to other updates among the proposed local updates. For pairwise607

distance, this would be the sum of Euclidean distance to other models. Move the chosen update from608

the “received set” to the “selection set”, noted S . Repeat the procedure until get n− 2f updates in S .609
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(2). Aggregate n−4f updates closest to the median by coordinate. Hence for each i ∈ [1...d] (Suppose610

the uploaded models has d dimensions), The resulting update G = θt − θt−1 = (G[1]...G[d]), so611

that for each of its coordinates G[·]:612

∀i ∈[1, ..., d], G[i] =
1

n− 4f

∑
X∈M[i]

X[i]

where M[i] = argmin
R⊂S,|R|=n−4f

(
∑
X∈R

|X[i]− median[i]|) (F.1)

median[i] = argmin
m=Yi,Y ∈S

(
∑
Z∈S

|m−Zi|)

Simply stated: each i-th coordinate of G equals to the average of the n− 4f closest i-th coordinates613

to the median of the n− 2f selected updates.614

Robust LR requires a sufficient number of proposed updates with the same signs to decide the615

global optimization direction. It assumes that the direction of proposed updates for benign clients616

and malicious clients is in most cases inconsistent, hence the presence of malicious clients would617

change the distribution of the signs of all proposed local updates. For each dimension with the sum of618

signs of updates fewer than a pre-defined threshold β, the learning rate is multiplied by −1. With the619

number of adversarial agents sufficiently below β, Robust LR is expected to move the global model620

from the backdoored model to the benign one. Since Robust LR only adjusts the learning rate, the621

approach is agnostic to the aggregation rules. For example, it can trivially work with update clipping622

and noise addition.623

DeepSight [26] inspects the output probabilities fθi,K (xrand) ∈ Rd0×dc (dc is the number of classes)624

of the i-th local model θi,K on d0 given random d1-dimensional inputs xrand ∈ Rd0×d1 . After inspect625

the model’s sample-wise average (f̄θi,K (Xrand)) =
∑n0

p=1(fθi,K (Xrand[p])) ∈ Rdc and label the626

potentially malicious clients, DeepSight applies DBSCAN on participant clients [6] three times627

with distance matrices Dbias, Dconv, Dprob ∈ RK×K (assume all the local models have the same628

architecture with L layers).629

• Dbias[i, j] = 1− cosine(ui,K,[L]
t+1 ,u

j,K,[L]
t ), ui,K,[L]

t+1 is the update of the i-th local update in630

their last layers.631

• Dconv[i, j] = ||wi,K,[L]
t+1 − w

j,K,[L]
t || is the Euclidean distance of the i-th and j-th local632

models’ last layers wi,K,[L]
t+1 and w

j,K,[L]
t633

• Dprob[i, j] = ||f̄θi,K (xrand) − f̄θj,K (xrand)|| is the Euclidean distance of clients’ output634

probabilities for the global random vectors.635

After getting the three clustering result vectors Rebias, Reconv, Reprob ∈ RK (For example, Rebias[i] is636

the i-th local model’s cluster label based on Dbias), DeepSight defines a new distance matrix Dfinal as:637

Dfinal[i, j] =
∑

r∈Res

1(r[i] = r[j]), (F.2)

where Res = {Rebias, Reconv, Reprob}

DeepSight performs DBSCAN the last time according to Dfinal[i, j] and get Refinal. Based on Refinal,638

the cluster with potentially malicious clients more than a given proportion threshold would be639

excluded from the next round of aggregation.640

CRFL [34] clips the training-time global model parameters Clipρt
(θt) = θt/max (1 , ||θt ||

ρt
) so that641

its norm is bounded by ρt, and then add isotropic Gaussian noise θ̃t ← Clipρt
(θt) + ϵt , where642

ϵt ∼ N (0, σ2
t I). Aligned with the training time Gaussian noise (perturbing), CRFL adopts the same643

Gaussian smoothing measures µ(θ) = N (θ, σ2
T I) M times independently on the tested model, to644

get M sets of noisy model parameters, such that θ̃k
T ← Clipρt

(θt) + ϵkt , runs the classifier with each645

set of noisy model parameters θ̃k
T for one test sample xtest to returns its class counts, with which646

take the voted most probable class and its probability.647
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G Ablation Study648

