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ABSTRACT

Probabilistic forecasting of joint distributions for irregular time series with missing
values is an underexplored area in machine learning. Existing models, such as
Gaussian Process Regression and ProFITi, are limited: while ProFITi is highly
expressive due to its use of normalizing flows, it often produces unrealistic pre-
dictions because it lacks marginalization consistency—marginal distributions of
subsets of variables may not match those predicted directly, leading to inaccu-
rate marginal forecasts when trained on joints. We propose MOSES (Mixtures
of Separable Flows), a novel model that parametrizes a stochastic process via a
mixture of normalizing flows, where each component combines a latent multi-
variate Gaussian with separable univariate transformations. This design allows
MOSES to be analytically marginalized, enabling accurate and reliable predictions
for various probabilistic queries. Experiments on four datasets show that MOSES
achieves highly accurate joint and marginal predictions. Thanks to its inherent
marginalization consistency, it matches ProFITi in joint prediction performance
while significantly outperforming all baselines on marginal predictions.

1 INTRODUCTION

Probabilistic forecasting of irregular time series requires models that can make predictions at arbitrary
time points and for an arbitrary subset of variables (channels). Unlike regular time series forecasting,
where predictions are confined to a fixed grid, irregular settings require modeling a stochastic process
as the number of targets can vary.

A core requirement of any stochastic process model is marginalization consistency: the marginal
distribution of a subset of variables must agree whether computed directly or by integrating out
the joint. This property, guaranteed by Kolmogorov’s extension theorem, ensures that the model
defines a mathematically coherent stochastic process. Consistency is not only necessary for math-
ematical rigor but also highly desirable in practice: by the data processing inequality, accurate
joint predictions together with consistency ensure reliable marginals, providing both correctness and
performance guarantees.

Many recent methods prioritize flexibility over consistency. For example, ProFITi (Yalavarthi et al.,
2025) achieves strong empirical performance using normalizing flows but violates marginalization
consistency, producing contradictory marginal and joint predictions (Figure|I)).

Example 1.1. In an ICU monitoring system, such a model might predict that blood pressure remains
stable with 90% probability when queried individually, but only 60% when inferred from the joint
distribution of vitals. These contradictions undermine reliability and could mislead clinical decisions.

Due to inconsistency, ProFITi suffers significantly on marginal distributions despite having good
joints. On the other hand, existing consistent approaches, such as Gaussian Process Regression
(GPR) (Diirichen et al.,[2015), avoid this problem but are limited to Gaussian distributions, creating a
false contradiction between correctness and flexibility.

We address this problem with MOSES (Mixtures of Separable Flows), a model based on mixtures of
normalizing flows. Each component of MOSES uses a multivariate Gaussian, induced by a Gaussian
process, as the base distribution, combined with univariate invertible transformations to modulate
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Figure 1: Demonstration of marginal consistency for MOSES (ours), ProFITi Yalavarthi et al.[(2025),
and Gaussian Process Regression [Bonilla et al.| (2007 on two toy datasets: blast (left) and circle
(right). ProFITi is inconsistent w.r.t. the marginals of the second variable y», while MOSES is
consistent with the marginals of both y; and y,. MOSES(D) indicates D mixture components.
Gaussian Process Regression (GPR) is marginalization consistent but predicts incorrect distributions.

the marginals—similar in spirit to Gaussian Copula Processes (Wilson & Ghahramani, [2010). Since
mixtures, Gaussian processes, and univariate transformations are each marginalization consistent,
MOSES is consistent by design. At the same time, it retains the expressiveness of flow-based
methods.

Our contributions are as follows:

1. We formalize marginalization consistency as a fundamental requirement for probabilistic
forecasting models and show that violating it renders a model incoherent.

2. We propose MOSES which achieves the expressiveness of modern flow approaches while
maintaining strict marginalization consistency through a principled architectural design.

3. We show that consistency does not come at high performance cost: MOSES matches
inconsistent models on joint prediction tasks while significantly outperforming them on
marginal predictions, providing a principled solution to irregular time series forecasting.
PyTorch implementation is provided as a supplementary material.

2 PRELIMINARIES

We represent an irregular time series X as a sequence of N triplets (Horn et al., 2020; [Yalavarthi
et al.l [2025)):

X = ((toss COBS ,UOBS

oS et ), Ly €5eq(X), X =Rx{l,...,C} xR, (1)

where t2PS is the observation time, ¢O®° the channel, and v3"® the observed value.
A time series query () is a sequence of K pairs:

Q= ((t2, ™)), i €Sea(Q), Q=Rx{1,...,C}, @)

where ¢ and ¢*" specify the future time and queried channel.

A forecasting answer is y = (y1,...,yx ) with y;, € R predicting the value in channel ¢*" at t32".
All query points occur after the observations: miny tiRY > max,, t9°°. Here, Seq(X) denotes the

space of finite sequences over X.

Requirements. A marginalization consistent probabilistic irregularly sampled time series forecast-
ing model must satisfy the following requirements:

R1 Joint Multivariate Prediction. The goal of probabilistic irregular time series forecasting is to
model the joint distribution p(y | @, X') over responses y, given query points Q) and observed
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series X, allowing both context length N = | X| and query length K = |Q)| to vary dynamically:

p:Seq(R x Q) x Seq(X) — Ry,
(yaQ7X) Hﬁ(yh"'ayK|Q17"')QK7X17"'7XN)

For a given (Q, X), the mapping (y1,...,yx) ~ p(y1,---,yx | @,X) defines a probability
density on RI€!.
Unlike standard multivariate time series forecasting, where future time points are fixed and

typically ignored, irregular time series require conditioning on future time points and channels,
as these can vary across instances.

3

R2 Permutation Invariance. As the time stamp and channel-ID are included in each sample, the
order of the samples does not matter, and hence any model prediction should be independent of
the order of both the query or context:

Py Q,X)=p(y" |Q",X7), Vm e Siq|, 7 € Six “

R3 Marginalization Consistency/Projection Invariance. Predicting the joint density for the sub-
query ()_j, given by removing the k-th item from @) should yield the same result as marginalizing
the k-th variable from the complete query Q.

