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ABSTRACT

This work aims to solve a stochastic nonconvex nonsmooth composite optimization
problem. Previous works on composite optimization problem requires the major
part to satisfy Lipschitz smoothness or some relaxed smoothness conditions, which
excludes some machine learning examples such as regularized ReLU network and
sparse support matrix machine. In this work, we focus on stochastic nonconvex
composite optimization problem without any smoothness assumptions. In par-
ticular, we propose two new notions of approximate stationary points for such
optimization problem and obtain finite-time convergence results of two zeroth-
order algorithms to these two approximate stationary points respectively. Finally,
we demonstrate that these algorithms are effective using numerical experiments.

1 INTRODUCTION

This work focuses on the following stochastic nonconvex nonsmooth composite optimization problem.

;reukg ¢(x) == F(x) + h(x), where F(z) = E¢up[fe(z)], (1)

where the individual function f¢ () is nonconvex and nonsmooth associated with a stochastic sample
& from the distribution P, and h is a convex regularizer. This problem covers many machine learning
examples such as regularized ReLU network (Mazumdar & Rawat, 2019; Wang et al., 2021b)) and
sparse support matrix machine (Zheng et al., 2018;|Gu et al., [2021} [Li et al., 2022).

Existing approaches to the stochastic nonconvex composite optimization problem require the
major part F' to satisfy either Lipschitz smooth conditions (Nitandal, 2014} |Li & Lin} 2015} |Ghadimi
et al., [2016; |Ghadimi & Lan, [2016; L1 et al., 2017; |[Pham et al., [2020), or some relaxed notions
of smoothness such as relative smoothness (Bauschke et al., [2017; |[Lu et al., 2018 [Latafat et al.|
2022)), smooth adaptivity (Wang & Hanl [2023} |Ding et al., [2025])), anisotropic smoothness (Laude
& Patrinos| [2025), weak convexity (Davis & Drusvyatskiyl, [2019; [Davis & Grimmer, [2019) and
Holder continuous gradient (Guo et al., 2022)), which cannot cover the applications with discontinous
gradient, such as regularized ReLU network (Mazumdar & Rawat, |2019; Wang et al., 2021b) and
sparse support matrix machine (Zheng et al., 2018;|Gu et al.| [2021} [Li et al., 2022).

To solve such a stochastic nonconvex nonsmooth composite optimization problem, the first challeng-
ing step is to propose proper and feasible convergence criteria. The existing notions of proximal
gradient mapping (Ghadimi et al., |2016; |Reddi et al., 20165 |Li & Li, |2018) and Frank-Wolfe gap
(Jiang & Zhang| 2014; |Guo et al., [2022) requiring F' to be differentiable everywhere are not suitable
for nonsmooth composite optimization. Even after extending the gradient to the Clarke subdifferential,
we will prove that convergence under the corresponding generalized stationary notions is intractable
(see Theorem . Fortunately, Zhang et al.|(2020) proposes the notion of (, €)-Goldstein stationary
point which has been achieved by various nonconvex nonsmooth optimization algorithms (Zhang
et al.,2020; Lin et al., 20225 |Chen et al., 2023} |Cutkosky et al.| |2023; |[Kornowski & Shamir, [2024), and
the Goldstein stationary notion is extended to nonconvex nonsmooth constrained optimization (Liu
et al., 2024). Inspired by these stationary notions, we propose (7, 9, €)-proximal Goldstein stationary
point (PGSP) and (J, €)-conditional gradient Goldstein stationary point (CGGSP) as the approximate
notions of stationarity for our nonconvex nonsmooth composite optimization problem (TJ), by using
the Goldstein J-subdifferential (Goldsteinl [1977) as a convex combination of the gradients in the
neighborhood around the point of interest.
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Table 1: Function evaluation complexity results of zeroth-order proximal gradient descent (0-PGD)
and zeroth-order generalized conditional gradient algorithms (0-GCG).

Main algorithm Gradient estimation Criterion Complexity Reference
0-PGD (Algorithm |1 Minibatch (v,0,€)-PGSP  O(d®/?6-1¢~*) Theorem[2
0-PGD (Algorithm[T)  Variance reduction (7,4, €)-PGSP ~ O(d3/26=1¢=3)  Theorem 3
0-GCG (Algorithm 2 Minibatch (8, e) CGGSP  O(d®/26~1¢*) Theorem |
0-GCG (Algorithm[2) ~ Variance reduction  (3,¢)-CGGSP ~ O(d%/26-'¢~3)  Theorem [y

Using our proposed stationary notions above, we prove that the zeroth-order proximal gradient descent
algorithm (0-PGD, see Algorithm converges to our proposed (+y, , €)-proximal Goldstein stationary
point (PGSP), obtain the convergence rate and function evaluation complexity result using minibatch
zeroth-order gradient estimation, and then improve these results using variance-reduced gradient
estimation. Furthermore, we study a zeroth-order generalized conditional gradient algorithm (0-GCG,
Algorithm [2) which avoids the possibly expensive proximal operator used by 0-PGD, and obtain
similar convergence rate and complexity result of 0-GCG to achieve our proposed (6, €)-CGGSP. We
summarize these convergence results of both algorithms in Table

1.1 PAPER ORGANIZATION

Section [2|introduces the basic backgrounds including problem formulation, fundamentals for nons-
mooth analysis and zeroth-order gradient estimation. Section [3|proposes our generalized stationary
notions for composite optimization. Section ] presents our zeroth-order proximal gradient descent
(0-PGD) algorithm and its finite-time convergence results. Section[5]presents our zeroth-order gen-
eralized conditional gradient (0-GCG) algorithm and its finite-time convergence results. Section[6]
shows the experimental results. Section[7]concludes this work.

2 PRELIMINARIES

In this section, we will introduce the problem formulation (Section @, review fundamentals of
nonsmooth analysis (Section[2.2)), and introduce zeroth-order gradient estimation (Section [2.3).

2.1 PROBLEM FORMULATION
Throughout this work, we make the following two standard assumptions on the stochastic nonconvex
nonsmooth composite optimization problem (TJ).

Assumption 1. For any stochastic sample &, fe¢(x) R? — Risan L¢-Lipschitz continuous for some
Le > 0 (ie, |fe(y) = fe(2)| < Lelly — || for any z,y € RY) and Ee(LZ) < G for some G > 0.

Assumption 2. h : RY — R is a proper closed convex function with at least one feasible point
™ € RY such that h(z™) < +oo.

Assumption 3. There exists R > 0 such that h(x) > h(z™) 4+ G||z — =™ || for the feasible point
") defined in Assumptionand any x € R? satisfying ||z — 2| > R.

Assumption[T|has also been used by (Davis & Drusvyatskiyl 2019} Dav1s & Grimmer, [2019; |Liu et al.|
2024). It implies that F'(x) = E¢[f¢(x)] is G-Lipschitz contmuou Such Lipschitz continuous but
possibly nonsmooth functions have been widely used in optimization and machine learning, including
any neural networks with ReL U activation (Krizhevsky et al.,[2017; Mazumdar & Rawat,|2019;/Ghosh
et al., 2024} |Shen et al.| 2024)), ramp loss (Gu et al., 2021; Wang & Shao, 2024), capped ¢; penalty
(Xu et al., [2014; |Zhang, [2008}; [Kumar et al., 2021)), etc. Many commonly used convex regularizers h
satisfy Assumptions I 2|and 3] ' including £, regularizer with p > 1 (McCulloch et al.,|[2024;|Lu et al.,
2024), ¢4 regularizer A||z|j; with A > G {0 induce the sparsity of the parameter vector (Mazumdar
& Rawat, 2019; |Ali et al., 2024), super-coercive regularizer satisfying lim ;| o0 [ () /|| 7] =

1Assumptionimplies that F is G-Lipschitz continuous because for any z, 2’ € R?,
|F(2") — F(x)| < Eefe(2') = fe(@)] < Ee[Lella’ — z|l] < [|a" — ||| /Ee[LZ].
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(Bredies et al.| 2005} [Yu et al., 2017; Bredies et al.,|2009)), and the following constraint regularizer
which enforces the constraint x € €2 where ) C R is a convex and compact set (Jaggi, 2013;
Rakotomamonjy et al.| 2015} Nesterov, 2018 |Liu et al., [2024} |Assuncao et al., [ 2025).

ef JO; e N
ho(x) < {m; raq @

Proposition 1. Under Assumptions the original objective function (1|) has a non-empty solution
def

set arg min, cpa @ (z), which is a subset of Bag(z", R) = {z € R?: ||z — ™| < R}.
Remark: Assumptionrequires h(x) to outgrow F(z) as ||z — 2" || — +oc, such that the objective
#(z) = F(x) + g(x) has minimizers and they are not too far from the feasible point z(").

2.2 FUNDAMENTALS OF NONSMOOTH ANALYSIS

In this subsection, we will introduce some basic concepts for the unconstrained nonconvex nonsmooth
optimization problem min, cra F'(x), a special case of the composite problem (1)) with A = 0.

