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Abstract

Target speaker extraction focuses on isolating a specific speaker’s voice from
an audio mixture containing multiple speakers. To provide information about
the target speaker’s identity, prior works have utilized clean audio samples as
conditioning inputs. However, such clean audio examples are not always readily
available. For instance, obtaining a clean recording of a stranger’s voice at a cocktail
party without leaving the noisy environment is generally infeasible. Limited prior
research has explored extracting the target speaker’s characteristics from noisy
enrollments, which may contain overlapping speech from interfering speakers.
In this work, we explore a novel enrollment strategy that encodes target speaker
information from the noisy enrollment by comparing segments where the target
speaker is talking (Positive Enrollments) with segments where the target speaker is
silent (Negative Enrollments). Experiments show the effectiveness of our model
architecture, which achieves over 2.1 dB higher SI-SNRi compared to prior works
in extracting the monaural speech from the mixture of two speakers. Additionally,
the proposed two-stage training strategy accelerates convergence, reducing the
number of optimization steps required to reach 3 dB SNR by 60%. Overall,
our method achieves state-of-the-art performance in the monaural target speaker
extraction conditioned on noisy enrollments. Our implementation is available at
https://github.com/xu-shitong/TSE-through-Positive-Negative-Enroll .

1 Introduction

In the target speaker extraction task, the model is required to extract the target speaker’s voice from a
mixture of multiple speakers and ambient noise. To specify the characteristics of the target speaker,
prior works have explored using conditional information of the target speaker in multiple modalities,
including visual [1, 2], contextual [3, 4], or acoustic modality [5, 6, 7, 8]. Though prior works
using conditional information in the acoustic modality have achieved significant good extraction
performance, most of these works only considered using clean audio examples of the target speaker
[9, 10, 11, 12]. This strong assumption prevents these models from performing well when only noisy
audio examples are available. For example, consider a cocktail party, where the user meets a stranger
who has not provided an audio sample before. To extract the target stranger speaker’s voice from the
noisy environment to assist clear conversation, the user will have to ask the speaker to step outside
to record the clean audio enrollment. Enrolling target speakers in this way is often impractical in
real-world applications.

Although prior works have attempted to perform target speaker extraction using noisy enrollments,
they either still exploit the timesteps where only the target speaker is speaking in the noisy enrollment
[13, 14], or assume that the user has participated in the audio mixture recording [15, 16], limiting
extraction from arbitrary audio mixtures. In this work, we present a method for performing target
speaker extraction conditioned on noisy audio enrollments where both the target speaker and the
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Figure 1: a) Task scenario explored in the work. Users identify a speaker of interest in an audio
mixture, and labeling when the target speaker speaks (Positive Enrollment) or remains silent (Negative
Enrollment) in the audio mixture. b) Decomposition of each speaker’s voice in the audio mixture. Due
to the stochasticity in human conversation, the interfering speaker will either remain silent in some of
the segments in the Positive Enrollment or speak in the Negative Enrollment, leaving the target speaker
the only speaker who talks throughout the Positive Enrollments but not in the Negative Enrollment. c)
The model performs self-attention between the encoded Positive and Negative Enrollments to extract
the target speaker’s characteristic, which serves as the conditional information for the following
extraction model. The model then extract the target speaker from the Audio Mixture.

interfering speakers overlap, as shown in Figure 1 (a). To resolve the ambiguity of which speaker in the
noisy enrollment is the target speaker, we exploit the stochastic nature of different speakers’ speaking
patterns, which allows us to assume that speakers won’t start and stop talking in perfect synchrony in a
noisy conversational environment1. As shown in Figure 1 (b), based on this assumption, we structure
the enrollment input as a combination of two segments: a Positive Enrollment (where the target
speaker is speaking) and a Negative Enrollment (where the target speaker remains silent). During
training, we encourage the model to encode the identity of the speaker who consistently speaks during
Positive Enrollments and remains silent during Negative Enrollments. Interfering speakers, from
the assumption above, will be inactive during parts of the Positive Enrollment (e.g., Blue speaker in
segment C) and/or present during the Negative Enrollment (e.g., Red and Green speakers in segments
A and D). By exploiting these temporal misalignments, the model can distinguish and encode the
target speaker’s characteristics, despite the presence of interfering speech and noise throughout both
enrollments. We detail the problem formulation and the training pipeline to achieve this in Section 3.

By performing target speaker extraction in this manner, our model supports a broad range of real-
world applications. Enrollment could easily be achieved in reality by pressing a button on an app or
tapping an earbud to indicate a positive segment. Note that precise labeling is not required. Similarly,
for offline speaker extraction (e.g., from an audio recording of a meeting), a few seconds of audio can
be easily labeled as Positive or Negative samples.

In conclusion, our contributions include:

1. Exploring a novel enrollment strategy for target speaker extraction with noisy positive/negative
enrollments and imprecise labels.

2. Design of a two-branch encoder and an associated two-stage training strategy for the task. Ablation
experiments show that the proposed training method allows our model to achieve the same level of
performance (3.0 dB SNR on the validation set) with 60% fewer optimization steps.

3. Demonstrate and discuss our model’s performance across challenging and realistic application
scenarios, including different numbers of interfering speakers, significant overlap between target and
interfering speakers in enrollments, and inaccuracies in the positive and negative enrollment labeling.

1We quantitatively verify the feasibility of this assumption in Appendix A.
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2 Related Work
2.1 Target Speaker Extraction in Challenging Scenarios

In target speaker extraction, prior works have explored using visual [1, 2], textural [3, 4], and audio
examples [5, 6, 7, 8] of the target speaker as extraction conditions. Our work belongs to the third
category, which learns the acoustic characteristics from given audio examples. Prior works in this
category have attempted to improve extraction quality by modifying the fusion method [9, 17],
leveraging multi-channel information in the audio mixture input [10, 18], and processing audio in the
temporal domain [6, 7].

To improve the models’ robustness and applicability in real-world applications, prior works have
explored extracting multiple target speakers’ speech simultaneously [19, 3, 20], transferring to
extract speech for different languages [12], and disentangling irrelevant audio characteristics (e.g.,
reverberation effect) from the enrollment [21, 22, 23, 24, 25, 26]. In particular, Zhao et al. [11]
addressed the problem of variable interfering speaker numbers in the audio mixture to be separated.
In our experiment, we also show our model’s generalizability to extract with different numbers of
target and interfering speakers. Ranjan et al. [22] adopted curriculum learning to gradually increase
the extraction difficulty. After a fixed number of epochs, samples with a lower signal-to-noise ratio
(SNR) and higher similarity between target and interfering speakers are added to the training dataset.
Our method adopts a similar training paradigm to pretraining the audio encoder. Both ours and the
prior work from Ranjan et al. [22] show that the multi-stage training improves model convergence
speed and leads to better final performance.

2.2 Target Audio Extraction Conditioned on Enrollments with Interfering Speakers

Though prior works have achieved significant progress in target audio extraction, most of these works
assume the availability of clean audio enrollment. However, in real-world application scenarios, such
enrollment examples are not necessarily available.

Among those prior works that attempted to extract target speech conditioned on noisy audio enroll-
ments, TCE [15] explored the turn-taking dynamics in the conversation. TCE model accepts an audio
encoding of the user’s clean voice and performs extraction by considering the speakers who cross-talk
with the user as the interfering speakers. However, TCE is limited to performing target speaker
extraction when the user is participating in the conversation and does not allow specifying audio
segments where the target speaker is present. A closely related work to ours is ADEnet [13], which
also utilizes target speaker activity labeling to perform speech extraction. However, ADEnet only
validated its performance on two-speaker mixtures with an average overlap ratio of 38.5%, where the
enrollment contains mostly clean speech. As a result, it does not explore the challenges of unstable
optimization and high overlap ratio between the target speaker and the interferers in the enrollment
segment, which we explicitly address in our work. LookOnceToHear [16] leverages binaural audio to
extract the target speaker’s voice. During the enrollment stage, when the user is looking toward the
target speaker, the model performs beamforming at a 90-degree azimuth to disambiguate the target
speaker from the interferers talking simultaneously.

In comparison to the previous target speaker extraction methods, our model does not assume prior
knowledge of any speaker in the mixed audio or the target speaker’s spatial location in the enrollment
stage. This allows our model to extract the target speaker from an arbitrary mono-channel sound
mixture, and only use easily obtained binary labels of positive and negative audio segments in the
temporal domain to extract the target speech. Besides, our model can flexibly perform extraction
using either clean or noisy enrollments without retraining and get comparable performance with the
previous method trained on clean enrollment, as shown in the Appendix J.

3 Method
3.1 Problem Formulation

In the target speaker extraction (TSE) task, the model first encodes the target speaker’s characteristic
from an enrollment input using an encoding branch. Conditioned on the encoding branch output,
the model extracts the target speaker’s voice from an Audio Mixture aM . To allow the model to
extract the target speaker conditioned on noisy enrollments, we formulate our enrollment as a pair of
Positive Enrollment aP and Negative Enrollment aN . After encoding the target speaker characteristic
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F (aP , aN ) from the enrollment pair, the model extracts the target speaker’s voice from the audio
mixture G(aM , F (aP , aN )).

To simulate the audio mixture in a noisy environment, we model the signal as the sum of an individual
speaker’s voice and the background noise. Thus, the noisy Positive Enrollment aP , Negative
Enrollment aN , and the Audio Mixture aM are constructed as:

aM =
∑

i∈SIM∪{t}

aMi + nM , aP =
∑

i∈SIE∪{t}

aPi + nP , aN =
∑

i∈SIE

aNi + nN , (1)

where a
{P,N,M}
i represents the speech signal of speaker i in the Positive, Negative, and Audio

Mixture. n{P,N,M} represents the background noise in the three mixtures. t represents the target
speaker ID, and SIE , SIM represent the interfering speakers in the enrollments and the Audio
Mixture, respectively.