Py | Qo X) = [ 5(y] Q. X) dy )
This generalizes to any subset Kg ¢ {1,...,K}.

For a model satisfying [RIJR3] we will only have to marginalize if we try to validate the marginaliza-
tion consistency. For this validation we added requirement R3] [Yalavarthi et al.| (2025) discussed [R1]
and[R2] but did not consider[R3] We argue that irregularly sampled time series are realizations of a
stochastic process and [R3]is a fundamental property of any model that mimics it.

Theorem 2.1. Any model that satisfies realizes an R-valued stochastic process over the index
setT=Rx{1,...,ChL
Proof. This is a direct application of Kolmogorov’s extension theorem (Dksendal, | 2003)

WHY DO WE NEED MARGINALIZATION CONSISTENCY?

1. Without marginalization consistency, probabilistic models can be unreliable. Two test cases with
the same context X but different queries () may share overlapping targets. An inconsistent model
can assign different distributions to these targets, despite identical conditioning information, which is
unrealistic. Such models are inapplicable in many real-world applications.

2. Marginalization consistency provides performance guarantees. For a consistent model, if the joint
prediction over K points is accurate, predictions for any subset of size < K are also guaranteed to be
accurate. This follows from the data processing inequality (DPI; Murphy, 2022), which ensures
marginalizing cannot increase KL divergence:

DKL(p(yla"'7yK|Q17"'7QK?X) Hﬁ(ylavyK|Q1a7QKaX))

ZDKL(p(y17'~'ayK—1 ‘ Qla"'7QK—1aX) ” ﬁ(ylﬂ"'7yK—1 | Ql?"'aQK—laX))

Intuitively, marginalization “averages out” errors, so accuracy cannot worsen on subsets. Consis-
tent models thus remain reliable for marginal predictions, as confirmed in Tables [T] and 2} where
inconsistent model, ProFITi, perform poorly on marginals despite good joint predictions.

3 CONSTRUCTING MARGINALIZATION CONSISTENT CONDITIONAL
DISTRIBUTIONS

Our goal is to build a model for the conditional joint distribution p(y1,...,yx | Q1,--.,Qk, X), as
in (3). Since the model should satisfy [R3] it follows that the marginal distribution of y; must only
depend on @y and X.
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Figure 2: (Top) Importance of multiple flow components: MOSES(1) cannot represent the correct
distribution, but MOSES(4) can. (Bottom) Limitation of Gaussian Mixture Models: GMM needs 15
components to match the distribution of MOSES(4).

Separably Parametrized Gaussians. A simple way to model a permutation-invariant condi-
tional distribution for a variable number of targets is a multivariate Normal distribution N (y |
w(X,Q),X(X,Q)), where the mean and covariance are separably parametrized:

ik = i(Qr, X)), Thp = 2(Qr, Qu, X), (6)

with functions i and S as in Gaussian Processes. Such a setup is marginalization consistent by
design, since marginalizing a Gaussian simply involves selecting the relevant rows and columns
of X and elements of . However, Gaussian Processes are limited because they can only model
joint Gaussian distributions. For more flexible distributions, normalizing flows are a common
alternative (Rezende & Mohamed, [2015)).

Separable Normalizing Flows. Normalizing flows model a distribution by applying an invertible
transformation f:R¥ — RX to a source distribution p; on R¥. The resulting target distribution is
given by the change-of-variable formula:

py (y) =pz(f ' (y:0)) - ‘det(W)’- (7)

Most existing flows use simple source distributions, typically a standard multivariate normal, and
model interactions between variables through the transformation (Rezende & Mohamed, 2015}
Papamakarios et al., [2021). Conditional flows for a variable number of targets follow the same
idea, designing expressive transformations for vectors of arbitrary size (Liu et al.| 2019} Bilos &
Giinnemann| 2021} [Yalavarthi et al., 2025). However, these models generally do not guarantee
marginalization consistency, and no simple condition on the transform alone can provide it.

We propose a different approach: use simple, separable transformations combined with a richer
source distribution, namely a Gaussian Process with full covariance. In this setup, dependencies
between variables are captured by the source distribution rather than the transformation, enabling
marginalization consistency. This is similar in spirit to copula-based architectures, where dependen-
cies between variables can be separated from their univariate marginal distributions.

Lemma 3.1. A conditional flow model over R or Seq(R) is separable, if it is expressed in the form

J(z]Q,X) = (é(211Q1,X),...,0(2x | QK, X)) 8

Sor some univariate function ¢: Rx QxSeq(X') — R, that is invertible in the first argument. Any model
that consists of such a separable flow transformation, combined with a marginalization consistent
model for the source distribution, is itself marginalization consistent. (Proof: Appendix[A.)

Conditional Mixtures of Flows. Using Gaussians as base distributions, we can only linear de-
pendencies between variables. To increase expressiveness, we combine multiple separable flows
into a mixture. Even a few components can significantly improve the model, reaching performance
comparable to a simple GMM without flow transformations (Figure[2} Appendix [C.7).
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Figure 3: [llustration of MOSES. D-many flows (fixed). K -many variables (variable). Encoder (enc)
takes X, () (observed series and query timepoint-channel ids.) as input, and outputs an embedding
h (depends on both X, and @)) and w (depends on X only). p,3 of pz, are parametrized by
h,. Flow transformation of pz,: parametrized by h,. Transformation layer: K-many univariate
transformations ¢ that transforms 2, of z ~ pz,(z | hp) to y of y ~ pi " (y | ha).

Lemma 3.2. Given probabilistic models (pq)aq-1:p that satisjj) then a mixture model
D
Py]Q.X) = wa(X)pay| Q. X) )
d=1

with permutation invariant weight function w: Seq(X) — AP were AP denotes probability simplex
in D variables: AP = {w e RP |wy >0, ¥, wq = 1}, also satisﬁes (Proof: Appendix

4 MIXTURES OF SEPARABLE FLOwWS (MOSES)

Based on the constructions from the previous section, we build a marginalization-consistent model
for forecasting irregular time series using four components (Figure[3):

1. Separable encoder:

* A shared encoding of the observations, h°®S := enc®®S (X ; §°%), used for all queries.

