Graph Inverse Reinforcement Learning
from Diverse Videos

Sateesh Kumar Jonathan Zamora* Nicklas Hansen*
Rishabh Jangir Xiaolong Wang
UC San Diego

Demo

Sim

Real

Reach Push Peg in Box

Figure 1: GraphIRL. We propose an approach for performing inverse reinforcement learning
from diverse third-person videos via graph abstraction. Based on our learned reward functions, we
successfully train image-based policies in simulation and deploy them on a real robot.

Abstract: Research on Inverse Reinforcement Learning (IRL) from third-person
videos has shown encouraging results on removing the need for manual reward
design for robotic tasks. However, most prior works are still limited by training
from a relatively restricted domain of videos. In this paper, we argue that the
true potential of third-person IRL lies in increasing the diversity of videos for
better scaling. To learn a reward function from diverse videos, we propose to
perform graph abstraction on the videos followed by temporal matching in the
graph space to measure the task progress. Our insight is that a task can be de-
scribed by entity interactions that form a graph, and this graph abstraction can
help remove irrelevant information such as textures, resulting in more robust
reward functions. We evaluate our approach, GraphIRL, on cross-embodiment
learning in X-MAGICAL and learning from human demonstrations for real-robot
manipulation. We show significant improvements in robustness to diverse video
demonstrations over previous approaches, and even achieve better results than
manual reward design on a real robot pushing task. Videos are available at
https://sateeshkumar2l.github.io/GraphIRL/.

Keywords: Inverse Reinforcement Learning, Third-Person Video, Graph Network

1 Introduction

Deep Reinforcement Learning (RL) is a powerful general-purpose framework for learning behavior
policies from high-dimensional interaction data, and has led to a multitude of impressive feats in
application areas such as game-playing [1] and robotics [2, 3]. Through interaction with an unknown
environment, RL agents iteratively improve their policy by learning to maximize a reward signal,
which has the potential to be used in lieu of hand-crafted control policies. However, the performance
of policies learned by RL is found to be highly dependent on the careful specification of task-specific

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://sateeshkumar21.github.io/GraphIRL/

reward functions and, as a result, crafting a good reward function may require significant domain
knowledge and technical expertise.

As an alternative to manual design of reward functions, inverse RL (IRL) has emerged as a promising
paradigm for policy learning. By framing the reward specification as a learning problem, operators
can specify a reward function based on video examples. While imitation learning typically requires
demonstrations from a first-person perspective, IRL can in principle learn a reward function, i.e.,
a measure of task progression, from any perspective, including third-person videos of humans
performing a task. This has positive implications for data collection, since it is often far easier for
humans to capture demonstrations in third-person.

Although IRL from third-person videos is appealing because of its perceived flexibility, learning
a good reward function from raw video data comes with a variety of challenges. This is perhaps
unsurprising, considering the visual and functional diversity that such data contains. For example, the
task of pushing an object across a table may require different motions depending on the embodiment
of the agent. A recent method for cross-embodiment IRL, dubbed XIRL [4], learns to capture
task progression from videos in a self-supervised manner by enforcing temporal cycle-consistency
constraints. While XIRL can in principle consume any video demonstration, we observe that its
ability to learn task progression degrades substantially when the visual appearance of the video
demonstrations do not match that of the target environment for RL. Therefore, it is natural to ask the
question: can we learn to imitate others from (a limited number of) diverse third-person videos?

In this work, we demonstrate that it is indeed possible. Our key insight is that, while videos may be of
great visual diversity, their underlying scene structure and agent-object interactions can be abstracted
via a graph representation. Specifically, instead of directly using images, we extract object bounding
boxes from each frame using an off-the-shelf detector, and construct a graph abstraction where each
object is represented as a node in the graph. Often — in robotics tasks — the spatial location of an
object by itself may not convey the full picture of the task at hand. For instance, to understand a task
like Peg in Box (shown in Figure 1), we need to also take into account how the agent interacts with
the object. Therefore, we propose to employ Interaction Networks [5] on our graph representation
to explicitly model interactions between entities. To train our model, we follow [4, 6] and apply a
temporal cycle consistency loss, which (in our framework) yields task-specific yet embodiment- and
domain-agnostic feature representations.

We validate our method empirically on a set of simulated cross-domain cross-embodiment tasks from
X-MAGICAL [4], as well as three vision-based robotic manipulation tasks. To do so, we collect a
diverse set of demonstrations that vary in visual appearance, embodiment, object categories, and scene
configuration; X-MAGICAL demonstrations are collected in simulation, whereas our manipulation
demonstrations consist of real-world videos of humans performing tasks. We find our method to
outperform a set of strong baselines when learning from visually diverse demonstrations, while
simultaneously matching their performance in absence of diversity. Further, we demonstrate that
vision-based policies trained with our learned reward perform tasks with greater precision than human-
designed reward functions, and successfully transfer to a real robot setup with only approximate
correspondence to the simulation environment. Thus, our proposed framework completes the cycle
of learning rewards from real-world human demonstrations, learning a policy in simulation using
learned rewards, and finally deployment of the learned policy on physical hardware.

