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Abstract

This paper considers the following question: Given the number of classes m, the
number of robust accuracy queries k, and the number of test examples in the dataset
n, how much can adaptive algorithms robustly overfit the test dataset? We solve
this problem by equivalently giving near-matching upper and lower bounds of the
robust overfitting bias in multiclass classification problems.

1 Introduction

Learning models that are robust to adversarial perturbations has garnered significant research attention
in recent years. However, despite this progress, a pervasive issue continues to plague these models,
namely robust overfitting [1]. A common approach to overcome overfitting is to divide the dataset
into a training set, and a holdout (or test) set. Nonetheless, modern machine learning is adaptive
in its nature. Prior information about a model’s performance on the test set inevitably influences
future modeling choices in extensive experiments and competitions. Recent studies have shown that
excessive reuse of the holdout dataset can also leads to overfitting in non-robust setting [2, 3], and a
body of subsequent work has quantitatively explored this phenomenon in the framework of perfect
test label reconstruction [4, 5, 6]. Accordingly, in this paper we attempt to address the following
questions: Can adaptive behavior result in overfitting in an adversarial setting? If so, by how much
can adaptive algorithms robustly overfit the test dataset?

To solve these questions, we generalize the framework of perfect reconstruction to the adversarial
setting, and analyze the average case performance that can be achieved by an adaptive algorithm,
denoted as hU (k, n,m), where k, n,m represents the number of robust accuracy queries, test samples
and classes, respectively. This term equivalently measures the maximum level of robust overfit-
ting in a multiclass classification problem. In this paper, we derive both upper and lower bounds
of hU (k, n,m), and demonstrate that our upper bounds and lower bounds are matching within
logarithmic factors when n and the distribution of test dataset features DX are fixed.

1.1 Related works

Perfect test label reconstruction. The question of perfect test label reconstruction in non-robust
setting dates back to decades ago [7, 8, 9]. The developments on studying biasing results due to
adaptive reuse of the test data start with the work of [4, 10], which broadly fall in the field of adaptive
data analysis [11, 12]. [5] first pose the problem of characterizing the overfitting bias as a function of
k, n,m, but they fail to give upper and lower bounds on the same order of m, which is left as an open
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question [13]. [6] close this question and determine the amount of overfitting possible in multiclass
classification. The theory on quantitative overfitting analysis in adversarial setting remains blank.

Adversarial robustness. It has been shown that deep neural networks are fragile to imperceptible
distortions in the input space [14]. Perhaps the most common method to improve adversarial
robustness is adversarial training [15, 16]. Theoretically, [17, 18, 19, 20] study the PAC learnability
of adversarial robust learning problem, and [21, 22] study adversarial robustness under self-supervised
learning. [23, 24] investigates the adversarial robustness from the perspective of ordinary differential
equations. Besides, [25] analyze the trade-off between robustness and fairness, [26] study the
worst-class adversarial robustness in adversarial training.

2 Summary of our results

In the remainder of this article, R,N and Rd represent the sets of real numbers, natural numbers and
d-dimensional vectors over R, respectively. We denote the set {1, . . . , n} (for n ∈ N) by [n]. If A
and B are sets, we use BA to denote the collection of all mappings from A to B and 2A to denote
the power set of A, that is the collection of all subsets of A. We denote the indicator function by
1{event}, that is 1 if an event happens and 0 otherwise. If D is a distribution, we use supp(D) to
denote the support of D, which is defined by the closure of the set of possible values of a random
variable having D as its distribution. Besides, ∥ · ∥p represents the ℓp norm and dp(·, ·) represents the
distance function induced by ℓp norm. Finally, we use big tilde notations Õ, Ω̃ and Θ̃ as variants of
big O notations that ignores logarithmic factors.

2.1 Problem formulation

Let X = Rd be the instance space and Y = {1, . . . ,m} be the label space. Let S = {(xi, ci)}ni=1
denote the test set, whose features, denoted as XS = {x1, . . . , xn}, are independent and identically
distributed (i.i.d.) according to some distribution DX on X 2. For simplification, we use c̄ =
(c1, . . . , cn) to describe the vector of test set labels. Let f : X → Y be a function, its robust accuracy
on the test set with respect to (w.r.t.) a small perturbation U : X → 2X is defined by

AccU (f ;S) ≜
1

n

n∑
i=1

1{∀x′ ∈ U(xi), f(x
′) = ci}.

