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Figure 1: Concept interpretation with CONCEPTOR. (a) Given a set of representative concept images,
CONCEPTOR learns to decompose the concept into a weighted combination of interpretable elements
(font sizes indicate weights). The decomposition exposes interesting behaviors such as reliance
on prominent painters and renowned artistic styles (e.g., “Monet”, “Impressionism”). (b) Given a
specific generated image, CONCEPTOR extracts its primary contributing elements, revealing surprising
visual connections (e.g., “sweet peppers” are linked to “fingers” due to their common shape).

ABSTRACT

Text-to-image diffusion models have demonstrated an unparalleled ability to gen-
erate high-quality, diverse images from a textual prompt. However, the internal
representations learned by these models remain an enigma. In this work, we present
CONCEPTOR, a novel method to interpret the internal representation of a textual
concept by a diffusion model. This interpretation is obtained by decomposing the
concept into a small set of human-interpretable textual elements. Applied over the
state-of-the-art Stable Diffusion model, CONCEPTOR reveals non-trivial structures
in the representations of concepts. For example, we find surprising visual connec-
tions between concepts, that transcend their textual semantics. We additionally
discover concepts that rely on mixtures of exemplars, biases, renowned artistic
styles, or a simultaneous fusion of multiple meanings of the concept. Through
a large battery of experiments, we demonstrate CONCEPTOR’s ability to provide
meaningful, robust, and faithful decompositions for a wide variety of abstract,
concrete, and complex textual concepts, while allowing to naturally connect each
decomposition element to its corresponding visual impact on the generated images.

1 INTRODUCTION

Generative models have demonstrated unprecedented capabilities to create high-quality, diverse
imagery based on textual descriptions (Balaji et al., 2022; Gafni et al., 2022; Ramesh et al., 2021;
Rombach et al., 2022; Saharia et al., 2022). While revolutionary, recent works have demonstrated that
these models often suffer from heavy reliance on biases (Chuang et al., 2023; Luccioni et al., 2023)
and occasionally also data memorization (Carlini et al., 2023; Somepalli et al., 2022). However, all
these works draw conclusions by a simple external evaluation of the output images, while research
on understanding the internal representations learned by the model remains scarce. Thus, our
understanding of these impressive models remains limited.

*The first author performed this work as an intern at Google Research.
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In this work, we aim to develop a method to interpret the inner representations of text-to-image
diffusion models. Our approach draws inspiration from the field of concept-based interpretability (Li
et al., 2021; Kim et al., 2017; Ghorbani et al., 2019), which proposes to interpret the model’s decision-
making for a given input by decomposing it into a set of elements that impact the prediction (e.g.,
decomposing “cat” into “whiskers”, “paws”, etc.). Under this setting, an “interpretation” can be
considered to be a mapping function from the internal state of the model to a set of concepts humans
can understand (Kim et al., 2017). Notably, existing approaches for concept-based interpretability
are not directly applicable to generative models, and, as we demonstrate, fall short of producing
meaningful interpretations for such models. Therefore, we propose a novel method to produce concept-
based explanations for diffusion models, which leverages their unique structure and properties.

Our method, CONCEPTOR, learns a pseudo-token, realized as a combination of interpretable textual
elements (Fig. 1(a)). To obtain the pseudo-token, CONCEPTOR trains a neural network to map each
word embedding in the vocabulary of the model to a corresponding coefficient, with the objective
of denoising the concept images. The pseudo-token is then constructed as a linear combination
of the top vocabulary elements weighted by their learned coefficients. This formulation allows us
to exploit both the model’s powerful ability to link between text and image, and the rich semantic
information encapsulated in the text encoder. Through a large battery of experiments, we demonstrate
that CONCEPTOR produces decompositions that are meaningful, robust, and faithful to the model.

We use CONCEPTOR to analyze the state-of-the-art text-to-image diffusion model, Stable Diffu-
sion (Rombach et al., 2022) across various concepts, including concrete (e.g., “a nurse”), abstract
(e.g., “affection”) and complex (e.g., “elegance on a plate”) concepts, as well as homograph concepts
(e.g., “a crane”). CONCEPTOR reveals many interesting observations about the learned representa-
tions. (i) As demonstrated in Fig. 1(b), CONCEPTOR can be used to decompose a generated image
to its own subset of driving elements. We find non-trivial combinations of features that control
different visual aspects such as shapes, textures, and colors. (ii) We observe that some concepts such
as “a president” or “a rapper” are represented mostly by exemplars, i.e., well-known instances
from the concept, such that the generated images are interpolations of those instances. (iii) We
additionally find that consistent with previous work (Rassin et al., 2022), the model learns to mix the
multiple meanings of homograph concepts. We expand those findings and discover cases where these
meanings are leveraged simultaneously, creating images that mix both meanings in a single object.
(iv) Finally, we demonstrate our method’s effectiveness in the detection of non-trivial biases.

To conclude, our work makes the following contributions: (i) We present CONCEPTOR, a novel
method to decompose a textual concept into a set of interpretable elements. Our method utilizes
a unique form of decomposition in which a linear combination is learned as a mapping from the
textual embedding space to a coefficient. (ii) We demonstrate profound learned connections between
concepts that transcend textual correlations. (iii) We discover non-trivial structures in the learned
decompositions such as interpolations of exemplars, reliance on renowned artistic styles, and mixing
of different meanings of the concept. Finally, (iv) We demonstrate the detection of biases that are not
easily observable visually. These observations can help discuss ethical questions on a factual basis.

2 RELATED WORK

Text-guided image generation Recently, impressive results were achieved for text-guided image
generation with large-scale auto-regressive models (Ramesh et al., 2021; Yu et al., 2022) and diffusion
models (Ramesh et al., 2022; Nichol et al., 2021; Rombach et al., 2022; Saharia et al., 2022). In
the context of text-to-image diffusion models, a related line of work aims to introduce personalized
concepts to a pre-trained text-to-image model by learning to map a set of images to a “token” in
the text space of the model (Gal et al., 2022; Ruiz et al., 2022; Kumari et al., 2022). Importantly,
these methods do not produce decomposable or interpretable information and mostly result in a rigid
learned vector that resides outside of the model’s distribution (Voynov et al., 2023).

Concept-based interpretability A similar analysis to ours was conducted on concept representa-
tions in the context of language models (Patel & Pavlick, 2022; Li et al., 2021; 2023b; Lovering &
Pavlick, 2022), often through projections to the vocabulary space (Geva et al., 2022; 2023; Ram et al.,
2022). For image classifiers based on CNNs, TCAV (Kim et al., 2017) propose the first concept-based
explainability method by training a linear classifier over user-defined concepts. ACE (Ghorbani
et al., 2019) leverages multi-resolution segmentation of the class images and clusters the bottleneck
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representations of the crops. ICE (Zhang et al., 2020) and CRAFT (Fel et al., 2022) apply matrix
factorization methods on a feature map matrix extracted from a set of patches to obtain the decompo-
sition. Note that all these methods are not applicable directly to diffusion models. First, most of the
methods are based on CNN architectures (Ghorbani et al., 2019) with non-negative activations (Zhang
et al., 2020; Fel et al., 2022), thus cannot be directly generalized to negative feature matrices. Most
importantly, all methods above perform concept importance estimation by measuring the shift in
prediction or by employing saliency methods, both are not trivially applicable to a generative model.

Object representation methods A related line of work attempts to learn representations for images
that hinge on the objects in the image. Singh et al. (2018) disentangle the background, shape, and
appearance of the image for controllable generation. GIRAFFE (Niemeyer & Geiger, 2020) incorpo-
rates 3D scene representation to improve controllable image generation, Slot Attention (Locatello
et al., 2020) and DTI Sprites (Monnier et al., 2021) provide improved decomposition with additional
features, and GENESIS-V2 (Engelcke et al., 2021) learns object representations without iterative
refinement. Note that all of the aforementioned methods only offer decomposition for a single image
and, therefore fall short of providing concept-level explanations, which is our main objective. In the
context of diffusion models, the closest work to ours is that of Liu et al. (2023), which proposes to
use diffusion models for concept discovery. Importantly, all methods above provide representations
that are based on concrete objects and parts that are visible in the image, thus are not applicable to
our task of interpretability of internal representations (see Appendix G).