3.2 Speaker Disambiguation via Positive and Negative Enrollments

To show how the Positive and Negative Enrollment pair resolves the ambiguity of which speaker is
the target speaker in the noisy enrollments, we introduce the following assumption about speakers’
temporal dynamics:

Assumption: In a long audio mixture where multiple speakers speak independently, no two speakers
will consistently start and stop talking at exactly the same times throughout the mixture.

This assumption is easily satisfied: For two speakers to always talk simultaneously, one speaker
would have to deliberately start and stop speaking at the exact same times as the other, effectively
aiming to sabotage the other’s conversation. Such speakers interfering with intention are unlikely
to exist in typical cocktail-party scenario, when interfering speakers in the environment are talking
independently from the target speaker. We quantitatively verify this assumption on the real-world
audio dataset in Appendix A.

Based on the assumption above, the Positive and Negative Enrollments divide interfering speakers
into 4 categories, depending on their existence in both enrollments:

1) Negative Interferer (NI): These are speakers who talk consistently throughout the Positive Enroll-
ment and are present in the Negative Enrollment. The model should learn their voice characteristics
from the Negative Enrollment and exclude them from the encoding.

2) Positive Interferer (PI): These are speakers who are not present in the Negative Enrollment and
talk in a fraction of the Positive Enrollment. The model should identify those segments when PIs
are absent in the Positive Enrollment and exclude these speakers in the encoding. We explore how
sensitive our model is to this fractional overlap in Section 4.4.

3) Hybrid Interferer (HI): These speakers appear partially in both the Positive and Negative Enroll-
ments. They resemble a combination of Positive and Negative Interferers, providing the model with
two potential cues for suppression: their absence in some Positive Enrollment segments and their
presence in some of the Negative Enrollment segments.

4) Neglect-Required Interferer (NRI): These speakers appear exclusively in the Negative Enrollment.
Similar to the Negative Interferers, the model encoder should avoid include these speakers’ voice
characteristic in the extracted embedding.

Since Positive and Negative Interferers represent the two primary scenarios in which the model must
learn to distinguish target speakers from interfering ones, we focus our training and evaluation on
these two types. We demonstrate our model’s generalizability when Hybrid and Neglect-Required
Interferers exist in Appendix H and I, respectively.

3.3 Model Architecture

As shown in Figure 2, we adopt TF-GridNet [27] as the backbone for both our Encoding and
Extraction Branches. The TF-GridNet architecture consists of a 2D convolution layer followed by
stacks of three TF-GridNet blocks. Each block consists of two BiLSTM modules that capture the
inter-frequency and temporal information, followed by a Full-band Self-attention Module designed to
capture the long-range frame information between frames. To adapt the original TF-GridNet, which
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Figure 2: Encoding and Extraction Branch model architecture and training pipeline.

is designed to perform sound separation, to the Target Speaker Extraction task, we introduce an
attention-based Encoder Fusion Module and an Extraction Fusion Module. The Encoder Fusion
Module performs comparison between Positive and Negative Enrollment embeddings to generate
the embedding of the target speaker, while the Extraction Fusion Module integrates enrollment
encoding into the extraction model. The model architecture and training method for encoding the
target speaker’s feature are shown in Figure 2.

The Positive and Negative Enrollments are first encoded by a pair of TF-GridNet encoders in the
Siamese Encoder. Since The goal of both branches in the Siamese Encoder is to encode multiple
speakers’ characteristics from the noisy Positive or Negative Enrollments, we share the parameters
between the two TF-GridNet encoders of the Siamese Encoder to reduce model parameter size. The
Siamese encoder results in two sequences of embeddings Epos and Eneg with shapes [Tpos, D] and
[Tneg, D], respectively. Tpos, Tneg are the numbers of frames in the positive and negative enrollment
embeddings, and D is the feature dimension at each frame.

# Input:
# E_pos: shape [T_pos, D]
# E_neg: shape [T_neg, D]

# Learnable parameters:
# Segment Embeddings:
# S_pos, S_neg: shape [1, D]
# M: 2 Full-band Self-attention layers

Encoder Fusion Module:
# Step 1: Elementwise add via broadcasting
E_pos = E_pos + S_pos # shape [T_pos, D]
E_neg = E_neg + S_neg # shape [T_neg, D]

# Step 2: Concatenate along the temporal dimension
E_concat = [E_pos, E_neg] # shape [T_pos + T_neg, D]

# Step 3: Apply two Full-band Self-attention layers
E_concat = M(E_concat) # shape [T_pos + T_neg, D]

# Step 4: Truncate embeddings
E_fused = E_concat[:T_pos] # shape [T_pos, D]

Figure 3: Encoder Fusion Module
pseudo-code.

The Encoder Fusion Module then extracts the target
speaker’s voice embedding from the Siamese Encoders’
output Epos and Eneg. The pseudo-code for the Encoder
Fusion Module is shown in Figure 3. In Step 1, two seg-
ment embeddings, Spos and Sneg with shape [1, D], are
first element-wise added to the input embeddings to allow
the model to distinguish which enrollment each embed-
ding originates from. The resulting two embeddings are
concatenated along the temporal dimension in Step 2, and
passed through two Full-band Self-attention layers in Step
3. In these two layers, the self-attention calculation be-
tween the embeddings of different Positive Enrollment
frames allows the model to identify the Positive Interfer-
ers, who remain silent in some of the Positive Enrollment
frames, and exclude these speakers in the extracted em-
bedding. Similarly, attention between the Positive and
Negative Enrollments embeddings enables the model to
identify and exclude Negative Interferers, (i.e., speakers
present only in the negative enrollments), from the output
embedding. Finally, in Step 4, we truncate the output to
retain only the embeddings corresponding to the positive
enrollment as the extracted target speaker embedding, which reduces the output to a [Tpos, D] shaped
embedding Efused. This reduction in embedding size ensures the embedding feature is the same
size as the pretrained encoder’s output, allowing the model to benefit from the fast convergence
brought by training the encoder using knowledge distillation (as shown in Section 4.3). To further
reduce the computation load in the extraction branch, we apply non-overlapping average pooling with
40 kernel size along the temporal dimension to Efused, resulting in a [Tpos//40, D] shaped feature
Efused-pooled. We discuss the effect of different kernel sizes on the model performance and inference
time in Appendix D.
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Conditioned on the pooled enrollment encoder output Efused-pooled, we use a TF-GridNet-based
Extraction Branch to extract the target speaker’s voice from the Audio Mixture. To perform causal
target speaker extraction, we modify the TF-GridNet block by adopting the same modification as
LookOnceToHear [16]. Three causal TF-GridNet blocks are used in the Extraction Branch. Two
cross-attention-based Extraction Fusion Blocks are added after the first two causal TF-GridNet
blocks to integrate the pooled target speaker embedding Efused-pooled into the extraction model. In
each fusion module, the pooled target speaker embeddings Efused-pooled serve as the Key and Value,
while the output from the previous TF-GridNet block serves as the Query for the fusion module. The
output from the last TF-GridNet block passes through a transposed convolution layer and an ISTFT
module to generate the speech waveform.

In addition to the monaural model described above, which processes single-channel audio, we
propose a binaural variant designed to encode and extract binaural audios. The difference between
the monaural and binaural model architectures lies solely in the input. The binaural model takes in
4 channels input (stacked real and imaginary components from both channels) and the monaural
model takes in only 2 channels (stacked real and imaginary component). By stacking the two
channels’ STFT, the binaural model can capture the inter-channel temporal differences between the
two channels, which encode the directional information of the target speaker since the target speaker
speaks at 90 degree azimuth angle in the enrollment. Both model architectures do not differ after the
first convolution layer.

3.4 Training Method

Due to the additional speaker and background noise in the enrollments, the noisy Positive and
Negative Enrollment pairs introduce significant variability in the training data in comparison to
the clean enrollments. As shown in Section 4.3, when the Encoding and the Extraction branches
are trained together using these noisy training samples, the model converges much more slowly
and reaches worse final performance. Motivated by the prior works [16, 28, 29] that successfully
trained extraction models conditioned on the clean target speaker embeddings, we separately train the
Encoding and Extraction branches in a two-stage training strategy.

As shown in Figure 2, the first stage trains the Siamese Encoder and the Encoder Fusion Module
from scratch, using knowledge distillation, to extract the target speaker’s embedding from the noisy
positive and negative audio enrollments. We obtain the ground-truth target speaker’s embedding by
passing the clean target speaker’s voice through a trained frozen TF-GridNet encoder [16]. Formally,
the first stage training loss is written as

Lstage 1 = ∥Eclean − Efused∥2 , (2)

where Eclean is the embedding of the clean target speaker voice aclean encoded by a trained TF-GridNet
encoder from [16].

In the second stage, we train the Extraction Branch to extract the target speaker from the Audio
Mixture. The training loss for the second stage is the negative SNR value of the extracted audio âtgt
and the ground-truth target speaker speech atgt:

Lstage 2 = −SNR(âtgt, atgt). (3)

More training and model details are discussed in Appendix C.

4 Experiment

4.1 Datasets and Baselines

Datasets We construct our Positive, Negative, and Mixed Audios from the samples in the Lib-
riSpeech dataset [30], with background noise n{M,P,N} from the WHAM! dataset [31]. Following
the experiment configuration in LookOnceToHear [16], we also construct binaural Positive / Negative
/ Mixed Audio samples by convolving the speech of each speaker with the binaural RIR data from 4
different datasets: CIPIC [32], RRBRIR [33], ASH-Listening-Set [34], and CATTRIR [35].
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Table 1: Comparison between our method and the baselines’ performance when extracting from
an audio mixture of 2-3 speakers conditioned on an enrollment mixture of 2-4 speakers. NMF’s
performance does not change as the number of speakers in the Enrollments changes, as it performs
unconditional sound separation. Differences in speaker similarity across combinations substantially
impact extraction difficulty, leading to the high standard deviation across samples.