In this section, we provide ablation studies towards our proposed F3BA method and study how649

various factors affect the ASR and ACC of our proposed attack. To eliminate the influence of random650

client participation, in this, section, we set a total of 10 participant clients with only 1 malicious client,651

and all the participants would be selected in each round. The data heterogeneity hyperparameter652

h = 1.0 (Except when we investigate the effects of data heterogeneity). We do not set more clients or653

lower data heterogeneity because it would make it easier to achieve high ASR for F3BA with various654

parameter settings, which is not conducive for us to investigate the effects of various factors on the655

backdoor attack.656

G.1 Attack with Different Trigger657

In our attack design, the malicious clients do not need to share the optimized trigger during training,658

instead, they optimize their own triggers when conducting the F3BA attack. During the test phase,659

we simply average all the optimized triggers as a global trigger and attached it to the test dataset for660

ASR evaluation. Note that even if we do not perform averaging but directly use one of the optimized661

triggers, the attack still works.662

Table.1 shows the ASR of different triggers on CIFAR-10 and Tiny-Imagenet datasets. Note that663

whether using the average or local triggers does not have a major impact on the performance of F3BA664

on both datasets.665

Tested Tigger Round CIFAR-10 Tiny-imagenet

Averaged Trigger 50 97.97% 97.01%
100 99.23% 99.15%

Local Trigger #1 50 98.03% 96.36%
100 99.49% 99.11%

Local Trigger #2 50 98.57% 96.57%
100 99.49% 98.95%

Local Trigger #3 50 97.87% 98.15%
100 98.35% 99.62%

Local Trigger #4 50 98.84% 96.57%
100 98.41% 98.48%

Table 1: ASR of F3BA and DBA attacks with the averaged global trigger and clients’ local triggers
against plain FedAvg.

G.2 Attack Other Network Architecture666

As mentioned in Section.B, the Focused Flip operations can be generally applied to any network667

structure that rely on the dot product, and be applied independently to boost the traditional training-668

based backdoor attack. We show the ASR/ACC of F3BA on attacking plain FedAvg with MLP669

models to verify the applicability of the F3BA attack on architectures beyond CNN. Table.2 suggests670

that F3BA is still highly effective on MLPs (and still better than the DBA baseline) without loss on671

the performance of its main task.

Round CIFAR-ACC CIFAR-ASR TinyImagenet
-ACC

TinyImagenet
-ASR

F3BA DBA F3BA DBA F3BA DBA F3BA DBA

25 44.13% 44.57% 98.76% 87.21% 7.06% 7.02% 98.52% 89.54%

50 47.17% 47.26% 99.78% 93.30% 8.58% 8.87% 97.37% 86.35%

75 48.53% 49.13% 99.82% 91.55% 9.40% 9.50% 98.39% 90.39%

100 51.10% 50.99% 99.88% 93.68% 10.04% 10.00% 98.94% 93.54%
Table 2: ASR/ACC of F3BA and DBA with MLP network architecture against plain FedAvg.

672
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G.3 Attack with More Benign Clients673

We test F3BA on FedAvg with in total 100 clients, of which 4 are malicious. 40 clients are randomly674

selected for each round. When the number of malicious clients is fixed, the benign clients becomes675

more thus to some extent deterring the attack from both F3BA and DBA. As Table.3, we can observe676

that the advantages of F3BA over DBA still holds. When all the clients are randomly selected, the677

decreasing chances for malicious clients being selected do partially slows down the process of F3BA’s678

evasion but not able to remove the injected backdoor. In this circumstance, F3BA still performs better679

than DBA. Stopping F3BA entirely by the number of benign clients would require potentially much680

more benign clients and fewer malicious clients.

