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Abstract

This paper presents HierSpeech, a high-quality end-to-end text-to-speech (TTS)
system based on a hierarchical conditional variational autoencoder (VAE) utilizing
self-supervised speech representations. Recently, single-stage TTS systems, which
directly generate raw speech waveform from text, have been getting interest thanks
to their ability in generating high-quality audio within a fully end-to-end training
pipeline. However, there is still a room for improvement in the conventional TTS
systems. Since it is challenging to infer both the linguistic and acoustic attributes
from the text directly, missing the details of attributes, specifically linguistic in-
formation, is inevitable, which results in mispronunciation and over-smoothing
problem in their synthetic speech. To address the aforementioned problem, we
leverage self-supervised speech representations as additional linguistic representa-
tions to bridge an information gap between text and speech. Then, the hierarchical
conditional VAE is adopted to connect these representations and to learn each
attribute hierarchically by improving the linguistic capability in latent representa-
tions. Compared with the state-of-the-art TTS system, HierSpeech achieves +0.303
comparative mean opinion score, and reduces the phoneme error rate of synthe-
sized speech from 9.16% to 5.78% on the VCTK dataset. Furthermore, we extend
our model to HierSpeech-U, an untranscribed text-to-speech system. Specifically,
HierSpeech-U can adapt to a novel speaker by utilizing self-supervised speech
representations without text transcripts. The experimental results reveal that our
method outperforms publicly available TTS models, and show the effectiveness of
speaker adaptation with untranscribed speech.

1 Introduction

Text-to-speech (TTS) systems have undergone significant improvements in synthesizing high-quality
speech from text sequence. Conventional TTS systems generally consist of two parts; an acoustic
model and a vocoder. First, acoustic models (Wang et al., 2017; Shen et al., 2018) have shown the
success of synthesizing acoustic features (e.g., Mel-spectrogram) as an intermediate feature from
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text sequence, and the vocoder (Oord et al., 2016) converts the acoustic features into raw waveforms
consecutively.

However, previous TTS models are subject to two limitations: 1) although speech consists of various
attributes (e.g., pronunciation, rhythm, intonation, and timbre) (Qian et al., 2020; Choi et al., 2021),
most previous models synthesize acoustic features from the text sequence at once (Ren et al., 2019),
which exacerbates the one-to-many mapping problem; and 2) in the two-stage pipeline, each part of
the TTS system should be trained independently, which results in the degradation of the audio quality
(Ren et al., 2021a,b; Lee et al., 2021b).

Recently, single-stage end-to-end TTS models, which directly generate a raw waveform from text,
successfully reduce these limitations of the two-stage pipeline. For instance, VITS (Kim et al.,
2021) adopts variational inference augmented with the normalizing flow (Kim et al., 2020) and
adversarial training (Kong et al., 2020) to improve the expressiveness of the model, which can learn
rich representations from speech data and synthesize waveforms directly from the text. However,
despite efforts to reduce the information gap between text and speech, these models are subject to
speech mispronunciation and over-smoothing problems. In the process of synthesizing speech, they
still generate all the acoustic attributes from text sequence at the same time. Therefore, missing the
details of some attributes between text and speech, specifically linguistic information, is inevitable.

To bridge the information gap between text and speech, we adopt self-supervised speech repre-
sentations as additional linguistic representations. Trained with large-scale speech dataset, these
representations can learn useful information without using labeled data. Previous studies (Shah et al.,
2021; Choi et al., 2021) also reveal that the representations from the pre-trained model contain rich
information trained from a large-scale speech dataset. In particular, the representations from the
middle layer of the pre-trained model contain rich linguistic information which has a characteristic of
pronunciation. As a result, it has been successfully utilized for various speech tasks such as speech
recognition (Baevski et al., 2020, 2021), voice conversion (Choi et al., 2021; Lee et al., 2021a), and
speech resynthesis (Polyak et al., 2021). However, these useful representations have not yet received
significant attention in TTS systems due to the difficulty to utilize in generative model.