2 Related Work

Learning from demonstration. Conventional imitation learning methods require access to expert
demonstrations comprised of observations and corresponding ground-truth actions for every time step
[7, 8,9, 10], for which kinesthetic teaching or teleoperation are the primary modes of data collection
in robotics. To scale up learning, video demonstrations are recorded with human operating the
same gripper that the robot used, which also allows direct behaviro cloning [11, 12]. More recently,
researchers have developed methods that instead infer actions from data via a learned forward [13]
or inverse [14, 15] dynamics model. However, this approach still makes the implicit assumption
that imitator and demonstrator share a common observation and action space, and are therefore not
directly applicable to the cross-domain cross-embodiment problem setting that we consider.

Inverse RL. To address the aforementioned limitations, inverse RL has been proposed [16, 17, 18,
19, 20, 21] and it has recently emerged as a promising paradigm for cross-embodiment imitation
in particular [22, 23, 24, 25, 26, 27, 28, 4, 29]. For example, Schmeckpeper et al. [22] proposes

Bounding Boxes Graph Abstraction
Video Seq #1 Video Seq #2 Video Seq #1 Video Seq #2

“IT N
T{ %" %

{61,668y {GLG3.G3)

Encode Graph
Abstractions Temporal Alignment

Video Seq #1 \p Embedding Video Sequence #1

Graphs w S1={vh),..., (15}
Spatial
i Q_T)\O\D% 3

C% (chctah o
Video Seq #2 4 i

Graph Inverse RL
Embedding Space

J
Graphs \I

Spatial E
Interaction
Network Embeddmg Vldeo Sequence #2
Sy = {(ID),..., v(IR)}
Time

{GL,G3.G3)

Temporal Alignmen
Video Sequence #3 'emporal Alignment

©
‘7- ."1‘32;’.; ®

Obs. Frame (@) Obs. Frame (b) Obs. Frame (© g (a)

RL w/ Learned Reward
Reward

Time

Figure 2: Overview. We extract object bounding boxes from video sequences using an off-the-shelf
detector, and construct a graph abstraction of the scene. We model graph-abstracted object interactions
using Interaction Networks [5], and learn a reward function by aligning video embeddings temporally.
We then train image-based RL policies using our learned reward function, and deploy on a real robot.

a method for integrating video demonstrations without corresponding actions into off-policy RL
algorithms via a latent inverse dynamics model and heuristic reward assignment, and Zakka et al.
[4] (XIRL) learns a reward function from video demonstrations using temporal cycle-consistency
and trains an RL agent to maximize the learned rewards. In practice, however, inverse RL methods
such as XIRL are found to require limited visual diversity in demonstrations. Our work extends
XIRL to the setting of diverse videos by introducing a graph abstraction that models agent-object and
object-object interactions while still enforcing temporal cycle-consistency.

Object-centric representations. have been proposed in many forms at the intersection of computer
vision and robotics. For example, object-centric scene graphs can be constructed for integrated
task and motion planning [30, 31, 32], navigation [33, 34], relational inference [35, 36], dynamics
modeling [5, 37, 38, 39, 40, 41], model predictive control [42, 43, 44], grasping [45, 46] or visual
imitation learning [47, 48, 49]. Similar to our work, Sieb et al. [49] propose to abstract video
demonstrations as object-centric graphs for the problem of single-video cross-embodiment imitation,
and act by minimizing the difference between the demonstration graph and a graph constructed from
observations captured at each step. As such, their method is limited to same-domain visual trajectory
following, whereas we learn a general alignment function for cross-domain cross-embodiment
imitation and leverage Interaction Networks [5] for modeling graph-abstracted spatial interactions
rather than relying on heuristics.

3 Our Approach

In this section, we describe our main contribution, which is a self-supervised method for learning a
visually invariant reward function directly from a set of diverse third-person video demonstrations
via a graph abstraction. Our Graph Inverse Reinforcement Learning (GraphIRL) framework, shown
in Figure 2, consists of building an object-centric graph abstraction of the video demonstrations and
then learn an embedding space that captures task progression by exploiting the temporal cue in the
videos. This embedding space is then used to construct a domain invariant and embodiment invariant
reward function which can be used to train any standard reinforcement learning algorithm.