Diffusion model interpretability Shared text-image representations such as CLIP (Radford et al.,
2021) have been analyzed in the past (Chefer et al., 2021a;b; Yun et al., 2023). However, none
of these works has been generalized to generative models. As far as we can ascertain, the closest
effort to explaining text-to-image models is a simple visualization of the cross-attention maps (Hertz
et al., 2022; Han et al., 2023; Chefer et al., 2023). Some works (Rassin et al., 2022; Carlini et al.,
2023) have attempted to investigate the images produced by text-to-image diffusion models, and
have even found evidence of memorization (Carlini et al., 2023). However, these works rely entirely
on the generated images, and are, therefore, time-consuming and require access to the data. For
example Somepalli et al. (2022) were able to show memorization for less than 2% of the generations
with SD. Additionally, these works do not attempt to dissect the model’s inner representations.

3 METHOD

Preliminaries: Latent Diffusion Models (LDMs) We apply our method over the state-of-the-art
Stable Diffusion (SD) model (Rombach et al., 2022). SD employs a denoising diffusion probabilistic
model (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) over an input latent vector zT ∼ N (0, 1)
and gradually denoises it. Namely, at each timestep, t = T, . . . , 1, the DDPM receives a noised latent
vector zt and produces a less noisy vector zt−1, which serves as the input to the next step.

During the denoising process, the model is typically conditioned on a text encoding for an input
prompt P , produced by a frozen CLIP text encoder (Radford et al., 2021), which we denote by C. The
text encoder converts the textual prompt P to a sequence of tokens, which can be words, sub-words,
or punctuation marks. Then, the encoder’s vocabulary, V ∈ RN,d, is used to map each token in the
prompt to an embedding vector w ∈ Rd, where d is the embedding dimension of the encoder, and N
is the number of tokens in the vocabulary. The DDPM model is trained to minimize the loss,

Lreconstruction = Ez,P,ε∼N (0,1),t

[
||ε− εθ(zt, t, C(P))||2

]
, for, (1)

zt =
√
αtz +

√
1− αtε, (2)

where εθ is a trained UNet (Ronneberger et al., 2015), and 0 = αT < αT−1 < · · · < α0 = 1. In
other words, during training, the input image x is encoded to its corresponding latent vector z. A
noise vector ε and a timestep t are drawn randomly. The noise vector ε is then added to the latent
vector z as specified in Eq. 2, and the UNet is trained to predict the added noise ε.

CONCEPTOR Our goal is to interpret the internal representation of an input concept c in a text-to-
image diffusion model εθ. Formally, given a prompt Pc for the concept c, we learn a decomposition
for the concept using the vocabulary V . This decomposition is realized as a pseudo-token w∗ /∈ V
that is constructed as a weighted combination of a subset of tokens from V , i.e.,

w∗ =

n∑
i=1

αiwi s.t. wi ∈ V, α1, . . . , αn ≥ 0 (3)
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where n << N is a hyperparameter that determines the number of tokens to use in the combination.

Learning the set of n vocabulary elements wi and their associated coefficients αi is done separately
for each concept c. We begin by collecting a training set T of 100 concept images. These images
provide the statistics for the concept features we wish to learn. Next, we construct our learned
pseudo-token over the vocabulary V . This construction serves two purposes. First, note that the
vocabulary V is expressive and diverse, containing roughly 50, 000 tokens, ranging from famous
personalities to emojis and even names of video games (e.g., Fortnite is a single token in V). By
learning our decomposition over this rich set of candidate concepts, we facilitate a meaningful yet
non-restrictive optimization over semantic, human-understandable information. Thus, our choice of
candidate concepts achieves the best of both worlds – it is both expressive and interpretable. Second,
we make a design choice to optimize the coefficients as a function of the word embeddings. This
choice is critical to the success of our method since it utilizes the rich textual embedding space
of CLIP in determining the coefficients. Effectively, this reduces the optimization problem from
optimizing 50, 000 unrelated coefficients to learning a mapping from a smaller semantic space, Rd.
Specifically, our method assigns a coefficient α for each word embedding w using a learned 2-layer
MLP, which takes as input the word embedding vector w as follows,

∀w ∈ V : α = f(w) = σ (W2(σ(W1(w)))) , (4)

where σ is the ReLU non-linearity (Agarap, 2018), and W1,W2 are linear mappings. Based on f , we
compute w∗

N =
∑N

i=1 f(wi)wi. Note that this pseudo-token is not identical to the output token w∗

since w∗
N contains all tokens in V . w∗ is obtained by the top tokens from w∗

N , as described in Eq. 5.

To learn a meaningful pseudo-token w∗, we optimize our MLP to reconstruct the images generated
from Pc. This choice encourages our pseudo-token to imitate the denoising process of the concept
images. We draw a random noise ε ∼ N (0, 1) and a timestep t ∈ {1, . . . , T} for each image, and
noise the images according to Eq. 2. We then employ the model’s reconstruction objective from Eq. 1.

As mentioned, w∗
N considers all the tokens in the vocabulary. However, for better interpretability, we

wish to represent the input concept with a small set of n << N tokens. Notate by w1, . . . , wn ∈ V
the tokens with the highest learned coefficients. We add a regularization loss to encourage the
pseudo-token w∗

N to be dominated by these top n tokens, i.e.,

Lsparsity = 1− cosine (w∗, w∗
N ) . (5)

This encourages the pseudo-token w∗, defined by the top n tokens in V , to be semantically similar to
w∗

N , which is defined by the entire vocabulary. Our overall objective function is, therefore,

L = Lreconstruction + λsparsityLsparsity, (6)

In our experiments, we set λsparsity = 0.001, n = 50. At inference time, we employ the MLP
on the vocabulary V and consider the top n = 50 tokens to compose w∗, as specified in Eq. 3.
Implementation details and a figure describing our method can be found in Appendix A.

Single-image decomposition Given an image I that was generated by SD for a concept c, we
wish to determine the subset of the tokens from the decomposition w∗, that drove the generation of
this specific image. This is done via an iterative process over the tokens wj ∈ w∗ as follows; at each
step, we attempt to remove a single token from the decomposition, w∗

j =
∑

i ̸=j αiwi, and generate
the corresponding image Ij with the prompt Pw∗

j and the same seed. Next, we use CLIP’s image
encoder to determine if Ij is semantically identical to I . If the CLIP score of the two images is higher
than 95, we remove wj from w∗ and continue to the next token. This criterion avoids incorporating
tokens whose removal only causes minor non-semantic modifications to the image I (such as a slight
shift in pose). This process is repeated for all tokens in w∗ until no tokens are removed.

4 EXPERIMENTS

Concept-based explanation desiderata Following previous literature on concept-based explain-
ability (Ghorbani et al., 2019), we begin by defining a set of desired properties that concept-based
explanations for diffusion models should uphold. These properties will be the criteria to evaluate
our method. (i) Meaningfulness- Each decomposition element should be semantically meaningful
and human-understandable. (ii) Faithfulness- The decomposition should be faithful to the concept
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Figure 2: Decompositions of single images by CONCEPTOR. The top rows present images found
to contain two elements. The last row shows more complex mixtures by removing one element at a
time. The examples demonstrate the meaningfulness of our learned decompositions.

representation by the model. In other words, the decomposition should reconstruct the features
manifested in each of the concept images, and produce images that are in the distribution of the
concept images. (iii) Robustness- The decomposition should be independent of the selection of
the training set and the initialization. Next, we conduct extensive experiments to demonstrate our
method’s ability to produce meaningful, faithful, and robust decompositions for diverse types of
concepts. Throughout this section, we notate by wc the token(s) corresponding to the concept c.