For a nondifferentiable function F' : R? — R, we can define generalized directional derivatives and
generalized gradients as follows.

Definition 1. The generalized directional derivative of a function F at point x € R? and direction
v € R is defined as DF (z;v) L Jim SUPy 2410 w The Clark subdifferential of F' is

defined as the set OF (z) def {g € R?: (g,v) < DF(z;v),Vv € R4}

For the unconstrained nonconvex nonsmooth optimization problem min, g« F'(), one may aim to
find an e-Clarke stationary point defined as = € R? satisfying min{||g|| : ¢ € OF(x)} < e. However,
Zhang et al.| (2020) proves that such an e-Clarke stationary point cannot be obtained in finite time for
general Lipschitz continuous function F'. Hence, they focus on more tractable and relaxed concepts
of subdifferential and stationary solution, as defined below.

Definition 2 (Goldstein (1977)). The Goldstein S-subdifferential of a function F at x € R? with
radius § > 0 is defined as

OsF () def conv[ UyeB,(z,6) 8F(y)},

where conv(A) denotes the set of every convex combination of the elements in A.
Definition 3 (Zhang et al|(2020)). Forany d > 0 and ¢ > 0, a (4, €)-Goldstein stationary point of
F is defined as any x € R? satisfying

min{||g|| : g € OsF(z)} <e. 3)

Note that JyF'(x) = OF(z) (Makela & Neittaanmaki, [1992). Hence, as § = 0, Goldstein J-
subdifferential and (9, €)-Goldstein stationary point respectively reduce to Clark subdifferential and
e-Clarke stationary point. Such a (4, €)-Goldstein stationary point can be achieved at finite time by
various algorithms (Zhang et al., [2020; [Tian et al.,2022; Davis et al., [2022} |Cutkosky et al., [2023)).

2.3 ZEROTH-ORDER GRADIENT ESTIMATION

Zeroth-order gradient estimation with random smoothing technique has been widely used when direct
computation of gradient is costly or impossible. To estimate the gradient of a function F', we can
approximate F' by its smoothing function Fs(z) = E,q[F(z + du)] with a small radius § > 0,
with a certain distribution ). We focus on the case where () is uniform distribution on the unit

sphere S4(1)) oo {u € R%: ||u|| = 1} (Duchi et al., 2015} |Lin et al., 2020), since the corresponding
smoothing function Fj(x) def Ey~Uniform(s, (1)) F' (2 + du) has the following amenable properties.
Lemma 1 (Proposition 2.3 of (Lin et al.,[2022))). For any G-Lipschitz continuous function F, its
smoothing function Fs(x) défEuNUniforrn(Sd(l))F(x + du) satisfies: (1) sup,epa |Fs(z) — F(z)| <

8G; (2) Fy is G-Lipschitz continuous and differentiable everywhere with ¢cG\/d /d-Lipschitz continu-
ous gradient for an absolute constant ¢ > 0; (3) VF5(x) € 0sF(x) for any v € R%
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V Fs(z) admits the following unbiased two-point estimator, which is widely used in zeroth-order
gradient estimation (Duchi et al.| 2015} |Lin et al., 2022; Ma & Huangl, [2025).

(7 0,6) = 55 el + 5u) — felr — u)u @

where £ ~ P and u ~ Uniform(S4(1)).

3 GENERALIZED GOLDSTEIN STATIONARY POINTS FOR COMPOSITE
OPTIMIZATION

In this section, we propose two new notions of stationary points for the stochastic nonconvex
nonsmooth composite optimization problem (IJ), proximal Goldstein stationary point (PGSP) and
conditional gradient Goldstein stationary point (CGGSP), the targets of zeroth-order algorithms in
Sections 4] and [5] Then we show some properties of these new stationary points.

3.1 PROXIMAL GOLDSTEIN STATIONARY POINT (PGSP)

Definition 4. For any stepsize v > 0 and convex regularizer h : RY — R, we define the proximal
operator of vh at point x € R? as follows (Parikh et al.| 2014, |Nitanda, 2014; \Mardani et al., 2018;
Yang & Yu||2020).

. 1
prox, , (#) = arg min, cgn [h(y) + -1y - 2] 5)

The proximal operator || returns a unique solution since h(y) + % ly — z||? is a strongly convex
function of y. Proximal operator is essential in the popular proximal gradient descent algorithms for
composite optimization (Parikh et al.| 2014} Nitanda, [2014; Mardani et al., 2018};|Yang & Yul 2020).
We will use the proximal operator to propose a generalized notion of stationary point as follows.

Definition 5. For any stepsize v > 0 and convex regularizer h : R — R, we define the proximal
gradient mapping at point v € R? and gradient g € RY as follows (Ghadimi et al., 2016; Reddi
et all 2016} |Li & Li|[2018).

1
g’yh(xa g) = ;[z - prOX'yh(x - ,-yg)] (6)

Furthermore, for any € > 0, we define x € R? as a (v, 6, ¢)-proximal Goldstein stationary point
(PGSP) if mingep, p(z) [|1Gyn (2, 9)|| < €. Specifically, we call a (7,0, €)-PGSP as (v, €)-PGSP,
defined by x € R® such that mingeop(z) |Gyn(z, 9)|| < e

Our proposed notions of PGSP for nonsmooth composite optimization problem generalize existing
stationary notions for the following special cases.

o For constrained optimization problem min,cq, F'(x), a special case of the nonconvex nonsmooth
composite optimization problem with h = hgq defined by Eq. , (7, 8, €)-PGSP reduces to
the (7, d, €)-generalized Goldstein stationary point (Liu et al.,2024), where the proximal operator
is reduced to the projection onto €. Furthermore, when h = 0, (v, 0, €)-PGSP reduces to (9, €)-
Goldstein stationary point (see DeﬁnitionE]) (Zhang et al.| 2020).

e When F is differentiable, (-y, €)-PGSP has simplified definition that |G [z, VF(x)]|| < cﬂ which
can be achieved by proximal gradient descent algorithms within finite-time (Ghadimi et al., 2016}
Reddi et al.,2016; [Li & Li, [2018)). Furthermore, when h = 0, (v, €)-PGSP reduces to e-stationary
point defined as « € R satisfying |G, [, VF(z)]|| < € which can be also achieved in finite time
by many first-order algorithms. In contrast, (-, €)-PGSP is intractable for our setting with Lipschitz
continuous and nondifferentable F', as will be shown later in Theorem Therefore, we aim at
(7, 9, €)-PGSP, a relaxed notion of stationarity, and will propose a zeroth-order proximal gradient
descent algorithm (Algorithm [T that achieves this point in finite time.

Our proposed notions of PGSP satisfy the following properties.

?For differentiable function F, we have F (z) = {VF(x)} (Makela & Neittaanmaki, |1992).
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Proposition 2. Suppose the function F : R® — R is differentiable and h : R* — R is a convex
function. Then, (v, 0, €)-PGSP has the following properties.

1. A (v,€)-PGSP is also a (v, 6, €)-PGSP.

2. If VF is L-Lipschitz continuous, then a (v,¢/(2L),€/2)-PGSP is also a (v,€)-PGSP, i.e.,
[Gynlz, VF(2)]]| < e

3. If x € RY satisfies ||Gynlx, VEs(2)]|| < € then x is a (v, , €)-PGSP.

Remark: In Proposition[2] items 1 and 2 imply that for L-Lipschitz smooth functions F, our notions
of (v, 8, €)-PGSP and (, €' )-PGSP are equivalent (for possibly different €, ¢’ > 0). Item 3 implies
that we can obtain a (7, d, €)-PGSP by solving min,cga F5(x), which is important for designing the
zeroth-order proximal gradient descent algorithm (Algorithm [TJ).

3.2 CONDITIONAL GRADIENT GOLDSTEIN STATIONARY POINT (CGGSP)

Note that the PGSP defined in the previous subsection relies on the stepsize . In this subsection, we
will define conditional gradient Goldstein stationary point (CGGSP), a notion of stationary point that
does not rely on the stepsize + and can be computationally cheaper.

Definition 6. For any convex regularizer h : R® — R, we define the linear minimization oracle
(LMO) of h at the gradient g € R® as follows.

Li(g) < argmin,cza [A(y) + (v, 9)]- 7

The LMO defined above always exist and is bounded as shown below.

Proposition 3. Under Assumptions Jor any ||g|| < G, the LMO ([7]) yields a non-empty set

Li(g) C Ba(z™,R) ¥ {z e R : |z — 2| < R

Linear minimization oracle (LMO) has been adopted to develop generalized conditional gradient
methods for composite optimization (Jiang & Zhang|, 2014} |Ghadimi, [2019). In the constrained
optimization min,cq F'() as a special case, LMO reduces to arg min, ., (y, g) used by the Frank-
Wolfe algorithm (Frank et al.||{1956; Lan & Zhou, |2016). Compared with the proximal operator @,
LMO can be computationally cheaper Juditsky & Nemirovski (2016)). We will also use LMO to
propose a computationally cheaper notion of stationary point as follows.