Problem Formulation. Given a task 7', our approach takes a dataset of video demonstrations
D = {Vi,Va,...,V,}. Each video consists of image frames {I}, I3, ..., I}} where i denotes the
video frame index and & denotes the total number of frames in V;. Given D, our goal is to learn a
reward function that can be used to solve the task 7" for any robotic environment. Notably, we do not

assume access to any action information of the expert demonstrations, and our approach does not
require objects or embodiments in the target environment to share appearance with demonstrations.

3.1 Representation Learning

To learn task-specific representations in a self-supervised manner, we take inspiration from Dwibedi
et al. [6] and employ a temporal cycle consistency loss. However, instead of directly using images,
we propose a novel object-centric graph representation, which allows us to learn an embedding space
that not only captures task-specific features, but depends solely on the spatial configuration of objects
and their interactions. We here detail each component of our approach to representation learning.

Object-Centric Representation. Given video frames {7, I3, ..., I}, we first extract object bound-
ing boxes from each frame using an off-the-shelf detector. Given IV bounding boxes for an image, we
represent each bounding box as a 4 + m dimensional vector o; = {x1,y1, %2, y2,d1,d2, ..., dm },

where the first 4 dimensions represent the leftmost and rightmost corners of the bounding box, and
the remaining m dimensions encode distances between the centroids of the objects. For each frame
I } we extract an object-centric representation I]” = {01,09,...,0m,} such that we can represent our
dataset of demonstrations as D’ = {V{, V..., V} where V/ is the sequence of bounding boxes
corresponding to video V;. Subsequent sections describe how we learn representations given D’.

Spatial Interaction Encoder. Taking inspiration from recent approaches on modeling physical
object dynamics [5, 37], we propose a Spatial Interaction Encoder Network to explicitly model
object-object interactions. Specifically, given a sequence V; from D’, we model each element I’
as a graph, G = (O, R), where O is the set of objects {01, 02, ...,0m}, m is the total number of
objects in I’, and R denotes the relationship between objects (i.e., whether two objects interact with
each other). For simplicity, all objects are connected with all other objects in the graph such that
R={@,j)|i#jNi<mAj<m}. Weusea fully-connected graph because this makes the least
assumption about the problem and task specific object interaction structure could then be learned
directly from the data. We compose an object embedding for each of 0; € O by combining self and
interactional representations as follows:

fo(oi) = ¢agg(fs + fin) with fs(oi) = ¢s(0)a fin(oi) = Z¢in(0i70j) | (Zv.]) € R7 ()
j=1

where f,(0;) represents the self or independent representation of an object, fi, represents the
interactional representation, i.e., how it interacts with other objects in the scene, f, is the final object
embedding, and (,) represents concatenation. Here, the encoders ¢, ¢;, and ¢agg denote Multi layer
Perceptron (MLP) networks respectively. We emphasize that the expression for fi,(-) implies that
the object embedding f,(.) depends on all other objects in the scene; this term allows us to model
relationships of an object with the others. The final output from the spatial interaction encoder ¢ (-)
for object representation I’ is the mean of all object encodings:

V') = %Zf(oi) : @)

The spatial interaction encoder is then optimized using the temporal alignment loss introduced next.

Temporal Alignment Loss. Taking inspiration from prior works on video representatoin learning
[6, 50, 51], we use temporal alignment as a proxy for video representation learning. Given a pair
of videos, the task of self-supervised alignment implicitly assumes that there exists true semantic
correspondence between the two sequences, i.e., both videos share a common semantic space. These
works have shown that optimizing for alignment leads to representations that could be used for
tasks that require understanding task progression such as action-classification. This is because in
order to solve for alignment, a learning model has to learn features that are (1) common across most
videos and (2) exhibit temporal ordering. For a sufficiently large dataset with single task, the most
common visual features would be distinct phases of a task that appear in all videos and if the task
has small permutations, these distinct features would also exhibit temporal order. In such scenarios,
the representations learned by optimizing for alignment are fask-specific and invariant to changes in
viewpoints, motions and embodiments.