In this paper, we present HierSpeech, which is a hierarchical conditional variational autoencoder
using self-supervised speech representations for end-to-end TTS. We leverage self-supervised speech
representations (Baevski et al., 2020) to enrich the linguistic information in latent representations,
and to learn each attribute hierarchically from linguistic representations to acoustic representations.
Although the self-supervised representations of text were previously studied for TTS (Jia et al., 2021),
to the best of our knowledge, this is the first study that involves the investigation of self-supervised
speech representations for single-stage end-to-end TTS. Based on the state-of-the-art TTS model (Kim
et al., 2021), we demonstrate that self-supervised speech representations can reduce the information
gap between text and speech by significantly improving the reconstruction quality. Compared with the
state-of-the-art TTS model, HierSpeech achieves +0.303 comparative mean opinion score (CMOS)
and reduces the phoneme error rate from 9.16 to 5.78 for the VCTK dataset.

Based on the pre-trained HierSpeech, we also present novel adaptive TTS frameworks. Specifically,
we extend HierSpeech to HierSpeech-U, which can adapt the pre-trained model to synthesize the
voice of novel speakers with untranscribed speech data. To extract the linguistic representations
without text transcripts, HierSpeech-U can utilize the self-supervised speech representations, and
learn the acoustic representations from untranscribed speech data. The results show that the synthetic
quality of HierSpeech-U trained only with the speech data is comparable to that of HierSpeech trained
with the text-speech pairs. The main contributions of this paper are as follows:

• We propose HierSpeech, which is a hierarchical conditional variational autoencoder using
self-supervised representations that can improve the linguistic information in the latent repre-
sentations, and learn attributes hierarchically. This significantly improves the reconstruction
quality by bridging the gap between text and speech.

• We investigate self-supervised speech representations for the TTS system by thoroughly
conducting more than 30,000 GPU hours of experiments. Audio samples are available at
https://sh-lee-prml.github.io/hierspeech-demo/

• To utilize untranscribed speech data, we extend the model to HierSpeech-U which can adapt
the TTS model without text transcripts. The results also reveal that the adaptation quality
without text transcripts is comparable to that of the baseline model using text transcripts.
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Figure 1: Hierarchical text-to-speech pipeline.

2 HierSpeech

In this paper, we propose the hierarchical conditional variational autoencoder using self-supervised
representations for TTS. We use the self-supervised speech representations to improve the linguistic
information in the latent representations, and to learn each representation hierarchically. Moreover,
we extend HierSpeech to HierSpeech-U, which can adapt the model without text transcripts. The
details of the speech representations, architecture, and untranscribed TTS method are described in
the following subsections.

2.1 Speech representations

Acoustic representations In TTS systems, Mel-spectrogram is widely used as an intermediate
acoustic feature, which is converted from the waveform using the short-time Fourier transform
(STFT). However, this acoustic feature consists of various attributes such as linguistic information
(e.g., pronunciation) and style information (e.g., rhythm, intonation, and timbre). Hence, synthesizing
this rich feature from only the text simultaneously exacerbates the one-to-many mapping problem,
and it is difficult to extract the expressive linguistic information from the spectrogram. To mitigate
this issue, we adopt additional linguistic features to map the text and acoustic features as follows.

Linguistic representations To bridge the gap between text and speech, we use self-supervised
speech representations for additional intermediate linguistic features as shown in Fig. 1. Previous
studies reveal that the extracted features from the pre-trained model, such as wav2vec 2.0, contain
rich linguistic information, and this can improve various tasks such as automatic speech recognition
(ASR) and speech translation. (Shah et al., 2021; Choi et al., 2021) also shows the representations
from the middle layer of wav2vec 2.0 contain a large proportion of linguistic information relevant to
pronunciation. Specifically, we use the self-supervised speech representations from the 12th layer of
the XLS-R (Babu et al., 2021) which is a pre-trained wav2vec 2.0 with a large-scale cross-lingual
speech dataset. In addition, we also conduct various experiments to investigate these representations
for the TTS system as detailed in Section 3.3 and Appendix C.