* D query-specific encodings, hg j, := enc®(Qy, X;03"), capturing each query and
the entire context.

2. Separable Gaussians: D multivariate Gaussians, pz, (2 | itd, X4 ), parametrized separately
by the query encodings hy.

3. Separable transformations: D many separable transformations f,; are parametrized using
the encoded queries hy. Each fg is applied on top of Gaussian base pz, providing a
separable normalizing flow p;°%.

4. Mixture of flows: The D many separable normalizing flows are combined using mixing
weights w := w(h°®®), which depend only on the shared observation encoding h°®$, not on
the queries.

1. Separable Encoder. To encode both the observations X = ((t9°%, c9%, v9%%)),,-1.y and queries

Q = (1%, ¢?™)) p=1:x, we apply a positional embedding with learnable parameters (as,bs) f-1:7
to the time component (Kazemi et al.,[2019).

t+b if f=1
pos_embed(t) s @t or it f (10)
sm(aft +by) else
And one-hot encodings for the channel component. The value is simply passed through.
x := [pos_embed(t."*), one-hot(co™ ), vn™* ] -1: N (11a)
q := [pos_embed(¢3°"), one-hot (™" ) Jp-1:x (11b)
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The observations x € RVN*(F+C+1) are further encoded via self-attention and the queries q €
RE*(F+C) yia cross-attention w.r.t. the encoded observations:

h® := MHA(x, x, x; 0°"°) (e RVM) (12a)
h:= MHA(q, h®,h%%;0%%) (e RF*PM) (12b)
h := reshape(h) (e RP* XM (12¢)

where MHA denotes multihead attention. For the encoding of the queries we use an encoding
dimension D - M and reshape each hy, into D encodings hg j, of dimension M.

2. Separable Gaussians pz,(z | ptg,X4). We model the means and covariances of the source
multivariate Gaussian using simple linear and quadratic functions of the encoded queries hy:

,u(hd) = thMEAN — H(hd)k = hd’kQMEAN, (1321)
h cov h cov\T h acov h Qcov T
S(hy) = T + 2P %\7?9 L Sy = o+ B ;%“ URNES

QMEAN ¢ RMx1 §COV ¢ RMxM’

where and are trainable weights shared across all D mixture compo-
nents, I is the K x K identity matrix, and dy; is the Kronecker delta.

The scaling by /M in ensures stable learning, following (Vaswani et al.;|2017). Since X(hg)
is the sum of a positive semi-definite and a positive definite matrix, it remains positive definite.
The encoding h incorporates both the context X and the queries (), consistent with the separable
Gaussian setup in (). Note that, while the source Gaussian is defined via Gaussian Processes (GP),
we do not perform GP-style inference.

3. Separable transformations f;. To obtain separable invertible transformations, we apply a
univariate bijective function to each variable independently. Spline-based functions are particularly
popular due to their expressiveness and good generalization (Durkan et al.||2019} |Dolatabadi et al.|
2020). We use computationally efficient Linear Rational Spline (LRS) transformations (Dolatabadi
et al., 2020). For a conditional LRS ¢(zx; hg ., 0™°"), parameters such as bin widths and heights,
derivatives at the knots, and A are computed from the conditioning input hg ;, and shared model
parameters #™°%. The same 6™°V is used for all variables z1.x, allowing the transformation to
handle varying numbers of variables, and is also shared across all D mixture components. For
details, see Appendix [A.4] In summary, the conditional flow model is separable across the query size
f=/f1xx fg with

fd(y) = f(y | hd) = (d)(yhhd,l)a .. -7¢(Z/K,hd,K)) (14)

4. Mixture Model. We model the mixture weights via cross attention, using trainable parameters
B e RP*M a5 attention queries, and a softmax to ensure the weights to sum to 1:

w = softmax(MHA (8, h%%, h°®%; M) (15)

Theorem 4.1. Our model, MOSES, satisfies and hence realizes a stochastic process via
Kolmogorov’s Extension Theorem (see Theorem[2.1). Proof. See Appendix[A.3]

Computational Complexities. The D-separable flows are computationally efficient: since they are
separable, their Jacobian matrix is diagonal and computing determinant requires O (K ) operations.
The main computational cost lies in evaluating $;' and det £ for the base distribution, which typi-
cally requires O(K?3) operations. However, for large K, our low-rank modification ¥4 = I + UUT
(see (T3b)) reduces their computation to O(M’?K) using the Woodbury and Weinstein—Aronszajn
identities. This approach scales well for large values of K > M, as M’ is independent of K.

Training. Given a batch B of training instances (@, X,y), we minimize the normalized joint
negative log-likelihood (njNLL) (Yalavarthi et al., 2025)):

: 1 1

EHJNLL(Q) - Z -

3 logp(y | @, X) (16)
| |(Q,X,y)ezs lyl

where 6 includes all the model parameters. njNLL generalizes NLL to varying target sizes.



Under review as a conference paper at ICLR 2026

Relationship to Copulas. Each component of MOSES is conceptually similar to a Gaussian Copula
Process Wilson & Ghahramani|(2010), in that it separates the linear dependency structure from the
marginal distributions. The covariance matrix of base Gaussian can be decomposed into a correlation
matrix and diagonal variances. The diagonal variances, together with the base mean and the univariate
spline transformations, determine contribution of each component to the marginal distribution of each
variable. On the other hand, since MOSES is a mixture of D such components—each with its own
transformations—the overall model does not have a simple separation between dependency structure
and marginal distributions.

Unlike many copula-based architectures that train marginals and dependencies separately to avoid
identifiability issues, MOSES is trained end-to-end, and fully identifiable due to the restricted domain
of the spline transformations. The shift in mean of the base distribution cannot be compensated by
the spline transformation.