In this work, we employ Temporal Cycle Consistency (TCC) [6] loss to learn temporal alignment.
TCC optimizes for alignment by learning an embedding space that maximizes one-to-one nearest
neighbour mappings between sequences. This is achieved through a loss that maximizes for cycle-
consistent nearest neighbours given a pair of video sequences. In our case, the cycle consistency

is applied on the graph abstraction instead of image features as done in the aforementioned video
alignment methods. Specifically, given D’, we sample a pair of bounding box sequences V; =
{11, Iy, yand V) = {I'j1, ..., I}} '}, we extract embeddings by applying our spatial interaction
encoder defined in Equation 2. Thus, we obtain the encoded features S; = {¢(I7"),...,%(I})} and

n
17 °

S; = {¢(I7),...,¢(I")}. For the nth element in S;, we first compute its nearest neighbour, o

mj

in S; and then compute the probability that it cycles-back to n, ﬂfjn as

n_ ok|2 n k2
e_HSi _Sj” e_”Ui]‘_Si Il

mj
n k k
v = 0] S o = APSI— . 3
B = 2 oSy S o157 =SFII? Bin S o llf = SEIP ©)
k ko€ ko€

The cycle consistency loss for nth element can be computed as L% = (wis — n)2, where wis =
o fjnk is the expected value of frame index n as we cycle back. The overall TCC loss is then
defined by summing over all pairs of sequence embeddings (S,,.S;) in the data, i.e., Li; = Do in L.

3.2 Reinforcement Learning

We learn a task-specific embedding space by optimizing for temporal alignment. In this section, we
define how to go from this embedding space to a reward function that measures task progression. For
constructing the reward function, we leverage the insight from Zakka et al. [4] that in a task-specific
embedding space, we can use euclidean distance as a notion of task progression, i.e., frames far apart
in the embedding space will be far apart in terms of task progression and vice versa. We therefore
choose to define our reward function as r(0) = —21[1(0) — g||?, with g = D7, (1)}) , where
o is the current observation, v is our Interaction Networks-based encoder from Section 3, g is the
representative goal frame, m; is the length of sequence V' and c is a scaling factor. This definition
gives us a dense reward because as the observed state gets closer and closer to the goal, the reward
starts going down and approaches zero when the goal and current observation are close in embedding
space; refer to supplementary material for qualitative analysis of the learned reward function. After
constructing the learned reward, we can use it to train any standard RL algorithm. We note that,
unlike previous approaches [22, 4], our method does not use any environment reward to improve
performance, and instead relies solely on the learned reward, which our experiments demonstrate is
sufficient for solving diverse robotic manipulation tasks.

4 Experiments

In this section, we demonstrate how our approach uses diverse video demonstrations to learn a
reward function that generalizes to unseen domains. In particular, we are interested in answering the
questions: (1) How do vision-based methods for IRL perform when learning from demonstrations
that exhibit domain shift? (2) Can our approach learn a stronger reward signal under this challenging
setting? To that end, we first conduct experiments on the X-MAGICAL benchmark [4]. We then
conduct experiments on multiple robot manipulation tasks using a diverse set of demonstrations.

Implementation Details. All MLPs have 2 hidden layers, and the embedding layer outputs features
of size 128 in all experiments. We use Soft Actor-Critic (SAC) [52] as backbone RL algorithm for
all methods. For experiments on X-MAGICAL, we follow Zakka et al. [4] and learn a state-based
policy. For robotic manipulation experiments, we learn a multi-view image-based SAC policy [53].
For fair comparison, we only change the learned reward function across methods and keep the RL
setup identical. Refer to the supplementary material for further implementation details.

Baselines. We compare against multiple vision-based approaches that learn rewards in a self-
supervised manner: (1) XIRL [4] that learns a reward function by applying the TCC [6] loss on
demonstration video sequences, (2) TCN [54] which is a self-supervised contrastive method for
video representation learning that optimizes for temporally disentangled representations, and (3)
LIFS [55] that learns an invariant feature space using a dynamic time warping-based contrastive loss.
Lastly, we also compare against the manually designed (4) Environment Reward from Jangir et al.
[53]. The environment reward baseline is an oracle method since it is a dense reward and is carefully
designed for the task under consideration. For learning-based baselines, we use a ResNet-18 encoder
pretrained on ImageNet [56] classification. See supplementary material for details.

Standard Environment Diverse Environment

Gripper S-stick M-stick L-stick Gripper S-stick M-stick L-stick

Figure 3: Overview of X-MAGICAL task variants. We consider two environment variants and
four embodiments for our simulated sweeping task experiments. We evaluate IRL algorithms in both
the Diverse and Standard environments across four embodiments in the Cross-Embodiment settings.