2.2 Hierarchical variational inference

To connect the two parts of TTS systems, the previous end-to-end TTS model, VITS (Kim et al.,
2021) adopts a conditional variational autoencoder that maximizes the evidence lower bound (ELBO)
over the intractable marginal log-likelihood of data log pθ(x|c):

log pθ(x|c) ≥ Eqϕ(z|x)

[
log pθ(x|z)− log

qϕ(z|x)
pθ(z|c)

]
(1)

where pθ(z|c) is a prior distribution over latent variables z given condition c, pθ(x|z) is the likelihood
function that generates data x given latent variables z as a decoder, and qϕ(z|x) is the approximate
posterior. Subsequently, VITS uses the normalizing flow to improve the expressiveness of the prior
distribution and adversarial training in the waveform domain. Based on VITS, HierSpeech uses a
hierarchical conditional variational autoencoder to connect multi-level intermediate representations
via disentangled latent variables of speech representations, and learns them in an end-to-end manner.
Unlike recently proposed hierarchical VAE (Vahdat and Kautz, 2020; Lee et al., 2022a) which uses
top-down path networks conditioning each other, we approximate them separately from different
representations of speech. As shown in Fig 2, the acoustic posterior distribution and linguistic
posterior distribution are encoded separately by acoustic encoder ϕa and linguistic encoder ϕl

respectively. To disentangle each latent variable, we use the linear-scale spectrogram of the target
speech xspec for the rich acoustic representations za, and the output of the 12th layer of XLS-R xw2v

for the rich linguistic representations zl. The optimization objective of HierSpeech can be expressed
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Figure 2: Overall framework of HierSpeech.

as follows:

log pθ(x|c) ≥ Eqϕ(z|x)

[
log pθd(x|za)− log

qϕa
(za|xspec)

pθa(za|zl)
− log

qϕl
(zl|xw2v)

pθl(zl|c)

]
(2)

where z = [za, zl], θ = [θd, θa, θl], ϕ = [ϕa, ϕl], qϕa
(za|xspec) and qϕl

(zl|xw2v) are the approximate
posterior for acoustic and linguistic representation, and pθl(zl|c) is a prior distribution over linguistic
latent variables zl given condition c, pθa(za|zl) is a prior distribution over acoustic latent variables za,
where zl is sampled from qϕl

(zl|xw2v), and pθd(x|za) is the likelihood function that generates data
x given latent variables za as a decoder θd. For the reconstruction loss, we use Mel-reconstruction
loss Lrec which minimizes the l1 distance of the Mel-spectrogram between the ground truth and
reconstructed waveform using STFT and Mel-scale transformation.

Acoustic encoder and waveform decoder The acoustic encoder ϕa is composed of non-casual
WaveNet residual blocks which are layers of dilated convolutions with a gated activation unit and
skip connection. Thereafter, the output is then fed to the projection layer to sample the acoustic
representations za from the mean and variance of the posterior distribution using the reparametrization
trick. During training, the sliced za is fed to a waveform decoder to reconstruct the raw audio x. We
use HiFi-GAN generator G (Kong et al., 2020) as waveform decoder θd which consists of a stack of
transposed convolution and multi-receptive field fusion module. For adversarial feedback, we also
use the multi-period discriminator D to capture the different periodic features of the waveform.

Ladv(D) = E(x,za)

[
(D(x)− 1)2 +D(G(za))

2
]
, (3)

Ladv(ϕa, θd) = E(za)

[
(D(G(za))− 1)2

]
(4)

where x is the ground truth waveform. To ensure stable training, we use the additional feature
matching loss Lfm which minimizes the l1 distance of each discriminator’s features between the
ground truth and reconstructed waveform.

Linguistic encoder and phoneme predictor The linguistic encoder ϕl has the same structure as
the acoustic encoder. However, we use self-supervised speech representations xw2v as the input of the
linguistic encoder which is extracted from the pre-trained XLS-R, and the linguistic representations
zl is extracted. To enforce linguistic characteristics, zl is fed to the auxiliary phoneme predictor. We
minimize the connectionist temporal classification (CTC) loss Lctc to optimize the linguistic encoder
and phoneme predictor. However, to remove the additional projection layer, the projected mean and
variance from the linguistic encoder are also directly used as the acoustic prior distribution with
weight-sharing between θa and ϕl. To maintain hierarchy, the representation za is transformed by
normalizing flow. Hence, the KL divergence between acoustic prior and posterior is minimized as:

Lkl1 = log qϕa
(za|xspec)− log pθa(za|xw2v) (5)
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Because the acoustic prior distribution is obtained from the linguistic information, to bridge the gap
between distributions, we use the normalizing flow to disentangle the information from the acoustic
posterior and increase the expressiveness of the acoustic prior distribution.