Data We construct a diverse and comprehensive dataset of 188 concepts, comprised of the basic
classes from CIFAR-10 (Krizhevsky, 2009), a list of 28 professions from the Bias in Bios dataset (De-
Arteaga et al., 2019), 10 basic emotions and 10 basic actions, all 30 prompts from the website
Best 30 Stable Diffusion Prompts for Great Images*, which contains complex prompts that require
hierarchical reasoning (e.g., “Medieval village life”, “impression of Japanese serenity”), and, finally,
we consider 100 random concepts from the ConceptNet (Speer & Havasi, 2013) knowledge graph to
allow for large-scale evaluation of the methods. A full list of all concepts is provided in Appendix B.

4.1 QUALITATIVE RESULTS

The ability to link between textual decomposition elements and their visual manifestation is important
to facilitate human understanding and establish meaningfulness. We propose two strategies to obtain
these connections. First is our single-image decomposition scheme, described in Sec. 3. Second, we
propose to gradually manipulate the element’s coefficient to observe the visual changes it induces.

Single-image decomposition Figs. 1 and 2 and Appendix D contain examples of decompositions
over images generated by SD. The first three rows of Fig. 2 present examples of images that decompose
into two elements, while the last row contains more complex concepts that decompose into three
elements, where we visualize the removal of one element at a time. Note that the results show
non-trivial and profound links between concepts. For example, the “snake” in Fig. 2 is constructed as
a “twisted gecko”, the “camel” borrows its skin texture and color from the “cashmere”, etc. These

*https://mspoweruser.com/best-stable-diffusion-prompts/
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Figure 3: Coefficient manipulation. For each of the listed concepts, we manipulate the coefficient of
a single element from the decomposition and observe its visual impact on the generated image.

Table 1: Quantitative evaluation of CONCEPTOR and the baselines.
Method CLIP pairwise↑ LPIPS↓ FID per concept↓ FID entire set↓ Token diversity

BLIP-2 token 66.3 ± 16.8 0.60 ± 0.13 218.1 ± 93.4 46.6 52.1 ± 9.7
BLIP-2 sentence 78.7 ± 11.2 0.57 ± 0.8 158.6 ± 74.0 23.7 65.8 ± 1.9
PEZ 79.1 ± 9.9 0.56 ± 0.06 150.6 ± 63.4 18.2 75.9 ± 1.2
NMF 80.0 ± 9.7 0.53 ± 0.06 147.0 ± 68.9 21.6 —
k-means 82.5± 8.4 0.53 ± 0.05 132.5 ± 60.0 21.3 —
PCA 83.0 ± 8.0 0.53 ± 0.09 130.8 ± 52.9 19.8 —
CONCEPTOR 86.2 ± 8.3 0.44 ± 0.09 109.5 ± 51.8 9.8 69.8 ± 3.4

examples demonstrate associations beyond textual correlations, based on visual similarities such
as shape, texture, and color. Additionally, note that the decompositions represent various different
representation strategies. Some involve a mixture of shape and appearance (e.g., “snail”), others
involve compositional features added gradually (e.g., “impression of Japanese serenity”), etc. Finally,
observe that the “painter” decomposition demonstrates reliance on renowned artistic styles, such that
when “Monet” is removed, the painting disappears, even though “Monet” did not appear explicitly
in the input prompt. Appendix D.1 presents a further investigation of this reliance on artistic styles.

Coefficient manipulation Fig. 3 presents examples of coefficient manipulations. First, we present
examples of homograph concepts (first, second row of Fig. 3). Observe that in some cases, e.g., “big
apple”, both meanings are generated separately in the image (an apple, New York City), while other
cases, e.g., “crane”, “date” generate a single object. Even in the latter case, the manipulation shows
that both meanings impact the generated image, implicitly. For example, when reducing the element

“stork” from “crane”, the structure of the crane changes. Evidently, the model employs both meanings
simultaneously, borrowing the appearance from the machine and the shape from the bird.

Next, we present examples of element inspection. In the first example, we visualize the impact of
“nerdy” on the concept “professor”. As can be observed, it controls the professor’s baldness, the
glasses, the suit, and the library in the background. Secondly, we inspect exemplar interpolations.
Observe that the element “Trump” in an image of a “president” controls semantic features borrowed
from the identity of Donald Trump while removing this element results in a president that resembles
Obama. This example directly demonstrates an interpolation of exemplars. Features from both
Obama and Trump are employed simultaneously in the image generation process. This phenomenon
suggests that diffusion models can also memorize by mixing inputs, beyond exact single-sample
reconstruction. Further investigation of exemplar-based representations can be found in Appendix E.

4.2 QUANTITATIVE RESULTS

Baselines As far as we can ascertain, our work is the first to tackle concept representations in
text-to-image diffusion models. We, therefore, compare our method with reasonable baselines
and adaptations of existing methods. First, we consider a prompt tuning method, Hard Prompts
Made Easy (PEZ) (Wen et al., 2023), which aims to learn a prompt that will reproduce an input
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Table 2: Qualitative comparison of the decompositions by our method and the leading baselines.
Concept PEZ BLIP-2 sentence CONCEPTOR

Rapper marin, prodigy,
sturridge, noneeminem

man, hat, shirt Tupac, Drake, Khalifa,
Weekend, Khaled, hood, hat

Medieval
village life

moderated, humpday,
giftideas, shistory

people, medieval
clothing, village

caravan, peasant, medieval,
countryside, farming

Elegance on
a plate

silver, chesterfield,
dinner, moschbizitalk

plate, vegetable,
meat

plating, chef, beauty,
dessert, saucer, porcelain

set of training images. Second, we consider two baselines that leverage the state-of-the-art image
captioning model BLIP-2 (Li et al., 2023a): (i) BLIP-2 sentence extracts a single caption per concept
by decoding the mean CLIP embedding of the training images. (ii) BLIP-2 token creates one caption
per image and constructs a single pseudo-token from the captions, where each token is weighted
by its frequency in the captions. Finally, we consider CNN-based concept interpretability methods.
As mentioned in Sec. 2, these methods are not directly applicable to diffusion models. Therefore,
we present comparisons to the closest adaptations of these methods. We decompose the activation
of the UNet features from different denoising steps into concept activation vectors (CAVs) using
k-means (Ghorbani et al., 2019), PCA (Zhang et al., 2020) and NMF (Fel et al., 2022). At inference,
we project the intermediate activations into the learned space, see Appendix A.1 for more details.

Metrics For each concept, we test the faithfulness and the diversity of the decompositions. We
use a test set of 100 seeds to generate images with wc and with each method. Then, we employ
three types of metrics: (i) Pairwise Similarity, to measure the faithfulness of the decomposition w.r.t.
each of the concept images. We report the mean CLIP (Radford et al., 2021) image similarity and
the LPIPS (Zhang et al., 2018) score. (ii) Distribution similarity, to measure the faithfulness of the
decomposition w.r.t. the concept distribution. We report the FID (Heusel et al., 2017) score with
respect to the concept images for each concept separately (FID per concept) and for all concepts as a
dataset (FID entire set). (iii) We employ SentenceBERT (Reimers & Gurevych, 2019) to measure the
element diversity by estimating the dissimilarity of the tokens in the decomposition (Token diversity).
This metric further substantiates the meaningfulness by showing that the decomposition is diverse.

Results The results, averaged across all 188 concepts, are reported in Tab. 1. As can be seen, our
method outperforms all baselines across all faithfulness metrics. Notably, our LPIPS score is at least
10% lower than that of all baselines, indicating that our method is faithful to the concept images.
Importantly, both FID metrics obtained by our method are the lowest by a big margin (at least 20 per
concept and 8 for the entire set). The scales of the FID scores are very different since the per concept
FID was calculated on sets of merely 100 images. However, we report both metrics for completeness.
Focusing on the more reliable FID score on the entire set, we calculate the “ground-truth” FID
between the train and test set and obtain a score of 7.1, which is fairly close to our score. These
results establish CONCEPTOR’s ability to provide faithful decompositions. Considering the scores
by SentenceBERT, CONCEPTOR is only superseded by PEZ. However, PEZ produces a significant
amount of uninterpretable tokens (see Tab. 2). The matrix factorization methods do not produce text,
therefore we cannot compute the SentenceBERT score. Instead, we enclose in Appendix I the top
principal components learned for the concepts from Fig. 4. As can be seen, the obtained components
do not appear to be coherent or interpretable, i.e., these methods violate the meaningfulness criterion.

