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ABSTRACT

This work aims to solve a stochastic nonconvex nonsmooth composite optimization
problem. Previous works on composite optimization problem requires the major
part to satisfy Lipschitz smoothness or some relaxed smoothness conditions, which
excludes some machine learning examples such as regularized ReLU network and
sparse support matrix machine. In this work, we focus on stochastic nonconvex
composite optimization problem without any smoothness assumptions. In par-
ticular, we propose two new notions of approximate stationary points for such
optimization problem and obtain finite-time convergence results of two zeroth-
order algorithms to these two approximate stationary points respectively. Finally,
we demonstrate that these algorithms are effective using numerical experiments.

1 INTRODUCTION

This work focuses on the following stochastic nonconvex nonsmooth composite optimization problem.

min
x∈Rd

ϕ(x) := F (x) + h(x), where F (x) = Eξ∼P [fξ(x)], (1)

where the individual function fξ(x) is nonconvex and nonsmooth associated with a stochastic sample
ξ from the distribution P , and h is a convex regularizer. This problem covers many machine learning
examples such as regularized ReLU network (Mazumdar & Rawat, 2019; Wang et al., 2021b) and
sparse support matrix machine (Zheng et al., 2018; Gu et al., 2021; Li et al., 2022).

Existing approaches to the stochastic nonconvex composite optimization problem (1) require the
major part F to satisfy either Lipschitz smooth conditions (Nitanda, 2014; Li & Lin, 2015; Ghadimi
et al., 2016; Ghadimi & Lan, 2016; Li et al., 2017; Pham et al., 2020), or some relaxed notions
of smoothness such as relative smoothness (Bauschke et al., 2017; Lu et al., 2018; Latafat et al.,
2022), smooth adaptivity (Wang & Han, 2023; Ding et al., 2025), anisotropic smoothness (Laude
& Patrinos, 2025), weak convexity (Davis & Drusvyatskiy, 2019; Davis & Grimmer, 2019) and
Holder continuous gradient (Guo et al., 2022), which cannot cover the applications with discontinous
gradient, such as regularized ReLU network (Mazumdar & Rawat, 2019; Wang et al., 2021b) and
sparse support matrix machine (Zheng et al., 2018; Gu et al., 2021; Li et al., 2022).

To solve such a stochastic nonconvex nonsmooth composite optimization problem, the first challeng-
ing step is to propose proper and feasible convergence criteria. The existing notions of proximal
gradient mapping (Ghadimi et al., 2016; Reddi et al., 2016; Li & Li, 2018) and Frank-Wolfe gap
(Jiang & Zhang, 2014; Guo et al., 2022) requiring F to be differentiable everywhere are not suitable
for nonsmooth composite optimization. Even after extending the gradient to the Clarke subdifferential,
we will prove that convergence under the corresponding generalized stationary notions is intractable
(see Theorem 1). Fortunately, Zhang et al. (2020) proposes the notion of (δ, ϵ)-Goldstein stationary
point which has been achieved by various nonconvex nonsmooth optimization algorithms (Zhang
et al., 2020; Lin et al., 2022; Chen et al., 2023; Cutkosky et al., 2023; Kornowski & Shamir, 2024), and
the Goldstein stationary notion is extended to nonconvex nonsmooth constrained optimization (Liu
et al., 2024). Inspired by these stationary notions, we propose (γ, δ, ϵ)-proximal Goldstein stationary
point (PGSP) and (δ, ϵ)-conditional gradient Goldstein stationary point (CGGSP) as the approximate
notions of stationarity for our nonconvex nonsmooth composite optimization problem (1), by using
the Goldstein δ-subdifferential (Goldstein, 1977) as a convex combination of the gradients in the
neighborhood around the point of interest.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Function evaluation complexity results of zeroth-order proximal gradient descent (0-PGD)
and zeroth-order generalized conditional gradient algorithms (0-GCG).

Main algorithm Gradient estimation Criterion Complexity Reference
0-PGD (Algorithm 1) Minibatch (γ, δ, ϵ)-PGSP O(d3/2δ−1ϵ−4) Theorem 2
0-PGD (Algorithm 1) Variance reduction (γ, δ, ϵ)-PGSP O(d3/2δ−1ϵ−3) Theorem 3
0-GCG (Algorithm 2) Minibatch (δ, ϵ)-CGGSP O(d3/2δ−1ϵ−4) Theorem 4
0-GCG (Algorithm 2) Variance reduction (δ, ϵ)-CGGSP O(d3/2δ−1ϵ−3) Theorem 5

Using our proposed stationary notions above, we prove that the zeroth-order proximal gradient descent
algorithm (0-PGD, see Algorithm 1) converges to our proposed (γ, δ, ϵ)-proximal Goldstein stationary
point (PGSP), obtain the convergence rate and function evaluation complexity result using minibatch
zeroth-order gradient estimation, and then improve these results using variance-reduced gradient
estimation. Furthermore, we study a zeroth-order generalized conditional gradient algorithm (0-GCG,
Algorithm 2) which avoids the possibly expensive proximal operator used by 0-PGD, and obtain
similar convergence rate and complexity result of 0-GCG to achieve our proposed (δ, ϵ)-CGGSP. We
summarize these convergence results of both algorithms in Table 1.

1.1 PAPER ORGANIZATION

Section 2 introduces the basic backgrounds including problem formulation, fundamentals for nons-
mooth analysis and zeroth-order gradient estimation. Section 3 proposes our generalized stationary
notions for composite optimization. Section 4 presents our zeroth-order proximal gradient descent
(0-PGD) algorithm and its finite-time convergence results. Section 5 presents our zeroth-order gen-
eralized conditional gradient (0-GCG) algorithm and its finite-time convergence results. Section 6
shows the experimental results. Section 7 concludes this work.

2 PRELIMINARIES

In this section, we will introduce the problem formulation (Section 2.1), review fundamentals of
nonsmooth analysis (Section 2.2), and introduce zeroth-order gradient estimation (Section 2.3).

2.1 PROBLEM FORMULATION

Throughout this work, we make the following two standard assumptions on the stochastic nonconvex
nonsmooth composite optimization problem (1).
Assumption 1. For any stochastic sample ξ, fξ(x) : Rd → R is an Lξ-Lipschitz continuous for some
Lξ > 0 (i.e., |fξ(y)− fξ(x)| ≤ Lξ∥y − x∥ for any x, y ∈ Rd) and Eξ(L

2
ξ) ≤ G2 for some G > 0.

Assumption 2. h : Rd → R is a proper closed convex function with at least one feasible point
x(h) ∈ Rd such that h(x(h)) < +∞.

Assumption 3. There exists R > 0 such that h(x) > h(x(h)) +G∥x− x(h)∥ for the feasible point
x(h) defined in Assumption 2 and any x ∈ Rd satisfying ∥x− x(h)∥ > R.

Assumption 1 has also been used by (Davis & Drusvyatskiy, 2019; Davis & Grimmer, 2019; Liu et al.,
2024). It implies that F (x) = Eξ[fξ(x)] is G-Lipschitz continuous1. Such Lipschitz continuous but
possibly nonsmooth functions have been widely used in optimization and machine learning, including
any neural networks with ReLU activation (Krizhevsky et al., 2017; Mazumdar & Rawat, 2019; Ghosh
et al., 2024; Shen et al., 2024), ramp loss (Gu et al., 2021; Wang & Shao, 2024), capped ℓ1 penalty
(Xu et al., 2014; Zhang, 2008; Kumar et al., 2021), etc. Many commonly used convex regularizers h
satisfy Assumptions 2 and 3, including ℓp regularizer with p > 1 (McCulloch et al., 2024; Lu et al.,
2024), ℓ1 regularizer λ∥x∥1 with λ > G to induce the sparsity of the parameter vector x (Mazumdar
& Rawat, 2019; Ali et al., 2024), super-coercive regularizer satisfying lim∥x∥→+∞[h(x)/∥x∥] = +∞

1Assumption 1 implies that F is G-Lipschitz continuous because for any x, x′ ∈ Rd,
|F (x′)− F (x)| ≤ Eξ|fξ(x′)− fξ(x)| ≤ Eξ[Lξ∥x′ − x∥] ≤ ∥x′ − x∥

√
Eξ[L2

ξ].
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(Bredies et al., 2005; Yu et al., 2017; Bredies et al., 2009), and the following constraint regularizer
which enforces the constraint x ∈ Ω where Ω ⊂ Rd is a convex and compact set (Jaggi, 2013;
Rakotomamonjy et al., 2015; Nesterov, 2018; Liu et al., 2024; Assunção et al., 2025).

hΩ(x)
def
=

{
0; x ∈ Ω
+∞; x /∈ Ω

, (2)

Proposition 1. Under Assumptions 1-3, the original objective function (1) has a non-empty solution
set argminx∈Rdϕ(x), which is a subset of Bd(x

(h), R)
def
= {x ∈ Rd : ∥x− x(h)∥ ≤ R}.

Remark: Assumption 3 requires h(x) to outgrow F (x) as ∥x−x(h)∥ → +∞, such that the objective
ϕ(x) = F (x) + g(x) has minimizers and they are not too far from the feasible point x(h).

2.2 FUNDAMENTALS OF NONSMOOTH ANALYSIS

In this subsection, we will introduce some basic concepts for the unconstrained nonconvex nonsmooth
optimization problem minx∈Rd F (x), a special case of the composite problem (1) with h = 0.

For a nondifferentiable function F : Rd → R, we can define generalized directional derivatives and
generalized gradients as follows.
Definition 1. The generalized directional derivative of a function F at point x ∈ Rd and direction
v ∈ Rd is defined as DF (x; v) def

= lim supy→x,t↓0
F (x+tv)−F (x)

t . The Clark subdifferential of F is

defined as the set ∂F (x) def
= {g ∈ Rd : ⟨g, v⟩ ≤ DF (x; v),∀v ∈ Rd}.