Round CIFAR-ACC CIFAR-ASR TinyImagenet
-ACC

TinyImagenet
-ASR

F3BA DBA F3BA DBA F3BA DBA F3BA DBA

25 39.01% 38.10% 12.39% 10.12% 9.25% 9.64% 7.15% 4.72%

50 46.54% 45.93% 34.26% 20.27% 17.50% 17.23% 18.10% 9.27%

75 51.21% 50.95% 56.20% 25.55% 20.05% 20.66% 42.06% 15.20%

100 55.38% 55.60% 75.25% 24.36% 23.84% 24.20% 60.11% 30.05%
Table 3: ASR/ACC with more benign clients against plain FedAvg. 100 clients, 4 malicious.

681
G.4 Attack Sparsification-based Defense682

Besides 3 Model Refinement defenses, 3 Robust Aggregation defenses, and 1 Certified Robustness683

defenses in Section.3,we also explore the effect of SparseFed, a theoretical framework for analyzing684

the robustness of defenses against poisoning attacks. Since it is not specifically designed for the685

robustness towards backdoor attacks, we put the result in the supplementary as Table.4.686

Based on the model architecture and task complexity, we set the number of accepted parameters687

K = 1e4 for CNN and K = 4e5 for ResNet-18 respectively. From the Table.4, we can observe that688

although SparseFed only allows a small fraction of aggregated parameters for global model updates689

at each round, it still can be backdoored by our F3BA.

Round CIFAR TinyImagenet
ACC ASR ACC ASR

25 44.70% 76.75% 1.75% 9.64%

50 49.63% 90.51% 4.78% 49.56%

75 54.43% 99.30% 8.05% 87.21%

100 57.71% 99.75% 11.10% 82.77%
Table 4: ASR/ACC with against sparseFed FedAvg. 20 clients, 4 malicious.

690
We conjecture that the sparsity criterion cannot rule out all the backdoor-related model parameters as691

our attack does not necessarily lead to an update that is small in magnitude.692

G.5 Effect of Data Heterogeneity693

We study how data heterogeneity would affect the attack of F3BA. We manually adjust the concentra-694

tion hyperparameter h to split non-i.i.d dataset.(The larger the h, the more i.i.d the data is distributed).695

On the two datasets, the ASR both grows when the h becomes smaller, and the ACC decreases at the696

same time. The result shows that lower h strongly hurts the accuracy of the global model but gives697

convenience to the backdoor attack.698
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Figure 11: Attack success rate and accuracy against FedAvg under different data heterogeneity h.

G.6 Effect of The Proportion of Candidate Parameters699

In our experiments, we find that different proportions of candidate parameters should be used for the700

different parts of a neural network in order to achieve a better attack. To valid this, we conducted701

a grid search on CIFAR-10 for ACC and ASR at the 20th round. Based on the result in Figure 12,702

moderately scaling up the candidate parameters rate (e.g. from 0.02 to 0.05) in fully-connected703

layers would increase the ASR without the loss of ACC. Meanwhile, too high candidate parameters704

proportion for fully-connected layers can cause an obvious loss of ASR. Intuitively, the parameters of705

the convolutional part are more sparse than the fully-connected part and therefore can be selected706

with a higher candidate parameter proportion. Similarly, fully-connected layers indeed involve more707

parameters, and thus only require a smaller candidate parameter proportion. According to our practice,708

a sound choice for attackers is to set the proportions for convolutional layers and fully-connected709

layers respectively below 5% and 1%.710

Figure 12: Attack success rate and accuracy with different candidate parameter proportion for
convolutional layers and fully-connected layers on CIFAR-10 dataset.

G.7 Effect of Local Training711

Figure 13: Attack success rate and accuracy against FedAvg under different data heterogeneity h.
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As discussed in Section 2.2, local training is still a must for the effects of F3BA, while simply712

flipping without training can not induce activation led by the trigger to the targeted label. We further713

discover how the order of local training and Focused Flip would affect our attack. Based on the714

results on CIFAR-10 and Tiny Imagenet, the flipping-training-pipeline can achieve better ASR than715

the flip-training one. It also ensures a slightly higher ACC. The significant difference of ASR on716

attacking Tiny Imagenet dataset for two pipelines also suggests that training a local model to bridge717

the sudden changes in model weights caused by focused flip can be of benefit to the effectiveness of718

the attack.719
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