pθa(za|xw2v) = N (fa(za);µθa(xw2v), σθa(xw2v))|det(∂fa(za)/∂za)|,
za ∼ qϕa(za|xspec) = N (za;µϕa(xspec), σϕa(xspec))

(6)

Text encoder The text encoder θl consists of a stacked feed-forward Transformer network using
a relative positional representation. The phoneme sequence ctext is fed to the text encoder, and the
projection layer is used to produce the mean and variance for linguistic prior distribution. To align
the text with the linguistic representations of speech, we use monotonic alignment search (MAS) of
(Kim et al., 2020) which searches the alignment A satisfied with maximizing the likelihood of data:

Lkl2 = log qϕl
(zl|xw2v)− log pθl(zl|ctext, A) (7)

We also use the normalizing flow to increase the expressiveness of the linguistic prior distribution.

pθl(zl|ctext, A) = N (fl(zl);µθl(ctext, A), σθl(ctext, A))|det(∂fl(zl)/∂zl)|,
zl ∼ qϕl

(zl|xw2v) = N (zl;µϕl
(xw2v), σϕl

(xw2v))
(8)

To sample the duration given phonemes, we adopt a flow-based stochastic duration predictor of
(Kim et al., 2021) trained with maximum likelihood estimation. We use the negative variational
lower bound of it as duration loss Ldur. For the multi-speaker settings, we add the global speaker
embedding to the residual block of the acoustic/linguistic encoder, residual block in normalizing flow,
stochastic duration predictor, and decoder.

Total loss The final objectives for HierSpeech can be expressed as follows:

Ltotal = Lkl1+λkl2Lkl2+λrecLrec+λctcLctc+λdurLdur +λadvLadv(ϕa, θd)+λfmLfm (9)

2.3 Untranscribed text-to-speech

For the untranscribed TTS model (HierSpeech-U), we train the model using a style encoder (Min
et al., 2021) which extracts style embedding from speech as global conditioning (Jia et al., 2018).
We use a linear-scale spectrogram as the input of the style encoder. After pre-training with the
multi-speaker dataset, we adapt the model to a novel speaker without text transcripts. Through self-
supervised speech representations, the pre-trained linguistic encoder is able to extract rich linguistic
representations from speech without text transcripts. Hence, HierSpeech-U synthesizes speech with
the style of a novel speaker by fine-tuning the acoustic encoder, the normalizing flow blocks of the
acoustic prior, and decoder with only speech data.

3 Experiment and Result

3.1 Experimental setup

Datasets We train the models using the VCTK and LibriTTS datasets. The VCTK dataset contains
46 hours of audio for 108 speakers (Veaux et al., 2017). We use the train-clean subsets of the
LibriTTS dataset (Zen et al., 2019) which contains 110 hours of audio for 1,151 speakers. For both
datasets, we downsample the audio at 22,050Hz. Following the (Lee et al., 2021a), we use only
non-parallel data for the training dataset which consists of different utterances for each speaker, and
we use the parallel data for the test dataset which consists of 25 same utterances in the VCTK dataset.
For the LibriTTS dataset, we randomly select two samples from each speaker for the test dataset. For
speaker adaptation, we randomly select 98 speakers as the base speakers and 10 speakers (5 males
and 5 females) as the novel speakers. To evaluate the speaker adaptation performance for the number
of speakers, we also train the model using 1,249 speakers from the VCTK and LibriTTS datasets.

Preprocessing For the input of the acoustic and speaker encoder, we use linear-scale spectrogram
with 513 bins which is transformed from the audio. For reconstruction loss, we use a Mel-spectrogram
with 80 bins. For the input of the linguistic encoder, we use the output from the middle layer of the
XLS-R (0.3B) (Babu et al., 2021) which is pre-trained wav2vec 2.0 with a large-scale cross-lingual
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speech dataset.2 To extract the self-supervised speech representations, we use the downsampled audio
at 16,000Hz as an input to the XLS-R, and the extracted representations are upsampled to map the
spectrogram by interpolation.3 For the input of the text encoder, we use the text sequences converted
to International Phonetic Alphabet (IPA) sequences using the open-source Phonemizer.4 Following
(Kim et al., 2021), we intersperse the phoneme sequences with a blank token. However, we use
phoneme sequences without a blank token for the target sequence of the phoneme predictor.5

