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Abstract
Self-rationalization models that predict task la-001
bels and generate free-text elaborations for their002
predictions could enable more intuitive interac-003
tion with NLP systems. These models are, how-004
ever, currently trained with a large amount of005
human-written free-text explanations for each006
task which hinders their broader usage. We007
propose to study a more realistic setting of008
self-rationalization using few training exam-009
ples. We present FEB—a standardized collec-010
tion of four existing English-language datasets011
and associated metrics. We identify the right012
prompting approach by extensively exploring013
natural language prompts on FEB. Then, by us-014
ing this prompt and scaling the model size, we015
demonstrate that making progress on few-shot016
self-rationalization is possible. We show there017
is still ample room for improvement in this task:018
the average plausibility of generated explana-019
tions assessed by human annotators is at most020
51%, while plausibility of human explanations021
is 76%. We hope that FEB and our proposed022
approach will spur the community to take on023
the few-shot self-rationalization challenge.024

1 Introduction025

Models constrained to be more understandable to026

people are easier to troubleshoot and more useful027

in practice (Rudin et al., 2021). For instance, con-028

straining a model that answers the question “Which029

linguist invented the lightbulb?” with “none” to030

also provide the reason—“Thomas Edison is the031

inventor of the lightbulb and he was not a linguist”—032

makes the model easier to control and interact with033

(Kim et al., 2021). Models that jointly predict034

task labels and generate free-text explanations for035

their predictions (as in the previous example) are036

known as self-rationalization models (Wiegreffe037

et al., 2021). Their explanations are arguably more038

faithful and stable than post-hoc explanations since039

they are intrinsic to the model (Melis and Jaakkola,040

2018). The free-text format is essential for ex-041

plaining tasks requiring reasoning about unstated042

knowledge such as commonsense (Marasović et al., 043

2020), and it makes explanations more intuitive to 044

people compared to highlights of individual words 045

(Camburu et al., 2018). Despite these benefits, self- 046

rationalization models are not widely used, in part 047

because their training currently requires an abun- 048

dance of human-authored explanations for each 049

task (Narang et al., 2020). A possible solution 050

is few-shot learning, which has shown promising 051

results in recent years. To help the research com- 052

munity begin tackling self-rationalization with only 053

a few examples, we present (i) FEB—a standard- 054

ized collection of four existing English-language 055

datasets and associated metrics, and (ii) the first ap- 056

proach for the task established through an extensive 057

evaluation of natural language prompts.1 058

One approach to few-shot learning is prompt- 059

based finetuning with natural language prompts. 060

Such prompts are produced by formatting finetun- 061

ing instances using a format similar to that used 062

in pretraining, based on the idea that finetuning 063

examples that look similar to pretraining ones will 064

be more informative in the fewshot setting. A few 065

prompts are then used for finetuning. In this paper, 066

we explore whether prompt-based finetuning can 067

be extended to induce few-shot self-rationalization 068

behavior in addition to few-shot prediction. To 069

measure our progress, we first introduce FEB as 070

benchmark dataset consisting of human authored 071

free-text explanations across four distinct end tasks 072

including natural language inference and common- 073

sense tasks (§2). Since finding appropriate prompts 074

is often challenging (Gao et al., 2021), we then 075

extensively explore natural language prompts for 076

few-shot self-rationalization. In our experiments, 077

we fine-tune the T5 and UNIFIEDQA pretrained 078

encoder-decoder transformers (Raffel et al., 2020; 079

Khashabi et al., 2020), and show that versatile 080

question-answering prompts (defined in §3.1) out- 081

perform prompts based on span infilling by 8.73 082

1Few Explanations Benchmark (FEB)
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accuracy points, as well as prompts designed by fol-083

lowing the most similar T5’s supervised pretraining084

task by 3.21.085

We then study the impact of model size on few-086

shot self-rationalization to investigate whether the087

quality of generated explanations scales with the088

size as good as the accuracy of predicting task la-089

bels. To this end, we also evaluate GPT-3’s (Brown090

et al., 2020) self-rationalization behavior. Our ex-091

periments show that explanation plausibility scored092

by human annotators and end-task accuracy im-093

prove with increasing model size, despite models094

being overparametrized. Specifically, the differ-095

ence in plausibility scores between the BASE and096

3B model ranges from [6.24, 24.85] (on average097

14.85). The average plausibility across datasets098

is 43.36 (UNIFIEDQA-3B) and 50.58 (GPT-3).099

While encouraging, our results show that there is100

still a large gap between model and human perfor-101

mance (25.75 for GPT-3), and we hope this work102

will help enable the research community to take on103

the few-shot self-rationalization challenge.104

Our code for producing data splits, prompt con-105

struction, model training/evaluation, and human106

evaluation templates will be publicly available.107

2 FEB Benchmark108

There has been an explosion of interest in generat-109

ing free-text explanations and in few-shot learning110

in the last 1–2 years. However, appropriate datasets111

and metrics for few-shot self-rationalization have112

not yet been established. We thus introduce113

the FEB benchmark—a suite of existing English-114

language datasets with human-authored free-text115

explanations and associated metrics for few-shot116

self-rationalization. We expect that FEB will sim-117

plify future model comparison and lower barriers118

to entry for those interested in working on this task.119

Datasets in FEB To identify available datasets120

suitable for few-shot self-rationalization, we start121

with a recent overview of datasets with free-text ex-122

planations (Wiegreffe and Marasović, 2021) and fil-123

ter them according to the following criteria: (i) the124

input is textual, (ii) the explanation consists of one125

sentence or 2–3 simple sentences, (iii) the task has126

a fixed set of possible labels, (iv) the explanation is127

human-authored, and (v) the dataset has at least 389128

instances. We use the second and third criteria to129

narrow the scope to easier self-rationalization since130

we expect that few-shot self-rationalization is very131

challenging. The last requirement is introduced to132

FEB Tasks # Shots

E-SNLI
(Camburu et al., 2018)

Classify the entailment rela-
tion between two sequences

16

ECQA
(Aggarwal et al., 2021)

Answer a question, given five
answer choices

48

COMVE
(Wang et al., 2019)

Select one of two sequences
as more nonsensical

24

SBIC
(Sap et al., 2020)

Classify a post as offensive or
not

24

Table 1: Tasks that we have included in FEB.