Definition 7. For any convex regularizer h : R* — R, we define the 5-regularized Frank-Wolfe gap
of h at point x € R and gradient g € R® as follows.

Walw.g) & max [h(a) — k) + (v — . —9)] " hia) b))+ 0~ =g) @

foranyy' € L1,(g). Furthermore, for any € > 0, we define x € R? as a (8, ¢)-conditional gradient

Goldstein stationary point (CGGSP) if min,cp, p(») Wi (w, g) < €. Specifically, a (0, €)-CGGSP is
also called an e-CGGSP, defined by x € R? such that mingeop () Wh(z,g) < €

Our proposed notions of CGGSP for nonsmooth composite optimization problem generalizes existing
stationary notions for the following special cases.

o For constrained optimization problem min,cq, F'(x), a special case of the nonconvex nonsmooth
composite optimization problem (1) with h = hq defined by Eq. , (6, €)-CGGSP reduces to the
(9, €)-Clarke Frank-Wolfe stationary point (Liu et al.,|{2024).

e When F is differentiable, e-CGGSP has simplified definition that | W}, [z, VF(z)]|| < ¢’ which
can be achieved by conditional gradient descent algorithms within finite-time (Jiang & Zhang, |2014;
Guo et al.,2022). In contrast, (-, €)-CGGSP is intractable for our setting with Lipschitz continuous
and nondifferentable F', as will be shown later in Theorem Therefore, we aim at (6, €)-CGGSP,
a relaxed notion of stationarity, and will propose a zeroth-order generalized conditional gradient
algorithm (Algorithm [2) that achieves this point in finite time.

Our proposed notions of CGGSP satisfy the following properties.

3For differentiable function F, we have F (z) = {VF(x)} (Makela & Neittaanmaki, |1992).
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Proposition 4. Suppose the function F : R — R is differentiable and h : R* — R satisfies
Assumption Then (8, €)-CGGSP has the following properties.

1. An e-CGGSP is also a (6, €)-CGGSP.

2. Suppose V F is L-Lipschitz continuous. Then a (¢/(2RL),€/2)-CGGSP is also an e-CGGSP, i.e.,
Wz, VFSZ‘)] <e

3. If v € R satisfies W[z, VFs(x)] < ¢ then x is a (6,€)-CGGSP.

Remark: Items 1-3 of Proposition |4| for CGGSP are analogous to items 1-3 of Proposition [2| for
PGSP. Specifically, items 1 and 2 imply that for L-Lipschitz smooth functions F', our notions of
(6, €)-CGGSP and ¢ -CGGSP are equivalent (for possibly different €, ¢’ > 0). Item 3 implies that
we can obtain a (0, €)-CGGSP by solving min,cra Fs(z), which is important for later designing the
zeroth-order generalized conditional gradient algorithm (Algorithm [2).

Finally, Theorem[I|below shows that for composite problem (I)) with general nonsmooth Lipschitz
continuous function F, (v, €)-PGSP and e-CGGSP are intractable. In contrast, (v, d, €)-PGSP and
(9, €)-CGGSP can be achieved in finite time, by two zeroth-order algorithms presented in the two
consequent sections respectively.

Theorem 1. Consider any T € N, d > 2 and any randomized algorithm A with access to a local
oracle of the objective function E]Then there exist functions F and h satisfying Assumptions |12}
such that $(0) —inf  cra ¢(x) < 2 but with probability at least 1 — 2T exp(—d/36), none of {x+ }1_,

generalized by A belongs to the set of (v, €)-PGSP or e-CGGSP for € € (0, ﬁ) and v € (0,0.1].

4 ZEROTH-ORDER PROXIMAL GRADIENT DESCENT (0-PGD) ALGORITHM

In this section we study a zeroth-order proximal gradient descent (0-PGD) algorithm, as shown
in Algorithm [I] The main algorithm framework is proximal gradient descent update (2) on the
composite optimization problem min, cga [Fs(2) 4 h(z)] that approximates the original problem (T)),
where the zeroth-order stochastic gradient estimator g; = V Fj(x;) is obtained using either minibatch
estimation (option G1) or variance-reduced estimation (option G2).

We first present the convergence results of Algorithm T]with minibatch estimation as follows.

Theorem 2 (Convergence of 0-PGD Algorithm with Minibatch Gradient Estimation). Implement

Algorithm |I| with Option Gl, stepsize v = . G(s\/g and constant batchsize By = B. Then under

Assumptions the output x 7 has the following convergence rate.

V2eGdl/4 16GVd
VTé VB

where Gpmin def min,epd[F(z) + h(x)]. Furthermore, we can obtain a (7,0, €)-PGSP by using
hyperparameters T = O(Gd*/?6~'e2), B = O(G?de™?) (see their full expressions in Egs.
and in Appendix@), which requires at most 2T B = O(G3d*/26~'e~*) function evaluations and
T = O(Gd"/?6e=2) proximal updates .

Ell|Gyn (g, VEs (x7)l] < VE[$(20)] — duin + 26G +

12)

Comparison with Constrained Optimization: The stochastic constrained optimization problem

mingeo{F(z) o E¢[Fe(x)]} on a convex and compact set €2 is a special case of the composition
optimization problem by using h = hgq defined in Eq. (2). [Liu et al| (2024) studies this
constrained optimization with also nonconvex, nonsmooth and G-Lipschitz continuous F', proposes
a stochastic projected gradient descent algorithm as a special case of our Algorithm I} and obtains
the function evaluation complexity result O(G*Rd>/?6='¢=*) to achieve a (v, J, €)-generalized
Goldstein stationary point as a special case of our (v, d, €)-PGSP (see Corollary 5.2 of (Liu et al.,
2024)). This complexity result requires {2 to be bounded with radius R and is higher than our
O(G3d?/25=1e~*) that does not require R. Our improvement is obtained by replacing their bound
Fs(zo)—Fs(z7) < G|lzo—27|| < 2GR with the tighter bound Fs (o) +h(zg) —Fs(zr)—h(zr) <
¢(IO) - ¢min + 26G.

*A local oracle means a quantity O 5 (z) (e.g. F(z), VF(x) + Oh(x)) that reveals local information about
the function values of F" and h around a certain point x € R®.
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Algorithm 1 Zeroth-order proximal gradient descent (0-PGD) algorithm

1: Inputs: Number of iterations 7, stepsize v > 0, batchsizes By, radius 6 > 0, period ¢ for
variance reduction.

2: Initialize: z, € R%.

3: for iterationst =0,1,...,7 — 1do

4 Obtain ii.d. samples {u; ¢ }2, ~ Uniform(Sy(1)) and {&; ;}5*, ~ P.

5 Obtain stochastic gradient estimation g; = V Fj(x;) by either option below.
6:
7 Option G1: Minibatch Estimation.

1 &

9=z > Gs(we,uig, i), ©))
ti=1
where g5 is defined by Eq. ({@).

8:

9:  Option G2: Variance-reduced Estimation.
10:  if ¢t mod g = O then

11: Obtain g; by Eq. (9).
12:  else
13: Obtain g, by the following variance-reduced estimation.
By
gt = gt—1 + E ; [gé(mtaui,t,gi,t) - gé(xt—laui,tvfi,t)]a (10)
where §; is defined by Eq. (@).
14:  end if
15:

16:  Update x; by proximal gradient descent as follows.

def . 1
Tyy1 = Prox,,(z¢ —yg:) = argming cg. [h(y) + %Hy —a + 791‘,”2}7 (11)

where the proximal operator prox., is defined by Eq. @
17: end for _
18: Output: x+ where T is uniformly obtained from {0, 1,...,7" — 1} at random.

Then using variance reduced gradient estimation, we obtain the following improved convergence rate
and complexity results of Algorithms [I]as follows.

Theorem 3 (Convergence of 0-PGD Algorithm with Variance Reduction). Implement Algorithm|[I]
with Option G2, stepsize v = batchsize By = Bg foranyt mod ¢q =0and By = By = q

2G (d+cVd)’
for other t. Then under Assumptionsm-@ the output w7 has the following convergence rate.