For the unconstrained nonconvex nonsmooth optimization problem minx∈Rd F (x), one may aim to
find an ϵ-Clarke stationary point defined as x ∈ Rd satisfying min{∥g∥ : g ∈ ∂F (x)} ≤ ϵ. However,
Zhang et al. (2020) proves that such an ϵ-Clarke stationary point cannot be obtained in finite time for
general Lipschitz continuous function F . Hence, they focus on more tractable and relaxed concepts
of subdifferential and stationary solution, as defined below.
Definition 2 (Goldstein (1977)). The Goldstein δ-subdifferential of a function F at x ∈ Rd with
radius δ ≥ 0 is defined as

∂δF (x)
def
= conv

[
∪y∈Bd(x,δ) ∂F (y)

]
,

where conv(A) denotes the set of every convex combination of the elements in A.
Definition 3 (Zhang et al. (2020)). For any δ ≥ 0 and ϵ > 0, a (δ, ϵ)-Goldstein stationary point of
F is defined as any x ∈ Rd satisfying

min{∥g∥ : g ∈ ∂δF (x)} ≤ ϵ. (3)

Note that ∂0F (x) = ∂F (x) (Makela & Neittaanmaki, 1992). Hence, as δ = 0, Goldstein δ-
subdifferential and (δ, ϵ)-Goldstein stationary point respectively reduce to Clark subdifferential and
ϵ-Clarke stationary point. Such a (δ, ϵ)-Goldstein stationary point can be achieved at finite time by
various algorithms (Zhang et al., 2020; Tian et al., 2022; Davis et al., 2022; Cutkosky et al., 2023).

2.3 ZEROTH-ORDER GRADIENT ESTIMATION

Zeroth-order gradient estimation with random smoothing technique has been widely used when direct
computation of gradient is costly or impossible. To estimate the gradient of a function F , we can
approximate F by its smoothing function Fδ(x) = Eu∼Q[F (x + δu)] with a small radius δ > 0,
with a certain distribution Q. We focus on the case where Q is uniform distribution on the unit
sphere Sd(1))

def
= {u ∈ Rd : ∥u∥ = 1} (Duchi et al., 2015; Lin et al., 2020), since the corresponding

smoothing function Fδ(x)
def
= Eu∼Uniform(Sd(1))F (x+ δu) has the following amenable properties.

Lemma 1 (Proposition 2.3 of (Lin et al., 2022)). For any G-Lipschitz continuous function F , its
smoothing function Fδ(x)

def
= Eu∼Uniform(Sd(1))F (x+ δu) satisfies: (1) supx∈Rd |Fδ(x)− F (x)| ≤

δG; (2) Fδ is G-Lipschitz continuous and differentiable everywhere with cG
√
d/δ-Lipschitz continu-

ous gradient for an absolute constant c > 0; (3) ∇Fδ(x) ∈ ∂δF (x) for any x ∈ Rd.
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∇Fδ(x) admits the following unbiased two-point estimator, which is widely used in zeroth-order
gradient estimation (Duchi et al., 2015; Lin et al., 2022; Ma & Huang, 2025).

ĝδ(x;u, ξ) =
d

2δ
[fξ(x+ δu)− fξ(x− δu)]u, (4)

where ξ ∼ P and u ∼ Uniform(Sd(1)).

3 GENERALIZED GOLDSTEIN STATIONARY POINTS FOR COMPOSITE
OPTIMIZATION

In this section, we propose two new notions of stationary points for the stochastic nonconvex
nonsmooth composite optimization problem (1), proximal Goldstein stationary point (PGSP) and
conditional gradient Goldstein stationary point (CGGSP), the targets of zeroth-order algorithms in
Sections 4 and 5. Then we show some properties of these new stationary points.

3.1 PROXIMAL GOLDSTEIN STATIONARY POINT (PGSP)

Definition 4. For any stepsize γ > 0 and convex regularizer h : Rd → R, we define the proximal
operator of γh at point x ∈ Rd as follows (Parikh et al., 2014; Nitanda, 2014; Mardani et al., 2018;
Yang & Yu, 2020).

proxγh(x) = argminy∈Rn

[
h(y) +

1

2γ
∥y − x∥2

]
. (5)

The proximal operator (5) returns a unique solution since h(y) + 1
2γ ∥y − x∥2 is a strongly convex

function of y. Proximal operator is essential in the popular proximal gradient descent algorithms for
composite optimization (Parikh et al., 2014; Nitanda, 2014; Mardani et al., 2018; Yang & Yu, 2020).
We will use the proximal operator to propose a generalized notion of stationary point as follows.
Definition 5. For any stepsize γ > 0 and convex regularizer h : Rd → R, we define the proximal
gradient mapping at point x ∈ Rd and gradient g ∈ Rd as follows (Ghadimi et al., 2016; Reddi
et al., 2016; Li & Li, 2018).

Gγh(x, g) =
1

γ
[x− proxγh(x− γg)]. (6)

Furthermore, for any ϵ ≥ 0, we define x ∈ Rd as a (γ, δ, ϵ)-proximal Goldstein stationary point
(PGSP) if ming∈∂δF (x) ∥Gγh(x, g)∥ ≤ ϵ. Specifically, we call a (γ, 0, ϵ)-PGSP as (γ, ϵ)-PGSP,
defined by x ∈ Rd such that ming∈∂F (x) ∥Gγh(x, g)∥ ≤ ϵ.

Our proposed notions of PGSP for nonsmooth composite optimization problem generalize existing
stationary notions for the following special cases.

• For constrained optimization problem minx∈Ω F (x), a special case of the nonconvex nonsmooth
composite optimization problem (1) with h = hΩ defined by Eq. (2), (γ, δ, ϵ)-PGSP reduces to
the (γ, δ, ϵ)-generalized Goldstein stationary point (Liu et al., 2024), where the proximal operator
is reduced to the projection onto Ω. Furthermore, when h = 0, (γ, δ, ϵ)-PGSP reduces to (δ, ϵ)-
Goldstein stationary point (see Definition 3) (Zhang et al., 2020).

• When F is differentiable, (γ, ϵ)-PGSP has simplified definition that ∥Gγh[x,∇F (x)]∥ ≤ ϵ2, which
can be achieved by proximal gradient descent algorithms within finite-time (Ghadimi et al., 2016;
Reddi et al., 2016; Li & Li, 2018). Furthermore, when h = 0, (γ, ϵ)-PGSP reduces to ϵ-stationary
point defined as x ∈ Rd satisfying ∥Gγh[x,∇F (x)]∥ ≤ ϵ which can be also achieved in finite time
by many first-order algorithms. In contrast, (γ, ϵ)-PGSP is intractable for our setting with Lipschitz
continuous and nondifferentable F , as will be shown later in Theorem 1. Therefore, we aim at
(γ, δ, ϵ)-PGSP, a relaxed notion of stationarity, and will propose a zeroth-order proximal gradient
descent algorithm (Algorithm 1) that achieves this point in finite time.

Our proposed notions of PGSP satisfy the following properties.
2For differentiable function F , we have ∂F (x) = {∇F (x)} (Makela & Neittaanmaki, 1992).
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Proposition 2. Suppose the function F : Rd → R is differentiable and h : Rd → R is a convex
function. Then, (γ, δ, ϵ)-PGSP has the following properties.
1. A (γ, ϵ)-PGSP is also a (γ, δ, ϵ)-PGSP.
2. If ∇F is L-Lipschitz continuous, then a (γ, ϵ/(2L), ϵ/2)-PGSP is also a (γ, ϵ)-PGSP, i.e.,
∥Gγh[x,∇F (x)]∥ ≤ ϵ.
3. If x ∈ Rd satisfies ∥Gγh[x,∇Fδ(x)]∥ ≤ ϵ, then x is a (γ, δ, ϵ)-PGSP.

Remark: In Proposition 2, items 1 and 2 imply that for L-Lipschitz smooth functions F , our notions
of (γ, δ, ϵ)-PGSP and (γ, ϵ′)-PGSP are equivalent (for possibly different ϵ, ϵ′ ≥ 0). Item 3 implies
that we can obtain a (γ, δ, ϵ)-PGSP by solving minx∈Rd Fδ(x), which is important for designing the
zeroth-order proximal gradient descent algorithm (Algorithm 1).

3.2 CONDITIONAL GRADIENT GOLDSTEIN STATIONARY POINT (CGGSP)

Note that the PGSP defined in the previous subsection relies on the stepsize γ. In this subsection, we
will define conditional gradient Goldstein stationary point (CGGSP), a notion of stationary point that
does not rely on the stepsize γ and can be computationally cheaper.

Definition 6. For any convex regularizer h : Rd → R, we define the linear minimization oracle
(LMO) of h at the gradient g ∈ Rd as follows.

Lh(g)
def
= argminy∈Rd

[
h(y) + ⟨y, g⟩

]
. (7)

The LMO defined above always exist and is bounded as shown below.

Proposition 3. Under Assumptions 2-3, for any ∥g∥ ≤ G, the LMO (7) yields a non-empty set

Lh(g) ⊂ Bd(x
(h), R)

def
= {x ∈ Rd : ∥x− x(h)∥ ≤ R}.

Linear minimization oracle (LMO) has been adopted to develop generalized conditional gradient
methods for composite optimization (Jiang & Zhang, 2014; Ghadimi, 2019). In the constrained
optimization minx∈Ω F (x) as a special case, LMO reduces to argminy∈Ω⟨y, g⟩ used by the Frank-
Wolfe algorithm (Frank et al., 1956; Lan & Zhou, 2016). Compared with the proximal operator (5),
LMO can be computationally cheaper Juditsky & Nemirovski (2016). We will also use LMO to
propose a computationally cheaper notion of stationary point as follows.

Definition 7. For any convex regularizer h : Rd → R, we define the δ-regularized Frank-Wolfe gap
of h at point x ∈ Rd and gradient g ∈ Rd as follows.

Wh(x, g)
def
= max

y∈Rd

[
h(x)− h(y) + ⟨y − x,−g⟩

] Eq.(7)
= h(x)− h(y′) + ⟨y′ − x,−g⟩, (8)

for any y′ ∈ Lh(g). Furthermore, for any ϵ ≥ 0, we define x ∈ Rd as a (δ, ϵ)-conditional gradient
Goldstein stationary point (CGGSP) if ming∈∂δF (x) Wh(x, g) ≤ ϵ. Specifically, a (0, ϵ)-CGGSP is
also called an ϵ-CGGSP, defined by x ∈ Rd such that ming∈∂F (x) Wh(x, g) ≤ ϵ.

Our proposed notions of CGGSP for nonsmooth composite optimization problem generalizes existing
stationary notions for the following special cases.

• For constrained optimization problem minx∈Ω F (x), a special case of the nonconvex nonsmooth
composite optimization problem (1) with h = hΩ defined by Eq. (2), (δ, ϵ)-CGGSP reduces to the
(δ, ϵ)-Clarke Frank-Wolfe stationary point (Liu et al., 2024).