To the best of our knowledge, copula-based architectures have not been applied to probabilistic
forecasting of irregular time series. Models such as TACTiS and TACTiS-2 (Drouin et al., 2022}
Ashok et al.||2024) are designed for regularly sampled, fully observed data. While their principles
could, in principle, extend to irregular time series, their implementations are not readily adaptable
and they lack marginalization consistency due to their non-separable encoder and copula structure.

5 RELATED WORK

There have been multiple works that deal with point forecasting of irregular time series (Ansari et al.|
2023} |Che et al., 2018}; |Chen et al., 2024} |Yalavarthi et al., 2024; Zhang et al.,|2024)). In this work
we deal with probabilistic forecasting of irregular time series. Models such as NeuralFlows (Bilos
et al.,[2021), GRU-ODE (De Brouwer et al., 2019), and CRU (Schirmer et al., 2022) predict only the
marginal distribution for a single time stamp. Additionally, interpolation models like HetVAE (Shukla’
& Marlin, [2022)) and Tripletformer (Yalavarthi et al.| 2023) can also be applied for probabilistic
forecasting. However, they also produce only marginal distributions. All the above models assume
underlying distribution is Gaussian which is not the case for many real-world datasets. On the other
hand, Gaussian Process Regression (GPR; |Diirichen et al., 2015)), and ProFITi (Yalavarthi et al.,
2025) can predict proper joint distributions. ProFITi is not marginalization consistent because of
non-separable encoder and probabilistic component.

There have been works on models for tractable and consistent marginals for fixed size variables (e.g.
tabular data). Probabilistic Circuits (Choi et al., 2020) create a sum-prod network on the marginal
distributions. Later, Sidheekh et al.[(2023) added univariate normalizing flows to the leaf nodes of the
circuit for better expressivity. However, it is not trivial to extend such circuits to deal with sequential
data of variable size. Gaussian Mixture Models (GMMs) (Duda & Hart, [1974) are often used only
for unconditional density estimation, but can be extended to conditional density estimation. They can
provide tractable and consistent marginal distributions. However, GMMs are not expressive enough
and often require a very large number of components to approximate even simple distributions, see
Figure Note that normalizing flow models such as|Dinh et al.|(2017); |Papamakarios et al.[|(2017;
2021)) neither provide tractable marginals nor are applicable to varying number of variables.

Prior work on mixtures of normalizing flows has focused on fixed-length sequences. |Pires &
Figueiredo| (2020) and (Ciobanul (2021) used affine coupling and masked autoregressive flows for
density estimation, while Postels et al.|(2021)) applied them to reconstruction tasks. These models face
challenges with variable-length sequences and intractable marginals. |[Sendera et al.| (2021) introduced
non-Gaussian Gaussian Processes for few-shot learning but only support single-variable prediction.
In contrast, MOSES handles multiple variables and missing values.

6 EXPERIMENTS

6.1 Toy EXPERIMENT

We illustrate marginalization consistency using two synthetic bivariate distributions (Blast and Circle;
see Figure [T| Appendix [B). The task is to estimate the unconditional joint distribution. MOSES
accurately models both joint and marginal distributions while preserving consistency. In contrast,
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Table 1: Comparing njNLL. Lower the better, best results in bold, second best in italics.

Model USHCN Physionet’ 12 MIMIC-III MIMIC-1V
inconsistent ProFITi -3.226 + 0.225  -0.647 £0.078  -0.377 £0.032  -1.777 = 0.066
GRU-ODE 0.766 +0.159 0.501 +0.001 0.961 + 0.064 0.823 +0.318
consistent NeuralFlows 0.775 £ 0.152 0.496 + 0.001 0.998 +0.177 0.689 + 0.087
univariate CRU 0.761 +£0.191 1.057 £ 0.007 1.234 £ 0.076 OOM
Tripletformer+ 4.632 +8.179 0.519 +0.112 1.051 £0.141 0.686 +0.115
consistent GPR 2.011 +1.376 1.367 £ 0.074 3.146 = 0.359 2.789 + 0.057
S GMM 1.050 £ 0.031 1.063 = 0.002 1.160 = 0.020 1.076 £ 0.003
multivariate
MOSES (ours) -3.357 £0.176  -0.491 + 0.041 -0.305 £ 0.027 -1.668 = 0.097
Table 2: Trained for njNLL and evaluate for mNLL, lower the better.
Model USHCN Physionet’12 MIMIC-III MIMIC-IV
inconsistent ProFITi -3.324 £ 0.206  -0.016 £ 0.085 0.408 + 0.030  0.500 + 0.322
GRU-ODE 0.776 £0.172 0.504 £0.061  0.839 +£0.030 0.876 £ 0.589
consistent Neural-Flows 0.775 £ 0.180 0.492 +£0.029 0.866 +0.097 0.796 + 0.053
univariate CRU 0.762 + 0.180 0.931 £0.019 1.209 +£ 0.044 OOM
Tripletformer+ 0.411 +7.506 0.524 +0.110  0.894 +0.083 0.751 £ 0.063
consistent GPR 1.235 +0.096 1.161 = 0.065 1.341 = 0.009 1.161 £0.010
SISt oMM 1.042£0.021 1069 £0.002 1.124+0.007  1.075+0.007
multivariate
MOSES (ours) -3.355+0.156 -0.271 £0.028 0.163 +£0.026 -0.634 = 0.017

ProFITi captures the joint well—especially for Blast—but fails on marginals due to its triangular
attention mechanism, which enforces a fixed dependency order. Gaussian Process Regression
maintains consistency but lacks predictive accuracy. To predict the marginalizatoin inconsistency we
use 2-Wasserstein distance (WD). For each variable y;,, we compare:

i) p(yx | Qr, X): the predicted marginal,

i) p™*®(yx | Qk, X): the marginal obtained by integrating the joint p(y | @, X).
Since sampling directly from p™#® is difficult, we sample from the joint and extract the k-th compo-
nent. The marginalization inconsistency is defined as the average WD across all K variables:

1 X R R
MI = = 52 WD(5(yi | Q. X). 5" (i | Qi X)). (17)
k=1
We use 1000 samples to compute MI. Currently, we compute only univariate marginals; multivariate
marginals are possible in principle but computationally prohibitive.