0.8 gripper shortstick 1.0 mediumstick 1.0 longstick
0.6
%0.6 0.8 0.8
< 0.6 M 0.6
% 0.4 o AN e P’
AA ' o
§ N AT 02| it v 0.4 A 0.4 ’
@ 0.2 0.2 0.2
0.0l 0.0 0.0 0.0
0 100 200 300 400 500 "0 100 200 300 400 500 "0 100 200 300 400 500 "0 100 200 300 400 500
Steps (thousands) Steps (thousands) Steps (thousands) Steps (thousands)
—— GraphIRL (Ours) —— XIRL TCN —— LIFS
0.8 gripper shortstick 1.0 mediumstick 1.0 longstick
0.6
%0.6 0.8 0.8
< 0.4 0.6 0.6
$04
S 0.4 0.4
=4 0.2
n 0.2 0.2 0.2 w
0.0 0.0 e ~ 0.0 === 3 ——= 0.0 Py T
0 100 200 300 400 500 "0 100 200 300 400 500 "0 100 200 300 400 500 "0 100 200 300 400 500
Steps (thousands) Steps (thousands) Steps (thousands) Steps (thousands)
—— GraphlIRL (Ours) —— XIRL TCN —— LIFS
0.8 gripper shortstick 1.0 mediumstick 1.0 longstick
0.6
%0.6 0.8 0.8
« 0.4 0.6 0.6
$04
o 0.4 0.4
3 0.2
0 0.2 0.2 0.2
0.0 e g : ol ————" 00 ——
0 100 200 300 400 500 "0 100 200 300 400 500 ~""0 100 200 300 400 500 "0 100 200 300 400 500
Steps (thousands) Steps (thousands) Steps (thousands) Steps (thousands)
—— GraphIRL (OOD) —— XIRL (OOD) TCN (OOD) —— LIFS (OOD)

Figure 4: Cross-Embodiment Cross-Environment. Success rates of our method GraphIRL and
baselines on (top) Standard Environment Pretraining — Diverse Environment RL, (middle) Diverse
Environment Pretraining — Standard Environment RL and (bottom) Diverse (OOD) Environment
Pretraining — Standard Environment RL. All reported numbers are averaged over 5 seeds. Our
approach performs favorably when compared to other baselines on all three settings.

4.1 Experimental Setup

We conduct experiments under two settings: the Sweep-to-Goal task from X-MAGICAL [4], and
robotic manipulation tasks with an xArm robot both in simulation and on a real robot setup. We
describe our experimental setup under these two settings in the following.

X-MAGICAL. We choose to extend X-MAGICAL [4], a 2D simulation environment for cross-
embodiment imitation learning. On this benchmark, we consider a multi-object sweeping task,
where the agent must push three objects towards a static goal region. We utilize two variants of
the X-MAGICAL benchmark, which we denote as Standard (original) and Diverse (ours) envi-
ronments, shown in Figure 3. Standard only randomizes the position of objects, whereas Diverse
also randomizes visual appearance. We consider a set of four unique embodiments {gripper, short-
stick, medium-stick, long-stick}. In particular, we conduct experiments in the cross-environment
and cross-embodiment setting where we learn a reward function in the Standard environment on 3
held-out embodiments and do RL in the Diverse environment on 1 target embodiment, or vice-versa.
This provides an additional layer of difficulty for the RL agent as visual randomizations show the
brittleness of vision-based IRL methods.

XArm Reach XArm Push XArm Peg in Box

1.0 ~~ 1.0 1.0
) 0.8 0.8 0.8
©
0.6 M\/’_\/\f\f\ 0.6 0.6
a
8o0.4 0.4 0.4
L
0.2 0.2 0.2
IANROSAAT DOR T =0
0'00 100 200 300 0'00 200 400 600 800 0'00 250 500 750 1000
Steps (thousands) Steps (thousands) Steps (thousands)
—— GraphlRL (Ours) — XIRL TCN —— LIFS —— Env. Reward

Figure 5: Robotic Manipulation. Success rates of our method GraphIRL and baselines on the tasks
of Reach, Push and Peg in Box. All results are averaged over 5 seeds. We observe significant gains in
performance specially over vision-based baselines due to large domain-gap

Real XIRL Env. Reward GraphIRL (Ours)
Push 0.27 0.47 0.60
Reach 0.26 0.93 0.86
Pegin Box 0.06 0.60 0.53

Table 1: Real robot experiments. Success rate on robot manipulation tasks on physical hardware.
We evaluate each method for 15 trials using a fixed set of goal and start state configurations.

Robotic Manipulation. Figure 1 shows initial and success configurations for each of the three task
that we consider: (1) Reach in which the agent needs to reach a goal (red disc) with its end-effector,
(2) Push in which the goal is to push a cube to a goal position, and (3) Peg in Box where the goal
is to put a peg tied to the robot’s end-effector inside a box. The last task is particularly difficult
because it requires geometric 3D understanding of the objects. We collect a total of 256 and 162
video demonstrations for Reach and Peg in Box, respectively, and use 198 videos provided from
Schmeckpeper et al. [22] for Push. The videos consist of human actors performing the same tasks
but with a number of diverse objects and goal markers, as well as varied positions of objects. Unlike
the data collected by Schmeckpeper et al. [22], we do not fix the goal position in our demonstrations.
Additionally, we do not require the demonstrations to resemble the robotic environment in terms of
appearance or distribution of goal location. In order to detect objects in our training demonstrations,
we use a trained model from Shan et al. [57]. Refer to supplementary for details on robot platform.