Next, we conduct qualitative comparisons between CONCEPTOR and the leading baselines. Tab. 2
compares the textual decompositions, showing that CONCEPTOR learns diverse and meaningful
decompositions. Some concepts, such as “a rapper” are dominated by exemplars (e.g. “Drake”,

“Tupac”), while others, such as “Medival village life”, are a composition of semantically related
concepts (e.g., “caravan”, “peasant”). In contrast, the baselines either produce decompositions that
are not interpretable, i.e., violate the meaningfulness criterion (PEZ), or are oversimplistic (BLIP-2).
Please refer to Appendix F for word cloud visualizations of CONCEPTOR over complex prompts.
Fig. 4 presents a visual comparison to the leading baselines given the same seeds. As can be observed,
CONCEPTOR successfully preserves the image features (i.e., upholds faithfulness), even when the
concept entails detailed features. For example, the “painter” images demonstrate a reconstruction of
the paintings. Conversely, the baseline methods do not accurately embody all features of the concept.

User study To further substantiate our meaningfulness and humans’ ability to understand our
decompositions, we conduct a user study. In the study, we randomly draw 8 concepts, 2 from
each of our data categories: (a) professions, (b) abstract concepts, (c) basic concepts (ConceptNet,
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Figure 4: Feature reconstruction comparison to the leading baselines. For each concept (column) we
generate the images using the same random noise with our method and the leading baselines, and
compare to the original concept images generated by Stable Diffusion (Original Images).

Table 3: Ablation study of our method, conducted on the professions subset (De-Arteaga et al., 2019).
Method CLIP pairwise↑ LPIPS↓ FID per concept↓ Token diversity↑
CONCEPTOR 87.0 ± 5.5 0.45 ± 0.07 107.96 ± 31.0 69.7 ± 3.4
w/o MLP 78.0 ± 6.7 0.55 ± 0.06 142.88 ± 45.1 75.9 ± 3.0
w/o Eq. (5) 80.3 ± 11.6 0.52 ± 0.09 146.4 ± 63.4 73.2 ± 2.1
n = 10 82.9 ± 7.8 0.49 ± 0.11 129.41 ± 55.3 54.6 ± 9.4
n = 100 85.6 ± 6.9 0.47 ± 0.07 114.36 ± 39.7 72.8 ± 1.8
CLIP top words 80.1 ± 9.9 0.513 ± 0.1 130.9 ± 57.2 66.3 ± 3.9

CIFAR-10), and (d) complex concepts. For each concept, the users were presented with 6 random
concept images and 3 possible textual decompositions, as provided by CONCEPTOR, and the two
leading baselines that extract text (BLIP-2 sentence and PEZ). The users were asked to select the
decomposition that best captures all the features presented in the images. Overall, we collected 160
responses for all questions. Of those 160 responses, 70% favored the decomposition by CONCEPTOR
above all alternatives, 26.9% favored the captioning by BLIP-2, and 3.1% selected PEZ, further
establishing CONCEPTOR’s meaningfulness, even compared to the natural captioning alternative.

Robustness experiments In Appendix C we conduct extensive robustness tests, to demonstrate
two important properties: (i) CONCEPTOR is robust to different choices of the training set and
initialization, and (ii) CONCEPTOR generalizes the training task to test images. Experiment (i)
employs 3 different training sets and initializations and tests the exact match of tokens between the
3 resulting decompositions. The results demonstrate that the decomposition is consistent across all
sets- 72− 80% of the top-10 elements, and 63− 70% of the top-25 elements are preserved across all
choices. Experiment (ii) shows that w∗ is able to denoise test concept images from any denoising
step, thus w∗ indeed captures the concept features beyond the selection of training images.

In conclusion, we find that the baselines either violate the meaningfulness criterion, i.e., produce
uninterpretable decompositions (k-means, PCA, NMF, PEZ, see Tab. 2 and Appendix I, user study) or
the faithfulness criterion (BLIP-2, see poor performance in Tab. 1). We note that for both criteria and
in all experiments, CONCEPTOR significantly outperforms all baselines and obtains robust, faithful,
and meaningful decompositions (see Tabs. 1 and 2, Fig. 4, and Appendix C, user study).

Ablation Study We conduct an ablation study to examine the impact of each component on our
method. First, we ablate the choice of employing an MLP to learn the coefficients and instead learn
them directly. Next, we ablate our sparsity loss and the choice of n = 50. Last, we ablate our choice
of vocabulary V and instead extract the top 50 tokens by their CLIP similarity to the mean image.

The results are listed in Tab. 3. Replacing the MLP with a vector of weights is detrimental to all
faithfulness metrics. This demonstrates the importance of our learned MLP, as it leverages the rich
semantic information learned by CLIP, rather than optimizing a huge set of coefficients without any
semantic understanding. Without the sparsity loss (Eq. (5)), the top 50 tokens do not necessarily
reflect the learned token w∗

N , and all metrics except for token diversity deteriorate. Additionally,
observe that the performance decreases when employing n = 10 since the decomposition is not rich
enough to represent all features. For n = 100, the results are similar to the full method, other than the
diversity which improves a little. This indicates that CONCEPTOR is relatively stable to this parameter.
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- ‘link’

Input Image

+‘link’Concept: bridge link - ‘coconut’

Input Image

+‘coconut’Concept: palm tree coconut

Single Token Single Token

Figure 5: Examples of elements that impact the generation differently from their standalone meaning.

Finally, when only considering the top words by CLIP similarity to the images, the performance
decreases substantially, supporting the reliance of our method on a wide variety of tokens from the
vocabulary, beyond the ones most correlated with the images in terms of textual semantics.

4.3 BIAS DISCOVERY AND MITIGATION

Table 4: Biases revealed by CONCEPTOR.

Concept Examples of biased terms

Secretary womens, girl, ladies
Opera singer obese, overweight, fat

Pastor Nigerian, gospel
Journalist refugee, jews
Drinking millennials, blonde

Another important capability of our method is
bias discovery. Text-to-image models have demon-
strated the representation of social biases (Luccioni
et al., 2023). CONCEPTOR can be used to discover
such biases through the decomposition elements.
Tab. 4 lists examples of such biased concepts. Note
that our method detects behaviors that are not nec-
essarily observable visually such as a connection
between “Jews” and “journalists”. These findings
underscore the importance of researching concept representations in text-to-image models, as biases
can impact the generation, even if visually elusive. Utilizing our method, one can also choose to
generate debiased versions of these concepts by decreasing coefficients associated with biased tokens
while preserving other features in the scene. Please refer to Appendix H for such examples.

5 DISCUSSION AND LIMITATIONS

While our method provides faithful and interpretable concept decompositions, there are some lim-
itations to consider. First, we find that the visual impact of an element is not always completely
aligned with its impact as a single token, i.e., the impact of each token depends on the context of
the decomposition. Fig. 5 demonstrates such cases. For each concept, we visualize the effect of
manipulating the token, and the result of keeping only the token of interest (Single Token). Note
that the influence of a token on the generated image differs from its influence as a sole token. For
example, the token “link” on its own produces an image of the video game character, Link. However,
in the context of a “bridge”, it adds a solid bridge (a link) between the two edges of the image.

Second, our method is limited to elements that are single tokens, therefore a complex phrase (e.g.,
“palm tree”) will not be included as a single element in our decomposition. However, as mentioned,
our construction of the linear combination mitigates the impact of this limitation. Since the context of
the decomposition can change the meaning of an element, complex relations can be formed between
single tokens by leveraging the context. This is exemplified by our ability to decompose complex
concepts, that require hierarchical reasoning (e.g., “elegance on a plate”, “rainbow dewdrops”).