Method Audio Type Metric
2 Speakers in Mixture 3 Speakers in Mixture

2 Speakers 3 Speakers 4 Speakers 2 Speakers 3 Speakers 4 Speakers
in Enroll in Enroll in Enroll in Enroll in Enroll in Enroll

NMF [36] Mono

SNRi 4.24±1.60

” ”

5.65±1.85

” ”

SI-SNRi -1.65±3.78 -1.50±3.57
PESQ 1.05±0.32 1.22±0.42
STOI 0.362±0.139 0.296±0.114

DNSMOS 1.56±0.44 1.55±0.41
WER 0.98±0.05 0.99±0.02

USEF-TFGridnet [17] Mono

SNRi 3.42 ± 3.43 3.45 ± 3.58 3.30 ± 3.50 4.31 ± 2.52 4.15 ± 2.47 4.23 ± 2.58
SI-SNRi -0.03 ± 5.97 -0.03 ± 6.42 -0.14 ± 6.00 0.29 ± 3.38 0.11 ± 3.36 0.09 ± 3.24

PESQ 1.52 ± 0.49 1.54 ± 0.49 1.52 ± 0.49 1.32 ± 0.38 1.32 ± 0.37 1.31 ± 0.36
STOI 0.43 ± 0.17 0.43 ± 0.18 0.43 ± 0.17 0.36 ± 0.11 0.35 ± 0.11 0.36 ± 0.11

DNSMOS 1.37 ± 0.45 1.37 ± 0.45 1.36 ± 0.45 1.35 ± 0.41 1.33 ± 0.41 1.34 ± 0.42
WER 0.66 ± 0.33 0.66 ± 0.36 0.68 ± 0.32 0.85 ± 0.26 0.86 ± 0.21 0.86 ± 0.20

TCE [15] Mono

SNRi 8.48±2.34 7.84±2.56 7.52±2.68 8.47±2.37 8.57±2.34 8.07±2.40
SI-SNRi 6.67±3.69 5.57±4.47 4.77±5.34 6.63±3.74 5.13±4.07 4.10±4.60

PESQ 1.91 ± 0.34 1.80 ± 0.41 1.73 ± 0.46 1.91 ± 0.34 1.53 ± 0.39 1.48 ± 0.40
STOI 0.682±0.120 0.650±0.140 0.624±0.160 0.682±0.120 0.551±0.143 0.521±0.151

DNSMOS 1.85±0.44 1.84±0.44 1.83±0.44 1.85±0.44 1.65±0.41 1.65±0.41
WER 0.73 ± 0.16 0.76 ± 0.24 0.77 ± 0.24 0.73 ± 0.25 0.88 ± 0.21 0.88 ± 0.17

Mono

SNRi 8.53±2.30 8.39±2.37 8.37±2.50 9.03±2.23 9.00±2.31 8.89±2.38
SI-SNRi 6.70±3.43 6.45±3.74 6.31±3.84 6.25±3.35 6.06±3.68 5.76±3.95

Ours PESQ 1.84 ± 0.32 1.83 ± 0.34 1.84 ± 0.33 1.57 ± 0.31 1.56 ± 0.32 1.54 ± 0.35
(Film fusion) STOI 0.681±0.111 0.675±0.123 0.665±0.127 0.581±0.123 0.578±0.129 0.565±0.133

DNSMOS 1.92±0.39 1.90±0.39 1.90±0.41 1.69±0.38 1.68±0.38 1.67±0.38
WER 0.54 ± 0.37 0.54 ± 0.29 0.54 ± 0.28 0.73 ± 0.24 0.72 ± 0.25 0.73 ± 0.24

Mono

SNRi 10.14±2.57 9.93±2.71 9.79±2.86 10.42±2.49 10.37±2.64 10.22±2.79
SI-SNRi 8.85±3.67 8.54±4.01 8.30±4.47 8.42±3.62 8.29±4.06 7.82±4.62

Ours PESQ 2.07 ± 0.34 2.06 ± 0.36 2.05 ± 0.36 1.79 ± 0.33 1.78 ± 0.34 1.75 ± 0.37
(Monaural) STOI 0.758±0.107 0.749±0.121 0.742±0.126 0.668±0.123 0.665±0.130 0.648±0.146

DNSMOS 2.14±0.37 2.13±0.37 2.02±0.38 1.93±0.37 1.92±0.38 1.90±0.38
WER 0.42 ± 0.35 0.43 ± 0.28 0.45 ± 0.28 0.61 ± 0.28 0.61 ± 0.28 0.62 ± 0.28

In evaluation, 5000 samples are generated from the LibriSpeech dataset test-clean component using
the same strategy as the training samples. We report the average improvement in SNR (SNRi) and
SI-SNR (SI-SNRi), and the extracted audio’s STOI and DNSMOS, along with the standard deviation
across evaluation samples calculated using the built-in Pytorch function under the assumption that
model performance metrics follow a normal distribution. We detail the training and testing data
generation in Appendix B.

Baselines We compare our monaural model’s performance with TCE [15], USEF-TFGridnet
[17], and non-negative matrix factorization (NMF) method [36]. We compare our binaural model’s
reverberant target speech extraction performance with the LookOnceToHear model [16].

1. TCE [15] considers speakers whose voices do not overlap with a given speaker as the target
speakers and extracts their voices. The model takes in a d-vector embedding of the given speaker and
removes all interfering speakers who talk at the same time as the given speaker.

2. LookOnceToHear [16] is a binaural target speech extraction method conditioned on noisy audio
enrollments. This method uses beamforming to extract the target speaker’s characteristics from the
noisy Positive Enrollment, which contains audio from multiple additional speakers.

3. USEF-TFGridnet [17] is a target speech extraction model using clean target speaker enrollment
as the extraction condition. We include this model as a baseline to show the influence of having
interfering speakers in the audio enrollment on the model performance.

4. NMF [36] is a non-deep-learning-based audio separation technique. Since the method could
not perform target speaker extraction conditioned on noisy audio examples, we report its extraction
quality by selecting the audio with the highest SNR among its output as its extracted audio.

4.2 Result on Monaural and Binaural Reverberant Target Speech Extraction

We compare our model with baseline methods under scenarios where different numbers of speakers
are present. Table 1 shows the monaural target speaker extraction performance. USEF-TFGridnet
[17] shows significantly worse performance, especially as the number of interfering speaker increase
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Table 2: Comparison between our method and the baselines’ performance when extracting binaural
audio from mixtures of 2-3 speakers conditioned on an enrollment mixture of 2-4 speakers.

Method Audio Type Metric
2 Speakers in Mixture 3 Speakers in Mixture

2 Speakers 3 Speakers 4 Speakers 2 Speakers 3 Speakers 4 Speakers
in Enroll in Enroll in Enroll in Enroll in Enroll in Enroll

Binaural

SNRi 9.36±3.56 8.90±3.57 9.12±3.57 9.30±3.39 9.28±3.49 9.30±3.56
SI-SNRi 7.75±5.35 7.24±5.43 7.53±5.35 6.58±5.37 6.49±5.62 6.51±5.64

LookOnceToHear PESQ 2.28 ± 0.47 2.25 ± 0.52 2.28 ± 0.45 1.87 ± 0.48 1.88 ± 0.44 1.90 ± 0.47
[16] STOI 0.736±0.152 0.723±0.162 0.732±0.153 0.620±0.175 0.610±0.180 0.611±0.187

DNSMOS 1.79±0.56 1.77±0.55 1.76±0.55 1.59±0.47 1.60±0.48 1.58±0.49
WER 0.45 ± 0.41 0.44 ± 0.35 0.47 ± 0.68 0.66 ± 0.36 0.63 ± 0.33 0.64 ± 0.33

Binaural

SNRi 9.84±3.57 9.60±3.57 9.59±3.63 9.81±3.28 9.78±3.23 9.83±3.30
SI-SNRi 8.18±4.81 7.84±5.20 7.75±5.17 6.76±5.27 6.72±5.08 6.71±5.50

Ours PESQ 2.24± 0.47 2.22 ± 0.47 2.25 ± 0.47 1.85 ± 0.44 1.85 ± 0.42 1.87 ± 0.43
(Binaural) STOI 0.735±0.150 0.729±0.155 0.720±0.159 0.608±0.177 0.605±0.177 0.605±0.182

DNSMOS 1.82±0.60 1.80±0.59 1.80±0.59 1.59±0.50 1.60±0.49 1.59±0.48
WER 0.45 ± 0.48 0.45 ± 0.34 0.44 ± 0.35 0.63 ± 0.33 0.64 ± 0.43 0.64 ± 0.42

in the enrollment. TCE [15] achieves better performance than USEF-TFGridnet [17] baseline since it
does not rely on the clean target speaker’s enrollment. However, apart from the STOI metric in one
scenario, the TCE model shows worse performance than our method under all different numbers of
interfering speakers in the Audio Mixture and in enrollments.

In the multi-channel target speech extraction, prior work [16] has explored using beamforming to
extract the target speaker’s characteristics. In this experiment, we show that additionally including
the Negative Enrollment helps improve model performance. As shown in Table 2, in comparison
to the LookOnceToHear [16] baseline, based on two-sample t-tests over the 5000 test samples at
the 90% confidence level, our model achieves statistically significant improvements in SNRi and
SI-SNRi under all conditions. The worse STOI performance might be caused by the difference
in parameter size, as shown in Appendix C. In contrast to the monaural experiment results, the
binaural models show lower performance in most of the metrics and scenarios. This performance
drop might be caused by the difference in training objective, since the binaural models need to predict
the reverberant binaural audio, while the monaural models are trained to extract non-reverberant
speech (to achieve fair comparison with the prior works focusing on non-reverberant extraction). The
DNSMOS, PESQ, and WER metric are also affected by the reverberation effect in the prediction,
thus providing less effective information for comparing model performance. We include them here
only for completeness.