have 48 training and 350 evaluation examples. 133

This gives us 5 datasets, 4 of which are included 134

in FEB and overviewed in Table 1. These datasets 135

span 4 different tasks: natural language inference, 136

multiple-choice commonsense QA, nonsensical 137

sentence selection, and offensiveness classification. 138

We exclude COS-E (Rajani et al., 2019) as it is 139

too noisy to be useful for modeling and evaluating 140

self-rationalization (Narang et al., 2021).2 141

ECQA contains not only justifications of the 142

correct answer, but also justifications that refute 143

the incorrect answer choices. We use only the for- 144

mer since they answer “why is [input] assigned 145

[label]?”, just as explanations in other datasets that 146

we have included in FEB. The SBIC dataset con- 147

tains annotations of frames representing the social 148

biases that are implied in language. We format 149

these frames as a self-rationalization task as fol- 150

lows. We allow only two labels: “offensive” and 151

“not offensive”. If a post is not offensive, we assign 152

it the explanation: “This post does not imply any- 153

thing offensive.” A post can be offensive because 154

it targets an individual or a demographic group. In 155

the former cases, a post is assigned the explanation: 156

“This post is a personal attack.” Otherwise, we de- 157

fine a set of rules to transform annotations of which 158

identity-based group is targeted and what stereo- 159

types of this group are referenced or implied into 160

a single, coherent sentence; e.g., group: women, 161

stereotype: can’t drive → “This post is offensive 162

because it implies that women can’t drive”. 163

This is, to the best of our knowledge, the 164

most comprehensive collection of textual self- 165

rationalization tasks that could also be used even 166

when working in a high-resource setting. 167

Automatic Evaluation Evaluating self- 168

rationalization—predicting task labels and 169

generating explanations for the predicted labels— 170

2Since COS-E is still actively used, we report COS-E
results in Tables 8 and 9 in Appendix.
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requires end-task evaluation and assessing the171

explanation plausibility. We use accuracy as172

our end-task evaluation metric. Explanation173

plausibility may be described as a subjective174

satisfaction with how a given explanation justifies175

a label/answer (Yang et al., 2019). Kayser et al.176

(2021) present the largest currently available study177

on the correlation of NLG metrics with human178

judgments of free-text explanation plausibility and179

report that BERTscore (Zhang et al., 2020) is most180

correlated (although the correlation is still weak).181

Thus, we use BERTscore to evaluate the similarity182

between gold and generated explanations. Follow-183

ing Kayser et al., we assign zero BERTscore to184

explanations of incorrectly predicted instances.185

We follow recent recommendations for reliable186

few-shot evaluation (Bragg et al., 2021). Specif-187

ically, we fix hyperparameters (HPs) and use 60188

random train-dev splits with 350 examples in each189

dev set. For classification tasks, the number of190

shots (examples per label) is chosen such that we191

construct a balanced training set of size 48.3 See192

Table 1 (col. 3) for exact values; for ECQA we193

sample 48 training examples. For each model, we194

report the mean and standard error of 60 mean ac-195

curacy/BERTscore values calculated on 60 dev sets196

of 350 examples.4 Our HPs are reported in Table 7197

in Appendix.198

Human Evaluation For our final models (§4),199

we conduct a human evaluation of plausibility200

of generated explanations following prior work201

(Kayser et al., 2021; Marasović et al., 2020). For202

each model evaluation, Kayser et al. (2021) take the203

first 300 dev examples that are correctly predicted204

by the model. This means that the dev set subsets205

used for human evaluation differ across models that206

are evaluated. However, the overlap between the207

evaluation sets is maximized by fixing the order of208

dev instances and taking the first 300.209

Prior work used a single train-dev split, while210

FEB has 60 train-dev splits. Multiple splits pro-211

vides the opportunity to account for the variance212

caused by changing the random seed to produce213

a reliable estimate of plausibility of explanations214

produced with only a few examples. Therefore,215

3In early studies, we found that 48 gives models that are at
least slightly above the random baseline across all four tasks.

4To calculate the standard error for accuracy/BERTscore
we use n = 60. The training (and likewise, dev) sets across
splits can overlap, so this error reflects the variability expected
in average scores when repeating our experiment with 60 new
random splits of the same data sets.

we take the first 6 correctly predicted examples 216

per train-dev split, i.e., 6*60=360 total instances. 217

Moreover, for classification tasks, we propose to 218

take the first 6/#labels correctly-predicted examples 219

per label to have a balanced evaluation set. 220

Following Kayser et al. (2021), we conduct the 221

human evaluation in two steps: 222

• Step1: Select the correct label/answer. 223

• Step2: Assess whether two explanations (gold 224

and generated) justify the label/answer above. 225

The first step makes sure the annotators understood 226

the task correctly and they are not able to submit 227

their annotations if the answers are wrong. Ground- 228

truth explanations are evaluated to implicitly influ- 229

ence annotators with a gold reference point when 230

they evaluate generated explanations, and to mea- 231

sure the quality of explanation datasets. To evalu- 232

ate explanations, annotators are asked “Does the 233

explanation justify the answer?” and given the 234

options {“yes”,“weak yes”,“weak no”,“no”}. 235

These options are mapped to plausibility scores of 236

{1,2
3,

1
3,0}, respectively. For each of the 360 ex- 237

amples, we calculate the mean plausibility score 238

of 3 annotators and report the mean and the stan- 239

dard error of 360 mean scores. We also report the 240

inter-annotator agreement calculated with Fleiss’ 241

kappa. Finally, models are evaluated independently 242

to avoid penalizing worse models in the presence 243

of explanations generated by a better model. 244

3 Prompting for Self-Rationalization 245

We approach few-shot self-rationalization with 246

prompt-based finetuning using natural language 247

(NL) prompts. The key idea behind NL prompts 248

is that a pretrained language model (LM) is al- 249

ready well-positioned to solve the end-task if we 250

format finetuning end-task examples as similar as 251

possible to the format used in pretraining. Follow- 252

ing that principle, in this section, we describe our 253

prompting approach with T5 (Raffel et al., 2020) 254

and comprehensively evaluate three distinct prompt 255

types with FEB. Our results show that a unified 256

question-answering (QA) prompt combined with a 257

T5 variant that includes additional supervised mul- 258

titask QA training (UNIFIEDQA; Khashabi et al., 259

2020) performs the best overall across tasks, when 260

compared to three different alternative prompts as 261

described below. 262

Self-rationalization models (Narang et al., 2020; 263

Wiegreffe et al., 2021) are currently based on T5 for 264

at least two reasons. First, T5 has been pretrained 265
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with many supervised tasks including classification266