6 CONCLUSIONS

How does a generative model perceive the world? Focusing on text-to-image diffusion models,
we investigate the model’s internal knowledge of real-world concepts. We present CONCEPTOR, a
method to provide a human-understandable decomposition for a textual concept. Through extensive
experiments, we show that CONCEPTOR provides interpretations that are meaningful, robust, and
faithful to the concept representation by the model. Using CONCEPTOR, we obtain various interesting
observations on the learned concept representations. Via a per-image decomposition scheme, we
observe non-trivial connections between concepts in ways that transcend the lexical meaning of the
tokens. Furthermore, our method exposes less intuitive behaviors such as the reliance on exemplars,
mixing dual meanings of concepts, or non-trivial biases. In all cases, the novel paradigm allows us to
shed new light on a model that, similar to other foundation models, can still be considered an enigma.
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A IMPLEMENTATION DETAILS

A photo of
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Figure 6: Illustration of the CONCEPTOR method. Given the concept of interest (e.g., “a president”),
we generate 100 concept images. Next, a learned MLP network maps each word embedding wi to a
coefficient f(wi), and the pseudo token w∗

N is constructed as a linear combination of the vocabulary.
We then add random noises ε1, . . . , ε|T | to the images, and use the model to predict the noise based
on the text “a photo of a <w∗

N>”. We train the MLP with the objective of reconstructing the images
(Lreconstruction) and add a sparsity loss to encourage sparse coefficients (Lsparsity).

Fig. 6 describes the pipeline of our method. Given an input concept (e.g., “a president”), we obtain
a set of representative concept images. At each optimization iteration, we add random noises to
each of the images individually. Our learned MLP operates over the model’s vocabulary to produce
a coefficient for each of the word embeddings, and the resulting pseudo-token is used to denoise
the training images. We employ a reconstruction loss to encourage the pseudo-token to contain the
concept elements learned by the model and add a sparsity loss to maintain an interpretable and stable
decomposition.

All of our experiments were conducted using a single A100 GPU with 40GB of memory. We train
our MLP as specified in Sec. 3 of the main paper with 100 images generated from the concept using
seed 1024 for a maximum of 500 training steps with a batch size of 6 (which is the largest batch size
that could fit on our GPU). Additionally, we use a learning rate of 1e− 3 (grid searched on 5 concepts
between 1e− 2, 1e− 3, 1e− 4). We conduct validation every 50 optimization steps on 20 images
with a validation seed and select the iteration with the best CLIP pairwise similarity between the
reconstruction and the concept images. We use the latest Stable Diffusion v2.1* text-to-image model
employing the pre-trained text encoder from the OpenCLIP ViT-H model*, with a fixed guidance
scale of 7.5.

Additionally, to filter out meaningless tokens such as punctuation marks we consider the vocabulary
to be the top 5, 000 tokens by their CLIP similarity to the mean training image. We note that this
filtering method is fairly coarse, and meaningless tokens remain in the vocabulary, however, we find
that this choice improves the convergence time of our MLP such that 500 iterations are enough to
obtain meaningful decompositions. This choice is ablated in the main paper (see the CLIP top words
ablation). Our single-image decomposition scheme employs a CLIP ViT-B/32 model (Radford et al.,
2021). Please find our code attached as a ZIP file to reproduce our results.

A.1 CONCEPT-BASED BASELINES IMPLEMENTATION DETAILS

To implement the concept-based baseline approaches, we follow the formulation in Fel et al. (2023).
During the generation of the training concept images, we collect the intermediate representations from

*https://github.com/Stability-AI/stablediffusion
*https://github.com/mlfoundations/open_clip
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the UNet at different denoising timesteps. Then, we decompose those representations using PCA,
following Zhang et al. (2020), NMF, following Fel et al. (2022) or k-means, following Ghorbani et al.
(2019). We use a total of n = 50 components, to match our decomposition size. Finally, at inference,
we generate images from the concept using the test seed, 2, while projecting and reconstructing the
aforementioned intermediate representations both before passing them to the next block and to the
upsampling (decoding) part of the UNet (via the skip-connections). At training and inference when
using NMF we drop the negative activations. At inference, when using k-means, we employ the
closest cluster as a reconstruction of an intermediate representation.

• We compute PCA using 5 iterations of randomized SVD solver with 10 oversamples.
• We compute k-means using 10 k-means++ initialization and 100 iterations of the Lloyd algorithm.
• We compute NMF using NNDSVD initialization and run the Coordinate Descent solver for 200

iterations.
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B DATASET

In the following, we enclose the full list of concepts in each of our data subsets.

Bias in Bios concepts “professor”, “physician”, “attorney”, “photographer”, “journalist”,
“nurse”, “psychologist”, “teacher”, “dentist”, “surgeon”, “architect”, “painter”, “model”, “poet”,
“filmmaker”, “software engineer”, “accountant”, “composer”, “dietitian”, “comedian”, “chiro-
practor”, “pastor”, “paralegal”, “yoga teacher”, “dj”, “interior designer”, “personal trainer”,

“rapper”

CIFAR-10 concepts “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”,
“ship”, “truck”

Emotions “affection”, “anger”, “disgust”, “fear”, “happiness”, “honor”,“joy”, “justice”, “sad-
ness”, “beauty”

Actions “clapping”, “climbing”, “drinking”, “hugging”,“jumping”, “pouring”, “running”,
“sitting”, “throwing”, “walking”

Complex concepts “Rainy New York Nights”, “The Fashion of Abandoned Places”, “Rainbow
Dewdrops”, “Aerial Autumn River”, “Skateboarder’s Urban Flight”, “Dive into Coral Reefs”,

“Vintage European Transit”, “Star Trails over Mountains”, “Marketplace Colors of Marrakesh”,
“Elegance on a Plate”, “The Renaissance Astronaut”, “The Surreal Floating Island”, “Impression
of Japanese Serenity”, “Jazz in Abstract Colors”, “The Confluence of Pop Art”, “The Robotic
Baroque Battle”, “Cubist Bustling Market”, “The Romantic Stormy Voyage”, “The Botanist in
Art Nouveau”, “The Gothic Moonlit Castle”, “Neon-Soaked Cyberpunk City”, “Dragon’s Stormy
Perch”, “Reflections of Earth”, “After The Fall”, “Retro Gaming Nostalgia”, “Medieval Village
Life”, “Samurai and the Mystical”, “Minimalistic Geometry”, “Alien Flora and Fauna”, “The
Inventor’s Steampunk Workshop”

ConceptNet concepts “curling iron”, “baseball stadium”, “flowers”, “submarine”, “policeman”,
“projectile”, “tissue holder”, “jogging”, “storey”, “sickness”, “parlor”, “ships”, “conductor”,
“booze”, “key”, “metal”, “prostitute”, “wings”, “tools”, “road”, “main”, “leader”, “radio”, “sur-
prise”, “chips”, “castle”, “bathroom”, “compete against”, “leather”, “science”, “rich”, “sponge”,

“bell”, “eloquent”, “nightclub”, “water”, “patient”, “eat vegetables”, “respect”, “lemur”, “bum”,
“mammoth”, “birthday”, “chain”, “cats”, “frogs”, “arkansas”, “basketball”, “listening”, “dream”,
“ticket office”, “failure”, “text”, “now”, “oven”, “leg”, “mundane”, “copulate”, “tree”, “wood”,
“mail”, “wooden rod”, “clippers”, “competing against”, “dull”, “book”, “watch television”, “win-
ning baseball game”, “iphone”, “dance club”, “security”, “politician”, “subway station”, “fall”,

“junk”, “sleighing ride”, “call”, “mosquitoes”, “national highway”, “contraceptive device”, “state-
ment”, “kill”, “seeing old things”, “lift”, “adults”, “pillowcase”, “wedding ring”, “eyes”, “coun-
try”, “stepladder”, “mandolin”, “reception area”, “chief”, “plastic”, “projector”, “hub”, “card
catalog”, “negligible”, “rook”, “llano estacado”
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C ROBUSTNESS EXPERIMENTS

In the following sections, we conduct experiments to demonstrate our method’s ability to provide
robust concept interpretations. First, we show that the obtained decomposition is stable, i.e., that the
same elements are learned across different choices of training sets and initialization. Second, we test
our decomposition’s ability to generalize w.r.t. the denoising training task, i.e., we test the denoising
capabilities of w∗ on test images. This shows that the elements in w∗ represent the entire concept,
beyond the training images.