4.3 Ablation Study
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Figure 1: Validation loss values with respect to the optimization step. The curve
for the model with a pretraining stage begins at the 200k step to account for
the 200k optimization steps performed during the pretraining stage. Due to the
significantly large optimization step number required by the model trained from
scratch, the plot only shows the learning curve of the first 600k optimization
steps.
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Figure 4: Validation loss values for the
optimization step. The curve for the two-
stage training begins at the 200k step to
account for the 200k optimization steps
performed during the first training stage.

Effectiveness of the two-stage model training In this
section, we show the effectiveness of the two-stage train-
ing by showing the validation loss curve of our model with
and without the first training stage. As shown in Figure 4,
end-to-end training reaches 3 dB SNR on the validation set
after 600k optimization steps (around 125 hours), while
the combined training time for the two-staged training
takes 240k optimization steps (around 50 hours) based on
a single Nvidia A10 24GB GPU.

Such a performance difference might be caused by the high
difficulty in encoding the expected target speaker from the
noisy enrollment pair. Since its very challenging for the
model to draw similarity between the ground-truth single
speaker audio and the noisy pair of enrollments input,
training using an end-to-end learning method provides
little guidance to the encoder on which speaker is expected
to be encoded. In contrast, the two-stage training explicitly guides the model to extract the target
speaker’s embedding in the first stage, significantly accelerating convergence.

Cross-Attention based Fusion over Film Fusion Method Film fusion is widely applied in the
prior target audio extraction works [37, 15, 16]. However, Film fusion passes the condition embedding
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Figure 2: Improvement in SI-SNR over normalized training progress. The pre-
trained model shows steady improvement, while the end-to-end model degrades
significantly.
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Figure 5: Model performance w.r.t. length of Negative
Interferer in the Negative Enrollment.

Table 3: SI-SDRi of 10 Sample using Ground-Truth or Inaccurate User Enrollment Labelings.

Enrollment 1 2 3 4 5 6 7 8 9 10Labeling Source
Ground Truth 10.98 7.60 8.35 11.71 10.31 12.31 11.01 7.03 8.00 11.81

User-Labelings 10.90 7.60 8.40 11.65 10.23 12.14 10.82 7.32 8.04 11.15
± 0.04 ±0.05 ±0.02 ±0.04 ±0.07 ±0.12 ±0.24 ±1.32 ±0.10 ±2.10

through a linear layer, and element-wise multiplies the output with the input tensor to perform fusion.
This limits the model to use a fixed embedding size, which might not be capable of encoding the
fine-grained details of the target speaker’s voice characteristics. In this experiment, we show that our
attention-based fusion method is more optimal for our target speech extraction task.

We keep the rest of the model architecture intact and only change the model fusion method. In
particular, we perform global average pooling on the encoder head output along the temporal
dimension to obtain an embedding as the condition input to the Film fusion block. As shown in Table
1, our attention-based fusion method achieves higher performance in all application scenarios. This
shows that the cross-attention-based fusion method is more preferable for the target speech extraction
conditioned on noisy enrollments.

4.4 Model Performance in Challenging Application Scenarios

Model Performance under different PI and NI’s speech length As the Positive Interferer (PI)’s
speech duration in the Positive Enrollment increases, fewer frames are available for the model to
distinguish the Target Speaker from the PI. Similarly, reducing the Negative Interferer (NI)’s speech
length in the Negative Enrollment results in less available conditional information to remove NI’s
voice characteristics in the target speaker encoding. In this section, we explicitly examine how the
model performance varies with the duration of the PI and NI’s speech in the enrollment.

We focus on the scenario where one PI and one NI exist in the enrollments, and the Audio Mixture
contains the same interferer as those in the enrollments. Let the length of the PI’s speech in the
Positive Enrollment be lpos, and the NI’s speech in the Negative Enrollment be lneg. In Figure 4,
we report the average model performance when extracting 2000 test samples with lneg randomly
sampled between 1s to 3s and lpos takes different values between 0s to 3s. We evaluate the extracted
audio’s SI-SNRi with respect to the target speaker and the PI’s speech in the Audio Mixture. When
lpos = 3, the model fails to distinguish the two speakers as expected, since both speakers have the
same speech length in each enrollment. As lpos decreases below 2.7s, the model correctly identifies
the target speaker’s characteristic, as shown by the increasing SI-SNRi of the extracted audio w.r.t. the
target speaker’s speech and the decreasing SI-SNRi w.r.t. the PI’s speech. Alternatively, we randomly
sample lpos between 1s to 3s and evaluate the model performance when lneg takes a value between
0s to 3s. As shown in Figure 5, the model correctly extracts the target speaker and removes the
NI’s speech when lneg increases above 0.3s. These experiments demonstrate that the model indeed
leverages the differences in speakers’ speech length in both enrollments to encode the target speaker,
and could distinguish speakers from as short as 0.3 seconds of misalignment between their speech.

Model performance under inaccurate Positive and Negative Labeling In the real-world appli-
cation scenario, inaccurate Positive and Negative Enrollment labeling from the users could lead to
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unwanted inclusion of the target speaker’s voice in the Negative Enrollments, or including timesteps
when the target speaker remains silent in the Positive Enrollment. Both cases violate our model
input assumption. In this section, we demonstrate our model’s tolerance to the inaccuracy in the
user-provided Enrollments’ labeling.

We randomly select 2-3 speakers and overlay their voices so that each speaker spans 5-7 seconds
of a 10-second audio mixture. For 10 such randomly generated samples, we instruct 10 users to
label the start and stop timesteps of a certain speaker following a speaker hint, e.g, the same speaker
heard in another clean audio example. The segments not labeled by the user are considered negative
enrollments. Using the enrollment labeling provided by users, we perform extraction on another
audio mixture containing the target speaker. We report the SI-SNRi of each sample across different
users’ labeling, as well as the SI-SNRi if the ground truth labeling is used. As shown in Table 3, our
model shows little performance degradation when using the inaccurate positive enrollment labeling
provided by the user, despite each start and stop timestep of the positive enrollment being on average
0.30 ± 0.19 seconds away from the ground truth timestep. In addition, the model shows a small
variation in metric value across different users’ labeling. This validates our model’s robustness to the
inaccuracy in different users’ labeling.

Table 4: SI-SDRi under Inaccurate User
labelings.

Method MOS

Ours (Monaural) 3.35
Ours (FiLM Fusion) 2.60
USEF-TFGridnet 1.45
Unprocessed 2.10

Model Performance on Real-World Audio Mixtures
In this section, we compare our model and the baseline
methods on naturally recorded real-world audio mixtures.
We evaluate the Mean Opinion Score (MOS) of differ-
ent models using five naturally recorded audio mixtures
sourced from Freesound.org and the VoxConverse dataset.
These sounds are noisy real-world speech recordings cap-
tured in pubs, metro stations, urban areas, and city coun-
cil meetings. For the evaluation, we manually labelled
the Positive and Negative Enrollment and extracted target
speech from Audio Mixture clips taken from the same
recording. The duration of the enrollment and Audio Mix-
ture clips range from 3 to 8 seconds.

10 participants are asked to rate the original (unprocessed) Audio Mixture, and the audio extracted
by three models. Given a textual description of the target speaker (e.g., the female speaker talking
over the crowd), they rated the clarity of the target speech relative to background noise on a 1–4
scale. As shown in Table 4, our model achieved a MOS of 3.35, outperforming all baseline methods.
These results demonstrate the superiority and practical applicability of our model in real-world target
speech extraction scenarios.

5 Conclusion and Limitation

In this paper, we present a method for performing target speech extraction conditioned on noisy
enrollments where interfering speakers’ speech overlaps significantly with the target speaker. We
optimize our model to encode the target speaker from easily obtained noisy positive and negative
enrollments, without using any clean audio enrollment input. Experiments show that our method
achieves SOTA performance under the challenging and realistic application scenario.

Though the proposed two-stage training strategy for the encoding branch significantly accelerates
convergence, it may limit the encoder’s performance to that of the frozen encoder used for knowledge
distillation. Further work on encoding branch training is required to remove such potential perfor-
mance limitations while maintaining the high convergence speed. In addition, our model extraction
still includes artifacts noticeable to the human ear, as shown by the low DNSMOS score reported.
This hinders the model’s applicability to downstream tasks such as audio recognition. Further work
is required to reduce the artifacts, for example, by employing more advanced extraction branch
architectures. Finally, although our model can flexibly perform extraction using clean or noisy audio
enrollments, it does not outperform SOTA models explicitly trained to extract conditioned on clean
enrollments. Further work is required to develop models with strong generalizability across both
enrollment strategies.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