6.2 MAIN EXPERIMENT

We evaluate our model on four real-world datasets: one climate dataset (USHCN) and three medical
datasets (Physionet’ 12, MIMIC-III, and MIMIC-IV). Following prior work (Yalavarthi et al.} 2025}
Bilos et al., 2021)), we observe the first 36h and predict the next 3 time steps for medical datasets,
and observe 3 years and predict 3 time steps for USHCN. Both the number of observations (/V) and
queries () vary across samples (see Table ). We split each dataset into training, validation, and
test sets using a 70:10:20 ratio. We train MOSES using the Adam optimizer with a learning rate of
0.001 and batch size of 64. Hyperparameter search is over mixture components D € {1,2,5,7,10},
attention heads € {1, 2,4}, and latent sizes M, F' € {16,32,64,128}. All models are implemented in
PyTorch and trained on NVIDIA RTX 3090 and GTX 1080 Ti GPUs.

Baselines. We use NeuralFlows (Bilos et all 2021), GRU-ODE (De Brouwer et al.| 2019),
CRU (Schirmer et al., 2022), GPR (Diirichen et al., [2015), and ProFITi (Yalavarthi et al., [2025)).
Our encoder is similar to Tripletformer (Yalavarthi et al.,[2023) that predict marginal distributions
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Figure 4: njNLL vs. MI. MOSES is marginalization consistent within sampling error.

Table 3: Comparing njNLL and mNLL across datasets to verify the contribution of probabilistic
component of ProFITi. “ProFITi-TF” denotes ProFITi-Transformer using same encoder as MOSES

Dataset njNLL mNLL
ProFITi-TF MOSES ProFITi-TF MOSES
USHCN -3.415+0.271 -3.357#0.176  -3.440+0.243  -3.355+0.156

Physionet’12  -0.657+0.034 -0.491+0.041  0.017+£0.042  -0.271+0.028
MIMIC-IIT 0.516+0.111  -0.305+0.027  1.279+0.057  0.163+0.026
MIMIC-IV -1.405+0.220  -1.668+0.097  0.345+0.325  -0.634+0.017

for interpolation. We used it for the forecasting and called the model Tripletformer+. NeuralFlows,
GRU-ODE, CRU, and Tripletformer+ predict only marginals and are marginalization consistent, as
their joint distribution is the product of marginals. GPR is also marginalization consistent. We also
compare with Gaussian Mixture Model (GMM) which is MOSES without flows attached to highlight
the advantage of flows in MOSES.

Results. To highlight the importance of Marginalization Consistency in probabilistic forecasting
models we train the model for njNLL in (17) and evaluate for two metrics: 1. Normalized Joint
Negative Log-Likelihood (njNLL; Table [I) and 2. Marginal Negative Log-Likelihood (mNLL;
Table[2). While njNLL measures joint density, mNLL assesses univariate marginal density (Bilo§
et al., [2021; [Schirmer et al., 2022). A good model must perform well on both the metrics.

MOSES outperforms all marginalization-consistent models across both metrics. Although it performs
similarly or slightly worse than ProFITi on njNLL, it significantly surpasses ProFITi on mNLL.
For USHCN, both models perform comparably within standard deviation. From Figure [d] our
model achieves similar likelihoods to ProFITi, with MI values close to zero, while ProFITi has up
to an order of magnitude larger due to sampling (rounded to 0.1). This difference arises because
ProFITi prioritizes joint distributions but neglects marginalization consistency, leading to performance
degradation when queried on single instances (Figure[I). In contrast, our model maintains consistency.
Similar results are observed when comparing Energy Score (for multivariate distributions) and CRPS
(for univariate distributions) as seen in Tables[8]and[0] Additionally, ProFITi’s gains primarily stem
from its encoder. When using the same encoder (ProFITi-TF), our model achieves superior accuracy
in MIMIC-III and MIMIC-IV (Table 3).

CONCLUSIONS

We introduced MOSES, a marginalization-consistent mixture of separable flows for probabilistic
forecasting of irregular time series with missing values. By carefully parametrizing its components,
we ensured both decomposability and marginalization consistency. Experiments on four real-world
irregularly sampled datasets show that MOSES achieves substantial gains in marginal predictions
while preserving competitive accuracy in joint predictions compared to more flexible but inconsistent
models. This work provides an initial step toward addressing marginalization inconsistency in
probabilistic forecasting. Future research will likely focus on enhancing performance while preserving
consistency. A key limitation of MOSES is that mixture weights are independent of the query Q.
Although adapting weights to query time points could improve joint predictions, requirements [RTHR3]
enforce query-independence as a necessary condition for marginalization consistency.
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A THEORY

A.1 PROOF OF LEMMA [3.1]

Proof. Since X is a common conditional to all the marginals, we can ignore it. So, assume that f is
a separable transformation:

f(z1Q) = (¢(21 ]| Q1),- ... ¢(2k | @K)) (18)
and that pz (z | Q) is marginalization consistent model. Then, the predictive distribution is
d -1
1 Q) =217 1 Q)| Q)- oo 1D 19
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Since f is separable, it follows that the Jacobian is diagonal:

df 'y Q)  d(¢7 (i 1Q1),.. o7 (11 | Q1))