Training We train HierSpeech using the AdamW optimizer (Loshchilov and Hutter, 2019) with
β1 = 0.8, β2 = 0.99, and weight decay λ = 0.01, and apply the learning rate schedule by the decay
of 0.9991/8 at an initial learning rate of 2 × 10−4 for the generator and discriminator. We train
HierSpeech with a batch size of 256 for 600k steps using mixed precision training on four NVIDIA
A100 GPUs. For speaker adaptation, we fine-tune HierSpeech/HierSpeech-U with few samples of
novel speakers for only 2000 steps. For the ablation study, we train the model with a batch size of 64
for 300k steps.

3.2 Evaluation metrics

Subjective metrics We conduct two mean opinion score (MOS) tests for naturalness and similarity.
For the naturalness MOS (nMOS), each sample from the target and synthesized speech are rated by
at minimum of 20 listeners on a scale of 1-5. For the similarity MOS (sMOS), the synthesized and
target speech are presented to a minimum of 20 listeners on a scale of 1-4. The nMOS and sMOS are
reported with 95% confidence intervals.

Objective metrics For the naturalness measurement, we calculate the phoneme error rate (PER) and
word error rate (WER) of the synthesized speech. We used the fined-tuned wav2vec 2.0 (Baevski et al.,
2020) without a language model for automatic speech recognition. For the similarity measurement,
we conduct three metrics: the equal error rate (EER) of the automatic speaker verification (ASV), the
Mel-cepstral distortion (MCD), and the F0 root mean square error (RMSEf0). We used a pre-trained
ASV model (Chung et al., 2020). The ASV model is trained using a large-scale speech dataset,
VoxCeleb2 (Chung et al., 2018) via online data augmentation (Heo et al., 2020). We calculate the
EER where both acceptance and rejection rates are equal for the sample pairs from the synthesized
and target speech (2, 700 × 108 = 291, 600). We compute the MCD and RMSEf0 by applying
dynamic time warping (DTW) between the synthesized speech and target speech. We conducted a
duration prediction performance evaluation using the average absolute differences of the utterance
duration (DDUR) (Zhang et al., 2019). To compare the inference speeds, we calculate the Speed
which is the synthetic waveform frame per second, and the synthesis speed over real-time (Real-time).

3.3 Analysis of self-supervised representations

Table 1: Results of different input
features for the speaker encoder.

Input feature PER WER EER

Linear spectrogram 5.45 20.13 2.77
1st layer of XLS-R 5.67 20.36 4.62
12th layer of XLS-R 6.29 21.50 10.23

Previous researches (Fan et al., 2020; Choi et al., 2021) reveal
that the representations from the front layer of wav2vec 2.0
are clustered by each speaker. Hence, (Choi et al., 2021)
uses the 1st layer of pre-trained wav2vec 2.0 as an input to
the speaker encoder. As an input of the speaker encoder, we
compared three different features; linear-scale spectrogram
(linear spectrogram), the representations from the 1st layer
of XLS-R and 12th layer of XLS-R. Table 1 shows that the
linear spectrogram has better transfer performance than the
representations of XLS-R. Although the speaker embedding extracted from the 1st layer of the XLS-R
has better performance than one of the 12th layer, the results show that the linear spectrogram contains
a significant amount of high-resolution information for speaker characteristics. In this respect, we
use linear spectrogram as the input for the speaker encoder, and we can conclude that there is a little
speaker information to transfer speaking style in the representations of the middle layer of XLS-R.