The abstract and introduction clearly describe the main contributions of the paper, including
using noisy positive and negative enrollments for target speaker extraction, a novel model
architecture, and a two-stage training method. These claims are well supported by the
experiments and analysis in the main text, and the paper also discusses assumptions and
limitations, matching the stated scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses several limitations in the main experimental results section
and the final "Conclusion and Limitation" section. It acknowledges challenges such as
performance ceiling posed by the proposed two-stage training strategy, the gap compared to
models trained with clean enrollments, and the difficulty of predicting reverberant audio. It
also notes potential issues like artifacts in extracted speech and the need for better encoding
architectures. Additionally, the paper reflects on the assumption that speakers do not start
and stop speaking in perfect synchrony, and empirically validates this assumption in the
"Model Performance in Challenging Application Scenarios" section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include any formal theoretical results, theorems, or proofs.
While it introduces an assumption about speaker temporal dynamics (i.e., that speakers
do not start and stop speaking in perfect synchrony), this is empirically validated on the
real-world datasets in Appendix A rather than formally proven. Therefore, this question is
not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient details to reproduce the main experimental results.
It describes the dataset construction process using LibriSpeech and WHAM!, outlines the
model architecture clearly, and explains the training procedure, including the two-stage
training strategy. Hyperparameters, evaluation metrics, and comparison baselines are also
specified. Additionally, the paper mentions that code, model checkpoints, pretrained models,
and usage instructions (readme file) are included in the supplementary material, supporting
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code, model checkpoints, and the instructions for reproducing the result
are given in the supplementary file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the training and testing setup. It
specifies the datasets used, the construction of positive, negative, and mixed audio samples,
and the baseline models for comparison. Also, some specifics (e.g., hyperparameters,
optimizer details) are deferred to the appendix B, C. We use the official train/validation/test
of the LibriSpeech dataset to construct different dataset splits.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviations alongside the main evaluation metrics in
the result tables, indicating variability across test samples. It also states that the metrics are
assumed to follow a normal distribution and that the standard deviations are computed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that training was conducted using a single Nvidia A10
24GB GPU and provides concrete information about training time and optimization steps in
Appendix C. This level of detail is sufficient to estimate the computational requirements for
reproducing the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our training samples involve only publicly available datasets, with no personal
identifiable information. We designed and performed our user study so that it fully complies
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the social impact of the work in the main paper. Our paper
focuses on improving making it easier for users to focus on desired voices in complex
auditory scenes, an application scenario already widely used. No social impact we feel
should be explicitly addressed here.
Justification: We discuss both potential positive and negative societal impacts in the Ap-
pendix. Our work aims to help users better focus on desired voices in complex auditory
scenes, which is an application scenario already widely used. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted
here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
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Justification: The paper does not release models or datasets that are clearly high risk for
misuse. It uses publicly available datasets and does not involve sensitive or scraped data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper uses publicly available datasets and properly cites the original
sources. It also credits the TF-GridNet model as the architectural backbone with appropriate
references. While the paper does not explicitly mention license types or URLs, the cited
resources are standard in the community, and their terms of use are widely known. There is
no indication of improper use or lack of attribution.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new model and training pipeline for target speaker
extraction and provides code, pretrained checkpoints, and instructions in the supplementary
material. While it does not create a new dataset, the documentation appears sufficient for
users to understand and apply the new assets. The assets are anonymized for submission,
aligning with NeurIPS guidelines.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We performed the experiment on 10 more human volunteers to verify the
feasibility of obtaining the Positive and Negative Enrollments. The experiment details and
the instruction given to the human participants are given in the Appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We have obtained the approval from the institution where all the authors are
from.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used solely to refine wording for clarity in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


The appendix is structured as follow: Section A quantitatively verifies the feasibility of encoding
the target speaker using the Positive and Negative Enrollments pair. Section B-D provide training
details and justification for the hyperparameter selection. Section E-I present model performance
under different numbers and speech lengths of interfering speakers. Section J-L reports the model’s
performance when clean audio enrollments are available. Section M show model’s generalizability
to speech data from other datasets. Seciton N shows the successful and failure cases. Section O
states the societal impact of the work.

Section A :Quantitative Evaluation on the Overlapping Ratio between the Target Speaker and the
Interfering Speakers

Section B :Data Simulation Method

Section C :Model Architecture and Training Detail

Section D :Embedding Pooling Size

Section E :Affect of Increasing Number of Positive and Negative Interferers on Model Performance

Section F :Model Performance under Different Lengths of Positive and Negative Enrollment

Section G :Model Performance with respect to the Input Audio Quality

Section H :Model Performance under presence of Hybrid Interferers

Section I :Model Performance under presence of Neglect-Required Interferers

Section J :Model Performance for Target speaker Confusion Problem

Section K :Model Performance when Clean Target Speaker’s Enrollment is available

Section L :Model performance on WSJ0 Dataset

Section M :Audio Visualization and Failure Cases

Section N :Societal Impact

A Quantitative Evaluation on the Overlapping Ratio between the Target
Speaker and the Interfering Speakers

As shown in Section 3.2, we base our problem formulation on the assumption that speakers will not
always start and stop talking at the same time. In this section, we show such temporal misalignment
between speakers in real-world noisy audio mixtures is prevalent, which allows our model to identify
the target speaker from the noisy Positive and Negative Enrollment.

We validate the assumption using the MSDWild dataset and the VoxConverse dataset. Both datasets
are activity detection datasets consisting of real-world conversational audios, and provide ground truth
activity labeling indicating which speaker speaks when in each conversation. To investigate the over-
lapping ratio between speakers from different conversations groups, we perform pairwise comparison
between conversation samples from each dataset. Specifically, for a pair of conversation containing
speakers {sa1, sa2, ..., sam} and {sb1, sb2, ..., sbn} respectively, we consider all the speaker pairs
from different conversation groups {(sai, sbj)|i ∈ [1..m], j ∈ [1..n]}, and calculate the mean Inter-
section Over Union (IOU) for the speech of these speaker pairs 1

nm

∑
i∈[1..m],j∈[1..n] IoU(sai, sbj).

The mean IOU and the standard deviation of IOU across different samples is 0.25 ± 0.20 for the
many-talker val split of the MSDWild dataset, and 0.22 ± 0.06 for the test split of VoxConverse
dataset. This indicates that, on average, the non-overlapping speech between any two independent
speakers spans more than half of their combined speech segments. These non-overlapped regions
offer rich information for our Positive and Negative Enrollment strategy, enabling the system to
identify the target speaker and perform accurate speaker extraction. Note that the non-overlapping
regions are defined with respect to pairs of speakers. In scenes with multiple interfering speakers,
different interferers may overlap with the target speaker at different times, resulting in a mixture
where no single timestep contains only one active speaker. However, by obtaining pairwise speaker
difference from the non-overlapping speech between two speakers, Positive and Negative Enrollment
pair still provide sufficient information to distinguish the target speaker from interfering speakers.
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Table 5: Speech length of different types of speakers’ speech in enrollments when 3 seconds of
Positive and 3 seconds of Negative Enrollments are used.

Speaker Type Length in Positive Enrollment Length in Negative Enrollment

Target Speaker 3 seconds 0 seconds
Positive Interferer 1-2 seconds 0 seconds
Negative Interferer 3 seconds 1-3 seconds
Hybrid Interferer 1-2 seconds 1-3 seconds
Neglect-Required Interferer 0 seconds 1-3 seconds

B Data Simulation Method

In this section, we detail the method for simulating the training and testing audio.

As shown in Section 3.2 in the main paper, based on the presence/absence of the interfering speaker
in all/subset of the segments in the enrollments, the interfering speakers are classified into 4 types.
Table 5 summarizes the length of each type of speaker in the Enrollments. Target Speaker speaks
throughout the Positive Enrollment and does not exist in the Negative Enrollment. Negative Interfer-
ers’ speech fully overlap with the target speaker in the Positive Enrollment and exist in the Negative
Enrollment. Alternatively, Positive Interferers’ speech does not exist in the Negative Enrollment,
and exist in a subset of segments in the Positive Enrollment. Hybrid Interferer exist in a subset of
the Positive Enrollment, and also exist in the Negative Enrollment. Neglect-Required Interferers
exist only in the Negative Enrollment and are excluded from the Positive Enrollment. In order to
ensure each speaker’s voice span the desired length of the Enrollment, we use WebRTC Voice Activity
Detector [38] to detect and remove zeros in the LibriSpeech dataset samples, before repeating or
cutting to construct their voice of desired length in the Audio Mixture, the Positive Enrollment and
the Negative Enrollment.

We generate our training, validation, and testing data from the train-clean-360, dev-clean, and
test-clean components from the LibriSpeech dataset [30], respectively. The sampling rate is
16000. We generate the training samples so that the enrollments and the Audio Mixture all have one
target speaker and two interfering speakers. The target speaker is shared between the enrollments and
the Audio Mixture, while the interfering speakers in the Audio Mixtures are two randomly sampled
speakers different from the target speaker, without being required to be the same as those in the
enrollments. To reduce the instability caused by the variation of different speaker types, the Hybrid
and Neglect-Required Interferers are not included in the enrollments in the training samples, so the
two interfering speakers are randomly designated as either the Positive Interferer or the Negative
Interferer. We enforce the target and interfering speakers to talk throughout the Audio Mixture to
increase the extraction difficulty. All training samples are generated on the fly to enhance variability
and diversity during training. The testing data generation follow the same strategy as the training
samples. All the Audio Mixtures in the test samples are 6 seconds long.

To simulate the background environment noise, we use the WHAM! [31] noise dataset. Different
noise samples from the WHAM! noise dataset are recorded in different environments. As a result,
additional interfering sounds might exist in one WHAM! noise example but not the other. For
instance, some WHAM! noise dataset samples contain music playing in the background while others
don’t. Using a WHAM! noise sample containing music in the Positive Enrollment and a WHAM!
sample of ambient environment noise in the Negative Enrollment will confuse our model on whether
the music is the target sound to be extracted. We resolve such ambiguity by sampling the n{M,P,N}

from the same WHAM! noise sample but at different temporal segments. Selecting random segments
from the WHAM! noise prevents the model from assuming the background noise is the same across
the Positive, Negative, and Mixed Audio. We scaled the WHAM! noise to be between [−2.5, 2.5]
SNR with respect to the ground truth target speaker’s voice in each sample.

To simulate the binaural reverberant training and testing samples, we follow the same data simulation
method as in the LookOnceToHear [16]. In particular, we convolve each speaker’s voice with BRIR
from four binaural room impulse response datasets [32, 34, 33, 35]. The binaural RIRs used for
constructing one data sample are randomly selected such that 1. All BRIR used in a single data
sample generation are from the same scene, and 2. The BRIR for the target speaker in the Positive
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Table 6: Comparison of model parameter size, inference time, and memory usage when extracting
1-second audio on an Intel Xeon Silver 4314 @ 2.40GHz CPU. We report the average inference time
for extraction in 50 repeated experiments. Replacing the Film fusion module with the cross-attention
based fusion module in our final model architecture could significantly reduce the parameter size.