4.2 Results

X-MAGICAL. Results for the cross-embodiment and cross-environment setting are shown in Figure
4. When trained on Standard, our method performs significantly better than vision-based baselines
(e.g., 0.58 GraphIRL for gripper vs 0.35 for XIRL and 0.99 GraphIRL for longstick vs 0.56 XIRL).
We conjecture that vision-based baselines struggle with visual variations in the environment, which
our method is unaffected by due to its graph abstraction. Additionally, we note that XIRL performs
strongly when trained on Diverse. This could be because the Diverse environment contains some
examples that are visually the same as Standard environment. To verify this, we conduct an experi-
ment where we remove the shape (Square) and color (Red) used in Standard environment from the
random configurations for Diverse environment and then construct a new set of demonstration. We
refer to this environment as Diverse (Out Of Distribution). In this setting, XIRL’s performance drops
significantly for 3 out of 4 embodiments.

Robotic manipulation in simulation. In this section, we answer the core question of our work:
can we learn to imitate others from diverse third-person videos? In particular, we collect human
demonstrations for manipulation tasks as explained in Section 4.1 and learn a reward function as
explained in Section 3. This is a challenging setting because as shown in Figure 1, the collected data
and robotic environments belong to different domains and do not share any appearance characteristics.
Further, unlike previous works [22, 4], we do not use any environment reward as an additional
supervision to the reinforcement learning agent. Figure 5 presents our results. For the Reach task,
GraphIRL and environment reward achieve a success rate of 1.0, while other baseline methods are
substantially behind GraphIRL (e.g. 0.477 XIRL and 0.155 TCN). In the Push setting, vision-based
baseline methods still perform poorly. Similar to Reach, XIRL performed the best out of the vision-
based baselines with a success rate of 0.187, and GraphIRL performed better than environment

XArm Reach XArm Push XArm Peg in Box

1.0 T 1.0 1.0
) 0.8 ’V \/ 0.8 - 0.8
©
Z0.6 0.6 ’ 0.6
@ A, IV | 'W
S04 0.4 0.4 46 Mk IR
g L
(2] !
0.2 0.2 0.2 (\
0'00 100 200 300 0.00 200 400 600 800 0'00 500 1000 1500
Steps (thousands) Steps (thousands) Steps (thousands)
—— GraphIRL (10% Demos) GraphlIRL (25% Demos) = —— GraphlIRL (100% Demos)

Figure 6: Ablation Study on Number of Demonstrations. Results averaged over 5 seeds. We use
a total of 256, 198 and 162 videos for Reach, Push and Peg in Box respectively.

reward with a success rate of 0.832. The Peg in Box task is rigorous to solve since it requires 3-d
reasoning and a precise reward function. Here, while all vision-based methods fail, GraphIRL solves
the task with 55.2% success rate. Overall, our GraphIRL method is able to solve 2D and 3D reasoning
tasks with a real-robot without a hand-designed reward function or access to 3D scene information.

Real robot experiments. Finally, we deploy the learned policies on a real robot. For each experiment,
we conduct 15 trials per method and report the average success rate. Results are shown in Table 1.
Interestingly, we find that GraphIRL outperforms XIRL in all three tasks on the real robot setup, and
on Push, GraphIRL performs better than the environment reward specifically designed for the task
(e.g. 0.93 Environment Reward vs 0.86 GraphIRL) which is in line with our findings in simulation.

4.3 Ablations Variant | Success Rate
Impact of Modelling Spatial Interactions. We study the MLP 0.61x0.116
IN 0.804+0.054

impact of modeling object-object spatial interactions using
Spatial Interaction Encoder Network (IN) described in Section
3.1. Specifically, we replace our proposed encoder component
with an Multi-Layer Perceptron (MLP) by concatenating rep-
resentations of all objects into a single vector and then feeding
it to a 3-layer MLP network. Results in Table 2. We observe
that modeling object interactions leads to a 20% improvement
in the RL success rate (i.e. 0.61 for MLP vs 0.804 for IN).

Table 2: Impact of modelling object-
object interaction on Push task.
MLP: Multi-layer perceptron and
IN: Spatial Interaction Network En-
coder. Results over 5 seeds.

Impact of Decreasing Number of Demonstration Videos. Results in Figure 6. We find that our
approach is very data efficient and can learn meaningful rewards even from a small number of videos.
It achieves decent RL success rate with only 10% of total videos used (e.g. 72% for Push).