2Specifically, we use the 12th layer of the XLS-R. The results are detailed in Section 3.3 and Appendix C.
3We simply interpolate with respect to the time-domain. The ASR model uses the audio with a sampling rate

of 16,000 Hz. However, the TTS model use higher resolution audio for high-quality audio synthesis.
4https://github.com/bootphon/phonemizer
5We observe that the blank token degraded the classification performance under the experimental conditions.
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Table 2: Speaker classification ac-
curacy on linguistic representations
from the different layer of XLS-R.

layer Accuracy (w2v) Accuracy (zl)

1st layer 79.12% 15.09%
12th layer 59.46% 8.95%
24th layer 48.73% 11.35%

To evaluate the speech disentanglement performance with re-
spect to the layer of XLS-R, we conduct frame-level speaker
classification on the representations from a specific layer of
the XLS-R and the linguistic latent variables zl respectively.
Table 2 shows that the representations from each layer con-
tain some speaker information to be classified. However, the
speaker information is reduced through the linguistic encoder,
and the zl from the 12th layer of XLS-R has the lowest accu-
racy. Hence, we use representations from the 12th layer for
the linguistic encoder. It should be noted that all representations, with the exception of the 23th layer,
improve the TTS performance of HierSpeech when compared with that of VITS, which means that
all representations contain rich information trained with large-scale speech dataset.

3.4 Evaluation on TTS

Table 3: The TTS evaluation results on the VCTK dataset.
Method nMOS sMOS PER WER EER MCD RMSEf0 DDUR Speed (kHz) Real-time

GT 4.06±0.02 3.34±0.03 5.64 18.94 4.03 - - - - -
GT (HiFi-GAN) 4.03±0.02 3.30±0.03 5.94 19.52 5.04 1.25 28.32 - 6,484.09 ×294.06

Tacotron2 3.76±0.02 3.16±0.03 11.73 22.48 9.11 4.18 35.30 0.49 263.94 ×11.97
Glow-TTS 3.95±0.02 3.09±0.03 11.77 26.40 5.33 4.31 32.98 0.38 1,410.75 ×63.97
PortaSpeech 3.97±0.02 3.15±0.03 11.35 25.46 5.48 4.34 32.89 0.43 1,163.21 ×52.75
VITS 4.02±0.02 3.19±0.03 9.16 25.54 3.83 4.27 32.93 0.37 1,610.77 ×72.83
HierSpeech (Ours) 4.04±0.02 3.22±0.03 5.78 19.55 3.74 4.05 32.15 0.33 1,459.95 ×66.21

Table 4: The speaker transfer evaluation results on the LibriTTS dataset.
Method nMOS sMOS PER WER EER MCD RMSEf0 DDUR Speed (kHz) Real-time

GT 4.04±0.03 3.40±0.03 7.01 18.28 4.45 - - - - -

VITS 3.96±0.03 3.26±0.03 13.62 29.83 5.00 4.37 34.18 1.09 1,781.40 ×80.78
HierSpeech (Ours) 3.98±0.03 3.26±0.03 7.47 20.34 5.00 4.42 32.95 0.72 1,678.79 ×76.13

Table 3 shows that our model outperforms the other models with respect to the nMOS and sMOS for
both datasets. In terms of the ASR evaluation, our model shows a lower PER and WER than the other
models by synthesizing speech with more accurate pronunciation. In terms of EER, all models have
similar performance, which indicates the target speaker embedding (ID) is useful supervision for
multi-speaker TTS. For the speaker transfer, we evaluate each model using the same speaker encoder
in Table 4 and subsection 3.5. In terms of the MCD and RMSEf0, our model has the lowest error
distance. Although VITS has better performance in inference speed, our model has a faster inference
speed than two-stage end-to-end TTS models. We also compare the models using speaker encoder,
which are trained with VCTK and LibriTTS dataset in Table 4. Our model outperforms VITS in
terms of nMOS and ASR evaluation. However, our model has a slightly lower transfer performance
in MCD. We found that transferring the speaker from the long sentence or noisy audio results in low
performance of ASR for VITS and low speaker transfer quality for HierSpeech. We also conduct
the comparative mean opinion score (CMOS) tests between the models trained with each dataset;
VCTK and LibriTTS. Table 5 also shows that our model has a better performance than VITS in
CMOS evaluation with t-test p-values. Also, our model achieves -0.096 CMOS compared to ground
truth (GT) audio on the VCTK dataset. However, Table 5b shows that our model has -0.505 CMOS
compared to GT, and it means that there is a room for improvement in TTS system by improving the
expressiveness and robustness of the model.

Table 5: CMOS comparison. Positive score indicates that HierSpeech is rated better than the baseline.

(a) The CMOS results on the VCTK dataset.

Method CMOS p-value

HierSpeech (Ours) 0 -

GT -0.096 0.003
VITS +0.303 <10−24

(b) The CMOS results on the LibriTTS dataset.