C.1 ROBUSTNESS TO TRAINING DATA

Note that since N >> d, there are many linear combinations that yield w∗. However, due to the
specific MLP-based structure and the sparsity constraints, the decomposition is stable across multiple
draws of training sets. In this section, we aim to verify that empirically. For each concept, we generate
2 alternative training sets with different random seeds, in addition to our original training set, to test
the consistency of our results. For each alternative training set, we decompose the concept using our
method as described in Sec. 3, with a different initialization for the MLP*. This process results in 3
decompositions of n = 50 tokens for each concept.

We then analyze the intersection of the top k = 10, 25, and 50 tokens between the original decompo-
sition and each of the alternative decompositions. The concept intersection score for k is defined to
be the average of the intersections with the two alternative sets. In other words, we calculate two
intersection sizes for k: between the top k tokens of the original decomposition and the first alternative
decomposition, and between the top k tokens of the original decomposition and the second alternative.
The overall concept intersection score for k is the average of the two. Standard Deviation is computed
across the concepts. Note that this experiment measures an exact match of the tokens, therefore the
actual intersection may be even higher, e.g., if a synonym is used in one of the alternatives.

Table 5: Decomposition consistency experiment. For each number of tokens (k = 10, 25, 50) we test
the intersection between our learned top tokens and those learned by employing two different training
sets of concept images, with different random initializations. The results demonstrate that the top
tokens are consistent and robust across different training sets and seeds.

No. of Tokens Intersection

C
on

cr
et

e Top 10 8.03 (80.3%) ± 2.07
Top 25 17.68 (70.7%) ± 4.47
Top 50 28.96 (57.9%) ± 8.05

A
bs

tr
ac

t Top 10 7.20 (72.0%) ± 1.86
Top 25 15.95 (63.8%) ± 3.97
Top 50 25.65 (51.3%) ± 5.41

The average intersection scores across all concrete concepts and all abstract concepts are presented in
Tab. 5. As can be seen, for the concrete concepts, an average of 8.03(80.3%) of the top 10 tokens are
present in all the decompositions, even when considering an entirely different training set, indicating
that the top tokens obtained by our method are stable. Additionally, when considering the top 25
tokens, an average of 17.68(70.7%) of the tokens are present in all decompositions, which is a large
majority. We note that the bottom tokens are typically less influential on the decomposition, as they
are assigned relatively low coefficients by the MLP. Accordingly, when considering all 50 tokens, an
average of 28.96(57.9%) of the tokens appears in all decompositions. The results for the abstract
concepts are slightly lower, yet demonstrate a similar behavior. Overall, the results demonstrate that
our method is relatively robust to different training sets and random seeds, such that even in the face
of such changes, the top-ranked tokens remain in the decomposition.
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Figure 7: Generalization tests comparing the concept prompt, wc, and our pseudo-token, w∗. (a)
Quantitative test on all concepts. For each timestep, we add random noises to the images and compare
the reconstruction with w∗, wc, and wo, a continuous token optimized with the same objective as w∗

(Optimized Token). We report the MSE after subtracting the score of a random token. (b) Qualitative
comparison. An image I is generated from the concept “a nurse”, and different noises are added
ε1, . . . , ε5 (1st row). We then compare the denoising with wc (2nd row) and with w∗ (3rd row).

C.2 DENOISING GENERALIZATION

We wish to ascertain that the learned decomposition w∗ can generalize its training task to test images.
Recall that during training, w∗ accumulated the elements necessary to denoise the concept images
for each denoising step. Next, we wish to demonstrate that these features can perform this same
training task on test images. We compare the denoising quality with w∗ to that of the concept prompt
token(s), wc. This comparison serves two purposes: (1) establish CONCEPTOR’s ability to learn the
actual concept features, beyond a set of features that simply reconstruct the training set, (2) motivate
the fact that, as can be seen in our results, w∗ ̸= wc. To intuitively motivate the latter, note that even
though wc was used to generate the concept images, it is not necessarily the best prompt to denoise
them, since: (1) wc generates each image using a specific initial random noise, but is not guaranteed
to be better in denoising them after applying other random noises. (2) Unlike wc, w∗ is constructed
as a linear combination of tokens. Thus, our optimization is performed over a larger, continuous
space of embeddings, and therefore is more expressive than a simple selection of tokens.

We begin with a quantitative comparison. We sample a test set of 100 images for each concept in
the dataset. Then, for each denoising step t ∈ {1, . . . , T} and each test image, we draw a random
noise and apply it as in Eq. 2. Finally, we test the reconstruction loss specified in Eq. 1 with the
pseudo-token w∗ compared to the concept prompt wc. To provide a lower bound on the obtainable
error, we additionally compare to wo, a vector optimized with the same reconstruction objective on
the entire continuous embedding space Rd without restrictions, similar to (Gal et al., 2022). Note
that, unlike w∗, wo does not offer interpretable information, since it is non-decomposable, and often
out-of-distribution (see Sec. 2). However, it demonstrates our claim that optimization over a larger
domain yields better reconstruction. Additionally, we observe that there is a large variance in the
MSE score across timesteps. Latents in early steps are very noisy, and therefore obtain a very high
loss (∼ 0.8), while the last steps contain virtually no noise, and the MSE is very low (∼ 1e−3).
Therefore, we compute a baseline score to normalize the scale. We subtract from each score the
denoising score for the same images using a random token which serves as an upper bound for
the MSE. Fig. 7(a) presents the results averaged across all concepts, showing that the concept wc

obtains a score worse than both w∗ and the optimized token wo, which obtains the best results.
These differences are statistically significant, as shown by the error bars marked on every timestep.
Evidently, by optimizing a token over a larger domain, we can outperform the original concept token
in the denoising task. Importantly, this motivates the different features learned by w∗ while also
demonstrating the remarkable denoising capability of w∗ on any concept image, which indicates that
w∗ indeed captures the concept features.

Fig. 7(b) provides a qualitative comparison between wc and w∗. An input image I generated by “a
photo of a nurse” is noised and then denoised back from different denoising steps, using the concept
token wc and our pseudo-token w∗. As can be seen, there are cases where, given a different random

*Our code does not employ a fixed random seed, thus each run implies a different random initialization for
the MLP and a different set of random noises and timesteps for the training images.
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seed, wc does not preserve the features in the original image I (e.g., it adds hats, face masks, and black
and white effects), while w∗ does. Intuitively, this can be attributed to the rich representation learned
by w∗, which can include both semantic and style features. Both experiments motivate the diversity
of the learned decomposition. Since wc is not necessarily optimal for Eq. 1, w∗ learns additional
features to improve the denoising quality. Thus, w∗ balances two objectives– interpretability and
faithfulness to the model’s internal representations.
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D SINGLE-IMAGE DECOMPOSITION

In this section, we provide additional examples of single-image decompositions obtained by our
method, as described in Sec. 3 of the main paper. Fig. 8 presents the obtained decompositions
for images generated by Stable Diffusion for a given concept. As can be seen, the phenomena
demonstrated in the main paper are reproduced in the presented decompositions. For example,

“sweet peppers” borrow the appearance from the “pepper” and the shape from the “fingers”, the
“frog” borrows the overall appearance of a “toad” with the color of “Kermit”, etc. Other concepts
are constructed as a composition of related elements, for example, “happiness” is constructed as

“children” who are “laughing”, and a “lamp” is a “chandelier” with a “bulb” in it.