5 Conclusions and Limitations

Conclusion. We demonstrate the effectiveness of our proposed method, GraphIRL, in a number
of IRL settings with diverse third-person demonstrations. In particular, we show that our method
successfully learns reward functions from human demonstrations with diverse objects and scene
configurations, that we are able to train image-based policies in simulation using our learned rewards,
and that policies trained with our learned rewards are more successful than both prior work and
manually designed reward functions on a real robot. We also hereby commit to release our complete
code and data to the public.

Limitations. While our method relaxes the requirements for human demonstrations, collecting the
demonstrations still requires human labor; and although our results indicate that we can learn from
relatively few videos, eliminating human labor entirely remains an open problem. Moreover, our
approach assumes access to object bounding boxes. This implies that our method’s performance is
dependent on the performance of the object detector. Fortunately, 2d object detectors have become
very reliable as we show in our experiments, we are able to use an off-the-shelf object detector to
extract the bounding boxes without having to perform any manual labeling. Finally, the proposed
graph abstraction allows us to solve tasks despite the large domain gap but it has some potential
disadvantages too. In particular, we lose fine grained information such as object poses and precise
object interactions which could be useful for complex tasks such as medical procedures. However,
we conjecture that 2D images might also not be sufficient for such a task since inferring accurate
object pose, 3D geometric information from a 2D image itself is a challenging problem.

Acknowledgments

This work was supported, in part, by grants from NSF CCF-2112665 (TILOS), NSF 1730158 CI-
New: Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI), NSF
ACI-1541349 CC*DNI Pacific Research Platform, and gifts from Meta, Google, Qualcomm.

The authors would like to thank Sanjay Haresh, Kevin Zakka, Jianglong Ye and Mohit Jain for helpful
discussions.

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529-533, 2015.

[2] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. The International journal
of robotics research, 37(4-5):421-436, 2018.

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-
tional Journal of Robotics Research, 39(1):3-20, 2020.

[4] K. Zakka, A. Zeng, P. Florence, J. Tompson, J. Bohg, and D. Dwibedi. Xirl: Cross-embodiment
inverse reinforcement learning. In Conference on Robot Learning, pages 537-546. PMLR,
2022.

[5] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. Advances in neural information processing systems, 29,
2016.

[6] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman. Temporal cycle-consistency
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1801-1810, 2019.

[7] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

[8] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In /CML, volume 97, pages
12-20, 1997.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469—-483, 2009.

[10] H.Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot learning

from demonstration. Annual review of control, robotics, and autonomous systems, 3:297-330,
2020.

[11] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. /IEEE Robotics and Automation Letters, 5(3):
4978-4985, 2020.

[12] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto. Visual imitation made
easy. In Conference on Robot Learning, pages 1992-2005. PMLR, 2021.

[13] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-shot visual imitation. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 2131-21313, 2018.

[14] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. ArXiv, abs/1805.01954,
2018.

[15] I. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-only imitation learning for dexterous
manipulation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7865-7871, 2021.

[16] A.Y.Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[17] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[18] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[19] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

[20] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. De Freitas. Playing hard exploration
games by watching youtube. Advances in neural information processing systems, 31, 2018.

[21] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

[22] K. Schmeckpeper, O. Rybkin, K. Daniilidis, S. Levine, and C. Finn. Reinforcement learning
with videos: Combining offline observations with interaction. arXiv preprint arXiv:2011.06507,
2020.

[23] J. Jin, L. Petrich, Z. Zhang, M. Dehghan, and M. Jagersand. Visual geometric skill inference
by watching human demonstration. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 8985-8991. IEEE, 2020.

[24] H. Xiong, Q. Li, Y.-C. Chen, H. Bharadhwaj, S. Sinha, and A. Garg. Learning by watching:
Physical imitation of manipulation skills from human videos. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 7827-7834. IEEE, 2021.

[25] Y. Lee, A. Szot, S.-H. Sun, and J. J. Lim. Generalizable imitation learning from observation via
inferring goal proximity. Advances in Neural Information Processing Systems, 34, 2021.

[26] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from
“in-the-wild” human videos. arXiv preprint arXiv:2103.16817, 2021.

[27] A. Fickinger, S. Cohen, S. Russell, and B. Amos. Cross-domain imitation learning via optimal
transport. arXiv preprint arXiv:2110.03684, 2021.

[28] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. Dexmv: Imitation learning
for dexterous manipulation from human videos. In European Conference on Computer Vision,
pages 570-587. Springer, 2022.

[29] S.P. Arunachalam, S. Silwal, B. Evans, and L. Pinto. Dexterous imitation made easy: A learning-
based framework for efficient dexterous manipulation. arXiv preprint arXiv:2203.13251, 2022.