Method CMOS p-value

HierSpeech (Ours) 0 -

GT -0.505 <10−104

VITS +0.297 <10−25
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Table 6: Results for untranscribed text-to-speech. We compare few-shot speaker adaptation perfor-
mance of HierSpeech-U with that of HierSpeech. Both models use the pre-trained HierSpeech which
is trained using VCTK and LibriTTS datasets. We used 10 unseen speakers of VCTK dataset as novel
speakers, and fine-tuned each model with 20 samples from each speaker.

Method Transcript nMOS sMOS PER WER EER MCD RMSEf0 DDUR

GT - 4.13±0.10 3.38±0.10 4.26 16.69 4.14 - - -

HierSpeech ✓ 4.09±0.10 3.18±0.11 4.40 16.95 6.40 3.96 29.56 0.28
HierSpeech-U ✗ 4.08±0.09 3.15±0.12 3.71 15.85 6.40 4.09 30.64 0.36

3.5 Untranscribed text-to-speech
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Figure 3: The EER results for different
numbers of adaptation samples.

To evaluate the untranscribed text-to-speech performance
of HierSpeech-U, we compare the few-shot speaker adapta-
tion performance of HierSpeech-U with one of HierSpeech
which is fine-tuned by unseen speakers using few audio-
text pairs (Arik et al., 2018). Both models use the pre-
trained HierSpeech which is trained using VCTK and Lib-
riTTS datasets. For the speaker adaptation of HierSpeech,
we fine-tune the entire model. Although HierSpeech-U
is fine-tuned without text transcripts, Table 6 shows that
HierSpeech-U has comparable performance to HierSpeech
in terms of nMOS and sMOS. Moreover, HierSpeech-U
achieves a lower PER and WER than that of HierSpeech,
which is slightly increased compared to PER 3.58 and WER
15.50 for the pre-trained model. Although there is a limita-
tion in adapting duration, HierSpeech-U is able to adapt the
speaker in terms of voice by utilizing the linguistic repre-
sentations from the self-supervised speech representations
without text transcripts. Note that we fail to fine-tune VITS
without text transcripts in that the PER for VITS increases
from 7.47 to 12.27. Furthermore, we evaluate the adaptation quality with different numbers of
adaptation samples (1, 5, 10, and 20) in Figure 3. We also investigate the effectiveness for different
numbers of pre-trained speakers (98 from VCTK and 1,151 from LibriTTS) and the evaluation results
are described in Appendix C.

3.6 Ablation study and hyperparameter search

Table 7: Results of the ablation study.

Method PER WER EER MCD

VITS 12.24 30.62 3.85 4.36
w flow 8 13.42 32.77 4.00 4.36
w PP 7.60 22.98 3.74 4.17

HierSpeech 6.25 20.89 3.48 4.15
w.o AE 8.00 23.84 3.63 4.25
w.o AE and PP 16.70 37.43 3.89 4.39

To compare the effectiveness for the number of normalizing
flow, we train VITS which has the same number of flow
blocks (4 −→ 8) with HierSpeech. However, we observe
that increasing the number of flow blocks does not always
indicate an improvement in model performance, resulting
in the degradation of the pronunciation and audio quality
as shown in Table 7. Adding a phoneme predictor (PP) to
the posterior encoder of VITS improves the PER and WER
by guiding the alignment search. Removing the acoustic
encoder (AE) and synthesizing waveform directly from the
linguistic representations from the 12th layer of XLS-R
degrade the performance, and it also has higher Mel-spectrogram reconstruction error.

We conduct a hyperparameter search and ablation study of the phoneme predictor in Appendix C.
The proper value of λctc = 45 increases the overall performance in all the objective metrics. In
contrast, when using an excessively large λctc, the KL divergence between the acoustic and linguistic
distribution increases, which decreases the performance of audio quality with noisy sound. For better
generalization, we attempted to combine label smoothing with CTC loss (Kim et al., 2018) and
conduct experiments on data augmentation for the effective speech disentanglement of linguistic
information following (Choi et al., 2021). However, label smoothing and data augmentation lead to
the problem for KL divergence optimization, thus resulting in the degradation of the synthesis quality.
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3.7 Evaluation on VC

Table 8: The VC evaluation results on the VCTK.