and generation tasks, and self-rationalization in-267

volves both classification and generation. Second,268

T5 is one of the largest open-sourced and widely269

studied pretrained models, and higher LM perfor-270

mance is correlated with larger model size (Kaplan271

et al., 2020). Thus, all of our experiments are based272

on T5 (and the UNIFIEDQA variant when evaluat-273

ing prompts based on a QA format). In this section,274

all results are obtained with the base version of275

these models and in §4 we scale model size.276

When a LM is pretrained with masked language277

modeling (Devlin et al., 2019) only, an appropriate278

NL prompt is constructed by adding and infilling279

masked tokens (Jiang et al., 2020). T5, however,280

has been pretrained with span infilling and a suite281

of supervised tasks whose instances were formatted282

in various ways. One of these supervised tasks in-283

cludes SQUAD 1.1 (Rajpurkar et al., 2016) which284

allows us to experiment with prompts based on QA285

templates. As a result, we were able to design sev-286

eral different types of NL prompts for T5 consistent287

with different aspects of its pretraining:288

1. QA prompts ( SQUADT5 , QASIMPLE ).289

2. span-filling prompts ( INFILLING ),290

3. prompts designed by following the format-291

ting of the most similar T5’s pretraining task292

(≈T5 ; see Table 1),293

We illustrate these prompt types for COMVE in294

Table 11 in Appendix. The following sections de-295

scribe these formats in detail and compare their296

performance using FEB.297

3.1 QA Prompts298

Formatting new instances as QA pairs has been299

shown to be useful for transfer learning from a300

QA model (Gardner et al., 2019). We first eval-301

uate options for a versatile QA NL prompt for302

self-rationalization of tasks in FEB before com-303

paring this approach with the other two prompt304

types ( INFILLING and ≈T5 ) in §3.3. As alterna-305

tive QA models, we investigate two models: T5306

(which has been pretrained with QA supervision307

from SQUAD 1.1), and UNIFIEDQA (a T5 variant308

described in detail below). Since UNIFIEDQA was309

trained on a multitask mixture of many different310

QA datasets, these T5 variants allow us to examine311

the extent to which additional QA supervision can312

transfer to the few-shot self-rationalization setting.313

Prior work (Bragg et al., 2021) introduced314

UNIFEW, a model based on UNIFIEDQA, that is315

finetuned on a few task-specific instances posed 316

as QA. Despite its simplicity, UNIFEW achieves 317

competitive few-shot learning performance with 318

strong baselines for classification tasks. However, 319

Bragg et al.’s prompts do not cover all task types 320

in FEB, and the question structure in their prompts 321

is highly task-specific (see Appendix A.1). 322

Alternatively, we propose to design QA prompts 323

with a simple principle in mind—given a non-QA 324

task, construct an equivalent QA task in the form 325

of short “Is...?” or “What is...?” questions. Here, 326

“Is...?” questions have yes/no answers (sometimes 327

“maybe”), and task labels verbatim are answers to 328

“What is...?” questions (e.g., “offensive” and “not 329

offensive”). Then, for UNIFIEDQA and non-QA 330

task in FEB, we develop prompts following the for- 331

mats proposed in UNIFIEDQA (see Appendix A.1). 332

We denote these prompts as QASIMPLE . For T5, 333

we develop prompts following the SQUAD format 334

for the T5’s pretraining (see Appendix A.1). The 335

output takes the form of “answer because explana- 336

tion”. There is another factor to consider. We need 337

to decide whether to add tags—a single descrip- 338

tions of different input elements; e.g., “premise:” 339

and “hypothesis:” before the first and second 340

sentence in the E-SNLI input. Without these tags 341

the task seems impossible to understand, but UNI- 342

FIEDQA has not been trained with similar tags. 343

Table 11 in Appendix shows examples of our 344

various QA prompts. 345

Results We present the results of UNIFIEDQA 346

with QASIMPLE in Table 2, and due to space limits, 347

T5’s results with SQUADT5 prompts in Table 10 348

in Appendix. For ECQA with UNIFIEDQA, we 349

use the UNIFIEDQA format for multiple-choice 350

QA (see Appendix A.1). 351

We observe that for E-SNLI and COMVE it is 352

crucial to add tags (“premise:”/“hypothesis:”; 353

“choice1:”/“choice2:”). This result is intuitive— 354

it should be difficult to pick one of the two sen- 355

tences, or classify a relation between them, if sen- 356

tences are not marked.5 On the other hand, adding 357

label choices is not beneficial and in some cases 358

can even decrease the performance. When tags are 359

included, we see that across all the tasks the “What 360

is...?” question performs the best. This also holds 361

for T5 and SQUADT5 prompts (see Table 10). Fi- 362

nally, the prompt with the “What is...?” question 363

5Performance on COMVE with “Is...?” is close to random
which suggests that this question form hinders the perfor-
mance and tags cannot make a difference.
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and tags in the input outperforms UNIFEW for both364