dj nightclub turntable

+=

bee wasp honey

+=

corn maize comb

+=

sweet peppers fingers pepper

+=

oak stag sequoia

+=

wardrobe pantry robe

+=

snake hose gecko

+=

dragon’s stormy perch Pegasus Godzilla

+=

happiness children laugh

+=
chair stool cello

+=

camel ostrich cashmere

+=

lamp bulb chandelier

+=

frog toad Kermit

+=
palm tree coconut mahogany

+=

Figure 8: Decompositions of single images by CONCEPTOR. Each of the examples depicts an image
generated by Stable Diffusion for the concept, and its corresponding decomposition.
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D.1 RELIANCE ON RENOWNED ARTISTIC STYLES

As demonstrated in Figs. 1 and 2, we find that the representation of the concept “painter” relies
on the renowned artistic styles of famous artists. In this section, we further verify this observation
through the lens of our single-image decomposition scheme. We generate 100 test images for the
concept “painter” and apply our single-image decomposition scheme to all images. Out of the tested
images, we found that 67 images contain at least one name of a famous artist in their decomposition.
This result empirically demonstrates the reliance on existing artistic styles, even when the prompt does
not specify the artist’s name explicitly. Fig. 9 demonstrates the impact of the experiment described
above on the generated images. We observe that removing the names of renowned artists modifies
the painting generated in the image entirely (top row) or, in some cases, removes it from the image
altogether (bottom row).

w/o Renowned PaintersOriginal Images

Figure 9: Generated images for the concept “painter” before and after removing the names of
famous painters from the single-image decomposition. As can be observed, this removal results in a
significant modification to the painting in the image.
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E REPRESENTATION BY EXEMPLARS

Tab. 6 and Fig. 10 present examples of concepts that rely on famous instances for their representations.
For example, “movie star” is represented by names of famous actors such as Marilyn Monroe or
Lucille Ball. Similarly, the concept “president” is dominated by American presidents such as Obama
and Biden, and the concept “basketball player” relies on famous players such as Kobe Bryant and
LeBron James. To demonstrate the reliance on the exemplars in the decomposition, Fig. 10 shows the
reconstruction by our method with and without the famous instance names from Tab. 6. As can be
observed, the reconstruction quality heavily relies on the identities of the instances, and when we
remove those instances the reconstruction is harmed significantly.

Table 6: Exemplar-based decomposition elements obtained by CONCEPTOR.
Concept CONCEPTOR

Composer Schubert, Beethoven, Chopin, Mozart, Brahms, Wagner
Movie Star Aubrey, Bourne, Lucille, Gloria, Marilyn, Monroe, Oswald
President Obama, Trump, Biden, Nixon, Lincoln, Clinton, Washington
Rapper Tupac, Drake, Khalifa, Weekend, Khaled, Eminem, Wayne
Basketball player Kobe, LeBron, Shaq, Bryant, Jordan, Donovan, Kyrie

Original 
Images

Ours

w/o 
Exemplars

movie starcomposer

Original 
Images

Ours

w/o 
Exemplars

rapperpresident
Figure 10: Examples of concepts that rely on famous instances. When removing the exemplars, the
reconstruction quality is significantly harmed.
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F DECOMPOSITION OF ABSTRACT AND COMPLEX CONCEPTS

In Fig. 11 we present decomposition results for abstract and complex prompts from our dataset
(see list in Appendix B) in the form of word clouds. As can be observed, our method success-
fully produces meaningful decompositions for various abstract concepts including emotions (e.g.,

“happiness”, “sadness”) as well as complex abstract concepts (e.g. “elegance on a plate”). The
decompositions demonstrate intriguing connections between abstract elements (e.g., “happiness” is
linked to “childhood”, “laughter”, “dream”).

Concept:
happiness

Concept:
sadness

Concept:
affection

Concept:
elegance on a plate

Concept:
impression of Japanese serenity

Concept:
the surreal floating island

Concept:
dive into coral reefs

Concept:
star trails over mountains

Concept:
marketplace colors of Marrakech

Figure 11: Decompositions obtained by CONCEPTOR for abstract and complex concepts from our
dataset.
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G OBJECT-CENTRIC REPRESENTATION METHODS

The closest relation we observed between object-centric representation methods and CONCEPTOR
is through the task of unsupervised object/ concept discovery. Importantly, the task of interpreting
diffusion models largely differs from that of object discovery, since an interpretation should often
contain elements beyond objects that are physically present in the image. For example, Fig. 2 shows
connections such as “snake” to “gecko” + “twisted”, a “gecko” is not present in the image, and

“twisted” is not an object but an adjective. Similarly, “cashmere” is not present in an image of a
“camel”, etc. In contrast to these semantic, profound connections, interpretation using object discovery
only provides representations that are based on concrete objects and parts that are visible in the
images and falls short of discovering the additional connections required to interpret the model (e.g.,
reliance on exemplars, non-trivial biases, etc.).

To empirically demonstrate this point, Fig. 12 presents exemplary results using (Liu et al., 2023),
which is the state-of-the-art concept discovery method based on SD. Fig. 12 performs concept
discovery of three exemplary concepts from our dataset, “snail” and “snake”, and a complex concept

“impression of Japanese serenity”. As can be seen (first column for “snail” and “snake”, fourth
for “impression of Japanese serenity”), the method learns to embed the concept in a single token
(as expected from its task definition), even if the concept is complex, and does not employ any other
learned tokens, therefore they are semantically meaningless for interpretability purposes.

Concept 1 Concept 2 Concept 3 Concept 4

sn
ail

sn
ak

e
imp

res
sio

n o
f 

Ja
pa

ne
se 

ser
en

ity

Figure 12: Examples of concept discovery with (Liu et al., 2023) for “snail”, “snake”, and
“impression of Japanese serenity”. As can be observed, the entire prompt is encapsulated in a single
concept, while the other discovered concepts are random. This aligns with the objective of the method,
to divide all concepts in the image between the different tokens.
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H CONCEPT DEBIASING

As mentioned in the main paper, CONCEPTOR is capable of detecting biases that are otherwise
difficult to capture by simply observing the generated images. After detecting a bias, one could
employ coefficient manipulation with our method to mitigate the bias. Fig. 13 presents examples of
such concept debiasing for the concepts in Tab. 7. For each concept (row), we decrease the coefficient
of the biased tokens in the decomposition until an unbiased representation is achieved. Fig. 13
demonstrates a comparison of the generated images by SD without intervention (Original Images),
and the images reconstructed by our method after reducing the bias coefficients, on the same set
of 8 random seeds. As can be observed, our method is able to mitigate the different biases while
maintaining the other features represented by the concept.

Table 7: Biased terms detected and removed by CONCEPTOR using coefficient manipulation.

Concept CONCEPTOR

Professor men
Nurse woman, women, wife, mother
Secretary wife, hostess, womens, girl, ladies
Opera singer obese, overweight, fat

Original Images Debiased

Pr
ofe

ss
or

Se
cre

tar
y

Op
era

 si
ng

er
Nu

rse

Figure 13: Examples of concept debiasing using CONCEPTOR with the same set of 8 random seeds.
The first three examples demonstrate gender debiasing, while the last one demonstrates a decoupling
between “opera singer” and obesity.
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I PRINCIPAL COMPONENT VISUALIZATION FOR BASELINES

In this section, we enclose the concept activation vectors (CAVs) learned by the leading concept-based
explainability method adapted from CNNs (PCA). Fig. 14 present the reconstruction and components
learned by PCA. To visualize a component, we remove it and generate the corresponding images
without it to examine its impact on the generations. As can be seen, most of the learned components
are not easily interpretable and do not demonstrate a coherent semantic change across the different
test images. Thus, these methods violate the meaningfulness criterion. We note that meaningfulness
is a critical criterion for an interpretation, as without it, humans cannot understand the decomposition,
and it does not serve its basic goal of giving insights into the model.