V2cGdl/4 16GVd
VTS VB

Furthermore, we can obtain a (v, J, €)-PGSP by using hyperparameters By = 1764dG?¢ 2, By =
q = 42VdGe ', T = O(Gds— e 2) (see their full expressions in Eq. (@) in Appendix@), which
requires at most 2By|T/q| + 4B1(T — |T/q]) = O(G?d*/26='¢=3) function evaluations and
T = O(Gdd~te=?) proximal updates @)

E[[|Gyn(zq, VFs(x7)] < VE[G(20)] = Gmin + 26G + (13)

Comparison with Existing Results: For stochastic nonconvex nonsmooth constrained optimiza-

tion mingcq{F(x) def E¢[Fe(x)]} as a special case, [Liu et al.| (2024) obtains function evaluation
complexity O(G3Rd>/26~'¢=3), higher than our O(G2d%/25~¢~3) (see their Corollary 5.4). For
unconstrained optimization min,cga F'(x), a smaller special case, |Chen et al.| (2023) uses vari-
ance reduction to achieve a (0, €)-Goldstein stationary point using variance reduction with also

O(G?d?/?§=1e~3) function evaluations that matches our complexity result (see their Theorem 1).
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5 ZEROTH-ORDER GENERALIZED CONDITIONAL GRADIENT (0-GCGQG)
ALGORITHM

In this section, we consider the case — - — -
where the proximal operator (3) is costly. Algorithm 2 Zeroth-order generalized conditional gradient

For example, when h(x) is a nuclear algorithm (0-GCG)
norm of regularizer, the proximal opera-  1: Inputs: Number of iterations 7', stepsize v > 0, batch-

tor requires full singular value decompo- sizes By, radius § > 0, period ¢ for variance reduction.
sition (Wang et al,2021a). The popular ~ 2: Initialize: x, € RY,

generalized conditional gradient method  3: for iterationst = 0,1,...,7 — 1 do

(Bredies et al 2005} Jiang & Zhang, 4.  Obtain i.i.d. samples {u; ;}*; ~ Uniform(Sy(1))
2014} Rakotomamonjy et al.l 2015 and {¢; t}fﬁl ~P.

Bach, 2015; Nesterov, 2018} |Ghadimi, 5. Opyain stochastic gradient estimation g; ~ V Fs(x;)

2019; |Guo et al., (2022} |[Ito et al., [2023)) by option G1 or G2 in Algorithmm

uses a cheaper linear minimization or- . Update z; using LMO as follows.
acle (LMO, defined by Eq. (7)) to re-

place the proximal operator. We pro- yi € £h(gt)ti§f arg min, cga h(y) + (g0, 9)], (14)
pose a zeroth-order generalized condi-
tional gradient method, using also two Topr = 2o+ (Y — o). (15)

options of the zeroth-order gradient es- 7. and for
timations, minibatch estimation (option g. Output: 5 where T is uniformly obtained from
G1) and variance-reduced estimation {0,1 T — 1} at random

I P .

(option G2), as shown in Algorithm 2]

We present the convergence rate and complexity results of Algorithm 2]in the following two theorems,
for the two gradient estimation options respectively.

Theorem 4 (Convergence of 0-GCG Algorithm with Minibatch Gradient Estimation). Implement

Algorithmwith Option G1, stepsize y = + \/Tcg\/gE[fb(xO) — Omin + 20G], constant batchsize

B; = B and initial point x satisfying ||xo — )| < R. Then under Assumptions the output
x7 has the following convergence rate.

cGvVd RGvVd
E[W},[IT,VFa(IT)H < R\/8 T(;[E 21\/§\F

Furthermore, we can obtain a (3, €)-CGGSP by using hyperparameters T = O(GR2d"/?6~1¢2)
(see its full expression in Eq. in Appendix @ B = 1764G?dR%e~2, which requires at most
2T B=0(G3R*d*/25~¢=*) function evaluations and T = O(GR?>d"/?5~'¢~2) LMO updates .
Theorem 5 (Convergence of 0-GCG Algorithm with Variance Reduction). Implement Algorithm 2]

1 5E[¢($0)_¢min+26G]

with Option G2, stepsize v = % \/ TC(adt207d)

B; = By = q for other t. The initial point x satisfies |zo — x| < R. Then under Assumptions
E}E’] the output x 7 has the following convergence rate.

[(;5(:170) - ¢1nin + 25G} + (16)

, batchsize B; = By for any t mod q = 0 and

E[W ez, VFiez) ] < 2# 2 D) g + 2061 + 252 (1)

Furthermore, we can obtain a (8, €)-CGGSP by using hyperparameters By = 676dR>G?¢ 2, By =
q = 26RGe'\/d, T = O(GR?d5~e~2) (see its full expression in Eq. in Appendix@), which
requires at most 2By | T/q| + 4B1(T — |T/q]) = O(G*R3d3/?6~€~3) function evaluations and
T = O(GR?dé~'e=2) LMO updates .

Comparison with Constrained Optimization: With minibatch gradient estimation, our function
evaluation complexity O(G>R*d/26~'¢=*) in Theorem {4{is more efficient than the complexity
O(G*R®d®/?5=1e~*) to achieve (6, ¢)-Goldstein Frank—Wolfe stationary point of the stochastic
nonconvex nonsmooth constrained optimization mingco{F(x) def E¢[Fe(x)]}, a special case of
our (4, €)-CGGSP of the composite optimization problem (Corollary 5.7 of (Liu et al., |2024)).
Using variance reduction, our complexity improves to O(G?R3d?/25~1e~?), which is also lower

than O(G3R4d%/25=1e=3) for ming e {F(z) < Ee[Fe(z)]} (Corollary 5.9 of (Liu et al., 2024)).
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6 EXPERIMENTS

We apply our zeroth-order algorithms to train a two-layer ReLu network r¢ (z) = Wao (W1£+b1)+ba.
Here, ¢ € R% is an input sample. The network parameters include the weight matrices (W, €
R4 %ds and W, € R%2%d1) and bias vectors (b; € R% and by € R?%). 2 € R denotes the total
parameter which is concatenated by b1, by and flattened Wy, W5, so the total dimensionality is
d = dide + didy +dy +dy. 0 : R4 — R% js the widely used ReLu activation function which
maps each entry u to max(u, 0).

We select d¢ = 5, dy = 4 and da = 2 which imply d = 34, and generate the underlying sparse
parameters 2* € R? by randomly selecting half of the entries to be 0 and generating the other half
from standard Gaussian. Then we construct the binary classification dataset {(&;,y;) }1.; with sample
size N = 1000, where the inputs &; € R® are i.i.d. standard Gaussian, and the label y; = 0 if the first
entry of f¢, (z*) € R? is larger, otherwise y; = 1. Then we train the regularized ReLu network via
the following composite optimization problem.

N
: 1 A2
it 6(0) = 7 3 e (@)l + el + 3 (18)
i=

This can be seen as an instance of the problem , where the main part F'(z) = 4 Zfil lre, (x), ys)
denotes the average cross-entropy loss between the prediction r¢, () and the true label y;, and is
nonsmooth due to the ReLu activation o. In the convex regularizer h(z) = \i||z||1 + 22 ||z(|3, we
select Ay =Xy =0.01, ||z||; induces sparse parameters and ||z|| controls the parameter magnitude.

We implement our Algorithms [T] and 2] and for each algorithm we test both gradient estimation
options, G1 (minibatch) and G2 (variance reduction), all with radius 6 = 0.001. For both algorithms
with option G1 we select batchsize 500 and run 100 iterations. For both algorithms with option G2
we run 523 iterations, start each epoch of 10 iterations with batchsize 500, and use batchsize 50 for
the rest iterations. We use fine-tuned stepsizes 0.005 for 0-PGD with G1, 0.001 for 0-PGD with G2,
5 x 1075 for 0-GCG with G1, and 10~? for 0-GCG with G2. The experiment is conducted on Python
3.9 using Apple M1 Pro with 8 cores and 16 GB memory, which costs about half a minute.

At each iteration ¢, we evaluate the training objective function ¢(x;) (Eq. ) as well as the
classification accuracies on both the 1000 training samples and the 1000 heldout test samples
generated in the same way as that of the training samples. In Figure[I] we plot these metrics VS the
function evaluation complexity (the total number of function evaluations up to each iteration), which
shows that all the algorithms converge well with over 90% accuracy on both training and test samples.
In particular, compared with minibatch gradient estimation (option G1), after improving gradient
estimation with variance reduction (option G2), both algorithms 0-PGD and 0-GCG converge faster.

2.5 —+— 0-PGD, G1

E) 90
—— 0-PGD, G2
2.0 —— 0-GCG, G1 80 80
0-GCG, G2 70 —— 0-PGD, G1 0 0-PGD, G1

—— 0-PGD, G2
—— 0-GCG, G1

—— 0-PGD, G2
—— 0-GCG, G1

o
o

Training Objective
Training Accuracy (%)

3

Test Accuracy (%)

w = ~

g 3

—— 0-GCG, G2 —— 0-GCG, G2
40 40
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Function Evaluation Complexity le4 Function Evaluation Complexity le4 Function Evaluation Complexity le4

Figure 1: Experimental results on regularized ReLu network.