• When F is differentiable, ϵ-CGGSP has simplified definition that ∥Wh[x,∇F (x)]∥ ≤ ϵ3, which
can be achieved by conditional gradient descent algorithms within finite-time (Jiang & Zhang, 2014;
Guo et al., 2022). In contrast, (γ, ϵ)-CGGSP is intractable for our setting with Lipschitz continuous
and nondifferentable F , as will be shown later in Theorem 1. Therefore, we aim at (δ, ϵ)-CGGSP,
a relaxed notion of stationarity, and will propose a zeroth-order generalized conditional gradient
algorithm (Algorithm 2) that achieves this point in finite time.

Our proposed notions of CGGSP satisfy the following properties.

3For differentiable function F , we have ∂F (x) = {∇F (x)} (Makela & Neittaanmaki, 1992).
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Proposition 4. Suppose the function F : Rd → R is differentiable and h : Rd → R satisfies
Assumption 2. Then (δ, ϵ)-CGGSP has the following properties.
1. An ϵ-CGGSP is also a (δ, ϵ)-CGGSP.
2. Suppose ∇F is L-Lipschitz continuous. Then a (ϵ/(2RL), ϵ/2)-CGGSP is also an ϵ-CGGSP, i.e.,
Wh[x,∇F (x)] ≤ ϵ.
3. If x ∈ Rd satisfies Wh[x,∇Fδ(x)] ≤ ϵ, then x is a (δ, ϵ)-CGGSP.

Remark: Items 1-3 of Proposition 4 for CGGSP are analogous to items 1-3 of Proposition 2 for
PGSP. Specifically, items 1 and 2 imply that for L-Lipschitz smooth functions F , our notions of
(δ, ϵ)-CGGSP and ϵ′-CGGSP are equivalent (for possibly different ϵ, ϵ′ ≥ 0). Item 3 implies that
we can obtain a (δ, ϵ)-CGGSP by solving minx∈Rd Fδ(x), which is important for later designing the
zeroth-order generalized conditional gradient algorithm (Algorithm 2).

Finally, Theorem 1 below shows that for composite problem (1) with general nonsmooth Lipschitz
continuous function F , (γ, ϵ)-PGSP and ϵ-CGGSP are intractable. In contrast, (γ, δ, ϵ)-PGSP and
(δ, ϵ)-CGGSP can be achieved in finite time, by two zeroth-order algorithms presented in the two
consequent sections respectively.

Theorem 1. Consider any T ∈ N, d ≥ 2 and any randomized algorithm A with access to a local
oracle of the objective function (1) 4 Then there exist functions F and h satisfying Assumptions 1-2
such that ϕ(0)− infx∈Rd ϕ(x) ≤ 2 but with probability at least 1−2T exp(−d/36), none of {xt}Tt=1

generalized by A belongs to the set of (γ, ϵ)-PGSP or ϵ-CGGSP for ϵ ∈
(
0, 1

4
√
2

)
and γ ∈ (0, 0.1].

4 ZEROTH-ORDER PROXIMAL GRADIENT DESCENT (0-PGD) ALGORITHM

In this section we study a zeroth-order proximal gradient descent (0-PGD) algorithm, as shown
in Algorithm 1. The main algorithm framework is proximal gradient descent update (2) on the
composite optimization problem minx∈Rd [Fδ(x) + h(x)] that approximates the original problem (1),
where the zeroth-order stochastic gradient estimator gt ≈ ∇Fδ(xt) is obtained using either minibatch
estimation (option G1) or variance-reduced estimation (option G2).

We first present the convergence results of Algorithm 1 with minibatch estimation as follows.

Theorem 2 (Convergence of 0-PGD Algorithm with Minibatch Gradient Estimation). Implement
Algorithm 1 with Option G1, stepsize γ = δ

cG
√
d

and constant batchsize Bt ≡ B. Then under
Assumptions 1-2, the output xT̃ has the following convergence rate.

E[∥Gγh(xT̃ ,∇Fδ(xT̃ )∥] ≤
√
2cGd1/4√
Tδ

√
E[ϕ(x0)]− ϕmin + 2δG+

16G
√
d√

B
(12)

where ϕmin
def
= minx∈Rd [F (x) + h(x)]. Furthermore, we can obtain a (γ, δ, ϵ)-PGSP by using

hyperparameters T = O(Gd1/2δ−1ϵ−2), B = O(G2dϵ−2) (see their full expressions in Eqs. (35)
and (36) in Appendix I), which requires at most 2TB = O(G3d3/2δ−1ϵ−4) function evaluations and
T = O(Gd1/2δ−1ϵ−2) proximal updates (2).

Comparison with Constrained Optimization: The stochastic constrained optimization problem
minx∈Ω{F (x)

def
= Eξ[Fξ(x)]} on a convex and compact set Ω is a special case of the composition

optimization problem (1) by using h = hΩ defined in Eq. (2). Liu et al. (2024) studies this
constrained optimization with also nonconvex, nonsmooth and G-Lipschitz continuous F , proposes
a stochastic projected gradient descent algorithm as a special case of our Algorithm 1, and obtains
the function evaluation complexity result O(G4Rd3/2δ−1ϵ−4) to achieve a (γ, δ, ϵ)-generalized
Goldstein stationary point as a special case of our (γ, δ, ϵ)-PGSP (see Corollary 5.2 of (Liu et al.,
2024)). This complexity result requires Ω to be bounded with radius R and is higher than our
O(G3d3/2δ−1ϵ−4) that does not require R. Our improvement is obtained by replacing their bound
Fδ(x0)−Fδ(xT ) ≤ G∥x0−xT ∥ ≤ 2GRwith the tighter bound Fδ(x0)+h(x0)−Fδ(xT )−h(xT ) ≤
ϕ(x0)− ϕmin + 2δG.

4A local oracle means a quantity OF,h(x) (e.g. F (x),∇F (x) + ∂h(x)) that reveals local information about
the function values of F and h around a certain point x ∈ Rd.
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Algorithm 1 Zeroth-order proximal gradient descent (0-PGD) algorithm

1: Inputs: Number of iterations T , stepsize γ > 0, batchsizes Bt, radius δ > 0, period q for
variance reduction.

2: Initialize: x0 ∈ Rd.
3: for iterations t = 0, 1, . . . , T − 1 do
4: Obtain i.i.d. samples {ui,t}Bt

i=1 ∼ Uniform(Sd(1)) and {ξi,t}Bt
i=1 ∼ P .

5: Obtain stochastic gradient estimation gt ≈ ∇Fδ(xt) by either option below.
6:
7: Option G1: Minibatch Estimation.

gt =
1

Bt

Bt∑
i=1

ĝδ(xt, ui,t, ξi,t), (9)

where ĝδ is defined by Eq. (4).
8:
9: Option G2: Variance-reduced Estimation.

10: if t mod q = 0 then
11: Obtain gt by Eq. (9).
12: else
13: Obtain gt by the following variance-reduced estimation.

gt = gt−1 +
1

Bt

Bt∑
i=1

[
ĝδ(xt, ui,t, ξi,t)− ĝδ(xt−1, ui,t, ξi,t)

]
, (10)

where ĝδ is defined by Eq. (4).
14: end if
15:
16: Update xt by proximal gradient descent as follows.

xt+1 = proxγh(xt − γgt)
def
= argminy∈Rn

[
h(y) +

1

2γ
∥y − xt + γgt∥2

]
, (11)

where the proximal operator proxγh is defined by Eq. (5).
17: end for
18: Output: xT̃ where T̃ is uniformly obtained from {0, 1, . . . , T − 1} at random.

Then using variance reduced gradient estimation, we obtain the following improved convergence rate
and complexity results of Algorithms 1 as follows.

Theorem 3 (Convergence of 0-PGD Algorithm with Variance Reduction). Implement Algorithm 1
with Option G2, stepsize γ = δ

2G(d+c
√
d)

, batchsizeBt = B0 for any t mod q = 0 andBt = B1 = q

for other t. Then under Assumptions 1-2, the output xT̃ has the following convergence rate.

E[∥Gγh(xT̃ ,∇Fδ(xT̃ )∥] ≤
√
2cGd1/4√
Tδ

√
E[ϕ(x0)]− ϕmin + 2δG+

16G
√
d√

B
(13)

Furthermore, we can obtain a (γ, δ, ϵ)-PGSP by using hyperparameters B0 = 1764dG2ϵ−2, B1 =

q = 42
√
dGϵ−1, T = O(Gdδ−1ϵ−2) (see their full expressions in Eq. (39) in Appendix J), which

requires at most 2B0⌊T/q⌋ + 4B1(T − ⌊T/q⌋) = O(G2d3/2δ−1ϵ−3) function evaluations and
T = O(Gdδ−1ϵ−2) proximal updates (2).

Comparison with Existing Results: For stochastic nonconvex nonsmooth constrained optimiza-
tion minx∈Ω{F (x)

def
= Eξ[Fξ(x)]} as a special case, Liu et al. (2024) obtains function evaluation

complexity O(G3Rd3/2δ−1ϵ−3), higher than our O(G2d3/2δ−1ϵ−3) (see their Corollary 5.4). For
unconstrained optimization minx∈Rd F (x), a smaller special case, Chen et al. (2023) uses vari-
ance reduction to achieve a (δ, ϵ)-Goldstein stationary point using variance reduction with also
O(G2d3/2δ−1ϵ−3) function evaluations that matches our complexity result (see their Theorem 1).
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5 ZEROTH-ORDER GENERALIZED CONDITIONAL GRADIENT (0-GCG)
ALGORITHM

Algorithm 2 Zeroth-order generalized conditional gradient
algorithm (0-GCG)

1: Inputs: Number of iterations T , stepsize γ > 0, batch-
sizes Bt, radius δ > 0, period q for variance reduction.

2: Initialize: x0 ∈ Rd.
3: for iterations t = 0, 1, . . . , T − 1 do
4: Obtain i.i.d. samples {ui,t}Bt

i=1 ∼ Uniform(Sd(1))

and {ξi,t}Bt
i=1 ∼ P .

5: Obtain stochastic gradient estimation gt ≈ ∇Fδ(xt)
by option G1 or G2 in Algorithm 1.

6: Update xt using LMO as follows.

yt∈Lh(gt)
def
= argminy∈Rd [h(y) + ⟨gt, y⟩], (14)

xt+1 = xt + γ(yt − xt). (15)

7: end for
8: Output: xT̃ where T̃ is uniformly obtained from

{0, 1, . . . , T − 1} at random.