tasks UNIFEW can be applied to. This result shows365

that this prompt is both versatile and effective.366

Finally, we compare the best performing367

prompts we get with UNIFIEDQA + QASIMPLE368

and T5+ SQUADT5 . See prompts “ SQUADT5 ×369

WHAT IS...? + TAGS” and “ QASIMPLE × WHAT370

IS...? + TAGS” in Table 11. For ECQA and371

COMVE, we observe notable improvements from372

using UNIFIEDQA, and minor improvements for373

SBIC. For E-SNLI, T5 is better, presumably be-374

cause UNIFIEDQA has lost some useful informa-375

tion from MNLI after extensive continued pretrain-376

ing for QA. These results suggest that UNIFIEDQA377

is a better model for prompting self-rationalization378

with QA prompts.379

To recap, the analysis presented in this sec-380

tion suggests that QA prompting for inducing self-381

rationalization behavior is best done when UNI-382

FIEDQA is combined with the NL prompt below.383

For true QA tasks, we use UNIFIEDQA formats.384

explain what is this/more...? \\n tag1:
[sequence1] tag2: [sequence2] ...</s>

385

3.2 INFILLING Prompts386

The simplest way to design an infilling prompt387

is to prepend the span “<extra_id_0> because388

<extra_id_1>” to the input. A model should389

then replace <extra_id_0> with a label/answer390

and <extra_id_1> with an explanation. Besides391

being similar to T5’s span infilling pretraining392

task, another benefit of this prompt is that is very393

flexible—the span above can be added to any task394

input. This basic infilling prompt could be eas-395

ily made more natural by prepending phrases such396

as: “The answer is” (ECQA), “Less common397

is” (COMVE), or “This is” (E-SNLI, SBIC).398

We hypothesize that these additional phrases could399

be beneficial because they suggest which subset400

of the vocabulary is the right word for filling in401

<extra_id_0>. We test whether it is beneficial to402

make the infilling prompt more natural sounding.403

Results T5 results are shown in Table 3. The out-404

come is mixed—while we observe notable benefits405

for ECQA/SBIC, for E-SNLI/COMVE there is a406

minor difference in favor of the basic prompt. A407

way to explain this is that T5 learned about NLI la-408

bels from MNLI during pretraining, so it does not409

an need additional phrase to nudge it in the right410

Prompt Accuracy BERTscore

E
-S

N
L

I

UNIFEW 61.680.58 55.850.53
+ tags 63.610.44 57.340.41

Is...? 47.470.52 42.700.47
+ tags 66.590.51 60.050.47
+ tags & choices 64.430.53 58.160.49

What is...? 40.670.44 36.500.40
+ tags 75.050.34 67.520.33
+ tags & choices 69.280.68 62.460.62

RANDOM BASELINE 33.33 -

E
C

Q
A UNIFIEDQA 41.370.34 36.720.30

RANDOM BASELINE 20.00 -

C
om

V
E

Is...? 52.690.35 47.700.31
+ tags 52.470.32 47.470.30
+ tags & choices 52.190.33 47.270.30

What is...? 50.600.22 45.680.20
+ tags 67.330.71 60.970.64
+ tags & choices 62.560.65 56.680.59

RANDOM BASELINE 50.00 -

SB
IC

UNIFEW 66.150.43 63.840.44

Is...? 63.500.44 61.210.42
+ tags 62.640.45 60.430.45
+ tags & choices 63.630.42 61.310.43

What is...? 67.350.38 65.030.37
+ tags 67.550.41 65.290.39
+ tags & choices 65.430.58 63.070.59

RANDOM BASELINE 50.00 -

Table 2: Prompting UNIFIEDQA with QASIMPLE with
“Is...?” and “What is...?” questions, and UNIFEW. See
§3.1 for descriptions of these prompts. For ECQA we
use the original UNIFIEDQA format for multiple-choice
QA. We also inspect the effects of adding label choices
and tags (defined in §3.1) to the input.

E-SNLI ECQA COMVE SBIC

B 75.240.38 22.330.29 50.360.31 61.570.45
N 75.090.45 27.600.36 49.020.28 64.660.52

E-SNLI ECQA COMVE SBIC

B 67.660.35 19.830.26 45.510.28 59.180.46
N 67.520.42 24.520.32 44.350.26 62.000.54

Table 3: A comparison of the basic infilling prompt (B)
with its more natural sounding version (N). The upper
part shows accuracy and the lower part BERTscore.

direction. COMVE results are comparable to the 411

random performance, and the model could not learn 412
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Task Accuracy BERTscore

IN
FI

L
L

IN
G E-SNLI 75.090.45 67.520.42

ECQA 27.600.36 24.520.32
COMVE 49.020.28 44.350.26
SBIC 64.660.52 62.000.54

Average 54.09 49.57

≈
T

5

E-SNLI 79.210.29 71.340.27
ECQA 38.280.33 33.910.29
COMVE 55.880.34 50.450.30
SBIC 65.060.60 62.770.63

Average 59.61 54.62

Q
A

SI
M

PL
E

E-SNLI 75.050.34 67.520.33
ECQA 41.370.34 36.720.30
COMVE 67.330.71 60.970.64
SBIC 67.550.41 65.290.39
Average 62.82 57.63

Table 4: A comparison between three prompt types:
INFILLING , ≈T5 , and QASIMPLE prompts. See §3 for
descriptions of these prompts.