7 CONCLUSION

In this work, we have proposed two new notions of stationary points for stochastic nonconvex
nonsmooth composite optimization, the (-, , €)-proximal Goldstein stationary point (PGSP) and the
(6, €)-conditional gradient Goldstein stationary point (CGGSP). We have also proved that the zeroth-
order proximal gradient descent algorithm (0-PGD) and the zeroth-order generalized conditional
gradient algorithm (0-GCG) converge to a (v, d, €)-PGSP and a (J, €)-CGGSP respectively, and
obtained the convergence rates and complexity results. The experimental results on regularized ReLu
network show that these algorithms converge well.
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A RELATED WORKS

Finite-time Convergence Results on Nonconvex Nonsmooth Optimization: Only recently are
finite-time convergence results obtained on nonconvex nonsmooth optimization, a special case of our
nonconvex nonsmooth composite optimization (IJ). Davis & Drusvyatskiy| (2019); Davis & Grimmer]
(2019) obtain finite-time convergence for stochastic optimization of a p-weakly convex function.
Zhang et al.| (2020) obtains the first dimension-free convergence result to achieve a (J, €)-Goldstein
stationary point, which involves impractical subgradient computation. Such subgradient computation
is removed by (Davis et al.,[2022; Tian et al., [2022) using perturbations. Jordan et al.| (2023)); Tian &
50| (2024) prove that deterministic algorithms cannot obtain dimension-free convergence for non-
convex nonsmooth optimization. (Cutkosky et al.|(2023)) obtains the optimal complexity result using
online learning.

Nesterov & Spokoiny| (2017)) obtains the first finite-time convergence result of zeroth-order methods
for stochastic nonconvex nonsmooth optimization. Lin et al.|(2022) designs zeroth-order algorithms
with provable finite-time convergence to (9, €)-Goldstein stationary point. Their oracle complexity
is improved by (Chen et al., |2023) using variance reduction, and further improved to the optimal
complexity O(dd~te~>) by (Kornowski & Shamir, 2024) using the online learning technique in
(Cutkosky et al., [2023]).

Proximal Gradient Methods: Various proximal gradient methods are very popular for various
composite optimization problem (I). For example, [Fukushima & Mine| (1981) derives asymptotic
convergence of proximal gradient method for smooth composite optimization problem E| under

SHere, smooth composite optimization means the major part F' of the composite optimization problem (1)) is
Lipschitz smooth.
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both convex and nonconvex settings. |Attouch et al.| (2013)) analyzes the convergence of multiple
variants of inexact proximal algorithms on smooth nonconvex composite optimization satisfying
Kurdyka-+t.ojasiewicz geometry. (Ghadimi et al.|(2016)) analyzes the convergence of proximal gradient
method for non-stochastic smooth composite optimization, and that of the two algorithm variants
with minibatch and zeroth-order gradient estimations for stochastic smooth nonconvex and convex
composite optimization problems. |Beck & Teboulle| (2009) applies Nesterov’s acceleration to
proximal gradient methoﬂ and uses backtracking technique to estimate Lipschitz constant, for
smooth convex composite optimization. Nitandal (2014) combines Nesterov’s acceleration and SVRG
variance reduction in proximal gradient methods and thus improved convergence rate for stochastic
smooth convex composite optimization. (Li & Linl 2015} |Ghadimi & Lanl, 2016 |Li et al., [2017)
study accelerated proximal gradient (APG) algorithms for nonconvex smooth composite optimization.
Stochastic proximal gradient methods have been accelerated by variance reduction techniques, such
as SVRG (Reddi et al.,[2016; |Li et al., 2017), SAGA (Reddi et al.,[2016), SARAH (Pham et al., 2020)),
and adaptive APG algorithm with Spider variance reduction. Proximal gradient methods have also
been extended from Euclidean distance to Bregman distance. For example, Bregman distance based
proximal gradient method has provable convergence results for Bregman distance based relatively
smooth composite optimization under both convex (Bauschke et al., 2017) and nonconvex settings
(Latafat et al., |2022; [Wang & Han, 2023). Ding et al.| (2025) obtains the optimal sample complexity
results of both Bregman proximal gradient method and its momentum variant for smooth adaptable
composite optimization. Laude & Patrinos| (2025) analyzes an anisotropic proximal gradient method
for anisotropic smooth composite optimization.

Conditional Gradient Methods: [Frank et al.|(1956) proposes conditional gradient method (also
known as Frank-Wolfe algorithm) for quadratic programming. Lan & Zhou| (2016) extends conditional
gradient method to convex optimization by skipping gradient evaluations, and achieved optimal
computation complexity results. Bredies et al.| (2005) proposes a generalized conditional gradient
method which extends to composite optimization, the focus of this work, and obtains asymptotic
convergence result for nonconvex setting. Since then, generalized conditional gradient methods have
been applied to various composite optimization problems. For example, Jiang & Zhang|(2014) studies
nonconvex and nonsmooth composite optimization with block-structure. [Bach| (2015); Nesterov
(2018])) focus on general convex composite optimization problems. [Harchaoui et al.|(2015)) studies
norm-regularized convex optimization. [Rakotomamonyjy et al.| (2015]) obtains the non-asymptotic
convergence rate of generalized conditional gradient method for convex composite optimization.
Bach| (2015) shows that the non-projected subgradient method for the primal convex composite
optimization problem is equivalent to the conditional gradient applied to the dual optimization
problem. [Yu et al.| (2017) improves generalized conditional gradient method for sparse optimization
problems with convex gauge regularizers. (Ghadimi (2019) focuses on smooth and weakly smooth
nonconvex composite optimization problems. [Ito et al.| (2023) studies weakly convex composite
optimization under Holder condition. (Guo et al.[(2022)) provides a unified convergence analysis for
zeroth-order conditional gradient methods on both stochastic constrained and composite optimization
problems, under both convex and nonconvex settings. Recently, |Chen et al.| (2024); |Assuncao et al.
(2025)) extends conditional gradient methods to multiobjective composite optimization. See Braun
et al.|(2022) for a survey of conditional gradient methods.

B EXPERIMENTS ON REGULARIZED RESNET

We train a regularized Resnet-20 (He et al., 2016 with cross-entropy loss for classification task on
the Cifar 10 image data (Krizhevsky, [2009), using our 0-PGD algorithm (Algorithm E]) and 0-GCG
algorithm (Algorithm [2)). In particular, we use the objective function where &; denotes an
image-label pair in the Cifar 10 training set, and we select A\; = Ay = 0.01.

We implement our Algorithm [T] (0-PGD) and Algorithm [2] (0-GCG), and for each algorithm we
test both gradient estimation options, G1 (minibatch) and G2 (variance reduction), all with radius
0 = 0.001. For both algorithms with option G1 we select batchsize 5000 and run 500 iterations.

SProximal gradient method is called forward—backward splitting in (Attouch et al.l[2013).

"Proximal gradient method is called iterative shrinkage-thresholding algorithms (ISTA) in (Beck & Teboulle!
2009)

*The Resnet-20 code comes from https://github.com/sarwaridas/ResNet20_PyTorch/b
lob/main/resnet_cifarl0_TRIAL.ipynb
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Figure 2: Experimental results on regularized Resnet-20.

For both algorithms with option G2 we run 2615 iterations, start each epoch of 10 iterations with
batchsize 5000, and use batchsize 500 for the rest iterations. We use fine-tuned stepsizes 0.005 for
0-PGD with G1, 0.001 for 0-PGD with G2, 5 x 10~° for 0-GCG with G1, and 10~ for 0-GCG with
G2. The experiment is conducted on Python 3.11.5 in Red Hat Enterprise Linux 8.10 (Ootpa), using
1 RTX A6000 GPU (48GB memory) and 4 CPU cores (20GB memory).

At each iteration ¢, we evaluate the objective function ¢(x;) (Eq. ) on the Cifar-10 training
data. In Figure we plot ¢(z;) VS the function evaluation complexity (the total number of function
evaluations up to each iteration ¢), which shows that Algorithm [I] (0-PGD) converges well while
Algorithm [2] (0-GCG) descents on the objective very slowly. When tuning hyperparameters for
0-GCG, we found that 0-GCG ascents and diverges even with slightly larger stepsizes, and descents
slightly faster with fine-tuned stepsizes when using larger batchsizes (e.g. 50000 for option G1
and start of each epoch of option G2, and 5000 for the rest iterations for option G2, which is time
consuming). This phenomenon can be largely explained by comparing the theoretical batchsizes
required by these algorithms, as shown in Table 2] below, which indicates that the batchsizes required
by 0-GCG depend on the regularizer-dependent radius R > 0 defined by Assumption [3] while 0-PGD
does not depend on R. Therefore, when R is very large, 0-PGD can be much more efficient than
0-GCG.

Table 2: Batchsizes required by zeroth-order proximal gradient descent (0-PGD) and zeroth-order
generalized conditional gradient algorithms (0-GCG).