dy Ay, Yx)
-1 -1
:diag(dd) (1/1|Q1)’._.7d¢ (yK|QK)) 20)
dyr dyk
Hence, the determinant of the Jacobian is the product of the diagonal elements:
-1 -1
‘det df (@) _ ‘ ot 407 (W 1 Qi) | _ ’d¢ (yr [ Qr) 21
dy k=1:K dyr k=1:K dyg
Using this fact, we can integrate the joint density over gy, to get the marginal density:
[ 1@ dy,
N df!
S w1, s
N do™!
i@ [ - @)
k=1:K dyr
Ao~ (y | Qx Yk | Qk
1| I E R B PR
1#k Yk
-1
= (H 4o (s Qk)’ ) ’[ﬁz(z | Q) dzg > transf.-thm
I#k dyp,
do? .
:(H 45 (e | Qr) (dyk|Qk) )pZ(Z—k|Q—k) > ()
1#k Yk
=pz(z | Qor) detf(yyk;JQk) > 2T)
=p(y-x | Q-x) >
O
A.2 PROOF OF LEMMA [3.2]
Proof. Consider a mixture model of the form
D
ply| Q. X): Z (X)pa(y | Q, X) (22)

satlsfymg the conditions from Lemma[3.2] i.e. the component models p satisfy the requirements [RT}
and the weight function w: Seq(X) - AP is permutation invariant with respect to X.

1. p satisfies[R1} By construction of the mixture model, it has the same domain and codomain
as the component models.

2. p satisﬁes@ Let 7 € S| and 7 € S x|, then

)

Pyl QT,X7) = dZ wa(X )pa(y [ Q7. XT)

=1

)

= 3% wa(X)puly | Q. X)

> permutation invariance of w and pq
=y | @, X)
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3. p satisfies

D
Jwl@ X dpe= [ 3 wiX)pal | Q. X) du

D
TuwaX) [ 5aly 1@ X)dy

wa(X)pa(y-r | Q-k,X) > pg is marginalization consistent

Mo

IS8
Il
=

v (=i | Q-1, X)

3>

A.3 PROOF OF THEOREM [4.1]

Proof. Due to Lemma 1, it is sufficient to show that all the component models satisfy the require-
ments[RTHR3] Since we use Gaussian Processes as the base distribution, Lemma[3.1]ensures that each
component model is marginalization consistent, establishing[R3] Requirement [R1]is by construction.
Finally, permutation invariance [R2]can be seen as follows:

First, note that, by Equation (12), it follows that if h®®° is permutation equivariant with respect to
X, and h and h are both permutation equivariant with respect to () and permutation invariant with
respect to X. Now, let 7 € S| and 7 € S|, then, for the d-th component model py, (y | @, X). In
particular, the flow satisfies f;*(y™,Q™, X7) = f~'(y™,h7) = 2™. Therefore:

ﬁYd(yTr|Q7TaXT)
df Yy™. Q™. XT
:ﬁzd(f_l(y”aQ”,XT)IQ”,XT)"det P

= N(f7 (™ h]) | u(h]), B(h]))- ’det‘w

df—l(yﬂ" hw)
dy™

> by remark above

= N(Z" | p(hg), %(hg)) - ’det

d -1/, ™ h™
=Nz |pX)- ‘det % > permutation invariance of GP
yﬂ'

=N(z|u,2)-‘detdf_l(y’h)‘ > by 1)

dy
=pv,(y] Q,X)

A.4 LINEAR RATIONAL SPLINES

Linear Rational Splines (LRS) are computationally efficient spline functions |Dolatabadi et al.| (2020).
Formally, given a set of monotonically increasing points {(t,, Um ) }m=1:1 called knots, that is
U < Upps1 a0d Uy, < Upnp1, along with their corresponding derivatives {A,,, > 0},,,-1:as, then the
LRS transformation ¢(u) within a bin u € [y, U1 ] is:

A Vi (A =) + O U T ~
<u<
¢(u) _ W (A =0)+@m T O<ac< )\m
QO (1=1) + 041 Vm+1 (G=Am) . Ao <u<1
: m SUu <

077n(17'0‘)+O‘7TL+1(ﬂ'*)\'m)

where = —4m ¢ [0,1] (23)

Um+1 — Um

Here, A, € (0,1) signifies the location of automatically inserted virtual knot between ,,, and 11
with value v,,. The values of \,,, a.,,, 4, and v, are all automatically derived from the original
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Table 4: Statistics of the datasets used in our experiments. Sparsity means the percentage of missing
observations in the time series. [N is the total number of observations and K is the number of queries
in our experiments in Section 6]

Name #Samples #Channels  Sparsity N K

USHCN 1100 5 77.9% 8- 322 3-6
PhysioNet’12 12,000 37 85.7% 3-519 1-53
MIMIC-III 21,000 96 94.2% 4-709 1-85
MIMIC-IV 18,000 102 97.8% 1-1382 1-79

Table 5: We compare models with respect to MSE, where lower values indicate better performance.
The best-performing model is shown in bold, the second-best in italics, and models with performance

within one standard deviation of the best are underlined

Model USHCN PhysioNet’12 MIMIC-III MIMIC-IV
inconsistent ProFITi 0.308 £ 0.061 0.305+£0.007 0.548 £0.063 0.389 +£0.015
GRU-ODE 0.410£0.106 0.329 +£0.004 0.479 £0.044 0.365 £ 0.012
consistent Neural-Flows 0.424 +£0.110 0.331 £0.006 0.479 £0.045 0.374 +0.017
univariate CRU 0.290 £ 0.060 0.475+0.015 0.725+0.037 OOM
Tripletformer+ 0.349 +0.131  0.293 £0.018 0.547 £0.068  0.369 £ 0.030
consistent GPR 0.597 £0.110 0.575+0.059 0.862+0.016 0.609 +0.014
o0 GMM 0.294 £ 0.083  0.293 £0.005 0.535+0.064 0.332 +0.015
multivariate —— —
MOSES (ours) 0.411+0.099 0.307+0.006 0.517 +0.057 0.342 + 0.028

knots and their derivatives|Dolatabadi et al.|(2020). For a conditional LRS ¢(zx; hg, 0), the function
parameters such as width and height of each bin, the derivatives at the knots, and A are computed
from the conditioning input h ;, and some model parameters 6. & helps to project hg 4 to the function
parameters, and is common to all the variables z1.x so that the transformation ¢ can be applied for
varying number of variables K. Additionally, we set § common to all the components as well. Since,
each component has separate embedding for a variable z;, (hg 1), we achieve different transformations
in different components for same variable.