In this section, we consider the case
where the proximal operator (5) is costly.
For example, when h(x) is a nuclear
norm of regularizer, the proximal opera-
tor requires full singular value decompo-
sition (Wang et al., 2021a). The popular
generalized conditional gradient method
(Bredies et al., 2005; Jiang & Zhang,
2014; Rakotomamonjy et al., 2015;
Bach, 2015; Nesterov, 2018; Ghadimi,
2019; Guo et al., 2022; Ito et al., 2023)
uses a cheaper linear minimization or-
acle (LMO, defined by Eq. (7)) to re-
place the proximal operator. We pro-
pose a zeroth-order generalized condi-
tional gradient method, using also two
options of the zeroth-order gradient es-
timations, minibatch estimation (option
G1) and variance-reduced estimation
(option G2), as shown in Algorithm 2.

We present the convergence rate and complexity results of Algorithm 2 in the following two theorems,
for the two gradient estimation options respectively.
Theorem 4 (Convergence of 0-GCG Algorithm with Minibatch Gradient Estimation). Implement
Algorithm 2 with Option G1, stepsize γ = 1

R

√
2δ

TcG
√
d
E[ϕ(x0)− ϕmin + 2δG], constant batchsize

Bt ≡ B and initial point x0 satisfying ∥x0 − x(h)∥ ≤ R. Then under Assumptions 1-3, the output
xT̃ has the following convergence rate.

E
[
Wh[xT̃ ,∇Fδ(xT̃ )]

]
≤ R

√
8cG

√
d

Tδ
E[ϕ(x0)− ϕmin + 2δG] +

21RG
√
d√

B
. (16)

Furthermore, we can obtain a (δ, ϵ)-CGGSP by using hyperparameters T = O(GR2d1/2δ−1ϵ−2)
(see its full expression in Eq. (43) in Appendix K), B = 1764G2dR2ϵ−2, which requires at most
2TB=O(G3R4d3/2δ−1ϵ−4) function evaluations and T =O(GR2d1/2δ−1ϵ−2) LMO updates (14).
Theorem 5 (Convergence of 0-GCG Algorithm with Variance Reduction). Implement Algorithm 2
with Option G2, stepsize γ = 1

R

√
δE[ϕ(x0)−ϕmin+2δG]

TG(4d+2c
√
d)

, batchsize Bt = B0 for any t mod q = 0 and

Bt = B1 = q for other t. The initial point x0 satisfies ∥x0 − x(h)∥ ≤ R. Then under Assumptions
1-3, the output xT̃ has the following convergence rate.

E[∥Wh(xT̃ ,∇Fδ(xT̃ )∥] ≤ 2R

√
G(4d+ 2c

√
d)

Tδ
E[ϕ(x0)− ϕmin + 2δG] +

13RG
√
d√

B0

(17)

Furthermore, we can obtain a (δ, ϵ)-CGGSP by using hyperparameters B0 = 676dR2G2ϵ−2, B1 =

q = 26RGϵ−1
√
d, T = O(GR2dδ−1ϵ−2) (see its full expression in Eq. (45) in Appendix L), which

requires at most 2B0⌊T/q⌋+ 4B1(T − ⌊T/q⌋) = O(G2R3d3/2δ−1ϵ−3) function evaluations and
T = O(GR2dδ−1ϵ−2) LMO updates (14).

Comparison with Constrained Optimization: With minibatch gradient estimation, our function
evaluation complexity O(G3R4d3/2δ−1ϵ−4) in Theorem 4 is more efficient than the complexity
O(G4R5d3/2δ−1ϵ−4) to achieve (δ, ϵ)-Goldstein Frank–Wolfe stationary point of the stochastic
nonconvex nonsmooth constrained optimization minx∈Ω{F (x)

def
= Eξ[Fξ(x)]}, a special case of

our (δ, ϵ)-CGGSP of the composite optimization problem (1) (Corollary 5.7 of (Liu et al., 2024)).
Using variance reduction, our complexity improves to O(G2R3d3/2δ−1ϵ−3), which is also lower
than O(G3R4d3/2δ−1ϵ−3) for minx∈Ω{F (x)

def
= Eξ[Fξ(x)]} (Corollary 5.9 of (Liu et al., 2024)).
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6 EXPERIMENTS

We apply our zeroth-order algorithms to train a two-layer ReLu network rξ(x) =W2σ(W1ξ+b1)+b2.
Here, ξ ∈ Rdξ is an input sample. The network parameters include the weight matrices (W1 ∈
Rd1×dξ and W2 ∈ Rd2×d1) and bias vectors (b1 ∈ Rd1 and b2 ∈ Rd2). x ∈ Rd denotes the total
parameter which is concatenated by b1, b2 and flattened W1, W2, so the total dimensionality is
d = d1dξ + d1d2 + d1 + d2. σ : Rd1 → Rd1 is the widely used ReLu activation function which
maps each entry u to max(u, 0).

We select dξ = 5, d1 = 4 and d2 = 2 which imply d = 34, and generate the underlying sparse
parameters x∗ ∈ Rd by randomly selecting half of the entries to be 0 and generating the other half
from standard Gaussian. Then we construct the binary classification dataset {(ξi, yi)}Ni=1 with sample
size N = 1000, where the inputs ξi ∈ R5 are i.i.d. standard Gaussian, and the label yi = 0 if the first
entry of fξi(x

∗) ∈ R2 is larger, otherwise yi = 1. Then we train the regularized ReLu network via
the following composite optimization problem.

min
x∈Rd

ϕ(x) =
1

N

N∑
i=1

ℓ[rξi(x), yi] + λ1∥x∥1 +
λ2
2
∥x∥22, (18)

This can be seen as an instance of the problem (1), where the main part F (x) = 1
N

∑N
i=1 ℓ[rξi(x), yi]

denotes the average cross-entropy loss between the prediction rξi(x) and the true label yi, and is
nonsmooth due to the ReLu activation σ. In the convex regularizer h(x) = λ1∥x∥1 + λ2

2 ∥x∥22, we
select λ1=λ2=0.01, ∥x∥1 induces sparse parameters and ∥x∥2 controls the parameter magnitude.

We implement our Algorithms 1 and 2, and for each algorithm we test both gradient estimation
options, G1 (minibatch) and G2 (variance reduction), all with radius δ = 0.001. For both algorithms
with option G1 we select batchsize 500 and run 100 iterations. For both algorithms with option G2
we run 523 iterations, start each epoch of 10 iterations with batchsize 500, and use batchsize 50 for
the rest iterations. We use fine-tuned stepsizes 0.005 for 0-PGD with G1, 0.001 for 0-PGD with G2,
5× 10−5 for 0-GCG with G1, and 10−5 for 0-GCG with G2. The experiment is conducted on Python
3.9 using Apple M1 Pro with 8 cores and 16 GB memory, which costs about half a minute.

At each iteration t, we evaluate the training objective function ϕ(xt) (Eq. (18)) as well as the
classification accuracies on both the 1000 training samples and the 1000 heldout test samples
generated in the same way as that of the training samples. In Figure 1, we plot these metrics VS the
function evaluation complexity (the total number of function evaluations up to each iteration), which
shows that all the algorithms converge well with over 90% accuracy on both training and test samples.
In particular, compared with minibatch gradient estimation (option G1), after improving gradient
estimation with variance reduction (option G2), both algorithms 0-PGD and 0-GCG converge faster.

Figure 1: Experimental results on regularized ReLu network.

7 CONCLUSION

In this work, we have proposed two new notions of stationary points for stochastic nonconvex
nonsmooth composite optimization, the (γ, δ, ϵ)-proximal Goldstein stationary point (PGSP) and the
(δ, ϵ)-conditional gradient Goldstein stationary point (CGGSP). We have also proved that the zeroth-
order proximal gradient descent algorithm (0-PGD) and the zeroth-order generalized conditional
gradient algorithm (0-GCG) converge to a (γ, δ, ϵ)-PGSP and a (δ, ϵ)-CGGSP respectively, and
obtained the convergence rates and complexity results. The experimental results on regularized ReLu
network show that these algorithms converge well.
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A RELATED WORKS

Finite-time Convergence Results on Nonconvex Nonsmooth Optimization: Only recently are
finite-time convergence results obtained on nonconvex nonsmooth optimization, a special case of our
nonconvex nonsmooth composite optimization (1). Davis & Drusvyatskiy (2019); Davis & Grimmer
(2019) obtain finite-time convergence for stochastic optimization of a ρ-weakly convex function.
Zhang et al. (2020) obtains the first dimension-free convergence result to achieve a (δ, ϵ)-Goldstein
stationary point, which involves impractical subgradient computation. Such subgradient computation
is removed by (Davis et al., 2022; Tian et al., 2022) using perturbations. Jordan et al. (2023); Tian &
So (2024) prove that deterministic algorithms cannot obtain dimension-free convergence for non-
convex nonsmooth optimization. Cutkosky et al. (2023) obtains the optimal complexity result using
online learning.

Nesterov & Spokoiny (2017) obtains the first finite-time convergence result of zeroth-order methods
for stochastic nonconvex nonsmooth optimization. Lin et al. (2022) designs zeroth-order algorithms
with provable finite-time convergence to (δ, ϵ)-Goldstein stationary point. Their oracle complexity
is improved by (Chen et al., 2023) using variance reduction, and further improved to the optimal
complexity O(dδ−1ϵ−3) by (Kornowski & Shamir, 2024) using the online learning technique in
(Cutkosky et al., 2023).

Proximal Gradient Methods: Various proximal gradient methods are very popular for various
composite optimization problem (1). For example, Fukushima & Mine (1981) derives asymptotic
convergence of proximal gradient method for smooth composite optimization problem 5 under

5Here, smooth composite optimization means the major part F of the composite optimization problem (1) is
Lipschitz smooth.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

both convex and nonconvex settings. Attouch et al. (2013) analyzes the convergence of multiple
variants of inexact proximal algorithms 6 on smooth nonconvex composite optimization satisfying
Kurdyka–Łojasiewicz geometry. Ghadimi et al. (2016) analyzes the convergence of proximal gradient
method for non-stochastic smooth composite optimization, and that of the two algorithm variants
with minibatch and zeroth-order gradient estimations for stochastic smooth nonconvex and convex
composite optimization problems. Beck & Teboulle (2009) applies Nesterov’s acceleration to
proximal gradient method7 and uses backtracking technique to estimate Lipschitz constant, for
smooth convex composite optimization. Nitanda (2014) combines Nesterov’s acceleration and SVRG
variance reduction in proximal gradient methods and thus improved convergence rate for stochastic
smooth convex composite optimization. (Li & Lin, 2015; Ghadimi & Lan, 2016; Li et al., 2017)
study accelerated proximal gradient (APG) algorithms for nonconvex smooth composite optimization.
Stochastic proximal gradient methods have been accelerated by variance reduction techniques, such
as SVRG (Reddi et al., 2016; Li et al., 2017), SAGA (Reddi et al., 2016), SARAH (Pham et al., 2020),
and adaptive APG algorithm with Spider variance reduction. Proximal gradient methods have also
been extended from Euclidean distance to Bregman distance. For example, Bregman distance based
proximal gradient method has provable convergence results for Bregman distance based relatively
smooth composite optimization under both convex (Bauschke et al., 2017) and nonconvex settings
(Latafat et al., 2022; Wang & Han, 2023). Ding et al. (2025) obtains the optimal sample complexity
results of both Bregman proximal gradient method and its momentum variant for smooth adaptable
composite optimization. Laude & Patrinos (2025) analyzes an anisotropic proximal gradient method
for anisotropic smooth composite optimization.