0-PGD (Algorithm 1] 0-GCG (Algorithm 2))
Batchsize B for option G1 O(G?¢=2d) (Theorem[2) ~O(R?G?¢~2d) (Theorem 4
Large batchsize By for option G2~ O(G?¢=2d) (Theorem[3) O(R?G%¢~2d) (Theorem |5
Small batchsize B; for option G2~ O(Ge~'v/d) (Theorem[3) O(RGe'v/d) (Theorem|5

17
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C SUPPORTING LEMMAS
Lemma 2 (Proposition 1 of (Ghadimi et al., 2016)). For any x, g, g’ € R% ~v > 0 and proper convex

function h, we have

G n (2, 9") = Gyn(z, 9)l < llg" — gl (19)

Lemma 3 (Lemma 1 of (Ghadimi et al., [2016)). For any x,g € R% ~ > 0 and proper convex
function h, we have

(9, Gy (@, 9)) > |Gon(z, 9)|I” + %[h[proxvh(x —79)] — h(z)]. (20)
Lemma 4. For i.i.d. random variables {X;}Y |, we have
1 & 21 1 1 )
El|| 5 X - B | = FEIX - EX ] < FE[IX7] e
Proof.
1 2
S(ESSEmy
1 N N
:E[ -3 (X - E(X)), X, E(X])ﬂ
i=1 j=1
1 N 1 N N
=3 BN —EX)IP]+ 55 > > E[(X - (X)), X; — E(X;))]
i=1 i=1 j=1,j#1
@ 1 N A
= 2 EIX —EC)IP + 55 D0 D) [(BIXG — E(X)] E[X; — E(X;)])]
i=1 i=1 j=1,j#1
 ZE(X) — B0 )
:%E[Qﬁ - E(X1), X1 — E(X1))]
=[P — (B(X0), X1) — (X1, E(X0) + [EGK)I
1 2 2
= EIX I = IE(X1)[]
< el @)

where (a) uses the fact that {Xi}fil are i.i.d. samples, (b) proves the "=" of Eq. , and (c) proves

the "<" of Eq. (ZI). O

Lemma 5 (Lemma E.1 of (Lin et al.l 2022)). Suppose Assumption|l|holds and & ~ P and u €

Uniform(S4(1)) (uniformly distribution in S4(1) := {y € R? : ||y|| = 1}). Then for any x € R,

the stochastic gradient estimator (EI) satisfies E[gs (x;u, €)|x] = VFs(x) and E[||gs(z; u, &) ||*|z] <

16v2mdG>.

Lemma 6. Suppose Assumptionholds and we have i.i.d. samples {u; ;}2, ~ Uniform(S4(1))

and {&; Y2, ~ P. Then the stochastic gradient estimator (@) satisfies E[gi|z:] = VFs(x¢) and
2

E[llg: — VFs(r)|?|z,] < 16v2dC"

Proof.

By By
1 1 a
Elg|a:] = E[E Zgé(xtaui,tagi,t) fft} =B ZE[gé(xtaui,tagi,tﬂmt] w VEs(zy) (23)
i=1 1=1
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where (a) uses Lemma 3]

1 & 2
E[llge — VFs(x4)|1?| 2] :]E{HE Z[Qa(xt,uz‘,t,fi,t) - VFé(xt)H H ‘Jﬂt}

< —E[l|gs(ze, u1e, &1,0)[1%]
t

(2) 16/27dG?
== 3B
where (a) uses E [g(;(xt, Uit, i) |xt] = VFjs(x;) (based on Lemma and Lemma and (b) uses
Lemmal[3] O

Lemma 7 (Lemma A.5 of (Liu et al.,[2024). Implement Algorithm[I|or[2]with Option G2. Select
batchsize B; = By for any t mod q = 0 and By = By for other t. Then under Assumption[I] the
stochastic gradient estimation g; =~ NV F5(x) has the following error bound.

P e, 16v2mdG?
g = gl + —5—

(24)

E[llg: — VFs(@)]?] < 25)

~ 0%°B;

j=n¢q+1

where ny = |t/q|. Specifically, when t mod q = 0 (i.e., t = n4q), the upper bound above reduces to

161/27dG?
Bo :

Lemma 8. Implement Algorithm 2| with either Option G1 or G2, and the initialization x satisfies
llzo — 2™ || < R. Then all the points x;,y; generated from Algorithmsatisﬁes |z — ™| <R
and ||ly; — M| < R.

Proof. Based on Proposition yi € Ln(g:) satisfies ||y, — M| < R.

We will prove ||z; — 2™ || < R by induction. Suppose ||z — ™| < R for a certain natural number
k. Then the update rule implies that

e — @™ = (1= )zi +yyull < (1= )l +vllyall < R.
Since ||zg — " || < R, we have proved that ||z; — z(®|| < R for all ¢. O

D PROOF OF PROPOSITION [T]

Since h is a proper and closed convex function based on Assumption [2} the sub-level set A =
{z € R%: ¢(x) < ¢p(2M)} is a closed set in which A is continuous, based on Corollary 10.1.1 of
(Rockafellar, 1970).

For any = € R? satisfying ||z — 2("|| > R, we have

a b
o(z) - o) L F(z) - Fa®) + hz) - h@®) S ~Gllz — 2®|| + Gl — 2| = 0,

where (a) uses the objective function @), (b) uses Assumption@ and the G-Lipschitz continuity of F'

(based on Assumption|1). Therefore, A C By(z™, R) % {z € R : ||z — 2™ < R},so Aisa

compact set. Note that ¢ = F' + h is continuous in A, so arg max, . 4¢(x) is non-empty. Based on
the definition of A, arg max, cps = argmax, ¢ 46(z) C A C By(z™, R).

E PROOF OF PROPOSITION

Proof of Item 1: Item 1 is directly implied by Definition[S|and 0 F (z) C 95F ().

Proof of Item 2: Since + € RY is a (v,¢/(2L),¢/2)-PGSP, there exists ¢ € O;F(x) =
conv{VF(y) : |ly — z|| < 57} such that ||G,,(x,g)|| < §. Therefore, g can be written as the
following convex combination of gradients

g= Z arVEF(zy),

k=1
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where oy, > 0, 301 ap = 1 and x5, € R? satisfies ||z, — z|| < 5%. Then, we prove that z is a
(7, €)-PGSP as follows.
1Gnlz, VE ()]

1
=—||z — prox. [z — YV F(z)]|
5
1 1
=;Hw — prox.,(z —v9)|| + ;Hproxyh(:v —79) — prox. [z — YV EF(z)]]|
(a) 1
<Gy (z, )|l + *Il(m —79) =[x —yVF(x)]|

g Hf: WV E(z1) VF(x)]H
k=1

6 n
<< Z x| VF(z) — VF ()|

where (a) uses Lemma[2] and (b) uses the L-Lipschitz continuity of VF.
Proof of Item 3: Item 3 is directly implied by Definition [5|and item 3 of Lemmal[l]

F PROOF OF PROPOSITION 3]

We will prove that Proposmon [is a special case of Proposition [I] Specifically, in the original
objective function (IJ), let f¢(x) = ((z, g) that does not depend on the stochastic sample £, which is
L¢-Lipschitz where Ly = G and thus satisfies Assumptlonm Therefore, by applying Proposition
3l we conclude that argmin, cpa[h(y) + (y,9)] = argmin,cga¢(x) is a non-empty subset of

Bd<.7;‘(h), R)

G PROOF OF PROPOSITION 4]

Proof of Item 1: Item 1 is directly implied by Definition [7/jand 0 F(z) C 95 F ().
Proof of Item 2: If + € R? is an (¢/(2RL), ¢/2)-CGGSP, then based on Deﬁnition there exists
g € 05 F(x) such that

max [h(z) — h(y) + (y — 2, —g)] < (26)

yeRd

N

As F is differentiable, g can be written as the following convex combination of gradients

g= z apVF (zy),

k=1

where oy, > 0, >°)_; oy, = 1 and z, € R? satisfies ||z —
follows.

2RL

—

Wilz, VF(2)] Ch(z) - hiy) + y — z, -V F(x))

=h(z) — hy) +(y —z,—g) +{y — 2,9 — VF(x))
<h(z) = h(y) +{y—2,—g) + ly — 2| - [lg = VF ()|

Qe +RHzn:ak VF(zy) — VF(z )]H
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6
< +RY o VP(my) - VF(@)]
k=1
5 RZakLH:ck — |
@We e
= 5 + 2 =€

where (a) holds for any y € L}, [z, VF ()] based on Egs. (8) and (7), (b) uses Eq. Proposmonl
and Y.}, ap = 1, (c) uses the L-Lipschitz continuity of VF, and (d) uses ka - x|| < 557 and

Zk:l ap = 1.

Proof of Item 3: Item 3 is directly implied by Definition[7]and item 3 of Lemmal}

H PROOF OF THEOREM [I]

The proof of Theorem 4.7 in (Liu et al., 2024)) has designed a function Pﬂ that satisfies Assumptlon
that F' is Lipschitz continuous, and satisfies F° (0) — inf,eq F(x) < 2 where = [-100,100]% is a
convex and compact set. The conclusion of their Theorem 4.7 states each point x; generated from the
algorithm A satisfies the following inequalities for v € (0,0.1].