Model Param Size Inference Time Inference Memory Usage

Ours (cross attn) 1.88 M 0.36s 2.30 GB
Ours (Film fusion) 3.94 M 0.3s 2.31 GB
TCE 2.54 M 0.11s 1.89 GB
LookOnceToHear 4.41 M 0.35s 2.32 GB

Enrollment has the direction of arrival of 0 degrees. The pre-processing strategy for each speaker’s
voice and the generation of background noise remains the same as the monaural dataset.

C Model Architecture and Training Detail

The TF-GridNet [27] Encoder in the Encoding Branch uses the following configuration: 4× 4 kernel
size and 1× 1 stride in the first Conv2D, 64 hidden units in all three BiLSTM layers, 8 attention head
numbers in the Full-band Self-attention Module. The input audio is processed by Short-Time Fourier
Transform (STFT) with 128 window size and 64 hop length.

To perform causal inference in the extraction branch, we follow the same modification as in the
LookOnceToHear [16]. In particular, we remove the global layer normalization after the first
convolution layer, change the BiLSTM in the TF-GridNet blocks to unidirectional LSTM, and
constrain the Full-band Self-attention Modules to calculate the causal attention value of a one-time
frame with only frames before it. The parameter configurations of causal TF-GridNet blocks in the
Extraction Branch are the same as the Encoding Branch, apart from using 1× 1 kernel size in its first
Conv2D layer. Three causal TF-GridNet blocks are used in the Extraction Branch. The output from
the last TF-GridNet block passes through a transposed convolution layer and an ISTFT module to
generate the speech waveform.

All the training is done on a single Nvidia A10 24GB GPU with a batch size of 2. In both training
stages, we use the Adam optimizer and decay the learning rate by half when the validation loss does
not decrease for more than 50 epochs. Motivated by MOCOv3 [39], which observes that changes in
the parameters of shallower layers can lead to instability in the loss, we assign lower learning rates to
the earlier layers of the model and higher learning rates to the deeper layers. In particular, the initial
learning rate is set to 5e-4 for the whole Siamese Encoder, 1e-3 for the Encoder Fusion Module in the
first training stage, and 2e-3 for the whole extraction branch in the second training stage. 500 epochs
(200k optimization steps) are used in the first pretraining stage, and 1000 epochs (400k optimization
steps) are used in the second stage.

Since TCE is not trained on the LibriSpeech dataset, we fine-tune the TCE model on our simulated
data till convergence (for 120k optimization steps) using the Adam optimizer with 5e-4 learning rate.
To train and test the TCE model on the proposed extraction task, we modify our dataloader’s output to
match TCE’s application scenario by adding a known speaker’s voice in the Negative Enrollment and
concatenating the Mixed Audio with this modified Negative Enrollment. The model then performs
extraction conditioned on the known speaker’s d-vector embedding.

In addition, despite the LookOnceToHear model is trained on audio examples from the LibriSpeech
dataset, it uses Scaper toolkit to load and generate audio mixtures. We notice this leads to slightly
different audio input to the model if the audio is otherwise loaded by torchaudio.load and mixed by
addition. The distribution shift in input audio leads to a noticable difference of around 1 SI-SNRi
decrease in performance. For fair comparison, we tune the LookOnceToHear’s extraction model
on our training data with an initial learning rate set to 5e-4 and decay by half if the validation error
does not decrease for more than 50 epochs. The model performance converges after 300 epochs
fine-tuning (120k optimization steps) when the lr decreased to around 6e-5.

We load the USEF-TFGridnet model from the open-source project https://github.com/ZBang/USEF-
TSE.
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Table 7: Model performance with different pooling sizes. The inference time is the average time
taken for the model main branch to extract 1-second audio in 50 repeated experiments on an Intel
Xeon Silver 4314 @ 2.40GHz CPU.

Pooling Size Metric
2 Speakers in Mixture 3 Speakers in Mixture Inf.

2 Speakers 3 Speakers 4 Speakers 2 Speakers 3 Speakers 4 Speakers Timein Enroll in Enroll in Enroll in Enroll in Enroll in Enroll

20

SNRi 9.57±2.61 9.35±2.67 9.27±2.79 9.96±2.56 9.93±2.57 9.87±2.68

0.365SI-SNRi 8.10±3.90 7.82±4.03 7.72±4.40 7.80±3.99 7.60±4.12 7.35±4.46
STOI 0.736±0.120 0.728±0.125 0.713±0.129 0.641±0.133 0.637±0.131 0.627±0.140

DNSMOS 2.02±0.42 2.00±0.42 1.78±0.40 2.00±0.43 1.78±0.42 1.76±0.41

40

SNRi 10.14±2.57 9.93±2.71 9.79±2.86 10.42±2.49 10.37±2.64 10.22±2.79

0.36SI-SNRi 8.85±3.67 8.54±4.01 8.30±4.47 8.42±3.62 8.29±4.06 7.82±4.62
STOI 0.758±0.107 0.749±0.121 0.742±0.126 0.668±0.123 0.665±0.130 0.648±0.146

DNSMOS 2.14±0.37 2.13±0.37 2.02±0.38 1.93±0.37 1.92±0.38 1.90±0.38

80

SNRi 9.93±2.55 9.75±2.65 9.71±2.74 10.18±2.49 10.20±2.59 10.10±2.72

0.33SI-SNRi 8.59±3.77 8.28±4.22 8.22±4.38 8.02±3.82 8.00±4.15 7.66±4.69
STOI 0.749±0.109 0.742±0.122 0.739±0.124 0.654±0.128 0.654±0.133 0.642±0.144

DNSMOS 2.09±0.40 2.06±0.41 1.95±0.44 1.86±0.40 1.86±0.40 1.84±0.40

Table 8: Model performance under different number of Positive Interferers (PI).

Method Metric 2 Speakers in Mixture 3 Speakers in Mixture
1 PI 2 PI 3 PI 1 PI 2 PI 3 PI

SNRi 10.23±2.56 10.10±2.58 10.05±2.66 10.46±2.43 10.47±2.54 10.49±2.63
Ours SI-SNRi 8.98±3.66 8.87±3.60 8.79±3.76 8.53±3.56 8.53±3.76 8.44±4.09
(Monaural) STOI 0.763±0.105 0.759±0.106 0.758±0.105 0.673±0.119 0.673±0.122 0.667±0.129

DNSMOS 2.15±0.37 2.14±0.36 2.14±0.37 1.93±0.37 1.93±0.38 1.93±0.37

In Table 6, we compare our model architecture’s parameter size, extraction branch’s inference time,
and memory usage in inference, with the two prior works on target speaker extraction using noisy
enrollments. Our model uses smaller parameter size. In particular, we notice that the Film fusion
module substantially increases the parameter size, as shown by the significant increase in model
parameter size when we replace our cross-attention fusion module with the Film fusion module.

D Embedding Pooling Size

To reduce the model computation time in the Extraction Branch, we perform an average pooling
of 40 on the embedding extracted by the encoder head. In this section, we analyze the trade-offs
between model performance and inference time under different pooling configurations. Specifically,
we compare our model (40 pooling size) with two variants using pooling sizes of 20 and 80, as shown
in Table 7.

As the pooling size increases, the length of the extracted target speaker embedding sequence decreases,
which reduces the inference time for the extraction branch. Larger pooling size also results in more
information loss, which leads to worse extraction performance. To our surprise, a smaller pooling
size also results in a worse performance, despite it retains more detailed information of the target
speaker in the embedding sequence. We hypothesize that smaller pooling size introduces instability
in model training, as the resulting target speaker embedding sequence has larger variation across
different timesteps. The unstable model learning could lead to worse final model performance. As a
result, we selected 40 pooling sizes as the final model configuration.

E Affect of Increasing Number of Positive and Negative Interferers on Model
Performance

In Section 4.2 in the main paper, we randomly assign the interferers in the enrollments as Positive or
Negative Interferers, and show the model performance as the number of interferers increase. In this
section, we separatedly evaluate how Positive and Negative Interferers will affect model performance.
In the first experiment, we include only Positive Interferers in the enrollments and gradually increase
their number. In the second experiment, we follow the same procedure but only include Negative
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Table 9: Model performance under different number of Negative Interferers (NI).

Method Metric 2 Speakers in Mixture 3 Speakers in Mixture
1 NI 2 NI 3 NI 1 NI 2 NI 3 NI

SNRi 10.07±2.70 9.72±2.85 9.33±3.14 10.32±2.55 10.19±2.73 9.93±2.95
Ours SI-SNRi 8.69±4.06 8.19±4.48 7.43±5.39 8.23±4.02 7.89±4.59 7.21±5.36
(Monaural) STOI 0.754±0.118 0.739±0.129 0.717±0.152 0.664±0.129 0.653±0.142 0.630±0.161

DNSMOS 2.13±0.38 2.10±0.39 2.07±0.40 1.91±0.38 1.89±0.39 1.87±0.39

Table 10: Model performance under different monaural enrollment lengths. We vary the conditional
Positive and Negative Enrollment length between 1 to 10 seconds.