Conditional Gradient Methods: Frank et al. (1956) proposes conditional gradient method (also
known as Frank-Wolfe algorithm) for quadratic programming. Lan & Zhou (2016) extends conditional
gradient method to convex optimization by skipping gradient evaluations, and achieved optimal
computation complexity results. Bredies et al. (2005) proposes a generalized conditional gradient
method which extends to composite optimization, the focus of this work, and obtains asymptotic
convergence result for nonconvex setting. Since then, generalized conditional gradient methods have
been applied to various composite optimization problems. For example, Jiang & Zhang (2014) studies
nonconvex and nonsmooth composite optimization with block-structure. Bach (2015); Nesterov
(2018) focus on general convex composite optimization problems. Harchaoui et al. (2015) studies
norm-regularized convex optimization. Rakotomamonjy et al. (2015) obtains the non-asymptotic
convergence rate of generalized conditional gradient method for convex composite optimization.
Bach (2015) shows that the non-projected subgradient method for the primal convex composite
optimization problem is equivalent to the conditional gradient applied to the dual optimization
problem. Yu et al. (2017) improves generalized conditional gradient method for sparse optimization
problems with convex gauge regularizers. Ghadimi (2019) focuses on smooth and weakly smooth
nonconvex composite optimization problems. Ito et al. (2023) studies weakly convex composite
optimization under Holder condition. Guo et al. (2022) provides a unified convergence analysis for
zeroth-order conditional gradient methods on both stochastic constrained and composite optimization
problems, under both convex and nonconvex settings. Recently, Chen et al. (2024); Assunção et al.
(2025) extends conditional gradient methods to multiobjective composite optimization. See Braun
et al. (2022) for a survey of conditional gradient methods.

B EXPERIMENTS ON REGULARIZED RESNET

We train a regularized Resnet-20 (He et al., 2016)8 with cross-entropy loss for classification task on
the Cifar 10 image data (Krizhevsky, 2009), using our 0-PGD algorithm (Algorithm 1) and 0-GCG
algorithm (Algorithm 2). In particular, we use the objective function (18) where ξi denotes an
image-label pair in the Cifar 10 training set, and we select λ1 = λ2 = 0.01.

We implement our Algorithm 1 (0-PGD) and Algorithm 2 (0-GCG), and for each algorithm we
test both gradient estimation options, G1 (minibatch) and G2 (variance reduction), all with radius
δ = 0.001. For both algorithms with option G1 we select batchsize 5000 and run 500 iterations.

6Proximal gradient method is called forward–backward splitting in (Attouch et al., 2013).
7Proximal gradient method is called iterative shrinkage-thresholding algorithms (ISTA) in (Beck & Teboulle,

2009)
8The Resnet-20 code comes from https://github.com/sarwaridas/ResNet20_PyTorch/b

lob/main/resnet_cifar10_TRIAL.ipynb
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Figure 2: Experimental results on regularized Resnet-20.

For both algorithms with option G2 we run 2615 iterations, start each epoch of 10 iterations with
batchsize 5000, and use batchsize 500 for the rest iterations. We use fine-tuned stepsizes 0.005 for
0-PGD with G1, 0.001 for 0-PGD with G2, 5× 10−5 for 0-GCG with G1, and 10−5 for 0-GCG with
G2. The experiment is conducted on Python 3.11.5 in Red Hat Enterprise Linux 8.10 (Ootpa), using
1 RTX A6000 GPU (48GB memory) and 4 CPU cores (20GB memory).

At each iteration t, we evaluate the objective function ϕ(xt) (Eq. (18)) on the Cifar-10 training
data. In Figure 2, we plot ϕ(xt) VS the function evaluation complexity (the total number of function
evaluations up to each iteration t), which shows that Algorithm 1 (0-PGD) converges well while
Algorithm 2 (0-GCG) descents on the objective very slowly. When tuning hyperparameters for
0-GCG, we found that 0-GCG ascents and diverges even with slightly larger stepsizes, and descents
slightly faster with fine-tuned stepsizes when using larger batchsizes (e.g. 50000 for option G1
and start of each epoch of option G2, and 5000 for the rest iterations for option G2, which is time
consuming). This phenomenon can be largely explained by comparing the theoretical batchsizes
required by these algorithms, as shown in Table 2 below, which indicates that the batchsizes required
by 0-GCG depend on the regularizer-dependent radius R > 0 defined by Assumption 3 while 0-PGD
does not depend on R. Therefore, when R is very large, 0-PGD can be much more efficient than
0-GCG.

Table 2: Batchsizes required by zeroth-order proximal gradient descent (0-PGD) and zeroth-order
generalized conditional gradient algorithms (0-GCG).

0-PGD (Algorithm 1) 0-GCG (Algorithm 2)
Batchsize B for option G1 O(G2ϵ−2d) (Theorem 2) O(R2G2ϵ−2d) (Theorem 4)
Large batchsize B0 for option G2 O(G2ϵ−2d) (Theorem 3) O(R2G2ϵ−2d) (Theorem 5)
Small batchsize B1 for option G2 O(Gϵ−1

√
d) (Theorem 3) O(RGϵ−1

√
d) (Theorem 5)
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C SUPPORTING LEMMAS

Lemma 2 (Proposition 1 of (Ghadimi et al., 2016)). For any x, g, g′ ∈ Rd, γ > 0 and proper convex
function h, we have

∥Gγh(x, g
′)− Gγh(x, g)∥ ≤ ∥g′ − g∥ (19)

Lemma 3 (Lemma 1 of (Ghadimi et al., 2016)). For any x, g ∈ Rd, γ > 0 and proper convex
function h, we have

⟨g,Gγh(x, g)⟩ ≥ ∥Gγh(x, g)∥2 +
1

γ

[
h[proxγh(x− γg)]− h(x)

]
. (20)

Lemma 4. For i.i.d. random variables {Xi}Ni=1, we have

E
[∥∥∥ 1

N

N∑
i=1

[Xi − E(Xi)]
∥∥∥2] =

1

N
E
[
∥X1 − EX1∥2

]
≤ 1

N
E
[
∥X1∥2

]
(21)

Proof.

E
[∥∥∥ 1

N

N∑
i=1

[Xi − E(Xi)]
∥∥∥2]

=E
[ 1

N2

N∑
i=1

N∑
j=1

〈
Xi − E(Xi), Xj − E(Xj)

〉]

=
1

N2

N∑
i=1

E[∥Xi − E(Xi)∥2] +
1

N2

N∑
i=1

N∑
j=1,j ̸=i

E
[〈
Xi − E(Xi), Xj − E(Xj)

〉]
(a)
=

1

N2

N∑
i=1

E[∥X1 − E(X1)∥2] +
1

N2

N∑
i=1

N∑
j=1,j ̸=i

[〈
E[Xi − E(Xi)],E[Xj − E(Xj)]

〉]
(b)
=

1

N
E[∥X1 − E(X1)∥2]

=
1

N
E
[
⟨X1 − E(X1), X1 − E(X1)⟩

]
=

1

N
E
[
∥X1∥2 − ⟨E(X1), X1⟩ − ⟨X1,E(X1)⟩+ ∥E(X1)∥2

]
=

1

N
E
[
∥X1∥2 − ∥E(X1)∥2

]
(c)

≤ 1

N
E
[
∥X1∥2

]
(22)

where (a) uses the fact that {Xi}Ni=1 are i.i.d. samples, (b) proves the "=" of Eq. (21), and (c) proves
the "≤" of Eq. (21).

Lemma 5 (Lemma E.1 of (Lin et al., 2022)). Suppose Assumption 1 holds and ξ ∼ P and u ∈
Uniform(Sd(1)) (uniformly distribution in Sd(1) := {y ∈ Rd : ∥y∥ = 1}). Then for any x ∈ Rd,
the stochastic gradient estimator (4) satisfies E[ĝδ(x;u, ξ)|x] = ∇Fδ(x) and E

[
∥ĝδ(x;u, ξ)∥2

∣∣x] ≤
16
√
2πdG2.

Lemma 6. Suppose Assumption 1 holds and we have i.i.d. samples {ui,t}Bt
i=1 ∼ Uniform(Sd(1))

and {ξi,t}Bt
i=1 ∼ P . Then the stochastic gradient estimator (9) satisfies E[gt|xt] = ∇Fδ(xt) and

E
[
∥gt −∇Fδ(xt)∥2

∣∣xt] ≤ 16
√
2πdG2

Bt
.

Proof.

E[gt|xt] = E
[ 1

Bt

Bt∑
i=1

ĝδ(xt, ui,t, ξi,t)
∣∣∣xt] =

1

Bt

Bt∑
i=1

E
[
ĝδ(xt, ui,t, ξi,t)

∣∣xt] (a)
= ∇Fδ(xt) (23)
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where (a) uses Lemma 5.

E
[
∥gt −∇Fδ(xt)∥2

∣∣xt] =E
[∥∥∥ 1

Bt

Bt∑
i=1

[ĝδ(xt, ui,t, ξi,t)−∇Fδ(xt)
]]∥∥∥2∣∣∣xt]

(a)

≤ 1

Bt
E
[
∥ĝδ(xt, u1,t, ξ1,t)∥2

]
(b)

≤ 16
√
2πdG2

Bt
(24)

where (a) uses E
[
ĝδ(xt, ui,t, ξi,t)

∣∣xt] = ∇Fδ(xt) (based on Lemma 5) and Lemma 4, and (b) uses
Lemma 5.

Lemma 7 (Lemma A.5 of (Liu et al., 2024)). Implement Algorithm 1 or 2 with Option G2. Select
batchsize Bt = B0 for any t mod q = 0 and Bt = B1 for other t. Then under Assumption 1, the
stochastic gradient estimation gt ≈ ∇Fδ(xt) has the following error bound.