the task from the infilling prompt, with or without413

the additional phrases. Thus, we recommend using414

the more natural version as it is not detrimental to415

E-SNLI/COMVE performance while it leads to416

big improvements for ECQA/SBIC.417

3.3 INFILLING vs. ≈T5 vs. QA418

We have established appropriate QA and IN-419

FILLING prompts in §3.1 and §3.2. We now420

turn to a comparison between all three prompt421

types: (i) INFILLING (natural), (ii) ≈T5 , and422

(iii) QASIMPLE (“What is...?” with tags). The first423

two are used to prompt T5 and the last type UNI-424

FIEDQA. To construct ≈T5 prompts, for each task425

in FEB, we identify the most similar T5’s pretrain-426

ing task (see Table 6, Appendix) and use that task’s427

formatting (see, e.g., ≈T5 × COPA in Table 11).428

Results A comparison of the three prompt types429

is presented in Table 4. The QASIMPLE prompt430

outperforms other prompt types for all tasks ex-431

cept E-SNLI for which unsurprisingly ≈T5 is the432

best. Finally, this brings us to the end of our exten-433

sive exploration of natural language prompts for a434

prompt-based finetuning approach to few-shot self-435

rationalization. We identify the QASIMPLE prompt436

as the most effective and we use it to study how437

few-shot self-rationalization performance scales438

with the size of the UNIFIEDQA model.439

4 Improving Self-Rationalization with 440

Increasing Model Size 441

In §3, we discovered that a QA prompt com- 442

bined with the base UNIFIEDQA model version 443

is as an effective combination for few-shot self- 444

rationalization through prompt-based finetuning. 445

In this section, we provide two additional evalu- 446

ations to establish the first approach to few-shot 447

self-rationalization. 448

First, we assess how plausible the generated ex- 449

planations are when evaluated by annotators on 450

Amazon MTurk. Details of how we conduct hu- 451

man evaluation of plausibility are given in §2. One 452

HIT contains 10 instances and we pay $1 per HIT. 453

Next, we investigate how self-rationalization per- 454

formance changes with the model size since larger 455

pretrained language models typically give better 456

few-shot performance (Brown et al., 2020). We 457

wonder whether the same trend will hold for a com- 458

plex generation task of self-rationalization where it 459

is conceivable that an enormous model could over- 460

fit on a few examples. To this end, we evaluate 461

three versions of UNIFIEDQA (BASE, LARGE, 3B) 462

and GPT-3 (Brown et al., 2020). 463

Experimental Setup We evaluate GPT-3 using 464

its API and “in-context demonstrations” (Brown 465

et al., 2020). We pack as many demonstrations as 466

we can fit in the input, followed by the input of the 467

test example, then run GPT-3 to generate its output. 468

The number of demonstrations we are able to fit 469

ranges from [28,45] which are randomly selected 470

from the 48 used for UNIFIEDQA. Since evaluation 471

using a single prompt costs us $1,050, we do not 472

do prompt search for GPT-3. We use the prompts 473

shown in Fig. 1 in Appendix. 474

A detailed description of evaluation metrics is 475

given in §2. Each dev set size for GPT-3 is 18 476

instead of 350 (because of the API cost). Ground- 477

truth explanations are evaluated together with ex- 478

planations generated by 4 models. Therefore, for 479

GOLD explanations, we report the average of 4 plau- 480

sibility scores, std. errors, and κ values calculated 481

with 4 Mturk batches (corresponding to 4 models). 482

4.1 Results 483

Results are shown in Table 5. Note that we use 484

T5 with the ≈T5 prompt for E-SNLI, and UNI- 485

FIEDQA with QASIMPLE (§3) for other datasets 486

to establish the best possible performance for 487

each dataset. The exact prompts for each task 488
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Plausibility
All Label1 Label2 Label3

Model # Par. Accuracy BERTscore Score κ Score κ Score κ Score κ

E
-S

N
L

I

BASE 220M 79.210.29 71.340.27 16.751.53 0.73 15.652.34 0.67 17.502.88 0.79 17.132.71 0.72
LARGE 770M 84.790.27 76.560.27 32.681.92 0.57 27.312.88 0.43 33.893.44 0.64 36.853.58 0.64
3B 2.8B 87.430.23 79.100.23 41.602.08 0.62 27.132.85 0.52 46.763.84 0.70 50.923.63 0.64

GPT-3 175B 65.370.53 59.830.47 42.442.17 0.54 27.312.87 0.48 66.034.37 0.71 43.803.46 0.51
GOLD - 77.401.59 0.63 63.503.01 0.44 87.871.85 0.74 82.482.42 0.72
RAND - 33.33

E
C

Q
A

BASE 220M 41.370.34 36.720.30 25.521.25 0.32
LARGE 770M 57.190.36 51.000.32 30.281.53 0.38
3B 2.8B 65.860.36 58.980.32 34.231.56 0.35

GPT-3 175B 60.651.48 54.421.32 45.061.44 0.12
GOLD - 70.881.47 0.45
RAND - 20.00

C
O

M
V

E

BASE 220M 67.330.71 60.970.64 13.801.26 0.45
LARGE 770 M 81.310.39 73.950.36 25.591.67 0.52
3B 2.8B 88.960.38 81.020.34 33.401.71 0.63

GPT-3 175B 73.981.40 67.651.29 42.161.80 0.73
GOLD - 77.241.30 0.55
RAND - 50.00

S
B

IC

BASE 220M 67.550.41 65.290.39 57.962.25 0.68 21.362.06 0.54 94.571.08 0.82
LARGE 770M 71.060.39 68.550.39 61.822.23 0.66 27.162.19 0.43 96.480.92 0.89
3B 2.8B 71.660.48 68.900.49 64.202.14 0.68 33.762.65 0.55 94.631.02 0.81

GPT-3 175B 74.171.41 71.531.40 72.681.72 0.53 52.652.51 0.34 92.721.05 0.72
GOLD - 79.811.62 0.67 64.922.66 0.52 94.691.01 0.81
RAND - 50.00

Table 5: The first results on the FEB benchmark using T5/UNIFIEDQA (BASE, LARGE, 3B) and GPT-3. T5+≈T5
prompt is used only for E-SNLI, and UNIFIEDQA + QASIMPLE prompt is used for other datasets. The descriptions
of these prompts are given in §3 and details of how evaluation metrics are calculated in §2. RAND stands for a random
baseline and GOLD for human-authored explanations. Label1/Label2/Label3 are entailment/neutral/contradiction in
E-SNLI and offensive/not offensive in SBIC.

are given in Appendix A.2. We observe that all489

metrics—accuracy, BERTscore, and plausibility—490

monotonically increase with the size of UNI-491

FIEDQA for all datasets. That is, larger models492

learn to predict task labels and generate explana-493

tions from a few examples better, despite being494

overparametrized. UNIFIEDQA-3B has a higher495

accuracy/BERTscore than GPT-3 for all datasets496

except SBIC, but GPT-3 generates explanations497

that are notably more plausible.498

The following observations suggest that few-shot499

self-rationalization is a promising research direc-500

tion. The difference in plausibility scores between501

the BASE and 3B model versions ranges from [6.24,502

24.85] (on average 14.85). In other words, since it503

is possible to generate more plausible explanation504

by only increasing the model size, it is conceivable505

that further progress could be made with more cre-506

ative approaches. Next, the plausibility score of507

the best model (GPT-3) ranges from [42.16, 72.68]508

([42.16, 52.65] if we consider only SBIC “offen- 509

sive” (Label1) subset. This shows that a moderate 510

plausibility can already be achieved with current 511

models without any task-specific enhancements. 512

Despite that, the gap between our best models 513

and human-authored explanations remains large. 514

The average plausibility score across datasets 515

is 43.36 (UNIFIEDQA-3B), 50.58 (GPT-3), and 516

76.33 (GOLD). In other words, the difference in 517

plausibility scores between UNIFIEDQA-3B’s and 518

human explanations is 32.98, and between GPT- 519

3’s and human explanations is 25.75. We expect 520

that the FEB benchmark, our UNIFIEDQA ap- 521

proach, and first results, present a good starting 522

point to tackle this challenge. 523

Performance w.r.t. Labels For E-SNLI and 524

SBIC, we can inspect the metrics with respect to la- 525

bels. In E-SNLI part of the Table 5, Label1 marks 526

“entailment”, Label2 “neutral”, and Label3 “con- 527
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tradiction”. There are notable differences between528