In summary, the conditional flow model is separable across the query size f = fi x --- x fx with

fd(y) = f(y | hd) = (¢(y17hd,1)a .. 'a(b(yKahd,K)) (24)
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Table 6: Experiment on varying observation and forecast horizons. Evaluation metric-njNLL, Lower
the better. Best results are in bold.

36/12 24/24 12/36
NeuralFlows 0.708 £0.048  1.097+0.044  1.436+0.187
ProFITi -0.768+0.041  -0.355+0.243  -0.291+0.415

MOSES (ours)  -0.315+0.016  -0.298+0.027  -0.063+0.049

Table 7: Experiment on varying observation and forecast horizons. Evaluation metric-mNLL, Lower
the better. Best results are in bold.

36/12 24/24 12/36
NeuralFlows 0.709+0.047 1.065+£0.082  1.439+0.198
ProFITi 1.376£1.764  0.705+£0.179  2.977+2.978

MOSES (ours) -0.083+0.025 -0.020+0.060 0.040+0.131

B DATASETS
4 real-world datasets are used in the experiments.

USHCN Menne et al.[(2015). This is a climate dataset consisting of 5 climate variables such as
daily temperatures, precipitation and snow measured over 150 years at 1218 meteorological stations
in the USA. Following De Brouwer et al.[(2019); |Yalavarthi et al.| (20235)), we selected 1114 stations
and an observation window of 4 years from 1996 until 2000.

PhysioNet2012 Silva et al.| (2012). This physiological dataset consists of the medical records of
12,000 patients who are admitted into ICU. 37 vitals are recorded for 48 hrs. Following the protocol
of Yalavarthi et al.| (2024); Che et al.|(2018)), dataset consists of hourly observations in each series.

MIMIC-III |Johnson et al.[(2016). This is also a physiological dataset. It is a collection of readings
of the vitals of the patients admitted to ICU at Beth Israeli Hospital. Dataset consists of 18,000
instances and 96 variables are measured for 48 hours. Following |De Brouwer et al.| (2019)); Bilos
et al.| (2021)); [Yalavarthi et al.| (2025) observations are rounded to 30 minute intervals.

MIMIC-IV |Johnson et al.|(2021). The successor of the MIMIC-III dataset. Here, 102 variables
from patients admitted to ICU at a tertiary academic medical center in Boston are measured for 48
hours. Following De Brouwer et al.| (2019); Bilos et al.| (2021)); [Yalavarthi et al.| (2025) observations,
are rounded to 1 minute intervals.

Blast distribution (toy dataset). Blast distribution is a bivariate distribution which is created as

x(PLE )

y=sign(z) ©z0z

Circle (toy dataset). Circle is also a bi-variate distribution.

z ~N(07]I2)

C  +0.05-N(0,I,)

Y=
122

C ADDITIONAL EXPERIMENTS

C.1 COMPARING FOR POINT FORECASTING

While point forecasting is an important task in time series analysis, the goal of probabilistic forecasting
is fundamentally different. Probabilistic forecasting aims to capture the full predictive distribution
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Table 8: Comparing for Energy Score. Lower the better. Best results are in bold.

USHCN PhysioNet’12 MIMIC-III MIMIC-IV

NeuralFlows  0.661 £0.059 1.691 £0.001 1.381 £0.033 0.982 + 0.009
ProFITi 0.452+0.044 0.879+0.303 1.606+0.168 0.808 + 0.003

MOSES 0.552+0.044 1.599+0.013 1.353+0.033 0.906 +0.029

Table 9: Comparing models w.r.t. CRPS score on marginals. Lower the better. Best results are in
bold.

Model USHCN PhysioNet’12 MIMIC-IIT MIMIC-IV
Neural-flows 0.306 £0.028 0.277 £0.003  0.308 £ 0.004  0.281 + 0.004
ProFITi 0.182 +0.007 0.271+0.003 0.319+0.003 0.279 +0.012

MOSES (ours)  0.220+0.019  0.260 £ 0.002  0.296 = 0.005  0.245 + 0.010

rather than just a single-point estimate. Nonetheless, one might intuitively expect that the best
probabilistic model would also yield the most accurate point estimates. However, this is not always
the case in practice, as noted in prior works (Lakshminarayanan et al., [2017; |Seitzer et al.| 2021}
Rasul et al., 2021} |Yalavarthi et al., [2025)).

We compare probabilistic models in terms of point prediction accuracy using Mean Squared Error
(MSE), as reported in Table[5] Our results show that no single model consistently outperforms the
others across all datasets. GMM is the overall best ranked model with MOSES and GRU-ODE being
the next best. We believe there are two primary reasons for this phenomenon:

(1.) MSE is related to the Negative Log-Likelihood (NLL) of a Gaussian distribution with a fixed
standard deviation. Therefore, models explicitly trained by minimizing Gaussian Negative Log-
Likelihood (even if they predict more than just the mean) are naturally optimized for this metric.

(2.) Probabilistic models are trained to predict the underlying data distribution, not solely the optimal
point estimate (e.g., the conditional mean). Their objective is to accurately capture the uncertainty
and dependencies in the data, which involves learning the (co)variance structure. This focus on the
full distribution can sometimes lead to point estimates that are not strictly optimized for minimizing
the squared error, even if the overall probabilistic forecast is superior.

Except for MOSES , GMM and ProFITi, all the other probabilistic models are designed to predict
Gaussian distributions. MOSES and GMM have competing accuracy in all the datasets other than
USHCN. In USHCN, MOSES performs worse because of outliers in the data. This is the reason for
large standard deviations for all the models in USHCN dataset.

C.2 EXPERIMENT ON VARYING OBSERVATION AND FORECAST HORIZONS

We would like to see if MOSES is scalable to long observations and forecast horizons. For this, we
performed an experiment on varying length observation and forecasting horizons on Physionet’ 12
dataset and compared against the published results from (Yalavarthi et al., 2025) in Table @ The
observation and forecasting horizons are: {(36h, 12h), (24h, 36h), (12h, 26h)}.