Model nMOS sMOS PER WER EER

GT 4.19±0.03 3.37±0.04 5.20 14.05 0.98

AutoVC 3.74±0.05 3.04±0.05 59.42 89.01 12.50
VoiceMixer 4.00±0.05 3.11±0.05 12.67 31.80 9.35
VITS 4.06±0.04 3.16±0.05 6.46 18.73 2.75
HierSpeech 4.08±0.04 3.16±0.05 5.51 16.25 2.75

To evaluate speech disentanglement, we
compared the voice conversion (VC) task
of our model with three models; AutoVC
(Qian et al., 2019), VoiceMixer (Lee et al.,
2021a), and VITS (Kim et al., 2021). For
a fair comparison, we train all models
using the same dataset. However, note
that AutoVC and VoiceMixer do not use
the phoneme information. Following (Lee
et al., 2021a), we randomly select 20 speakers. Thereafter, a single audio sample is selected from
each speaker, and then all the possible pairs of samples (20× 20 = 400) are produced for evaluation.
Table 8 shows that our model outperforms the other models in nMOS and ASR evaluation metrics.
Although VITS has similar performance in the EER evaluation, our model has better performance in
ASR evaluation, which means that our model can disentangle content and style information with a
small loss of content information. We also observe that using the representations from the middle
layer of XLS-R improves the PER performance when compared with that of the previous layer, and
the auxiliary phoneme predictor also helps retain the linguistic information.

4 Broader Impact

Recently, self-supervised speech representations have been utilized in TTS tasks (Siuzdak et al., 2022;
Kim et al., 2022; Du et al., 2022) and we see that our hierarchical speech synthesis structure using
self-supervised speech representations can be also utilized for various tasks. First, the application of
a low-resource language can utilize self-supervised speech representations to improve the synthesis
quality. Second, cross-lingual speaker adaptation for dubbing can be used in the film industry.
However, as recent speech synthesis systems such as TTS and VC can generate the audio with realistic
sound, there is an increased potential risk of harm, malicious use, and ethical issues. Specifically,
these systems could be misused in various manners, such as fake news generation, voice spoofing,
and unauthorized use of web crawl speech data. To mitigate these issues, fake audio detection is
studied (Singhal et al., 2019; Tak et al., 2021). Moreover, we provide a mitigation strategy for the
proposed system by releasing the fake audio detection model with an ensemble of discriminators that
can distinguish real and fake audio based on results of multiple discriminators. Although it is difficult
to differentiate in human evaluation score, the model achieves a 16.59% EER for fake audio detection
on 1,852 test samples of the ground-truth and synthesized speech from our model.

5 Conclusion

We presented an end-to-end TTS model, HierSpeech, which can learn and synthesize speech from
text through hierarchical intermediate representations in an end-to-end manner. By bridging the
gap between text and speech through self-supervised speech representations, the proposed model
significantly improved the reconstruction quality. We successfully demonstrated that our hierarchical
conditional variational autoencoder can improve linguistic capability in latent representations, and
learn each attribute hierarchically using self-supervised speech representations. We thoroughly
conducted more than 30,000 GPU hours of experiments on self-supervised representations for
the TTS system, and we hope that these results can serve as a basis for future speech research.
Furthermore, we also demonstrate the effectiveness of a novel speaker adaptation framework without
text transcripts. We see our hierarchical structure extending to cross-lingual TTS systems or other
low-resource TTS systems. Also, we will try to improve the expressive and robustness of model
by modeling prosody (Im et al., 2022) and noise from speech (Saeki et al., 2022). However, the
single-stage end-to-end TTS model is limited in terms of computational complexity in that the training
process requires 20 days using four A100 GPUs. Hence, in future works, an attempt will be made to
decrease the computational cost without quality degradation by adopting iDWT (Lee et al., 2022b) in
the decoder and simplifying the discriminator to facilitate more rapid training (Andreev et al., 2022),
and replace the decoder with an diffusion-based neural vocoder (Koizumi et al., 2022b,a). In addition,
we discussed the potential positive and negative impact of our model in Section 4. To mitigate the
negative impact, we will release fake audio detector that can distinguish between real and fake audio.
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