the plausibility scores for each label. The plausi-529

bility score for “entailment” does not scale with530

the model size and it is much lower than scores for531

other labels (the best score is 27.31 vs. 66.0/50.92).532

This issue stems from the difficulty of explaining533

the entailment label (Camburu et al., 2018). Even534

people struggle with explaining “entailment” as535

evident by the lower GOLD score for “entailment”536

compared to the other two labels. An interesting537

observation from the other two labels is that UNI-538

FIEDQA-3B is explains “contradiction” instances539

best and GPT-3 “neutral” instances.540

In SBIC part of the Table 5, Label1 marks “of-541

fensive” and Label2 “not offensive” instances. The542

latter achieve almost perfect plausibility since the543

models learn to generated “This post does not imply544

anything offensive”. Thus, main plausibility scores545

for SBIC are those of offensive instances. We can546

observe that the relative differences between mod-547

els for offensive instances are much larger than548

the relative differences when examples of both la-549

bels are counted for (column “All / Score”). If550

we had only looked into a single plausibility score551

we would not notice these differences. Thus, we552

recommend breaking down the performance w.r.t.553

labels whenever possible.554

Annotator Agreement Finally, we observe chal-555

lenges in collecting human judgments of plausi-556

bility. For all datasets except ECQA, Fleiss’ κ is557

either moderate (between 0.41–0.6) or substantial558

(between 0.61–0.8). One exception is GPT-3 on559

SBIC (Label1; offensive) where κ is only 0.34. We560

also observe that κ for GPT-3’s explanations is561

lower than κ for UNIFIEDQA’s or GOLD explana-562

tions, with the exception of COMVE. The most563

concerning is ECQA where κ is on average 0.35564

for UNIFIEDQA’s explanations, 0.34 for GOLD565

explanations, and only 0.12 for GPT-3’s. Future566

work should investigate the reasons behind these567

differences more carefully.568

5 Related Work569

Self-Rationalization with Few Human-Written570

Explanations Select-then-predict method (Lei571

et al., 2016) that is standard to creating expla-572

nations in the form of highlights of the input to-573

kens does not use any human-author highlighting574

explanations. On the other hand, a standard ap-575

proach to generating free-text explanations is to576

use human-written explanations (Liu et al., 2019;577

Wu and Mooney, 2019; Narang et al., 2020, among 578

others). To the best of our knowledge, only two 579

prior works generate free-text explanations in a 580

weakly-supervised way from the task prediction 581

loss. Latcinnik and Berant (2020) approach com- 582

monsense QA in that fashion. Brahman et al. 583

(2021) propose multiple distant supervision ap- 584

proach to explaining a defeasible inference task. 585

In this paper, we introduce the FEB benchmark to 586

unify the evaluation of few-shot self-rationalization 587

and present the first approach and results on FEB. 588

Few-Shot Learning We study natural language 589

prompts (Brown et al., 2020; Schick and Schütze, 590

2021) to establish the first approach to few-shot 591

self-rationalization. Alternatively, few-shot learn- 592

ing researchers are studying prompts in the form 593

of continuous/soft vectors that do not correspond 594

to real tokens (e.g., Qin and Eisner, 2021). Such 595

methods present a promising research direction for 596

few-shot self-rationalization. Namely, we show 597

that larger models generate notably more plausible 598

explanations, and “prefix tuning” (Li and Liang, 599

2021) has been show to learn two condition genera- 600

tion tasks using only 0.1% of the parameters, while 601

maintaining comparable performance. In practice, 602

such approaches still require a notable amount of 603

GPU memory. Thus, any efforts to reduce required 604

memory such as compression (Ganesh et al., 2021) 605

may be valuable for few-shot self-rationalization. 606

6 Conclusions 607

We draw attention to the task of few-shot self- 608

rationalization: predicting task labels and gener- 609

ating free-text explanations for the prediction using 610

only a few human-written explanations. We present 611

(i) the FEB benchmark, (ii) the first prompting ap- 612

proach for FEB established through a comprehen- 613

sive search of natural language prompts, and (iii) 614

results using models with a number of parameters 615

ranging from 220M to 175B. Our human evalua- 616

tion results show that progress is possible on this 617

task given that just scaling the model size increases 618

both the plausibility of generated explanations and 619

task accuracy by a very large margin. Despite that, 620

few-shot self-rationalization remains very challeng- 621

ing, with plausibility of explanations generated by 622

the best model being 27.75 points behind plausibil- 623

ity of human-authored explanations. We hope that 624

work presented in this paper spurs the community 625

to work on this challenging problem to enable more 626

intuitive interaction with NLP systems. 627
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Ana Marasović, Chandra Bhagavatula, Jae sung Park,747
Ronan Le Bras, Noah A. Smith, and Yejin Choi.748
2020. Natural language rationales with full-stack749
visual reasoning: From pixels to semantic frames to750
commonsense graphs. In Findings of the Association751
for Computational Linguistics: EMNLP 2020, pages752
2810–2829, Online. Association for Computational753
Linguistics.754

David Alvarez Melis and Tommi Jaakkola. 2018. To-755
wards robust interpretability with self-explaining neu-756
ral networks. In Proceedings of the Advances in757
Neural Information Processing Systems (NeurIPS).758

Sharan Narang, Hyung Won Chung, Yi Tay, Liam759
Fedus, Thibault Fevry, Michael Matena, Karishma760
Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong761
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus,762
Adam Roberts, and Colin Raffel. 2021. Do trans-763
former modifications transfer across implementations764
and applications? In Proceedings of the 2021 Confer-765
ence on Empirical Methods in Natural Language Pro-766
cessing, pages 5758–5773, Online and Punta Cana,767
Dominican Republic. Association for Computational768
Linguistics.769