The perturbation U(x) is required to be nonempty, so some choice of x′ is always available. This
paper focuses the case when the perturbation is the p-norm ball with a small radius r, i.e. U(x) =
{z ∈ X : ∥z − x∥p ≤ r} for some p ≥ 1. r = 0 gives the identity perturbation: I(x) ≜ {x}. Note
that in this case, the definition of robust accuracy is reduced to standard (non-robust) accuracy.

In this work, we mainly study the robust overfitting attack algorithms, which do not have access
to the test set S. Instead, they have query access to robust accuracy of the model on S, that is, for
any classifier f, the algorithm is able to obtain the value AccU (f ;S). We refer to this access as a
query. A k-query algorithm A makes k queries f1, . . . , fk on S, and based on the values of XS and
AccU (f1;S), . . . ,AccU (fk;S), A outputs a classifier f̂ = A(S). We say a k-query algorithm A is
based on hypothesis class H ⊂ YX if f1, . . . , fk ∈ H. The performance of the algorithm on S is
measured by

hU (A;S) ≜ E [AccU (f̂ ;S)],

where the expectation is over the algorithm’s randomization. It is also of interest to ask the per-
formance of an algorithm when c̄ are drawn according to some distribution DY over [m]n. Let
D = DX ×DY , for an algorithm A, define its performance w.r.t. D by

hU (A;D) ≜ E
S∼D

hU (A;S).

And we evaluate the algorithms under the assumption that they do not have any prior knowledge
about the test labels. That is, the prior distribution of test labels is uniform over all possible labeling:

hU (A) ≜ E
S∼Xn

S ×µn
m

hU (A;S),

2Formally, there is a sigma algebra F ⊂ 2X of events and DX is a probability measure on (X ,F)
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where µn
m denotes the uniform distribution over [m]n. Since the best robust accuracy is 1/m without

making any queries (k = 0), hU (A;S)− 1/m measures how much A robustly overfits S. The goal
of this paper is to find the largest robust overfitting possible for a multiclass classification problem.
So we define the performance that is achievable by an algorithm after making k queries on any S by

hU (k, n,m) ≜ max
A

hU (A),

and we are interested in the value of hU (k, n,m)− 1/m, or hU (k, n,m) equivalently. In the rest of
this paper, we aim at deriving bounds of hU (k, n,m) for given k, n and m.

2.2 Our main results

Our bounds on hU (k, n,m) have two different regimes, which can be summarized as the following
theorem.
Theorem 1 (Informal). let DX be the distribution of test sample features. For k = Õ(n/m),

ΦDX (n) ·

[
1

m
+Ω

(√
k

mn

)]
≤ hU (k, n,m) ≤ 1

m
+ Õ

(√
k

nm

)
.

For k = Ω̃(n/m),

ΦDX (n) ·
[
1

m
+ Ω̃

(
k

n

)]
≤ hU (k, n,m) ≤ 1

m
+ Õ

(
k

n

)
,

where ΦDX (n) ≤ 1 and is monotonically decreasing w.r.t. n.

When U = I, our upper bounds match the best known upper bounds [5], while our lower bounds
differ from the known optimal lower bounds [6] by a factor ΦDX (n). Since overfitting in the context
of robust learning has some requirements on the test samples (e.g. the well-separated property for
different classes [27]), we may not able to ensure a non-trivial lower bound on hU (k,m, n) for some
DX . Intuitively, ΦDX (n) measures how easily to sample n ‘good’ (for robust overfitting) test data
features from DX . The specific form of ΦDX (n) is presented in Section 3.2. Note that for a fixed
size of S whose features are i.i.d. according to a fixed distribution DX , the upper and lower bounds
are matching up to a logarithmic factor, that is,

hU (k, n,m) = Θ̃

(
1

m
+

√
k

mn

)
, k = Õ(n/m),

and

hU (k, n,m) = Θ̃

(
1

m
+

k

n

)
, k = Ω̃(n/m)

for any fixed n and DX .