Condition Metric Pos. 1 sec Pos. 3 sec Pos. 5 sec Pos. 10 sec

Neg. 1 sec

SNRi 9.64±2.66 10.22±2.53 10.31±2.51 10.43±2.43
SI-SNRi 7.07±4.45 8.16±3.94 8.33±3.78 8.54±3.62

STOI 0.626±0.142 0.662±0.126 0.668±0.121 0.674±0.117
DNSMOS 1.86±0.38 1.93±0.38 1.94±0.37 1.95±0.36

Neg. 3 sec

SNRi 9.68±2.66 10.37±2.64 10.38±2.56 10.47±2.40
SI-SNRi 7.16±4.38 8.29±4.06 8.39±3.93 8.63±3.42

STOI 0.629±0.140 0.665±0.130 0.671±0.122 0.677±0.114
DNSMOS 1.87±0.39 1.92±0.38 1.94±0.37 1.97±0.36

Neg. 5 sec

SNRi 9.71±2.70 10.26±2.63 10.21±2.54 10.49±2.41
SI-SNRi 7.16±4.64 8.17±4.13 8.45±3.64 8.66±3.46

STOI 0.629±0.143 0.662±0.128 0.671±0.118 0.677±0.115
DNSMOS 1.87±0.39 1.93±0.37 1.94±0.37 1.96±0.36

Neg. 10 sec

SNRi 9.74±2.70 10.22±2.59 10.41±2.43 10.50±2.36
SI-SNRi 7.28±4.35 8.11±4.06 8.54±3.47 8.71±3.26

STOI 0.632±0.136 0.660±0.126 0.674±0.114 0.679±0.110
DNSMOS 1.88±0.38 1.94±0.37 1.95±0.36 1.96±0.36

Interferers in enrollments. In both cases, we evaluate the model’s performance when extracting a
target speaker from Audio Mixtures containing 2–3 speakers.

As shown in Table 8 and Table 9, our model shows only 0.2 dB SI-SNRi decrease in performance
as the number of Positive Interferer increases from 1 to 3. In comparison, when the number of
Negative Interferers increase, the model shows more significant performance decrease of over 1
dB SI-SNRi. This suggests that, in comparison to removing interfering speakers’ characteristic
given in the Negative Enrollment, our model is more capable of identifying the target speaker’s
characteristic, which is a common voice characteristic that exists across different segments in the
Positive Enrollment.

F Model Performance under Different Lengths of Positive and Negative
Enrollment

We train our model solely on samples with 3 seconds of Positive and Negative Enrollments, and tested
the model performance solely on these scenarios. In this section, we test the model performance on
different enrollment lengths between 1 to 10 seconds. We keep the ratio of the Positive Interferer
in the Positive Enrollment, and the ratio of the Negative Interferer in the Negative Enrollment
unchanged. This means the Positive Enrollment will still span 1/3 to 2/3 of the Positive Enrollment,
and Negative Interferer span the 1/3 to full length of the Negative Enrollment. As shown in Table
10, the model performance improves in general as both the length of the Positive Enrollment and
the Negative Enrollments increase. We also notice that increasing the Negative Enrollment length
when less than 3 seconds of the Positive Enrollment is provided could adversely affect the model
performance. This might be because the model has too little information of the target speaker
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Figure 6: SI-SNR of the extracted audio with
respect to the Mixed Audio. The dashed black
line represents the zero-improvement line.
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Figure 7: SI-SNRi of the extracted audio with
respect to the Positive Enrollment SI-SNR.

Table 11: Model performance under different number of Hybrid Interferers (HI)

Method Metric 2 Speakers in Mixture 3 Speakers in Mixture
1 HI 2 HI 3 HI 1 HI 2 HI 3 HI

SNRi 10.23±2.55 10.06±2.59 10.05±2.63 10.47±2.43 10.49±2.52 10.53±2.60
Ours SI-SNRi 8.99±3.63 8.82±3.61 8.83±3.58 8.54±3.56 8.57±3.70 8.53±3.92
(Monaural) STOI 0.763±0.105 0.757±0.108 0.759±0.103 0.673±0.119 0.674±0.119 0.669±0.126

DNSMOS 2.15±0.37 2.14±0.36 2.14±0.37 1.93±0.37 1.93±0.38 1.93±0.37

form the Positive Enrollment, while the Negative Enrollment might guides the model to remove
excessive speaker characteristics from the Positive Enrollment, resulting in the decrease in model
performance. This suggests that users can enhance extraction quality by providing longer Positive
and Negative enrollments if the results are unsatisfactory, and increasing the Positive Enrollment
length is preferable.

G Model Performance with respect to the Input Audio Quality

Model Performance with respect to the Audio Mixture Quality In this section, we show our
model performance relative to the quality of input Audio Mixture. As shown in Figure 6, we plot
the extracted audio’s SI-SDR values for 5000 randomly generated test samples as a function of their
input SI-SDR. 96.6% of the audio mixtures’ SI-SNR were improved after the extraction.

Model Performance with respect to the Positive Enrollment Quality Figure 7 presents our
model’s extraction performance as a function of enrollment audio quality. To evaluate this, we scale
the clean enrollment audio of the target speaker (Positive Enrollment) to specific SI-SNR values,
while leaving the Negative Enrollment and the Mixed Audio unchanged. We then measure the average
of 5000 test samples’ extracted audios’ SI-SNRi at each Positive Enrollment SI-SNR value.

The model achieves optimal performance when the Positive Enrollment SI-SNR is between -5 dB to
5 dB, and the performance deteriorates significantly when the SI-SNR of the Positive Enrollment
falls below -10 dB. To address this limitation, we fine-tune our model by scaling the training data’s
Positive Enrollment to -20 and -15 SI-SNR dB. As shown by the red line and the orange line in Figure
7, this fine-tuning shifts the model’s peak performance to lower SI-SNR regions, which means the
model achieves optimum extraction performance under worse Positive Enrollment quality. Further
research is necessary to develop a model with strong performance across the full SI-SNR range of the
Positive Enrollment.

H Model Performance under presence of Hybrid Interferers

As defined in Section 3.2 in the main paper, when an interfering speaker speaks in a subset of segments
in the Positive Enrollment, and also exist in the Negative Enrollment, it is a Hybrid Interferer. Model
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Table 12: Model performance under different number of Neglect-Required Interferers (NRI).

Method Metric 2 Speakers in Mixture 3 Speakers in Mixture
1 NRI 2 NRI 3 NRI 1 NRI 2 NRI 3 NRI

SNRi 10.29±2.52 10.20±2.54 10.25±2.55 10.45±2.44 10.51±2.49 10.57±2.54
Ours SI-SNRi 9.07±3.55 8.99±3.56 9.08±3.43 8.51±3.60 8.63±3.56 8.63±3.77
(Monaural) STOI 0.764±0.103 0.761±0.105 0.764±0.098 0.672±0.120 0.675±0.117 0.671±0.125

DNSMOS 2.15±0.36 2.14±0.35 2.15±0.36 1.93±0.37 1.93±0.38 1.92±0.37

Table 13: Comparison between our method and the TD-SpeakerBeam baselines’ performance when
extracting conditioned on clean or noisy enrollments.

Method Metric 2 Speakers in Mixture 3 Speakers in Mixture 4 Speakers in Mixture
Clean Enroll Noisy Enroll Clean Enroll Noisy Enroll Clean Enroll Noisy Enroll

SNRi 10.19±2.59 9.93±2.71 10.48±2.46 10.37±2.64 10.48±2.35 10.50±2.52
Ours SI-SNRi 9.12±3.50 8.54±4.01 8.50±3.63 8.29±4.06 7.79±3.70 7.64±4.19
(Monaural) STOI 0.764±0.102 0.749±0.121 0.670±0.122 0.665±0.130 0.592±0.131 0.584±0.141

DNSMOS 2.15±0.37 2.13±0.37 1.93±0.37 1.92±0.38 1.76±0.37 1.65±0.40

TD-SpeakerBeam

SNRi 12.87±3.63 4.84±2.83 10.01±3.99 5.58±2.48 9.08±2.69 6.63±2.60
SI-SNRi 11.85±6.36 1.75±11.89 7.63±6.06 -0.33±8.70 5.49±5.34 -1.26±7.17

STOI 0.834±0.145 0.595±0.270 0.654±0.182 0.451±0.212 0.534±0.177 0.372±0.177
DNSMOS 2.81±0.32 1.73±0.59 2.63±0.32 1.51±0.40 2.45±0.35 1.46±0.48

have two ways to distinguish these interfering speakers from the target speaker: either through
noticing that these speakers were silent in some of the segments in the Positive Enrollment, when the
target speaker is supposed to talk continuously; or noticing that these speakers exist in the Negative
Enrollment, when the target speaker is supposed to remain silent. In this section, we explicitly show
the model performance when such interfering speakers exist.

As shown in Table 11, we focus on the scenario containing only Hybrid Interferers, and gradually
increase their number from 1 to 3. In comparison to the increase in the Positive and Negative Interferer
number, our model shows higher robustness to the increase in the number of Hybrid Interferers.
This indicates that our model generalizes well in removing interference from Hybrid Interferers by
leveraging the fact that such speakers can be effectively suppressed when treated as either Positive or
Negative Interferers.

I Model Performance under presence of Neglect-Required Interferers

When recording the Negative Enrollments, additional interfering speakers not captured in the Positive
Enrollments might be present. Since these interferers’ speech does not overlap with the target
speaker, their voice should be neglected (thus named neglect-Required Interferers). In this section,
we investigate their affect on our model performance in this section.

As shown in Table 12, similar to the result observed when the number of Hybrid Interferers increase,
our model does not show statistically significant performance differences when the number of Neglect-
Required Interferers increases from one to three. This demonstrates our model effectively generalizes
to prevent the Neglect-Required Interferers from adversely affecting the quality of the extracted target
speaker speech.

J Model Performance when Clean Target Speaker’s Enrollment is available

If applied without modification, our model fails when the enrollment consists solely of the clean
target speaker’s voice. This is due to the model’s input normalization, where an all-zero Negative
Enrollment leads to a NaN output. To address this, we randomly select a fixed WHAM! noise sample
as the Negative Enrollment, and add it with the Positive Enrollment to construct a pseudo-noisy
Positive Enrollment. Using such modification, we construct pseudo-Positive and Negative Enrollment
from different target speakers’ clean audio enrollment, and perform extraction.

As shown in Table 13, in comparison to extracting target speaker’s characteristic from noisy Enroll-
ments, our model achieves higher performance when extracting conditioned on the pseudo-Positive
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Table 14: Model performance when extracting conditioned
on noisy single-speaker enrollments.