Sharan Narang, Colin Raffel, Katherine Lee, Adam770
Roberts, Noah Fiedel, and Karishma Malkan. 2020.771
WT5?! Training Text-to-Text Models to Explain their772
Predictions. arXiv:2004.14546.773

Guanghui Qin and Jason Eisner. 2021. Learning how774
to ask: Querying LMs with mixtures of soft prompts.775
In Proceedings of the 2021 Conference of the North776
American Chapter of the Association for Computa-777
tional Linguistics: Human Language Technologies,778
pages 5203–5212, Online. Association for Computa-779
tional Linguistics.780

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-781
ine Lee, Sharan Narang, Michael Matena, Yanqi782
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the783
limits of transfer learning with a unified text-to-text784
transformer. Journal of Machine Learning Research,785
21(140):1–67.786

Nazneen Fatema Rajani, Bryan McCann, Caiming787
Xiong, and Richard Socher. 2019. Explain your-788
self! leveraging language models for commonsense789
reasoning. In Proceedings of the 57th Annual Meet-790
ing of the Association for Computational Linguistics,791
pages 4932–4942, Florence, Italy. Association for792
Computational Linguistics.793

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and794
Percy Liang. 2016. SQuAD: 100,000+ questions for795
machine comprehension of text. In Proceedings of796

the 2016 Conference on Empirical Methods in Natu- 797
ral Language Processing, pages 2383–2392, Austin, 798
Texas. Association for Computational Linguistics. 799

Melissa Roemmele, Cosmin Adrian Bejan, and An- 800
drew S. Gordon. 2011. Choice of plausible alter- 801
natives: An evaluation of commonsense causal rea- 802
soning. In AAAI Spring Symposium Series. 803

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang 804
Huang, Lesia Semenova, and Chudi Zhong. 2021. 805
Interpretable machine learning: Fundamental princi- 806
ples and 10 grand challenges. arXiv: 2103.11251. 807

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf- 808
sky, Noah A. Smith, and Yejin Choi. 2020. Social 809
bias frames: Reasoning about social and power im- 810
plications of language. In Proceedings of the 58th 811
Annual Meeting of the Association for Computational 812
Linguistics, pages 5477–5490, Online. Association 813
for Computational Linguistics. 814

Timo Schick and Hinrich Schütze. 2021. Exploiting 815
cloze-questions for few-shot text classification and 816
natural language inference. In Proceedings of the 817
16th Conference of the European Chapter of the Asso- 818
ciation for Computational Linguistics: Main Volume, 819
pages 255–269, Online. Association for Computa- 820
tional Linguistics. 821

Cunxiang Wang, Shuailong Liang, Yue Zhang, Xiaonan 822
Li, and Tian Gao. 2019. Does it make sense? and 823
why? a pilot study for sense making and explana- 824
tion. In Proceedings of the 57th Annual Meeting of 825
the Association for Computational Linguistics, pages 826
4020–4026, Florence, Italy. Association for Compu- 827
tational Linguistics. 828

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 829
man. 2019. Neural network acceptability judgments. 830
Transactions of the Association for Computational 831
Linguistics, 7:625–641. 832

Sarah Wiegreffe and Ana Marasović. 2021. Teach me to 833
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A Appendix871

A.1 Input Formats in Related Work872

T5 with SQUAD873

• question: [question] context: [para-874

graph]875

UNIFIEDQA876

• Multiple-choice QA: [question] \\n (A)877

[choice1] (B) [choice2]...878

• Extractive QA: [question] \\n [paragraph]879

UNIFEW880

• Single text classification: Topic? \\n (A)881

[class1] (B) [class2] (C) [class3] \\n [docu-882

ment]883

• Sentence-pair classification: [sentence1] Is884

[sentence1] ? \\n (A) Yes (B) No (C)885

Maybe886

• Relation classification: [mention1] to887

[mention1] ? \\n (A) [class1] (B) [class2]888

(C) [class3]889

• Entity recognition: What is the type of890

the entity between the # marks? \\n891

[text... #mention1# ...text... #mention2# ...text]892

A.2 Prompts Used in §4893

UNIFIEDQA/T5 prompts:894

• E-SNLI explai nli hypothesis: [hypoth-895

esis] premise: [premise]896

• ECQA: explain [question] \\n (A)897

[choice1] (B) [choice2] (C) [choice3] (D)898

[choice4] (E) [choice5]899

• COMVE: explain what is more900

nonsensical? \\n choice1: [sentence1]901

choice2: [sentence2]902

• SBIC: explain what is this? \\n post:903

[post]904

Prompts for GPT-3 are given in Figure 1. The905

output always takes the form of “[answer/label]906

because [explanation]”.907

=============== SBIC ===============
Is the following post offensive? and why?
Post: [Input]
Answer: Yes|No
Reason: [Explanation]

============== E-SNLI ==============
Answer the question and provide a reason why
the answer is correct.
[Premise]
Question: Is [Hypothesis]?
Answer: Yes|No|Maybe
Reason: [Explanation]

============== ECQA ==============
Answer the question from the provided
choices, and provide a reason why the answer
is correct.
Question: [Question]
Choices: [Choices]
Answer: [one of the choices]
Reason: [Explanation]

============== ComVE ==============
Which of the two choices makes more sense?
and why?
Choice1: [Choice1]
Choice2: [Choice2]
Answer: Choice1|Choice2
Reason: [Explanation]

Figure 1: GPT-3 prompt templates for all datasets.

FEB Task Similar T5 Pretraining Tasks

E-SNLI MNLI
(Williams et al., 2018)

Classify the entailment relation
between two sequences

ECQA RECORD
(Zhang et al., 2018)

Answer a cloze-style query about
a passage given entities in it

COMVE COPA
(Roemmele et al., 2011)

Select one of two sequences as
the cause/effect of a premise

SBIC COLA
(Warstadt et al., 2019)

Classify a sentence as acceptable
or not

Table 6: The first column shows tasks that we have
included in FEB. Tasks on the right are included in
T5’s pretraining and they are similar to FEB’s tasks.
We explore self-rationalization prompts for FEB’s tasks
based on the tasks on the right, and compare them to
prompts designed as span infilling and QA (§3).
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GPUs NVIDIA A100 on Google Cloud

Implementation Will be added upon acceptance.