E
[
∥gt −∇Fδ(xt)∥2

]
≤ d2G2

δ2B1

t∑
j=ntq+1

∥xj − xj−1∥2 +
16

√
2πdG2

B0
(25)

where nt = ⌊t/q⌋. Specifically, when t mod q = 0 (i.e., t = ntq), the upper bound above reduces to
16

√
2πdG2

B0
.

Lemma 8. Implement Algorithm 2 with either Option G1 or G2, and the initialization x0 satisfies
∥x0 − x(h)∥ ≤ R. Then all the points xt, yt generated from Algorithm 2 satisfies ∥xt − x(h)∥ ≤ R
and ∥yt − x(h)∥ ≤ R.

Proof. Based on Proposition 3, yt ∈ Lh(gt) satisfies ∥yt − x(h)∥ ≤ R.

We will prove ∥xt−x(h)∥ ≤ R by induction. Suppose ∥xk −x(h)∥ ≤ R for a certain natural number
k. Then the update rule (15) implies that

∥xk+1 − x(h)∥ = ∥(1− γ)xk + γyk∥ ≤ (1− γ)∥xk∥+ γ∥yk∥ ≤ R.

Since ∥x0 − x(h)∥ ≤ R, we have proved that ∥xt − x(h)∥ ≤ R for all t.

D PROOF OF PROPOSITION 1

Since h is a proper and closed convex function based on Assumption 2, the sub-level set A =
{x ∈ Rd : ϕ(x) ≤ ϕ(x(h))} is a closed set in which h is continuous, based on Corollary 10.1.1 of
(Rockafellar, 1970).

For any x ∈ Rd satisfying ∥x− x(h)∥ > R, we have

ϕ(x)− ϕ(x(h))
(a)
= F (x)− F (x(h)) + h(x)− h(x(h))

(b)
>−G∥x− x(h)∥+G∥x− x(h)∥ = 0,

where (a) uses the objective function (1), (b) uses Assumption 3 and the G-Lipschitz continuity of F
(based on Assumption 1). Therefore, A ⊂ Bd(x

(h), R)
def
= {x ∈ Rd : ∥x− x(h)∥ ≤ R}, so A is a

compact set. Note that ϕ = F + h is continuous in A, so argmaxx∈Aϕ(x) is non-empty. Based on
the definition of A, argmaxx∈Rd = argmaxx∈Aϕ(x) ⊂ A ⊂ Bd(x

(h), R).

E PROOF OF PROPOSITION 2

Proof of Item 1: Item 1 is directly implied by Definition 5 and ∂F (x) ⊂ ∂δF (x).

Proof of Item 2: Since x ∈ Rd is a (γ, ϵ/(2L), ϵ/2)-PGSP, there exists g ∈ ∂δF (x) =
conv{∇F (y) : ∥y − x∥ ≤ ϵ

2L} such that ∥Gγh(x, g)∥ ≤ ϵ
2 . Therefore, g can be written as the

following convex combination of gradients

g =

n∑
k=1

αk∇F (xk),
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where αk ≥ 0,
∑n

k=1 αk = 1 and xk ∈ Rd satisfies ∥xk − x∥ ≤ ϵ
2L . Then, we prove that x is a

(γ, ϵ)-PGSP as follows.

∥Gγh[x,∇F (x)]∥

=
1

γ
∥x− proxγh[x− γ∇F (x)]∥

=
1

γ
∥x− proxγh(x− γg)∥+ 1

γ
∥proxγh(x− γg)− proxγh[x− γ∇F (x)]∥

(a)

≤∥Gγh(x, g)∥+
1

γ
∥(x− γg)− [x− γ∇F (x)]∥

≤ ϵ

2
+
∥∥∥ n∑

k=1

αk[∇F (xk)−∇F (x)]
∥∥∥

≤ ϵ

2
+

n∑
k=1

αk∥∇F (xk)−∇F (x)∥

(b)

≤ ϵ

2
+ L

n∑
k=1

αk∥xk − x∥

≤ ϵ

2
+ L

n∑
k=1

αk

( ϵ

2L

)
= ϵ,

where (a) uses Lemma 2, and (b) uses the L-Lipschitz continuity of ∇F .

Proof of Item 3: Item 3 is directly implied by Definition 5 and item 3 of Lemma 1.

F PROOF OF PROPOSITION 3

We will prove that Proposition 3 is a special case of Proposition 1. Specifically, in the original
objective function (1), let fξ(x) ≡ ⟨⟨x, g⟩ that does not depend on the stochastic sample ξ, which is
Lξ-Lipschitz where Lξ ≡ G and thus satisfies Assumption 1. Therefore, by applying Proposition
3, we conclude that argminy∈Rd [h(y) + ⟨y, g⟩] = argminy∈Rdϕ(x) is a non-empty subset of
Bd(x

(h), R).

G PROOF OF PROPOSITION 4

Proof of Item 1: Item 1 is directly implied by Definition 7 and ∂F (x) ⊂ ∂δF (x).

Proof of Item 2: If x ∈ Rd is an (ϵ/(2RL), ϵ/2)-CGGSP, then based on Definition 7, there exists
g ∈ ∂δF (x) such that

max
y∈Rd

[
h(x)− h(y) + ⟨y − x,−g⟩

]
≤ ϵ

2
. (26)

As F is differentiable, g can be written as the following convex combination of gradients

g =

n∑
k=1

αk∇F (xk),

where αk ≥ 0,
∑n

k=1 αk = 1 and xk ∈ Rd satisfies ∥xk − x∥ ≤ ϵ
2RL . Then we can prove Item 2 as

follows.

Wh[x,∇F (x)]
(a)
=h(x)− h(y) + ⟨y − x,−∇F (x)⟩
=h(x)− h(y) + ⟨y − x,−g⟩+ ⟨y − x, g −∇F (x)⟩
≤h(x)− h(y) + ⟨y − x,−g⟩+ ∥y − x∥ · ∥g −∇F (x)∥
(b)

≤ ϵ

2
+R

∥∥∥ n∑
k=1

αk[∇F (xk)−∇F (x)]
∥∥∥
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≤ ϵ

2
+R

n∑
k=1

αk∥∇F (xk)−∇F (x)∥

(c)

≤ ϵ

2
+R

n∑
k=1

αkL∥xk − x∥

(d)

≤ ϵ

2
+
ϵ

2
= ϵ,

where (a) holds for any y ∈ Lh[x,∇F (x)] based on Eqs. (8) and (7), (b) uses Eq. (26), Proposition 3
and

∑n
k=1 αk = 1, (c) uses the L-Lipschitz continuity of ∇F , and (d) uses ∥xk − x∥ ≤ ϵ

2RL and∑n
k=1 αk = 1.

Proof of Item 3: Item 3 is directly implied by Definition 7 and item 3 of Lemma 1.

H PROOF OF THEOREM 1

The proof of Theorem 4.7 in (Liu et al., 2024) has designed a function F 9 that satisfies Assumption 1
that F is Lipschitz continuous, and satisfies F (0)− infx∈Ω F (x) ≤ 2 where Ω = [−100, 100]d is a
convex and compact set. The conclusion of their Theorem 4.7 states each point xt generated from the
algorithm A satisfies the following inequalities for γ ∈ (0, 0.1].

min
g∈∂F (xt)

[ 1
γ
∥xt − ψ(xt, g, γ)∥

]
≥ 1

4
√
2
, (27)

min
g∈∂F (xt)

max
u∈Ω

⟨u− xt,−g⟩ ≥
1

4
√
2
, (28)

where

ψ(x, g, γ) = argminy∈Ω

(
⟨g, y⟩+ 1

2γ
∥y − x∥2

)
. (29)

Select h = hΩ defined by Eq. (2), which yields the following equations.

proxγh(xt − γg)
(a)
=argminy∈Rn

[
hΩ(y) +

1

2γ
∥y − xt + γg∥2

]
(b)
=argminy∈Ω

[ 1

2γ
∥y − xt∥2 + ⟨g, y − xt⟩

]
(c)
= ψ(xt, g, γ), (30)

min
g∈∂F (xt)

Wh(xt, g)
(d)
= min

g∈∂F (xt)
max
y∈Rd

[
hΩ(xt)− hΩ(y) + ⟨y − xt,−g⟩

]
(b)

≥ min
g∈∂F (xt)

max
y∈Ω

⟨y − xt,−g⟩
(e)

≥ 1

4
√
2
, (31)

ϕ(0)− inf
x∈Rd

ϕ(x) = F (0) + hΩ(0)− inf
x∈Rd

[F (x) + hΩ(x)]
(b)
= F (0)− inf

x∈Ω
F (x) ≤ 2, (32)

where (a)-(e) use Eqs. (5), (2), (29), (8) and (28) respectively. Therefore,

min
g∈∂F (xt)

∥Gγh(xt, g)∥
(a)
= min

g∈∂F (xt)

[ 1
γ
∥xt − proxγh(xt − γg)∥

]
(b)
= min

g∈∂F (xt)

[ 1
γ
∥xt − ψ(xt, g, γ)∥

] (c)

≥ 1

4
√
2
, (33)

where (a) uses Eq. (6), (b) uses Eq. (30) and (c) uses Eq. (27).

Eq. (33) implies that xt is not a (γ, ϵ)-PGSP for ϵ ≤ 1
4
√
2

. Eq. (31) implies that xt is not an ϵ-CGGSP
for ϵ ≤ 1

4
√
2

. These implications along with Eq. (32) conclude the proof.