2.3 Overview of our techniques

Next, we give a brief overview of proof techniques used to obtain the main results. We first note
that throughout this paper we use the notion of corrupted hypothesis [28], which transforms the
formulation of robust accuracy to a non-robust one thus greatly simplifying the proofs. The definition
of corrupted hypothesis is presented in the beginning of Section 3.

• We establish the upper bounds via minimum description length argument, following closely
a proof of an analogous result by [5] for non-robust setting. Note that their bounds can
be viewed as trivial upper bounds of hU (k, n,m) since non-robust accuracy always upper
bounds robust accuracy. We tighten the bounds by considering the query class of an
algorithm. The details are presented in Theorem 2.

• To obtain the lower bounds, we propose computationally efficient algorithms for two regions
of k respectively. The algorithms are modified from [6], who study the worst case overfitting
bias in a non-robust setting. To take the perturbation of features into account, we extend their
queries to the whole feature space X by assigning each label of x ∈ X to be the ‘closest’
label in XS in the sense of p-norm. The theoretical guarantees are given in Theorems 3 and
4.
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2.4 Discussion

Although we equivalently derive both upper bounds and lower bounds of robust overfitting bias, there
remains a gap in finding whether the lower and upper bounds can match up to a constant factor. In
non-robust setting, it is proven that the

√
log n factor in upper bounds can be removed for k = 1 [6].

It is interesting to ask if this result holds for adversarial robust setting and, more ambitiously, for all
k. We leave it as an open question.

3 Proofs of main results

To make the proofs more readable, we introduce the notion of corrupted hypothesis [28].

Consider a given hypothesis f : X → Y. A labeled adversarial sample (x̃, y) is classified correctly if
x̃ ∈ f−1(y). A labeled example (x, y) is classified correctly if U(x) ⊂ f−1(y). Let Ỹ = Y ∪ {⊥},
where ⊥ is the special “always wrong” output, i.e. y ̸=⊥ for every y ∈ Ỹ. We define the mapping
κU : YX → ỸX :

κU (f)(x) =

{
y, U(x) ⊂ f−1(y),

⊥, otherwise.

The corrupted set of hypotheses induced by perturbation U is then defined by H̃ = {κU (f) : f ∈ H}.

3.1 Upper bounds

The upper bounds relies on the following theorem, showing in a probabilistic view that finding a
classifier in some given hypothesis class with desired robust accuracy requires learning many bits
about the test labeling.
Theorem 2. Let m,n, k be positive integers and Dn

m = Dn
X × µn

m, where µn
m denotes the uniform

distribution over [m]n. Let H ⊂ YX be a hypothesis class and U be an perturbation. Then
there exists a constant CH ≤ 1 satisfying: For every H-based k-query algorithm A, δ > 0, b =
k ln(n+ 1)1 + ln(1/δ), we have

Pr
S∼Dn

m,f=A(S)

{
AccU (f ;S) ≥ CH

m
+ 2

√
b

nm

}
≤ δ, k <

n

m(log(n+ 1) + log(1/δ))
,

and

Pr
S∼Dn

m,f=A(S)

{
AccU (f ;S) ≥ CH

m
+

2b

n

}
≤ δ, k ≥ n

m(log(n+ 1) + log(1/δ))
.

Proof. For any fixed hypothesis f, denote κU (f) by f̃ . By the definition of corrupted hypotheses, for
every i ∈ [n],

Pr
xi∼DX

{∀x′ ∈ U(xi), f(x
′) = ci} = Pr

xi∼DX
{f̃(x) = ci}

= Pr
xi∼DX

{f̃(xi) = ci|f̃(xi) ̸=⊥} Pr
xi∼DX

{f̃(xi) ̸=⊥}

+ Pr
xi∼DX

{f̃(xi) = ci|f̃(xi) =⊥} Pr
xi∼DX

{f̃(xi) =⊥}.

We observe that Pr {f̃(xi) ̸=⊥} is a constant related to f, let C(f) ≜ Pr {f̃(xi) ̸=⊥}, since
Pr {f̃(xi) = ci|f̃(xi) =⊥} = 0, we have

Pr
xi∼DX

{∀x′ ∈ U(xi), f(x
′) = ci} = Pr

xi∼DX
{f̃(xi) = ci|f̃(xi) ̸=⊥} Pr

xi∼DX
{f̃(xi) ̸=⊥} =

C(f)

m
.