Original 
Images

PCA

Component 
1

Component
2

Component
3

Component
4

Component
5

BirdPainter Marketplace colors of MarrakeshHappiness

Figure 14: PCA top 5 extracted principal components for 4 concepts. The first row depicts SD’s
original images, the second row shows the reconstruction by PCA, and the last 5 rows demonstrate
the impact of removing each of the top 5 principal components learned by PCA.
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J OUT OF DOMAIN (OOD) EXPERIMENTS

The main objective of our method is the interpretation of the inner representations of concepts by the
model. With that, in this section, we explore CONCEPTOR’s ability to provide insight into how the
model represents out-of-domain concepts.

We present examples of three out-of-domain concepts extracted from the DreamBooth dataset (Ruiz
et al., 2022). These examples represent increasing distance from the model’s distribution. The first
concept represents an example of a concept that is close to the model’s distribution, i.e., a specific
dog. The second one deviates further from the distribution and portrays a sloth plush. Finally, we
present an example of a concept that is completely out-of-domain, a monster doll with a unique
appearance that the model is not familiar with.

We use CONCEPTOR to interpret the representation of each of these concepts and apply a baseline
where we mimic CONCEPTOR’s optimization without any restrictions on w∗ (similar to (Gal et al.,
2022)). The results for all three concepts are presented in Figs. 15 to 17, respectively.

As can be expected, the reconstruction quality of both the baseline and CONCEPTOR degrades as we
move further away from the model’s distribution. However, interestingly, even in considerable OOD
cases (i.e., the sloth plush, the monster toy) the decompositions by CONCEPTOR remain meaningful,
as is reflected by the decomposition elements presented in the bottom two rows of each figure. For
example, the sloth plush in Fig. 16 is linked to the concepts “plush”, “fluffy”, and “knitted”, and the
monster toy in Fig. 17 is linked to “woolly” due to its wool-like fur, to the character “Domo” due to
the shape of its body, and to a “crab” and a “shrimp” due to its unique limbs. These results further
substantiate our method’s powerful ability to learn meaningful decompositions, even in the face of
OOD samples.
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Figure 15: Out of domain samples. The first two rows depict the training images from Ruiz et al.
(2022). The next row depicts samples drawn from the concept learned by an unrestricted optimization.
The third row depicts samples created from the concept we learned, w∗. The last two rows present
the primary decomposition elements learned by our method for the concept.
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Figure 16: Out of domain samples. The first two rows depict the training images from Ruiz et al.
(2022). The next row depicts samples drawn from the concept learned by an unrestricted optimization.
The third row depicts samples created from the concept we learned, w∗. The last two rows present
the primary decomposition elements learned by our method for the concept.
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Figure 17: Out of domain samples. The first two rows depict the training images from Ruiz et al.
(2022). The next row depicts samples drawn from the concept learned by an unrestricted optimization.
The third row depicts samples created from the concept we learned, w∗. The last two rows present
the primary decomposition elements learned by our method for the concept.
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K ROBUSTNESS TO ALTERNATIVE LOSS FUNCTIONS

In our experiment, we chose to employ the model’s reconstruction loss (Eq. 1) to encourage our
decomposition to encapsulate the features learned by the model for the concept. In this section, we
explore the possibility of replacing the MSE reconstruction with a semantic similarity engine, i.e.,
CLIP (Radford et al., 2021). Since the UNet, εθ, predicts the added noise ϵ (for which CLIP is not
directly applicable), we apply our loss over the prediction of the clean image, x̂0, i.e.:

LCLIP = 1− cosine (CLIP (x0), CLIP (x̂0)) , (7)

where x0 is the clean training image, and x̂0 is the predicted image by the diffusion model, i.e.:

x̂0 =
xt −

√
1− ᾱtϵ̂

ᾱt
, (8)

where xt is the noised version of the input image x0 according to Eq. 2, and ϵ̂ is the noise predicted
by the UNet. In other words, we calculate the predicted clean image based on the noise prediction and
apply the CLIP loss against the original image. This process will result in a decomposition that gives
us the elements best correlated with the features of the concept according to CLIP. We note that since
CLIP is a semantic engine, some degradation in the reconstruction performance is to be expected. In
Tab. 8 and Fig. 18 we present a qualitative comparison between the decomposition and reconstruction
obtained by our method with the CLIP loss, compared to the original MSE loss used. We employ the
same concepts and seeds from Fig. 4 of the main paper. As can be observed, while the reconstruction
quality indeed decreases, the same phenomena observed with the MSE loss are reproduced with
the CLIP loss. For example, the concept “painter” still heavily relies on the same famous artists
discovered by our full method (e.g., “Monet”, “Picasso”). These results further substantiate the
conclusions presented in the main paper, since it is shown that the method is insensitive to the choice
of the reconstruction loss.

Table 8: A comparison between the decompositions obtained with CONCEPTOR with MSE loss vs.
CLIP image loss.

Concept CONCEPTOR w/ CLIP Loss CONCEPTOR w/ MSE Loss

Painter Monet, painter, Picasso,
watercolor, Impressionist,
photographing, painting...

Monet, Picasso, paint,
Impressionism, artist, studio,
brushes, sketching...

Bird kingfisher, bunting, bluebird,
starling, magpie, finch,
parrot, jays...

teal, beak, brown, stripped,
dove, quail, sparrow,
hummingbird, finch...

Happiness smile, warmth, happiness,
children, delight, emotion,
cheerful, love, friendship...

children, smile, laughter,
dream, families, emotion,
smile, mother, friendship...

Marketplace
colors of
Marrakech

flavor, Bangkok, Mumbai,
souvenir, fragrances, flavors,
tourist, bazaar, spices...

Marrakech, tents, coloring,
market, fabric, desert, oasis,
spices, dust, ornaments...
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Original 
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birdpainter
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Original 
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Ours
w/ MSE

Ours w/ 
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Figure 18: Feature reconstruction comparison between our method with an MSE loss and with CLIP
loss. The original images appear on the first row.
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L ROBUSTNESS TO THE MODEL SELECTION

In this section, we conduct an experiment to demonstrate that CONCEPTOR is robust to the choice
of the text encoder and the model. We apply our method over SD 1.4, which employs a different
text encoder than that of SD 2.1. Importantly, SD 1.4 uses CLIP ViT-L/14 which was trained on
proprietary non-public data, while SD 2.1 uses OpenCLIP-ViT/H, which is an open-sourced version
of CLIP, trained on public data. These two text encoders are entirely different not only in training data
but also in the size of their word embedding vectors (768 for CLIP ViT-L/14 vs. 1024 for OpenCLIP-
ViT/H). We compute the decompositions by CONCEPTOR for the same concepts as those in Fig. 4, in
the same setting described in the paper. The qualitative results, both the textual decompositions and
the feature reconstruction results, are presented in Tab. 9 and Fig. 19, respectively. As can be seen, the
decompositions remain human-understandable and faithful to the model, as expected. Additionally,
to establish that reliance on exemplars exists across versions of SD (independently of the training
data and text encoder), we enclose in Tab. 9 the decomposition for the concept “president”, showing
that it is still dominated by former American presidents.

Table 9: Textual decomposition elements obtained by CONCEPTOR for SD 4.1.

Concept CONCEPTOR

Painter painting, watercolor, sketch, studio, pastels,
artist, canvas, ladders, oilpainting, brush...

Bird avian, birdie, jay, phoebe, pilgrim, blackbird,
hummingbird, whistler, peregrine, cardinals...

Happiness friendships, childrens, rejoice, love, photography,
unforgettable, everyone, dreamers, smiles...

Marketplace colors
of Marrakech

marketplace, marrakech, paprika, rugs, terrace, dyes,
vendors, barrels, bowls, colorful...

President potus, barackobama, obama, nixon, washington,
realdonaldtrump, jefferson, washington, roosevelt...

Original 
Images

(SD 1.4)

Ours

birdpainter

happiness marketplace colors of Marrakech 

Original 
Images

(SD 1.4)

Ours

Figure 19: Feature reconstruction results of our method on SD 1.4.
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