9This function is denoted as Fw in (Liu et al., 2024).
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I PROOF OF THEOREM 2

Since ∇Fδ is cG
√
d

δ -Lipschitz continuous based on item 2 of Lemma 1, we obtain that

Fδ(xt+1) ≤Fδ(xt) + ⟨∇Fδ(xt), xt+1 − xt⟩+
cG

√
d

2δ
∥xt+1 − xt∥2

(a)
=Fδ(xt)− γ⟨∇Fδ(xt),Gγh(xt, gt)⟩+

cGγ2
√
d

2δ
∥Gγh(xt, gt)∥2

=Fδ(xt)− γ⟨gt,Gγh(xt, gt)⟩+ γ⟨gt −∇Fδ(xt),Gγh(xt, gt)⟩+
cGγ2

√
d

2δ
∥Gγh(xt, gt)∥2

(b)

≤Fδ(xt)− γ
[
∥Gγh(xt, gt)∥2 +

1

γ

[
h[proxγh(xt − γgt)]− h(xt)

]]
+ γ⟨gt −∇Fδ(xt),Gγh(xt, gt)⟩+

γ

2
∥Gγh(xt, gt)∥2

(c)
=Fδ(xt)−

γ

2
∥Gγh(xt, gt)∥2 + h(xt)− h(xt+1) + γ⟨gt −∇Fδ(xt),Gγh[xt,∇Fδ(xt)]⟩

+ γ⟨gt −∇Fδ(xt),Gγh(xt, gt)− Gγh[xt,∇Fδ(xt)]⟩

≤Fδ(xt)−
γ

2
∥Gγh(xt, gt)∥2 + h(xt)− h(xt+1) + γ⟨gt −∇Fδ(xt),Gγh[xt,∇Fδ(xt)]⟩

+ γ∥gt −∇Fδ(xt)∥ ·
∥∥Gγh(xt, gt)− Gγh[xt,∇Fδ(xt)]

∥∥
(d)

≤Fδ(xt)−
γ

2
∥Gγh(xt, gt)∥2 + h(xt)− h(xt+1) + γ⟨gt −∇Fδ(xt),Gγh[xt,∇Fδ(xt)]⟩

+ γ∥gt −∇Fδ(xt)∥2,

where (a) and (c) use the update rule (11) that xt+1 = proxγh(xt − γgt) = xt − γGγh(xt, gt), (b)
uses Lemma 3 and the stepsize γ = δ

cG
√
d

, and (d) uses Lemma 2. Rearranging the inequality above,
and taking expectation, we obtain that

γ

2
E[∥Gγh(xt, gt)∥2] ≤E[Fδ(xt) + h(xt)− Fδ(xt+1)− h(xt+1)]

+ γE
[
⟨gt −∇Fδ(xt),Gγh[xt,∇Fδ(xt)]⟩

]
+ γE[∥gt −∇Fδ(xt)∥2]

≤E[Fδ(xt) + h(xt)− Fδ(xt+1)− h(xt+1)] +
16γ

√
2πdG2

Bt
,

where the second ≤ uses Lemma 6. Rearranging the inequality above and summing over t =
0, 1, . . . , T − 1, we have

E[∥Gγh(xT̃ , gT̃ )∥
2] =

1

T

T−1∑
t=0

E[∥Gγh(xt, gt)∥2]

≤ 1

T

T−1∑
t=0

[ 2
γ
E[Fδ(xt) + h(xt)− Fδ(xt+1)− h(xt+1)] +

32
√
2πdG2

Bt

]
(a)

≤ 2

Tγ
E[Fδ(x0) + h(x0)− Fδ(xT )− h(xT )] +

32
√
2πdG2

B

(b)

≤ 2cG
√
d

Tδ
E[F (x0) + h(x0)− F (xT )− h(xT ) + 2δG] +

32
√
2πdG2

B
(c)

≤ 2cG
√
d

Tδ
E[ϕ(x0)− ϕmin + 2δG] +

32
√
2πdG2

B
, (34)

where (a) uses constant batchsize Bt ≡ B and stepsize γ = δ
cG

√
d

, (b) uses item 1 of Lemma 1, (c)

uses ϕ def
= F + g and ϕmin

def
= minx∈Rd ϕ(x). Therefore, we can obtain the convergence rate (12) as

follows.

E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))∥] ≤E[∥Gγh(xT̃ , gT̃ )∥] + E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))− Gγh(xT̃ , gT̃ )∥]
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(a)

≤
√
E[∥Gγh(xT̃ , gT̃ )∥2] +

√
E[∥∇Fδ(xT̃ )− gT̃ ∥2]

(b)

≤

√
2cG

√
d

Tδ
E[ϕ(x0)− ϕmin + 2δG] +

32
√
2πdG2

B
+

√
16

√
2πdG2

B

(c)

≤
√
2cGd1/4√
Tδ

√
E[ϕ(x0)]− ϕmin + 2δG+

16G
√
d√

B
,

where (a) uses Lemma 2, (b) uses Eq. (34) and Lemma 6, (c) uses
√
a+ b ≤

√
a +

√
b for any

a, b ≥ 0 and
√
32
√
2π +

√
16
√
2π < 16

Furthermore, we can select the following hyperparameters.

T =
8cG

√
d

δϵ2
[
E[ϕ(x0)]− ϕmin + 2δG

]
= O(Gd1/2δ−1ϵ−2), (35)

B =
1024dG2

ϵ2
= O(G2dϵ−2). (36)

Then substituting the hyperparameters above into the convergence rate (12), we obtain the following
bound, which based on item 3 of Proposition 2 implies that there exists at least one (γ, δ, ϵ)-PGSP in
{xt}T−1

t=0 .

min
0≤t≤T−1

E[∥Gγh(xt,∇Fδ(xt))∥] ≤ E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))∥] ≤ ϵ.

J PROOF OF THEOREM 3

Since ∇Fδ is cG
√
d

δ -Lipschitz continuous based on item 2 of Lemma 1, we obtain that

Fδ(xt+1) ≤Fδ(xt) + ⟨∇Fδ(xt), xt+1 − xt⟩+
cG

√
d

2δ
∥xt+1 − xt∥2

(a)
=Fδ(xt)− γ⟨∇Fδ(xt),Gγh(xt, gt)⟩+

cGγ2
√
d

2δ
∥Gγh(xt, gt)∥2

=Fδ(xt)− γ⟨gt,Gγh(xt, gt)⟩+ γ⟨gt −∇Fδ(xt),Gγh(xt, gt)⟩+
cGγ2

√
d

2δ
∥Gγh(xt, gt)∥2

(b)

≤Fδ(xt)− γ
[
∥Gγh(xt, gt)∥2 +

1

γ

[
h[proxγh(xt − γgt)]− h(xt)

]]
+
γ

2
∥gt −∇Fδ(xt)∥2 +

(cGγ2√d
2δ

+
γ

2

)
∥Gγh(xt, gt)∥2

(c)
=Fδ(xt) + h(xt)− h(xt+1) +

γ

2
∥gt −∇Fδ(xt)∥2 +

(cGγ2√d
2δ

− γ

2

)
∥Gγh(xt, gt)∥2,

where (a) and (c) use the update rule (11) that xt+1 = proxγh(xt − γgt) = xt − γGγh(xt, gt),
and (b) uses Lemma 3 and the inequality that ⟨u, v⟩ ≤ (∥u∥2 + ∥v∥2)/2 for u = gt − ∇Fδ(xt),
v = Gγh(xt, gt). Rearranging the inequality above, and taking expectation, we obtain that(γ

2
− cGγ2

√
d

2δ

)
E[∥Gγh(xt, gt)∥2]

≤E[Fδ(xt) + h(xt)− Fδ(xt+1)− h(xt+1)] +
γ

2
E[∥gt −∇Fδ(xt)∥2]

(a)

≤E[Fδ(xt) + h(xt)− Fδ(xt+1)− h(xt+1)] +
γd2G2

2δ2B1

t∑
j=ntq+1

E[∥xj − xj−1∥2] +
8γ

√
2πdG2

B0
,

where (a) uses Lemma 7. Summing the inequality above over t = 0, 1, . . . , T − 1, we have(γ
2
− cGγ2

√
d

2δ

) T−1∑
t=0

E[∥Gγh(xt, gt)∥2]

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

≤E[Fδ(x0) + h(x0)− Fδ(xT )− h(xT )] +
γd2G2

2δ2B1

T−1∑
t=0

t∑
j=ntq+1

∥xj − xj−1∥2 +
8Tγ

√
2πdG2

B0

(a)

≤E[F (x0) + h(x0)− F (xT )− h(xT )] + 2δG

+
γ3d2G2

2δ2B1

T−1∑
t=0

(nt+1)q∑
j=ntq+1

∥Gγh(xj , gj)∥2 +
8Tγ

√
2πdG2

B0

(b)

≤E[ϕ(x0)− ϕmin] + 2δG+
qγ3d2G2

2δ2B1

T−1∑
t=0

E[∥Gγh(xt, gt)∥2] +
8Tγ

√
2πdG2

B0
, (37)

where (a) uses t < (nt + 1)q (nt = ⌊t/q⌋), item 1 of Lemma 1 and the update rule (11) that
xj+1 = proxγh(xj−γgj) = xj−γGγh(xj , gj), and (b) uses ϕ def

= F+g and ϕmin
def
= minx∈Rd ϕ(x).

Rearranging the inequality above, we obtain that

E[∥Gγh(xT̃ , gT̃ )∥
2]

=
1

T

T−1∑
t=0

E[∥Gγh(xt, gt)∥2]

≤ 1

T

(γ
2
− cGγ2

√
d

2δ
− qγ3d2G2

2δ2B1

)−1[
E[ϕ(x0)]− ϕmin + 2δG+

8Tγ
√
2πdG2

B0

]
≤16G(d+ c

√
d)

Tδ

[
E[ϕ(x0)]− ϕmin + 2δG

]
+

64
√
2πdG2

B0
(38)

where (a) uses the following inequality with stepsize γ = δ
2G(d+c

√
d)

and batchsize B1 = q, and (b)

uses stepsize γ = δ
2G(d+c

√
d)

.

γ

2
− cGγ2

√
d

2δ
− qγ3d2G2

2δ2B1
=
γ

2

(
1− cGγ

√
d

δ
− γ2d2G2

δ2

)
≥ δ

4G(d+ c
√
d)

(
1− c

√
d

2(d+ c
√
d)

− d2

4(d+ c
√
d)2

)
≥ δ

4G(d+ c
√
d)

(
1− 1

2
− 1

4

)
=

δ

16G(d+ c
√
d)
.

Then we have the following bound.

E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))∥
2]

≤2E[∥Gγh(xT̃ , gT̃ )∥
2] + 2E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))− Gγh(xT̃ , gT̃ )∥

2]

(a)

≤2E[∥Gγh(xT̃ , gT̃ )∥
2] + 2E[∥∇Fδ(xT̃ )− gT̃ ∥

2]

=
2

T

T−1∑
t=0

[
E[∥Gγh(xt, gt)∥2] + E[∥∇Fδ(xt)− gt∥2]

]
(b)

≤ 2

T

T−1∑
t=0

[
E[∥Gγh(xt, gt)∥2] +

d2G2

δ2B1

t∑
j=ntq+1

∥xj − xj−1∥2 +
16
√
2πdG2

B0

]
(c)

≤ 2

T

T−1∑
t=0

E[∥Gγh(xt, gt)∥2] +
2d2G2γ2

Tδ2q

T−1∑
t=0

(nt+1)q∑
j=ntq+1

E[∥Gγh(xj , gj)∥2]

≤
( 2

T
+

2d2G2γ2

Tδ2

) T−1∑
t=0

E[∥Gγh(xt, gt)∥2]

(d)

≤
(
2 +

d2

2(d+ c
√
d)2

){16G(d+ c
√
d)

Tδ

[
E[ϕ(x0)]− ϕmin + 2δG

]
+

64
√
2πdG2

B0

}
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≤40G(d+ c
√
d)

Tδ

[
E[ϕ(x0)]− ϕmin + 2δG

]
+

160
√
2πdG2

B0
,

where (a) uses Lemma 2, (b) uses Lemma 7, (c) uses t < (nt + 1)q, B1 = q and the update rule that
xj = xj−1 + γGγh(xj , gj), and (d) uses Eq. (38) and γ = δ

2G(d+c
√
d)

. Therefore, by taking square
root of the inequality above, we obtain the convergence rate (13) as follows.