This implies that 1{∀x′ ∈ U(xi), f(x
′) = ci} is a Bernoulli random variables with bias C(f)

m . By
the Chernoff bound, for any fixed f,

Pr
S∼Dn

m

{
1

n

n∑
i=1

1{∀x′ ∈ U(xi), f(x
′) = ci} ≥ C(f)

m
+ ϵ

}
≤ e−

mnϵ2

2C(f)+mϵ .
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Denote maxf∈H C(f) by CH, then

Pr {AccU (f ;S) ≥ CH

m
+ ϵ} ≤ Pr {AccU (f ;S) ≥ C(f)

m
+ ϵ} ≤ e−

mnϵ2

2C(f)+mϵ ≤ e
− mnϵ2

2CH+mϵ , (1)

holds for every f. Consider the execution of A with responses of robust accuracy fixed to some
sequence of values α = (α1, . . . , αk) ∈ {0, 1/n, . . . , 1}k. Denote the resulting predictor by Aα, its
output distribution is fixed, hence by Eq.(1), we have

Pr
S∼Dn

m,f=Aα

{
AccU (f ;S) ≥ CH

m
+ ϵ

}
≤ e

− mnϵ2

2CH+mϵ .

Denote the set of all possible values of α by V. For every test set S, the accuracy oracle outputs some
responses in V. Therefore,

Pr
S∼Dn

m,f=A(S)

{
AccU (f ;S) ≥ CH

m
+ ϵ

}
≤
∑
α∈V

Pr
S∼Dn

m,f=Aα

{
AccU (f ;S) ≥ CH

m
+ ϵ

}
≤(n+ 1)k · e−

mnϵ2

2CH+mϵ .

Now if k ln(n+1)+ln(1/δ)
n ≥ 1

m , then by definition of b, 2b
n ≥ 2

m . It follows that mϵ ≥ 2 ≥ 2CH,

hence mnϵ2

2CH+mϵ ≥ nϵ
2 and

(n+ 1)k · e−
mnϵ2

2CH+mϵ ≤ ek ln(n+1)−nϵ
2 = eln δ = δ.

If k ln(n+1)+ln(1/δ)
n < 1

m , in this case 2
√

b
nm ≤ 2

m . We obtain that mϵ < 2, thus mnϵ2

2CH+mϵ ≥ mnϵ2

4

and
(n+ 1)k · e−

mnϵ2

2CH+mϵ ≤ ek ln(n+1)−mnϵ2

4 = eln δ = δ,

and we complete the proof.

The corollary below follows immediately from Theorem 2, which gives the upper bounds of
hU (k, n,m).

Corollary 1. Let m,n, k be positive integers and U be a perturbation, then

hU (k, n,m) ≤ 1

m
+

1

n
+ 2

√
(k + 1) log(n+ 1)

nm
, k <

n

m(log(n+ 1) + log(n))

and

hU (k, n,m) ≤ 1

m
+

2(k + 1) log(n+ 1) + 1

n
, k ≥ n

m(log(n+ 1) + log(n))

Proof. Denote AccU (f ;S) ≜ X ∈ [0, 1]. Substitute δ = 1/n in Theorem 2 and notice that CH ≤ 1
for any hypothesis class H, hence for k < n

m(log(n+1)+log(n)) we have

Pr

{
X ≥ 1

m
+ 2

√
(k + 1) log(n+ 1)

nm

}
≤ 1

n
. (2)

Let c = 1
m + 2

√
(k+1) log(n+1)

nm , it remains to show EX ≤ c + 1/n. It is trivial for c ≥ 1. For the
case that c < 1, let PX be the probability distribution of X, by the definition of expectation,

EX =

∫ 1

0

XdPX =

∫ c

0

XdPX +

∫ 1

c

XdPX ≤ c

∫ c

0

dPX +

∫ 1

c

dPX ≤ c+
1

n
,

where we use the fact that
∫ 1

c
dPX ≤ 1/n by Eq.(2) in the last step. The case of k ≥

n
m(log(n+1)+log(n)) can be proved using similar arguments, and we complete the proof.
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3.2 Lower bounds