Hyperparameter Assignment

max step number 300

batch size 4 (1 for UNIFIEDQA-3B)

gradient accumulation steps 1 (4 for UNIFIEDQA-3B)

learning rate 3e-5

learning rate scheduler linear

warmup steps 0

decoding greedy

Table 7: Hyperparameters used in our experiments.

Accuracy BERTscore

C
O

S
-E

INFILLING (b) 34.280.36 29.600.32
INFILLING (n) 40.140.38 34.700.34
≈T5 51.690.41 44.560.36
SQUADT5 51.150.34 44.130.29
QASIMPLE 59.960.32 48.570.26

Table 8: A comparison of all prompt types introduced
in §3 on COS-E. We do not support using COS-E in the
future given the reported issues with it (Narang et al.,
2020; Wiegreffe and Marasović, 2021), especially since
ECQA is introduced.

Size Accuracy BERTscore

C
O

S
-E

BASE 58.320.28 50.430.25
LARGE 69.440.30 60.110.26
3B 75.370.31 65.340.28
GPT-3 68.431.35 59.481.18

Table 9: The effect of scaling the UNIFIEDQA model
size on self-rationalization of COS-E. We do not support
using COS-E in the future given the reported issues with
it (Narang et al., 2020; Wiegreffe and Marasović, 2021),
especially since ECQA is introduced.

Prompt Accuracy BERTscore

E
-S

N
L

I Is...? 38.680.44 34.740.40
+ tags 48.200.62 43.220.58

What is...? 60.760.85 54.750.77
+ tags 77.860.34 70.080.32

E
C

Q
A SQUADT5 36.480.34 32.380.30

RANDOM BASELINE 20.00 -

C
O

M
V

E Is...? 50.380.16 45.540.14
+ tags 50.170.14 45.350.13

What is...? 50.540.21 45.670.19
+ tags 54.490.46 49.250.42

S
B

IC

Is...? 63.370.58 61.150.57
+ tags 63.820.54 61.690.55

What is...? 66.670.49 64.330.51
+ tags 66.990.53 64.600.56

Table 10: A comparison between SQUADT5 prompts
with “Is...?” and “What is...?” questions. See §3.1
for more info. We also inspect the effects of adding
answer choices and tags to the input. Tags are a single
word descriptions of the input elements; e.g., E-SNLI’s
tags are “premise:” / “hypothesis:” before premise /
hypothesis.
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Sentence1: The stove was cleaned with a cleaner. Sentence2: The stove was cleaned with a mop.
Nonsensical Sentence: Sentence2 Explanation: A mop is too large to clean the stove.

Prompt: INFILLING × BASIC

Input: explain sensemaking choice1: The stove was cleaned with a cleaner. choice2: The stove was cleaned
with a mop. <extra_id_0> because <extra_id_1>
Output: <extra_id_0> choice2 <extra_id_1> A mop is too large to clean the stove. <extra_id_2>

Prompt: INFILLING × NATURAL SOUNDING

Input: explain sensemaking choice1: The stove was cleaned with a cleaner. choice2: The stove was cleaned
with a mop. It is <extra_id_0> that choice2 is less common because <extra_id_1>
Output: <extra_id_0> True <extra_id_1> A mop is too large to clean the stove. <extra_id_2>

Prompt: ≈T5 × COPA
Input: explain sensemaking choice1: The stove was cleaned with a cleaner. choice2: The stove was cleaned
with a mop. Less common is choice2
Output: True because a mop is too large to clean the stove.

Prompt: SQUADT5 × YES/NO + TAGS

Input: explain sensemaking question: Is choice2 more nonsensical? context: choice1: The stove was
cleaned with a cleaner. choice2: The stove was cleaned with a mop.
Output: Yes because a mop is too large to clean the stove.

Prompt: SQUADT5 × WHAT IS...? + TAGS

Input: explain sensemaking question: What is more nonsensical? context: choice1: The stove was
cleaned with a cleaner. choice2: The stove was cleaned with a mop.
Output: choice2 because a mop is too large to clean the stove.

Prompt: QASIMPLE × YES/NO

Input: explain is choice2 more nonsensical? \\n The stove was cleaned with a cleaner. The stove was cleaned
with a mop.</s>
Output: yes because a mop is too large to clean the stove.

Prompt: QASIMPLE × YES/NO + TAGS

Input: explain is choice2 more nonsensical? \\n choice1: The stove was cleaned with a cleaner. choice2:
The stove was cleaned with a mop.</s>
Output: yes because a mop is too large to clean the stove.

Prompt: QASIMPLE × YES/NO + TAGS + CHOICES

Input: explain is choice2 more nonsensical? \\n (A) yes (B) no \\n choice1: The stove was cleaned
with a cleaner. choice2: The stove was cleaned with a mop.</s>
Output: yes because a mop is too large to clean the stove.

Prompt: QASIMPLE × WHAT IS...?
Input: explain what is more nonsensical? \\n The stove was cleaned with a cleaner. The stove was cleaned
with a mop.</s>
Output: choice2 because a mop is too large to clean the stove.

Prompt: QASIMPLE × WHAT IS...? + TAGS

Input: explain what is more nonsensical? \\n choice1: The stove was cleaned with a cleaner. choice2:
The stove was cleaned with a mop.</s>
Output: choice2 because a mop is too large to clean the stove.

Prompt: QASIMPLE × WHAT IS...? + TAGS + CHOICES

Input: explain what is more nonsensical? \\n (A) choice1 (B) choice2 \\n choice1: The stove was
cleaned with a cleaner. choice2: The stove was cleaned with a mop.</s>
Output: choice2 because a mop is too large to clean the stove.

Table 11: COMVE self-rationalization prompts that we design and test. INFILLING marks span-filling prompts;
≈T5 prompts made by following the most similar T5 pretraining task (Table 1); SQUADT5 prompts designed
following SQUAD’s formatting in T5 pretraining; and QASIMPLE prompts made following UNIFIEDQA. This table
shows variations of these prompt types. We refer to spans “choice1:”/“choice2:” as TAGS, and to “(A) yes (B)
no”/“(A) choice1 (B) choice2” as CHOICES. YES/NO and WHAT IS...? refer to a question type. Following Hendrycks
et al. (2021), we add </s> to the end of our QASIMPLE prompts. More info in §3.
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