Tables [6] and [7] present the njNLL and mNLL results for ProFITi and MOSES. The results follow
the trends observed in Tables[T]and 2] ProFITi performs best when predicting joint distributions.
However, its lack of marginalization consistency leads to a severe performance drop when predicting
marginal distributions. In contrast, MOSES maintains stable performance from njNLL to mNLL.
While it performs slightly worse than ProFITi on njNLL, it significantly outperforms ProFITi on
mNLL.

C.3 COMPARING FOR ENERGY SCORE

The Energy Score between the ground truth y and predicted distribution py is computed as:

R 1 ,
ES(y,py)= E Jy-¢'|5-5 E |y -y"[5, (25)
y'~Dy 2y .y ~py
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Table 10: Ablation study on PhysioNet’12 Table 11: Importance of mixer components
Model njNLL () Dataset MOSES(1) MOSES(D)
MOSES -0.491 £ 0.041 USHCN -3.255+0.204  -3.357+0.176
MOSES-f 1.063 + 0.002 Physionet’12  -0.493£0.029 -0.491+0.041
MOSES-cov  -0.308 +0.024 MIMIC-IIT 0.173£0.332  -0.305+0.027
MOSES-w -0.451 £0.038 MIMIVC-IV  -1.686+0.072  -1.668+0.097

MOSES (1) -0.493 £ 0.029

Table 12: Comparing the number of parameters and run-time per epoch for results in Table 1| for
GMM and MOSES, and ProFITi for reference

USHCN Physionet’ 12 MIMIC-III MIMIC-IV
Parameters Run Time Parameters Run Time Parameters Run Time Parameters Run Time
ProFITi 1,093.0K 3.8s 75.8K 42.14s 59.7K 66.8s 285.9K 70.2s
GMM 416.0K 0.9s 390.9K 5.9s 33.0K 18.5s 101.1K 21.3s
MOSES (ours) 167.6K 2.4s 134.6K 14.1s 112.6K 25.4s 398.6K 33.3s

where | - |2 denotes the Euclidean norm and p € (0, 2) is a parameter. In our evaluation, we set p = 1.
Marcotte et al.| (2023)) demonstrated that the Energy Score is not a reliable metric for evaluating
multivariate distributions. Additionally, it suffers from the curse of dimensionality, as it requires N
samples, where K is the number of variables and N is the number of samples required to accurately
estimate a univariate distribution.

However, since many regularly sampled, fully observed multivariate time series probabilistic forecast-
ing models use the Energy Score as an evaluation metric, we examine how MOSES compares to the
best-performing inconsistent multivariate probabilistic model, ProFITi, and the consistent univariate
probabilistic model, NeuralFlows in Table[8] Our results show that MOSES outperforms NeuralFlows
across all datasets. As shown by the njNLL metric in Table [T} ProFITi is the best-performing model,
outperforming MOSES in 3 out of 4 datasets.

C.4 COMPARING FOR MARGINALS IN TERMS OF CRPS

We compare with CRPS score in Table[9] a widely used evaluation metric in time series forecasting.
We see that MOSES outperforms all the consistent models. It performs better than ProFITi in 3 out
of 4 dataset. For ProFITi and MOSES, we sampled 1000 instances and computed the CRPS.

C.5 ABLATION STUDY.

Using Physionet’ 12, we show the importance of different model components. As summarized in
Table 10} the performance is reduced by removing the flows (MOSES — f) which is same as GMM.
It is expected that normalizing flows are more expressive compared to simple mixture of Gaussians.
On the other hand, by using only isotropic Gaussian as the base distribution (MOSES — cOov) model
performance worsened. Similarly, parameterizing the components weights have a slight advantage
over fixing them to 1/D with D being the number of components. One interesting observation is even
using single component (MOSES(1)) gives similar results compared to mixture of such components.
This could be because the dataset we have may not require multiple components. We note that we
have D =1 in our hyperparameter space, and we select the best D based on validation dataset. Note
that (MOSES(1)) can be seen as representative of Copula Processes (Wilson & Ghahramani, [2010)
and Non-Gaussian Gaussian Process (Sendera et al., [2021)).

When we conduct this study on other datasets (Table we realized that mixer model is indeed
helpful if there is a requirement.

C.6 COMPARING THE NUMBER OF PARAMETERS AND RUNTIME FOR GMM AND MOSES

Since MOSES is built upon GMM, Table [I2] presents the number of parameters and runtime for both
MOSES and GMM. For reference, we also include ProFITi.

The results show that GMM has a relatively low number of parameters for MIMIC-III and MIMIC-1V,
whereas for USHCN and PhysioNet’ 12, the number of parameters is significantly higher. The primary
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difference between GMM and MOSES is the inclusion of flows. Given that all other factors remain
the same, MOSES is expected to have a slightly higher number of parameters than GMM due to
these additional flows. Also, the parameters for the flows are shared among all the variables and
the components, their number does not grow with increase in components or variables. However,
differences in the chosen hyperparameters for GMM and MOSES lead to some discrepancies from
this expectation. Moreover, the inclusion of flows in MOSES results in a slightly higher runtime
compared to GMM.

C.7 UNCONDITIONAL DENSITY ESTIMATION: FIGURE[]2|

Figure |2 shows the advantage of MOSES compared to GMM. GMM requires more number of
components compared to MOSES for predicting similar distributions. In this experiment, we use the
unconditional version of the model meaning the flow architecture is independent. Hence, mean and
covariance of the Gaussian distributions which are same for both MOSES and GMM are trainable
parameters. In addition to them, we have the parameters for the seperable flows which are not shared
among the variables and components. Due to this, MOSES have significantly higher number of
parameters compared to GMM. Although one could condition the models upon constant vectors and
reduce the number of parameters, we did not use this approach and stick to the general practice.
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