Method Metric 2 Speakers 3 Speakers
in Mixture in Mixture

SNRi 10.19±2.59 10.48±2.46
Ours SI-SNRi 9.12±3.50 8.50±3.63
(Monaural) STOI 0.76±0.10 0.67±0.12

DNSMOS 2.15±0.37 1.93±0.37

USEF-TFGridnet

SNRi 3.54±3.45 4.29±2.46
SI-SNRi 0.50±5.58 0.56±2.85

STOI 0.47±0.17 0.38±0.11
DNSMOS 1.35±0.44 1.29±0.37

Table 15: Speaker configuration for eval-
uating the Target Speaker Confusion
Problem.

Target Speaker Interfering Speaker

Audio Mixture A B
Ppred A B
Ptgt A B
Pinterfer B A

and Negative Enrollment. In comparison to the TD-SpeakerBeam [5], which is trained to extract
using clean audio enrollment, our model achieves higher SNRi, SI-SNRi, and STOI when extracting
from the mixture of 3 or more mixtures. These results verifies our model’s applicability to extraction
using clean audio enrollments. The reason why our model achieves higher performance under larger
number of interfering speaker might be the difference in training data generation. TD-SpeakerBeam is
trained on predefined mixtures of different speakers’ speech, while our training samples are generated
by dynamic mixing, which creates more diverse mixture of different speakers’ voices. This training
data generation strategy acts as a form of data augmentation, helping the model generalize better to
larger number of interfering speaker. However, there is still noticeable performance gap between
our model and the TD-SpeakerBeam when extracting from the mixture of two speakers using clean
enrollments. Further work is required to reduce the performance gap between models using noisy
enrollment and using clean enrollment.

We want to emphasize that our model tackles the more challenging task of target speech extraction
(TSE) with noisy enrollment, a realistic scenario where prior works have shown significantly degraded
performance. Although our model has worse performance under clean audio enrollment, our method
still correctly identifies the target speaker users want, shown by the strongly positive SI-SNRi values.
Indeed, the performance gap between our method and other models under clean enrollment could
bring novel insights to improve our model, which we will explore in the further works.

In addition, we evaluate our model and the baseline models’ performance when using noisy single
speaker enrollments. The noise in the enrollment is from the WHAM! dataset and set at 0 SNR level.
As shown in Table 14, TSE models trained with clean enrollments show significant performance
decrease under noisy single speaker enrollments. In comparison, our model consistently outperforms
the baselines across all metrics except DNSMOS, demonstrating greater robustness to enrollment
noise.

K Model Performance for Target speaker Confusion Problem

Prior works have shown that the auxiliary speaker encoder may sometimes generate ambiguous
speaker embeddings, leading to the extraction model extracting interferer’s voice as the output. This
is known as the target confusion problem [40]. To further investigate whether our model suffers from
the target speaker confusion problem, we follow the experimental setup proposed by Zhao et al. [40].
Specifically, we construct 5000 test samples where both the audio mixture and the enrollment contain
two speakers, and share the same interfering speaker. Let Ppred be the enrollment pair in the sample,
where speaker A is the target speaker and speaker B is the interfering speaker. After performing
extraction, we identify the enrollment pairs that result in the extracted audio being more similar (in
terms of SNR) to the interfering speaker B’s speech than to the target speaker A’s. We refer to these
samples as target confusion samples. For each target confusion sample, we construct two additional
enrollment pairs: Ptgt and Pinterfer. In Ptgt, same as the target confusion sample, speaker A is
the target and speaker B is the interferer. In Pinterfer, speaker B is the target and speaker A is the
interferer. Table 15 below summarizes the role of speaker A and speaker B in the audio mixture and
each enrollment pair.
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Table 16: Performance of our model and the TCE model before and after fine-tuning, using monaural
samples generated from the WSJ0 dataset.

Method Metric 2 Speakers in Mixture 3 Speakers in Mixture
1 NI 2 NI 3 NI 1 NI 2 NI 3 NI

SNRi 8.33±2.97 8.14±3.03 7.93±3.04 8.69±2.64 8.50±2.73 8.24±2.81
Ours SI-SNRi 5.66±6.04 5.33±6.25 4.79±6.52 5.04±6.03 4.51±6.34 3.84±6.63
(Monaural) STOI 0.672±0.164 0.664±0.171 0.647±0.181 0.591±0.172 0.577±0.177 0.554±0.187

DNSMOS 1.93±0.39 1.91±0.40 1.89±0.41 1.74±0.37 1.72±0.37 1.69±0.37
SNRi 8.19±3.00 7.97±3.07 7.75±3.06 8.96±2.70 8.80±2.73 8.58±2.88

Ours SI-SNRi 5.33±6.17 4.93±6.47 4.45±6.50 5.27±6.17 4.84±6.40 4.20±6.85
(Fine-tuned) STOI 0.647±0.177 0.640±0.184 0.621±0.190 0.580±0.181 0.567±0.188 0.544±0.198

DNSMOS 1.87±0.46 1.84±0.46 1.81±0.47 1.70±0.42 1.68±0.42 1.65±0.41

TCE

SNRi 6.65±2.79 6.20±2.81 5.79±2.95 6.64±2.79 6.43±2.35 6.11±2.39
SI-SNRi 4.00±4.93 3.13±5.28 2.21±5.87 3.99±4.93 2.19±4.98 1.46±5.20

STOI 0.593±0.149 0.567±0.158 0.546±0.169 0.593±0.149 0.471±0.156 0.453±0.159
DNSMOS 1.74±0.38 1.73±0.37 1.75±0.37 1.74±0.38 1.60±0.35 1.63±0.35

SNRi 6.59±2.62 6.20±2.69 6.03±2.81 6.58±2.62 6.54±2.33 6.34±2.41
TCE SI-SNRi 3.99±4.41 3.21±4.67 2.67±5.25 3.97±4.41 2.55±4.43 2.10±4.62
(Fine-tuned) STOI 0.576±0.146 0.548±0.154 0.533±0.163 0.576±0.146 0.462±0.153 0.446±0.154

DNSMOS 1.59±0.40 1.56±0.39 1.57±0.38 1.59±0.40 1.46±0.34 1.46±0.33

To verify if the model mistakenly encode the interfering speaker as the target speaker and the
interfering speaker, we flatten and normalize the embeddings extracted by our model from each
enrollment pair, obtaining E(Ppred), E(Ptgt), E(Pinterfer), and compute the cosine similarity
between E(Ppred) and E(Ptgt), as well as between E(Ppred) and E(Pinterfer).

Out of the 5000 tested samples, 74 of them are the target confusion samples. 34 samples out
of the 74 target confusion samples (45.9%) have enrollment embedding closer to the interfer-
ing speaker than to the target speaker (i.e. 34 of the samples have cos(E(Ppred), E(Ptgt)) <
cos(E(Ppred), E(Pinterfer))). These findings are consistent with those reported in the target speaker
confusion study [40], where 45.1% of target confusion samples showed the extracted embedding
being closer to the interferer. This means that significant percentage of target confusion samples
have encoder embeddings being more close to the interfering speaker. However, it is important to
emphasis that only 74 out of the 5000 samples (1.48%) showed evidence of target speaker confusion
in our evaluation, suggesting that this is a rare occurrence and does not pose a significant issue for
our model’s overall performance.

L Model performance on WSJ0 Dataset

In the main paper, we focus our experiments on the samples constructed from the LibriSpeech dataset.
In this section, we show our model’s applicability to other datasets. We select the WSJ0 dataset as
the source of speaker speech.

As shown in Table 16, our model correctly encode and extract the target speaker’s voice, as shown
by the positive SNRi and SI-SNRi metric, and outperforms the TCE baseline in most scenarios.
However, after fine-tuning on samples containing two interfering speakers in both the Audio Mixture
and enrollments, our model only improves performance when extracting from three-speaker mixtures,
while performance degrades in two-speaker cases. Further exploration is required to train a model
with strong generalizability across multiple datasets and scenarios.

M Audio Visualization and Failure Cases

In this section, we show four successful cases and four failing cases of our model. For each case, we
visualize the waveform and STFT spectrogram of the Mixed Audio, the extraction ground truth, and
the model prediction of a one-second audio segment.

As shown in Figure 8, our model correctly predicts silent sound in the extracted audio when the target
speaker is not speaking and extracts the target speaker’s voice despite the frequency range largely
overlaps with the interfering speakers.
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Figure 8: Successful cases of our model. We selected four samples where the model SI-SNRi
performance is above 11 dB. We report the extracted audio SI-SNRi under the case number.

In several cases, our model has less optimum performance, with less than 7 dB SI-SNRi performance.
We show four of these cases in Figure 9. In these cases, the model fails to extract the full target
speaker’s voice in some timesteps (Failure Cases 2), includes interfering the speaker’s voice in its
extraction (Failure Case 1, 3, 4), and introduces artifacts that obscure the intelligibility of the target
speech. These non-exhaustive failure cases serve as a reference for future improvements.

N Societal Impact

This paper presents work whose goal is to advance the field of Machine Learning and Audio
Processing. This technology can potentially improve communication aids, hearing devices, and audio
editing tools, making it easier for users to focus on desired voices in complex auditory scenes. We
acknowledge that such technology could raise privacy concerns if misused to extract a speaker’s voice
without consent. However, our method requires prior access to the target speaker’s speech activity
labels, which presupposes that the target speaker is already engaged in a face-to-face conversation or
otherwise clearly audible to the user. As a result, our approach serves to enhance human auditory
perception rather than introduce new capabilities that could pose societal or ethical risks. While our
work may have broader societal implications, we do not identify any that require specific emphasis.
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Figure 9: Failure cases of our model. We selected four samples where the model SI-SNRi performance
is below 8 dB. We highlight the timesteps where the model has poor performance with red boxes.
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