1 1
min | —||lx — ¥(xe, g, > —, 27
min [ = v@ee )] = s @)
min  max(u — Iy, > —, 28
gEOF (z1) u€Q< 6 =9) 12 (28)
where
. 1
¥(r,9.7) = argmin,cq (9,9 + 5 Iy — #l?). 29)
Select b = hg, defined by Eq. (2)), which yields the following equations.
(a) . 1
Prox.;,(x: — yg) =argmin,cgn [hn(y) + 3 ly — 2 + vgllz]
(b) . 1 (c)
argmin,co [ ly — > + 0.y~ 2] < wlwng ). GO
. (d) .
min Wy (z,9) = min max |hqo(xzy) — h 4+ (y — x4, —
gEDF (2,) h(z1: 9) gE@Fl'(zt)yE]R)’g[ a(w:) o(y) + {y = 2, ~9)]
(®) . e 1
> min max(y — x, —g) > ——, (31)

gEIF (1) YEQ 44/2

#(0) — inf ¢(x) = F(0) + ha(0) — inf [F(w) + ha(a)] £ F(0) - inf F) <2, (D)

where (a)-(e) use Egs. (3), ), (29), (8) and (28) respectively. Therefore,

(a) . 1
min [1Gn(re )| < min [~ prox, (e —19)1]

gEOF (z gEIF (x¢
(b) [ }(C) 1
= min |—|x Tty 7, > —, 33
min [l = vt gl 2 1o 33

where (a) uses Eq. (6), (b) uses Eq. (30) and (c) uses Eq 27).
Eq. 1mphes that a; is not a (v, €)-PGSP for e < f Eq. (31) implies that x; is not an e-CGGSP
for e < 1 f These implications along with Eq. l| conclude the proof.

This function is denoted as F, in (Liu et al., [2024).

21



Under review as a conference paper at ICLR 2026

I PROOF OF THEOREM 2]

Since V Fj is ch/E -Lipschitz continuous based on item 2 of Lemma we obtain that

cGVd
Fs(w11) <Fs(xy) + (VFs(24), Teg1 — 20) + 5 21 — ]|
a CG 2\/&
CEs(@e) = AV Fs(0), Gon(w, 90)) + 5 |G (a1, 90) |

Gy*Vd
=Fy(we) = 1ge, Gon(we, 90)) + (g0 = V(). Gon(1.90)) + %ngwh(xt,gan?

(b) 1
<Fs(ze) — Hg'yh(xtagt)HQ + ; [h[prox'yh(xt —Y9¢)] — h(fft)]}
+ (g0 = VEs(0). Gon (w0, 90) + 3 190 (@0, 90)

DFy(ar) - %Hgvh(xt»gt)\\z + h(@e) — h(@e1) +v(ge — VFs(x1), Gynlze, VEs(24)])
+ (gt = VEs(1), Gyn(@e, 9t) — Gynlwe, VEs(34)])

<Fs(wr) = 311Gy (e, 90)|* + hlae) = h(wesn) + 1o = VEs(r). Gonlar, VEs(ae)
+9llge = VEs(@o)ll - [|Gyn (e, 90) — Gonlae, VEs(20)]

(d)
< Fs(xt) — %H%h(%ﬂtﬂ\z + h(ze) — M@ep1) +v(9¢ — VFs5(xt), Gynlze, VFs(24)])
+v)lge — VEs(z4)]||?,

where (a) and (c) use the update rule that 441 = prox.;, (z¢ — vg9¢) = Tt — YGyn (¢, g¢). (b)
uses Lemma|3|and the stepsize v = ” G L and (d) uses Lemma Rearranging the inequality above,
and taking expectation, we obtain that

TE(IG.n (e, 0) 2] SE[F5(a1) + h(ee) — Fi(wera) — h(oes)

+vE[{g: — VEs(x¢), Gyn e, VFs(20)])] +vE[llge — VFs(z0)]?]

16/ 2mdG?
By ’

where the second < uses Lemma [6] Rearranging the inequality above and summing over ¢ =
0,1,...,7 — 1, we have

<E[Fs(z:) + h(xs) — Fs(xe11) — h(xeq1)] +

1 T-—1
E[l|G-n (a7 902 =7 D EllGon s, 90) )
t=0

1 = 12 32v/27dG?
<7 2 [FEIFs(@) + hie) = Filevns) ~ haen)] + Vaie]
(a) 2 32v/27dG?
< ﬂE[Fa(xo) + h(zo) — Fs(xr) — h(zr)] + WTW
(d) 2
& 2OV P ay) + h(ao) — Flar) — hlar) + 256] + 22200
(c) 2
Q2O 05) = i +206) + 22V en

where (a) uses constant batchsize By = B and stepsize v = fﬂ/&’ (b) uses item 1 of Lemma , (c)
(12

def def . .
uses ¢ = F + g and ¢ppiy, = min,cra ¢(). Therefore, we can obtain the convergence rate (12)) as

follows.

E[|Gyn(z7, VEs(x7)] <E[l|Gyn (x5, 97)I1] + Ell|Gyn (w7, VFs(25)) — Gyn(zz, 97)|]
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(%)\/Emgvh(wf’gf)\\?] +/ElIVEs () — g711?]

® \/%G\/& 32v27dG? \/ 16v/2rdG2
- B B

E[¢(20) — dmin + 20G] +

TS
(©)/2cGd/4 16GVd
<— ]E — @min + 25G + 9

where (a) uses Lemma [2| (b) uses Eq. l) and LemmalEl, () uses Va+b < va+ Vb for any
a,b > 0and v/32v21 + V16v27 < 16

Furthermore, we can select the following hyperparameters.

8cGd

T == [Elé(x0)] — bumin + 26G] = O(Gd'/*571e ), (35)
2
B :% = O(G%de™?). (36)

Then substituting the hyperparameters above into the convergence rate (I2)), we obtain the following
bound, which based on item 3 of Propositionimplies that there exists at least one (v, d, €)-PGSP in

{zhisy!

i E[IGn (e, VEs(@)l) < ElIG (o, VEs(az) ) <

J  PROOF OF THEOREM [3]

Since VF5 is %—Lipsohitz continuous based on item 2 of Lemma we obtain that

cGVd

T(;thﬂ - $t||2

a G
O Fy(a1) = 1V Fs(ar), Go(an, ) + E2

Fs(zi41) <Fs(xy) + (VFs(xt), Tep1 — x4) +
G (s 9011

G
=Fy(@e) = 7(g0: Gon (w1 90)) + (g0 = VEs(x1), Gon 1, 90)) + = fngwh(xt,gt)u

() , 1
< Fy(a) =1 {I1Gn (e g0l + - [lpros, e = v90)] = h(a)] |

cG \f
+ Llge — VEs@I + (L4 ) 16,0000
c CG \/3
DFs(a) + (i) = h@es) + 3llg = VEs(@)|? + (F32 = 3 ) 1Gn(ar )1,

where (a) and (c) use the update rule that z; 1 = prox,yh(:nt —79t) = Tt — YGyn(Tt, gt)s
and (b) uses Lemma [3]and the inequality that (u,v) < (|jul|> + [[v]|?)/2 for u = g, — VF5(x:),
v = Gyn (24, g¢). Rearranging the inequality above, and taking expectation, we obtain that

c 2
(2- G;Tﬂ)mngwh(xt,gt)ll?]

<E[Fs(x¢) + h(zt) — F5(we41) — h(@e41)] + l]E[Hgt — VFs(x)|?]

(a) Vd2G? & 8 \/ dG2
<E[Fj(2:) + h(ze) — Fs(xi11) — h(wes1)] 3 Ellay -z |?) +

202B,
Jj=ntq+1
where (a) uses Lemma([7] Summing the inequality above over t = 0,1,...,7 — 1, we have
~ cG7 Vd
(3 -5 )ZEH% 71, 90)|17]
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’yd G? 8T'y\/ 21dG?
<E[Fs(0) + h{wo) = Fy(ar) = h(wr)] + 55 Z Z lj — 2y ]| + ———
t=0 j=n.q+1

CEIP(20) + h(z0) — Flr) — hlzr)] +26G

3d2G2T Lt 8T/2mdG?
LGS O g + S
t=0 j=n.q+1 Bo
®) g3 d>G? = 8Tv/21dG?