The lower bounds of hU (k, n,m) are derived from two designed algorithms, namely Asmall and
Abig(C). Asmall is divided into two cases based on whether k = 1, and the precise analysis is
presented in Theorem 3. Abig(C) accepts a parameter C for calculating an intermediate variable, and
we gain our Theorem 4 by setting C = ΦDX (n). Finally, the lower bounds of hU (k, n,m) follow
from

hU (k, n,m) = max
A

hU (A) ≥ hU (Asmall or Abig(ΦDX (n))).

To simplify the expression, we first introduce some definitions. For each XS ∈ Xn, define

ΓS =

{
x ∈ X

∣∣∣∃j1 ̸= j2 ∈ [n] s.t. dp(x, xj1) = dp(x, xj2) = min
i∈[n]

dp(x, xi)

}
,

and
ΦDX (n) = min

XS∈supp(Dn
X )

∫
U(ΓS)

dPDX ,

where U(ΓS) = {U(x)|x ∈ ΓS} and PDX is the distribution function of DX .

With these definitions, we present that:

Algorithm 1 Asmall (k = 1)
1. Let f1(x) be the all one query, i.e. f1(x) = 1,∀x ∈ X .

2. Output f̂ that

f̂(x) =

{
1 ∀x ∈ X , if AccU (f1, S) ≥ 1/m,

2 ∀x ∈ X , otherwise.

Theorem 3. Let n ≥ m and Dn
m = Dn

X × µn
m. Then for 1 ≤ k ≤ 1 + n/2m,

hU (Asmall,Dn
m) ≥ ΦDX (n)

m
+

1

8

√
ΦDX (n) · k

mn
.

Proof. Case: k = 1 : For l ∈ {1, . . . ,m}, let Nl be the number of examples with label l. Since
the labels are uniformly distributed and f̂ is always a constant predictor, (N1, . . . , Nm) follows a
multinomial distribution with parameters (n; 1

m , . . . , 1
m ). Then by the construction of f̂ , the number

of robustly and correctly predicted labels is then given by N1 ·1{N1 ≥ n/m}+N2 ·1{N1 < n/m},
and the expected robust accuracy is given by

E
c̄∼µn

m

[hU (Asmall;S)] =
1

n
E [N1 · 1{N1 ≥ n/m}+N2 · 1{N1 < n/m}].

We conclude that

E
c̄∼µn

m

[hU (Asmall;S)] ≥ 1

m
+

1

4

√
1

mn

by citing the following lemma:

Lemma 1 (Lemma 4 in [6].). Let n ≥ m ≥ 2. If (N1, . . . , Nm) is distributed according to a
multinomial distribution with parameters (n; 1

m , . . . , 1
m ), then

E [N1 · 1{N1 ≥ n/m}+N2 · 1{N1 < n/m}] ≥ n

m
+

1

4

√
n

m
.

Case: k > 1 : For a fixed S, and hence, a fixed f̂ = Asmall(S), for each l ∈ {1, . . . ,m,⊥}, let
NS

i,l be the number of examples in Bi s.t. κU (f̂)(x) = l. Since whether κU (f̂)(x) equals to ‘⊥’ is
only depends on the distribution of x, we have that (NS

i,1, . . . , N
S
i,m, NS

i,⊥) follows a multinomial

distribution with parameters (|Bi|; C(S)
m , . . . , C(S)

m , 1−C(S)), where C(S) = Pr {κU (f̂)(x) ̸=⊥}.
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Algorithm 2 Asmall (k > 1)
1. Divide [n] into k − 1 blocks B1, . . . , Bk−1 such that n

k−1 ≤ |Bi| ≤ n
2(k−1) for each i.

2. For 1 ≤ i ≤ k, define query fi satisfying:

fi(xj) =

{
1, if j ∈ B1 ∪B2 ∪ · · · ∪Bi−1

2, otherwise.

for xj ∈ XS and

fi(x) = fi(xj′), where j′ = argmin
j∈[n]

dp(x, xj)

for x /∈ XS .