E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))∥] ≤
√

E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))∥2]

≤

√
40G(d+ c

√
d)

Tδ

[
E[ϕ(x0)]− ϕmin + 2δG

]
+

160
√
2πdG2

B0

≤
√
40G(

√
d+

√
cd1/4)√

Tδ

√
E[ϕ(x0)]− ϕmin + 2δG+

21G
√
d√

B0

,

where the final ≤ uses
√
160

√
2π < 21 and

√
a+ b ≤

√
a+

√
b for any a, b ≥ 0.

Furthermore, we can select B0 = 1764dG2ϵ−2, B1 = q = 42
√
dGϵ−1 and the following T

T = 320δ−1ϵ−2G(d+ c
√
d)
[
E[ϕ(x0)]− ϕmin + 2δG

]
= O(Gdδ−1ϵ−2). (39)

Then substituting the hyperparameters above into the convergence rate (13), we obtain the following
bound, which based on item 3 of Proposition 2 implies that there exists at least one (γ, δ, ϵ)-PGSP in
{xt}T−1

t=0 .

min
0≤t≤T−1

E[∥Gγh(xt,∇Fδ(xt))∥] ≤ E[∥Gγh(xT̃ ,∇Fδ(xT̃ ))∥] ≤ ϵ.

K PROOF OF THEOREM 4

Denote ỹt ∈ Lh[∇Fδ(xt)]
def
= argminy∈Rd [h(y) + ⟨y,∇Fδ(xt)⟩]. Then the δ-regularized Frank-

Wolfe gap (8) can be expressed as follows.

Wh[xt,∇Fδ(xt)]
def
= max

y∈Rd

[
h(xt)− h(y) + ⟨y − xt,−∇Fδ(xt)⟩

]
=h(xt)− h(ỹt)− ⟨ỹt − xt,∇Fδ(xt)⟩. (40)

Then we have

⟨∇Fδ(xt), yt − xt⟩ =⟨∇Fδ(xt), ỹt − xt⟩+ ⟨∇Fδ(xt), yt − ỹt⟩
=⟨∇Fδ(xt), ỹt − xt⟩+ ⟨gt, yt − ỹt⟩+ ⟨∇Fδ(xt)− gt, yt − ỹt⟩
(a)

≤⟨∇Fδ(xt), ỹt − xt⟩+ h(ỹt)− h(yt) + ∥∇Fδ(xt)− gt∥∥yt − ỹt∥
(b)

≤ −Wh[xt,∇Fδ(xt)] + h(xt)− h(yt) + 2R∥∇Fδ(xt)− gt∥ (41)

where (a) uses h(yt)+ ⟨yt, gt⟩ ≤ h(ỹt)+ ⟨ỹt, gt⟩ based on the update rule (14), and (b) uses Eq. (40)
as well as ∥yt − x(h)∥ ≤ R and ∥ỹt − x(h)∥ ≤ R (based on Proposition 3 and item 2 of Lemma 1).

Then since ∇Fδ is cG
√
d

δ -Lipschitz continuous based on item 2 of Lemma 1, we obtain that

Fδ(xt+1)

≤Fδ(xt) + ⟨∇Fδ(xt), xt+1 − xt⟩+
cG

√
d

2δ
∥xt+1 − xt∥2

(a)
=Fδ(xt) + γ⟨∇Fδ(xt), yt − xt⟩+

cG
√
dγ2

2δ
∥yt − xt∥2

(b)

≤Fδ(xt)− γWh[xt,∇Fδ(xt)] + γh(xt)− γh(yt) + 2Rγ∥∇Fδ(xt)− gt∥+
cG

√
d(2R)2γ2

2δ
(c)

≤Fδ(xt)− γWh[xt,∇Fδ(xt)] + h(xt)− h(xt+1) + 2Rγ∥∇Fδ(xt)− gt∥+
2cG

√
dR2γ2

δ
,
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where (a) uses the update rule (15), (b) uses Eq. (41) and Lemma 8, and (c) uses h(xt+1) ≤
(1− γ)h(xt) + γh(yt) which holds for convex function h and xt+1 obtained from the update rule
(15). Rearranging the inequality above and averaging it over t = 0, 1, . . . , T − 1, we obtain the
convergence rate (16) as follows.

E
[
Wh[xT̃ ,∇Fδ(xT̃ )]

]
=

1

T

T−1∑
t=0

Wh[xt,∇Fδ(xt)]

≤ 1

Tγ
E[Fδ(x0) + h(x0)− Fδ(xT )− h(xT )] +

2R

T

T−1∑
t=0

E
[
∥∇Fδ(xt)− gt∥

]
+

2cG
√
dR2γ

δ

(a)

≤ 1

Tγ
E[F (x0) + h(x0)− F (xT )− h(xT ) + 2δG] +

2R

T

T−1∑
t=0

√
E
[
∥∇Fδ(xt)− gt∥2

]
+

2cG
√
dR2γ

δ
(42)

(b)

≤ 1

Tγ
E[ϕ(x0)− ϕmin + 2δG] +

2R

T

T−1∑
t=0

√
16

√
2πdG2

Bt
+
cG

√
dR2γ

2δ

(c)

≤R

√
8cG

√
d

Tδ
E[ϕ(x0)− ϕmin + 2δG] +

21RG
√
d√

B
,

where (a) uses item 1 of Proposition 1, (b) uses ϕ def
= F + g, ϕmin

def
= minx∈Rd ϕ(x) and Lemma 6,

(c) uses stepsize γ = 1
R

√
2δ

TcG
√
d
E[ϕ(x0)− ϕmin + 2δG] and constant batchsize Bt ≡ B.

Furthermore, we can select the following hyperparameters.

T =
32cGR2

√
d

δϵ2
[
E[ϕ(x0)]− ϕmin + 2δG

]
= O(GR2d1/2δ−1ϵ−2), (43)

B =1764dR2G2ϵ−2 = O(dR2G2ϵ−2). (44)

Then substituting the hyperparameters above into the convergence rate (16), we obtain the following
bound, which based on item 3 of Proposition 4 implies that there exists at least one (δ, ϵ)-CGGSP in
{xt}T−1

t=0 .

min
0≤t≤T−1

E[Wh(xt,∇Fδ(xt))] ≤ E[Wh(xT̃ ,∇Fδ(xT̃ ))] ≤ ϵ.

L PROOF OF THEOREM 5

We can prove the convergence rate (17) as follows.

E
[
Wh[xT̃ ,∇Fδ(xT̃ )]

]
(a)

≤ 1

Tγ
E[F (x0) + h(x0)− F (xT )− h(xT ) + 2δG] +

2R

T

T−1∑
t=0

√
E
[
∥∇Fδ(xt)− gt∥2

]
+

2cG
√
dR2γ

δ

(b)

≤ 1

Tγ
E[ϕ(x0)− ϕmin + 2δG] +

2R

T

T−1∑
t=0

√√√√d2G2

δ2B1

t∑
j=ntq+1

∥xj − xj−1∥2 +
16
√
2πdG2

B0

+
2cG

√
dR2γ

δ

(c)

≤ 1

Tγ
E[ϕ(x0)− ϕmin + 2δG] +

2R

T

T−1∑
t=0

√
d2G2

δ2
(2Rγ)2 +

16
√
2πdG2

B0
+

2cG
√
dR2γ

δ
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≤ 1

Tγ
E[ϕ(x0)− ϕmin + 2δG] +

GR2γ

δ
(4d+ 2c

√
d) +

13RG
√
d√

B0

(d)
=2R

√
G(4d+ 2c

√
d)

Tδ
E[ϕ(x0)− ϕmin + 2δG] +

13RG
√
d√

B0

,

where (a) uses Eq. (42) (we can see it still holds by following its proof in Appendix K), (b)
uses ϕ def

= F + g, ϕmin
def
= minx∈Rd ϕ(x) and Lemma 7, (c) uses t < (nt + 1)q, B1 = q,

∥xj − xj−1∥ = γ∥yj−1 − xj−1∥ ≤ 2Rγ (based on Eq. (15) and Lemma 8), and (d) uses stepsize

γ = 1
R

√
δE[ϕ(x0)−ϕmin+2δG]

TG(4d+2c
√
d)

.

Furthermore, we can select the following hyperparameters.

T =
16GR2(4d+ 2c

√
d)

δϵ2
[
E[ϕ(x0)]− ϕmin + 2δG

]
= O(GR2dδ−1ϵ−2), (45)

B0 =676dR2G2ϵ−2, (46)

B1 =q = 26RGϵ−1
√
d. (47)

Then substituting the hyperparameters above into the convergence rate (16), we obtain the following
bound, which based on item 3 of Proposition 4 implies that there exists at least one (δ, ϵ)-CGGSP in
{xt}T−1

t=0 .

min
0≤t≤T−1

E[Wh(xt,∇Fδ(xt))] ≤ E[Wh(xT̃ ,∇Fδ(xT̃ ))] ≤ ϵ.

M USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to generate some functions in the experimental code, and then checked and edited the
code to ensure that it exactly implements the algorithms.

27


	Introduction
	Paper Organization

	Preliminaries
	Problem Formulation
	Fundamentals of Nonsmooth Analysis
	Zeroth-Order Gradient Estimation

	Generalized Goldstein Stationary Points for Composite Optimization
	Proximal Goldstein Stationary Point (PGSP)
	Conditional Gradient Goldstein Stationary Point (CGGSP)

	Zeroth-Order Proximal Gradient Descent (0-PGD) Algorithm
	Zeroth-Order Generalized Conditional Gradient (0-GCG) Algorithm
	Experiments
	Conclusion
	Appendix
	 Appendix
	Related Works
	Experiments on Regularized Resnet
	Supporting Lemmas
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Use of Large Language Models (LLMs)