<E[¢(z0) — Pmin] + 26G + E[l|Gn (s, g0)I°] + (37

202By =

where (a) uses t < (n; + 1)q (n, = [t/q]), item 1 of Lemma [1] and the update rule that

def def .
Tjp1 = prox., (r;—vg;) = v;—vGyn(z;, g;), and (b) uses ¢ = F4gand ¢pin = mingcpa ().
Rearranging the inequality above, we obtain that

[||gwh($f=9f)||2]

T-1
=7 2 EllG (ool

By

1 /v cGy*Vd  qy3d?G?\ -1 8Ty 2mdG?
<=l5 - - E — Pmin 2 -
<z(z-"% 3525, ) [EB0)] = un + 266 + =20
16G(d d 64/ 2mdG>
OGNV (51 )] — i + 266] + SV 2T (38)
T By
where (a) uses the following inequality with stepsize v = m and batchsize B; = ¢, and (b)

uses stepsize vy = m.

Y cGy2Vd ¢y d2G? _7(1 cGyVd ngsz)
=51~ _

2 25 202B B 52
5 (1 B eVd B d? )
G(d + cVd) 2(d+cvd)  A(d+ cVd)?
>0 (1—1—1):76 .
T4G(d + eVd) 2 4/ 16G(d+ cVd)

Then we have the following bound.
E[|Gyn (25, VFs(x7))]1%]
<OE[||Gn (27, 97) 12 + 2E[|Gn (25, VEs(25)) — Gy, 97) 1]

@)
<2E[||Gn (5, 97)12] + 2E[|V Fs(25) — 97]1%]
9 T—1
=7 > [EllGwn (e g)|I°] + E[IVEs(z0) — g0]
t=0
o PG , . 16V21dG?
e I R D R
=0 Jj=niq+1
(C) 2 T—1 2d2G2 2 T—1 (nt+1)q
ST E[lIGn (e, g2)]1?] Z Z E[||Gyn(xj, 95)1%]
t=0 t=0 j=nq+1
2 2d2G%y%\ — )
S(T + W) Z E[||Gyn (2, g:)[I7]
t=0
(d) d? 16G(d + c¢V/d) 64+/27dG?
<[(2 E — i 2 _—
< g T T (B - dmin + 206] + =g
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40G (d d 160v/27dG?
s% [El(z0)] — Gmin + 206] + JB?

where (a) uses Lemma (b) uses Lemma (c)uses t < (ny + 1)(], By = q and the update rule that
xzj =xj_1 + vGyn(2j, g;), and (d) uses Eq. and vy = 6@V Therefore, by taking square
root of the inequality above, we obtain the convergence rate (ﬂiﬁb as follows.

El|Gn (g, VEs (27))]l] S\/E[ngh(m@VFs(fEf))IIQ]

s\/ A0CED) [514(20)) — o + 256 + 160@? dG?
VA0G (Vd + \/ed'/*) 21GVd
< Niw: VE[@(20)] = dumin + 20G + 5

where the final < uses v/160v/27 < 21 and vVa + b < /a + Vb for any a,b > 0.
Furthermore, we can select By = 1764dG?¢~2, By = q = 42v/dGe ! and the following T'
T = 3206~ '€ 2G(d + eVd) [E[¢(20)] — dmin + 20G] = O(Gds~e7?). (39)

Then substituting the hyperparameters above into the convergence rate (I3)), we obtain the following
bound, Wthh based on item 3 of Proposmonllmphes that there exists at least one (v, d, €)-PGSP in

{xt} t=0
s min E[|Gyn(ar, VEs(@))ll] < BllG oz, VEs(az))) <

K PROOF OF THEOREM [

Denote 3, € L[V Fs5(x¢)] 4 arg min, cga[A(y) + (y, VFs(x¢))]. Then the d-regularized Frank-
Wolfe gap (8] can be expressed as follows.

Walee, V()] < max [h(ae) = h(y) +(y = w0, =V Fs ()]

=h(ws) — h(ys) — (Y — 24, VFs(21)). (40)
Then we have

(VFs(x0),ye — x0) =(VF5(20), Y0 — ) + (VEs(24), y¢ — Yt)
(VFs(xt), Yt — we) + (9, Yt — > (VFEs(xt) — 9t, Yt — Ye)
(a)

<AV Fs(x), 5 — x0) + M(e) — h(ye) + [[VEs(xe) — gellllye — el

b)
< = Wiz, VEs(x4)] 4 h(ze) — h(ye) + 2R|[V Fs(2¢) — g4 (41)

where (a) uses h(y) + (yi, 9:) < h(G:) + (Jt, g¢) based on the update rule (14), and (b) uses Eq. (@0)
as well as ||y, — 2| < Rand ||g; — ™| < R (based on Propositionand item 2 of Lemmal 1)

—~

Then since VFj is CG(;—‘/E—Lipschitz continuous based on item 2 of Lemma we obtain that

F5($t+1)

<Fy(x0) + (VF5(20), 041 — 20) + 2:5[||$t+1 — x|

@ Fi(a) + WV (@) e — ) + CG” e = 2

(%)Es(xt) — YWhlze, VFs (1)) +vh(2e) — vh(ye) + 2Ry V EF5(2e) — gl + CG\/(E;ifSR)%Q
(2F5(xt) = Whlwe, VEs (1) + h(we) — h(@e41) + 2RY||[VFs(2¢) — g + Wﬂ7
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where (a) uses the update rule (I5), (b) uses Eq. (#1) and Lemma [8] and (c) uses h(z;41) <
(1 — ~y)h(z;) + vh(y,) which holds for convex function h and x4 obtained from the update rule
(I5). Rearranging the inequality above and averaging it over ¢t = 0,1,...,T — 1, we obtain the
convergence rate (T6) as follows.

E[Wh[$T7VF5($T)]]

1 T-1
:T Z Wh[l‘t, VF(s(SCt)]
t=0
! 2R 2eGV/AR?
SﬂE[Fg(xo) + h(wo) = Fs(wr) = h(zr)] + = ; E[||VFs(z) — g:|] + *
(a) 1 9 T-1
< EE[F(xO) + h(zo) — F(xr) — h(zr) + 20G] + ?R ; \/]E[HVFg(xt) — gt||2]
2
N 2cG\{S&R v @)
®) 1 d02 cGﬁR%
< 7, El9(0) = Gmin +20C] +—Z 5
8cG\F 21RGVd
SR\/ TS [(ﬁ(l‘o) - ¢min + 26G] + T,

where (a) uses item 1 of Proposition (b) uses ¢ e p + ¢, Gmin def mingcga ¢(z) and Lemma@
(c) uses stepsize v = %\/TC?\/E]E[qb(xo) — @min + 20G] and constant batchsize B; = B.

Furthermore, we can select the following hyperparameters.

32¢GR
T —%[ E[¢(20)] — bumin + 20G] = O(GR2dY25-1e2), (43)
B =1764dR*G?*c™? = O(dR*G?*¢™?). (44)
Then substituting the hyperparameters above into the convergence rate (I6), we obtain the following
bound, which based on item 3 of Proposition implies that there exists at least one (9, ¢)-CGGSP in
{wdis
O<£Ié1]{1 1E[Wh($t, VF(s(.Tt))} < E[Wh($f7 VFg(a?T))] <e.

L. PROOF OF THEOREM

We can prove the convergence rate (I7) as follows.
E [Wh [a?f, VFys (xf)}]

< - BIF(a0) + h(ao) — Flar) = har) +206] + 2 Z VE[IVEs(a) — g0]?]

2cGV AR~y
+7
5
® 1 9R 1 16v/27dG?
<7E — ®min 2 y— - 2
< 77 El6(x0) = Smin + 2061+ = 3 523 le; = 1l + —5—
t=0 j=n+q+1
2¢GVdR?y
+
5
© 1 9R 1 d2G2 16v27dG2  2cGVdAR2y
<—E min 2 T 2
< 77 El6(@0) = buin + 2061+ 72 D (/=53 By

t=0
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: GR*y 13RGVd
S El(a0) = Gumin +20G] + —5—(4d + 2cVd) + ~
_QR\/ TS E[¢(1‘0) (bmm + 26G] -+ \/FO 7

where (a) uses Eq. ({#2) (we can see it still holds by following its proof in Appendix [K)), (b)

uses ¢ ECH Qe 9> Pmin Lef mingcra ¢(x) and Lemma , () uses t < (ny + 1)g, B1 = q,
2 — 21l = vllyj—1 — zj—1]] < 2Ry (based on Eq. (15) and Lemma 8), and (d) uses stepsize

— l 6]E[¢(w0)_¢min+26G]
T= R TG(4d+2c\/d)

Furthermore, we can select the following hyperparameters.

o _L6GR?(4d + 2¢V/d)

522 [El¢(x0)] = dmin + 20G] = O(GR*d5 "¢ ?), (45)
By =676dR*G?¢ 2, (46)
B; =q = 26RGe 1 Vd. (47)

Then substituting the hyperparameters above into the convergence rate (16), we obtain the following
bound, which based on item 3 of Proposition implies that there exists at least one (4, ¢)-CGGSP in

{z:}{

Og%lflﬁ[wh(a:t, VF5(21))] <EWn (25, VEs(27))] < e.

M USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to generate some functions in the experimental code, and then checked and edited the
code to ensure that it exactly implements the algorithms.
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