3. Output f̂ , it predicts xj by the following:

f̂(xj) =

{
1 for all j ∈ Bi, if AccU (fi+1, S) ≥ AccU (fi;S),

2 for all j ∈ Bi, otherwise.

and predicts the rest of x by f̂(x) = f̂(xj′), where j′ = argmini∈[n] dp(x, xj).

Then our predictions robustly and correctly predicts max{NS
i,1, N

S
i,2} examples in Bi and hence

hU (A;S) = 1
n

∑k−1
i=1 max{NS

i,1, N
S
i,2}. We will show it later that

E [max{NS
i,1, N

S
i,2}] ≥

C(S)|Bi|
m

+
1

4

√
C(S)|Bi|

m
.

By summing over the blocks, we can lower bound the expected total number of robustly correct
predictions made by Asmall :

k−1∑
i=1

E [max{NS
i,1, N

S
i,2}] ≥

C(S) · n
m

+
k − 1

4

√
C(S) · n
2(k − 1)m

≥ C(S) · n
m

+
1

8

√
C(S) · nk

m
.

To obtain a lower bound of C(S) that is independent of the choice of S, for each S we define gS
satisfying:

gS(x) =

{
ci ∀x ∈ XS ,

gS(xj′) where j′ = argmini∈[n] dp(x, xj) otherwise,

and let Hn = {gS : S ∈ (supp(DX )×Y)n}. It is easy to see that Asmall(S) ∈ Hn for all S. Hence
by the definition of ΦDX (n), we have

ΦDX (n) = min
gS∈Hn

Pr {κU (gs)(x) ̸=⊥} ≤ C(S).

We conclude that

k−1∑
i=1

E [max{NS
i,1, N

S
i,2}] ≥

ΦDX (n) · n
m

+
1

8

√
ΦDX (n) · nk

m
.

Normalizing by n proves the desired result.
It remains to lower bound E [max{NS

i,1, N
S
i,2}]. Since NS

i,1 and NS
i,2 follow a binominal distribution

with parameters (|Bi|; C(S)
m ), E[NS

i,1 +NS
i,2] =

2C(S)|Bi|
m for all S. Let N ′ be an independent copy
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of NS
i,2. N

S
i,1 and N ′ are negatively correlated, hence

E [|NS
i,1 −NS

i,2|] ≥ E [|NS
i,1 −N ′|] ≥ E

[
NS

i,1 −
C(S)

m
|Bi|

]

≥

√√√√E
[
(NS

i,1 −
C(S)
m |Bi|)2

]
2

≥
√

C(S)|Bi|
2m

(1− C(S)

m
)

≥
√

C(S)|Bi|
4m

For all S.

Then we conclude that

max{NS
i,1, N

S
i,2} =

NS
i,1 +NS

i,2

2
+

|NS
i,1 −NS

i,2|
2

≥ C(S)|Bi|
m

+
1

4

√
C(S)|Bi|

m
,

which completes the proof.

We then present Abig(C) and the theoretical analysis for k = Ω(n/m).

Algorithm 3 Abig(C)

1. Let t := 1 + Ck
9 lnm

2. Define query f1, . . . , fk satisfying:
(a) For 1 ≤ j ≤ t, f1(xj), . . . , fk(xj) are uniformly chosen from all sequences in [m]k

that have each element in [m] appearing exactly k/m times.
(b) For j > t, fi(xj) =⊥ for all i = 1, . . . , k.

(c) For x /∈ XS , fi(x) = fi(xj′) for each i ∈ [k], where j′ = argmini∈[n] dp(x, xj).

3. Output f̂ such that:

f̂(xj) =

{
argmaxy∈[m]

∑
i:fi(xj)=y AccU (fi;S)

3, 1 ≤ j ≤ t,

1, j > t.

and predicts the rest of x by f̂(x) = f̂(xj′), where j′ = argmini∈[n] dp(x, xj).

Theorem 4. Let k > 18m logm
ΦDX (n) and let Dn

m = Dn
X × µn

m,

hU (Abig(ΦDX (n)),Dn
m) ≥ ΦDX (n)

m
+

ΦDX (n) · k
144n logm

.