[30] G.E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion planning
for dynamic robots. Automatica, 45(2):343-352, 2009.

[31] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and
motion planning through an extensible planner-independent interface layer. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 639-646, 2014.

[32] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical planning for long-horizon manipu-
lation with geometric and symbolic scene graphs. In 2021 IEEFE International Conference on
Robotics and Automation (ICRA), pages 6541-6548. IEEE, 2021.

[33] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping
and planning for visual navigation. International Journal of Computer Vision, 128:1311-1330,
2019.

10

[34] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi. Visual semantic navigation using
scene priors. arXiv preprint arXiv:1810.06543, 2018.

[35] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph generation by iterative message passing.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3097-3106,
2017.

[36] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang. Scene graph generation from objects,
phrases and region captions. 2017 IEEE International Conference on Computer Vision (ICCV),
pages 1270-1279, 2017.

[37] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tacchetti. Visual interaction
networks: Learning a physics simulator from video. Advances in neural information processing
systems, 30, 2017.

[38] J. Materzynska, T. Xiao, R. Herzig, H. Xu, X. Wang, and T. Darrell. Something-else: Compo-
sitional action recognition with spatial-temporal interaction networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1049-1059, 2020.

[39] Y. Ye, M. Singh, A. Gupta, and S. Tulsiani. Compositional video prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 10353—-10362, 2019.

[40] H. Qi, X. Wang, D. Pathak, Y. Ma, and J. Malik. Learning long-term visual dynamics with
region proposal interaction networks. arXiv preprint arXiv:2008.02265, 2020.

[41] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the future: Self-supervised
correspondence in model-based reinforcement learning. arXiv preprint arXiv:2009.05085,
2020.

[42] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,
and P. Battaglia. Graph networks as learnable physics engines for inference and control. In
International Conference on Machine Learning, pages 4470-4479. PMLR, 2018.

[43] Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba. Learning compositional koopman operators for
model-based control. arXiv preprint arXiv:1910.08264, 2019.

[44] Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani. Object-centric forward modeling for model
predictive control. In Conference on Robot Learning, pages 100-109. PMLR, 2020.

[45] E.Jang, C. Devin, V. Vanhoucke, and S. Levine. Grasp2vec: Learning object representations
from self-supervised grasping. arXiv preprint arXiv:1811.06964, 2018.

[46] Y. Yang, Y. Liu, H. Liang, X. Lou, and C. Choi. Attribute-based robotic grasping with one-grasp
adaptation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
6357-6363. IEEE, 2021.

[47] P. Florence, L. Manuelli, and R. Tedrake. Self-supervised correspondence in visuomotor policy
learning. IEEE Robotics and Automation Letters, 5(2):492-499, 2019.

[48] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute, T. Rothérl, C. Schuster,
R. Hadsell, L. Agapito, and J. Scholz. S3k: Self-supervised semantic keypoints for robotic
manipulation via multi-view consistency. arXiv preprint arXiv:2009.14711, 2020.

[49] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki. Graph-structured visual imitation.
In Conference on Robot Learning, pages 979-989. PMLR, 2020.

[50] S. Haresh, S. Kumar, H. Coskun, S. N. Syed, A. Konin, Z. Zia, and Q.-H. Tran. Learning by
aligning videos in time. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5548-5558, 2021.

[51] W. Liu, B. Tekin, H. Coskun, V. Vineet, P. Fua, and M. Pollefeys. Learning to align sequential
actions in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2181-2191, 2022.

11

[52] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861-1870. PMLR, 2018.

[53] R. Jangir, N. Hansen, S. Ghosal, M. Jain, and X. Wang. Look closer: Bridging egocentric and
third-person views with transformers for robotic manipulation. IEEE Robotics and Automation
Letters, 7(2):3046-3053, 2022.

[54] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain.
Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 1134-1141. 1IEEE, 2018.

[55] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to
transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949, 2017.

[56] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
Jjournal of computer vision, 115(3):211-252, 2015.

[57] D. Shan, J. Geng, M. Shu, and D. F. Fouhey. Understanding human hands in contact at internet
scale. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 9869-9878, 2020.

[58] D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,

2020.

[59] N. Hansen, H. Su, and X. Wang. Stabilizing deep g-learning with convnets and vision trans-
formers under data augmentation. Advances in Neural Information Processing Systems, 34:
3680-3693, 2021.

12

	Introduction
	Related Work
	Our Approach
	Representation Learning
	Reinforcement Learning

	Experiments
	Experimental Setup
	Results
	Ablations

	Conclusions and Limitations