Proof. For l ∈ [m], let Al be the total number of robustly and correctly predicted examples by all the
queries that predict the first examples as ‘l’, i.e.

Al :=n ·
∑

i:∀x′∈U(x1),fi(x′)=l

AccU (fi;S) =
∑

i:∀x′∈U(x1),fi(x′)=l

n∑
j=1

1{fi(x′) = yj ,∀x′ ∈ U(xj)}

=W0 · 1{l = y1}+
∑

i:∀x′∈U(x1),fi(x′)=l

t∑
j=2

1{fi(x′) = yj ,∀x′ ∈ U(xj)},

(3)
where W0 ≤ k

m is the number of queries that predict the whole perturbation set U(x1) as ‘y1’.

2Breaking ties randomly.
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Let

Ml :=
∑

i:∀x′∈U(x1),fi(x′)=l

t∑
j=2

1{fi(x′) = yi,∀x′ ∈ U(xi)},

then for l ̸= y1,
Ay1

−Al = W0 +My1
−Ml.

Since 1{fi(x′) = yj ,∀x′ ∈ U(xj)} are independent for j ̸= j′, and are negatively associated across
i for any fixed j, therefore, by the Chernoff bound, it satisfies that for ϵ < 1

Pr {|Ml − E [Ml]| > ϵE [Ml]} ≤ 2 exp(−ϵ2

3
E [Ml]).

Suppose ϵ satisfies that ϵE [Ml] ≤ k
2m and ϵ2

3 E [Ml] ≥ 3 logm, then by Eq. (3) and the union bound

Pr

{
argmax

l∈[m]

Al ̸= y1

}
< (m− 1) · 2

m3
≤ 1

4
,

and with probability at least 3/4, f̂(x1) = y1.

We now derive the bounds on ϵ. To this end, we first need to bound E [Ml]. Define Hn as that in the
proof of Theorem 3. Let H̃n denotes the corrupted set of Hn. For each g̃ ∈ H̃t, define g̃⊥ : X → Ỹ
that takes value ‘⊥’ on U(xj) for j = t+ 1, . . . , n and coincides with g̃ otherwise, that is,

g̃⊥(x) =

{
⊥, x ∈ ∪j=t+1,...,nU(xj),

g̃(x), otherwise.

Let Gn be the set which contains all such g̃⊥. It is easy to see that κU (f1), . . . , κU (fk) ∈ Gn. Note
that ming∈Gn Pr {g(x) ̸=⊥} = ΦDX (n), we have

ΦDX (n)

m
≤ 1{fi(x′) = yj ,∀x′ ∈ U(xj)} ≤ 1

m
.

Now for each l by the linearity of expectations,

(t− 1) · k

m
· ΦDX (n)

m
≤ E [Ml] ≤ (t− 1) · k

m
· 1

m
.

Thus ϵE [Ml] holds for

ϵ ≤ m2

(t− 1)k

k

2m
=

m

2(t− 1)
,

and ϵ2

3 E [Ml] ≥ 3 logm holds for ϵ ≥
√

9 logm · m2

ΦDX (n)(t−1)k . Therefore, we can find a suitable
ϵ whenever √

9 logm · m2

ΦDX (n)(t− 1)k
≤ m

2(t− 1)
< 1.

If we choose t = 1 +
ΦDX (n)k

36 logm and k > 18
ΦDX (n)m logm, the aforementioned conditions hold. Note

that Pr {κU (f̂) ̸=⊥} ≥ ΦDX (n), hence the expected number of robustly and correctly predicted
labels is at least

3

4
· t+ ΦDX (n)

m
(n− t) ≥ ΦDX (n) · n

m
+ t · (3

4
− ΦDX (n)

m
) ≥ ΦDX (n) · n

m
+

ΦDX (n) · k
144 logm

,

which completes the proof.

4 Conclusion

In this work, we study the overfitting bias in the context of robust multiclass learning. We formally
define the adaptive algorithms in an adversarial setting and analyze the average case performance that
can be achieved by an adaptive algorithm. Upper bounds and lower bounds are both derived, and
are matching within logarithmic factors when the number of test samples and distribution of data
features are fixed.
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