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Abstract

Mood disorders are increasingly recognized among the leading causes of disease
burden worldwide. Depressive and manic episodes in mood disorders commonly
involve altered mood, sleep, and motor activity. These translate to changes in sen-
sory data that wearable devices can continuously and affordably monitor, thereby
positioning themselves as a promising candidate to model mood disorders. Previ-
ous similar endeavors cast this problem in terms of binary classification (cases vs
controls) or regress the total score of some commonly used psychometric scale.
Nevertheless, these approaches fail to capture the variability within symptom do-
mains described at the item level in psychometric scales. In this work, we attempt
to infer mood disorder symptoms (e.g., depressed mood, insomnia, irritability) from
time-series data collected with the medical grade Empatica E4 wristbands, as part
of an exploratory, observational, and longitudinal study. We propose a multi-label
framework to predict individual items from the two most widely used scales for
assessing depression and mania. We experiment with two different approaches to
preprocess the high-dimensional and noisy sensory data and attain results within a
clinically acceptable level of error.

1 Introduction

Mood disorders, also referred to as affective disorders, are a group of diagnoses in the Diagnostic and
Statistical Manual 5th edition [2] classification system, ranked among the top 25 leading causes of
disease burden worldwide [18]. These are characterized by depressive and/or (hypo)manic episodes
that have disturbances in mood, sleep patterns, and motor activity as predominant features. Such
alterations correlate with changes in physiological parameters that wearable devices can continuously
and affordably record in a patient’s natural environment. Against the backdrop of a disappointingly
limited clinical translation of psychiatric genetics and neuroscience research [9], the community has
been looking to digital biomarkers from wearables as an alternative (complementary) paradigm [10].

The question we pursue is to which degree time-series data can be used to infer mood disorder
symptoms pertaining to depression and mania, the two polarities of mood disorders, as described with
Hamilton Depression Rating Scale-17 (HDRS) [8] and the Young Mania Rating Scale (YMRS) [24]
respectively. These are 17-item and 11-item questionnaires used to measure depressive and manic
symptoms respectively and take about 20 minutes each to administer. Questionnaire individual items
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are not scored on the same scale but different items have different rank numbers and some have a
step-size of two between consecutive ranks to reflect that these should weigh more when computing
the scale total score, i.e. the sum over individual items’ score (ranging from 0 to 52 and from 0 to
60 for HDRS and YMRS respectively). A complete account of HDRS and YMRS items is given
in Table A.1 and Table A.2 respectively. The nature of symptom domains mapped with HDRS and
YMRS varies from mood, sleep, and psychomotor activity.

Our contribution is twofold. First, we cast depression and mania prediction in a multi-label learning
framework, where we aim to infer each item in HDRS and YMRS. These fine-grained predictions in
individual items in the psychometric scales are very desirable, as they provide a richer symptoms
description, i.e. they clarify which symptom domains characterize the ongoing mood episode rather
than a mere yes-or-no diagnosis. To the best of our knowledge, this is the first work to predict
individual items in HDRS and YMRS for mood disorders. The majority of previous related works,
adopted a binary (e.g., disease vs control, or acute vs remission) classification framework [5, 16]
only one attempted to regress the HDRS total score [7]. However, patients with the same total score
on YMRS and HDRS might have different clinical presentations. Take for example the case of two
patients with the same depression severity level but one displaying psycho-motor agitation while the
other psycho-motor retardation (two items from HDRS): this clinically obvious difference would go
lost when reducing a psychometric scale to its total score and, as a result, it would not be used to
personalize treatment. As an additional contribution, further to the standard approach of time-aligning
multivariate time-series during preprocessing [1, 13], we experiment with learning an embedding
representation of the raw recordings.

2 Multi-label learning of mood disorder symptoms

2.1 Study population & assessment

The analyses that follow are based on an original dataset being collected as part of a prospective,
exploratory, observational, single-center, longitudinal study with a fully pragmatic design embedded
into current real-world clinical practice. This study was conducted in accordance with the ethical
principles of the Declaration of Helsinki and Good Clinical Practice and the Hospital Clinic Ethics
and Research Board (HCB/2021/104). All participants provided written informed consent prior to
their inclusion in the study. All data were collected anonymously and stored encrypted in servers
complying with all GDPR and HIPAA regulations.

Patients with an ongoing mood episode, patients with a historical mood disorder diagnosis clinically
stable at present, and healthy controls are recruited. While healthy controls and euthymic patients
are assessed only once, measurements on patients with a mood episode are taken at four time-
points: acute phase (upon hospital admission or at the home treatment unit), response onset (usually
mid-admission), remission (end of admission or soon after discharge), and recovery (∼2 months
into sustained remission). During each assessment, participants are interviewed by a specialized
psychiatrist collecting socio-demographic and treatment info as well as YMRS and HDRS scores.

At the start of the clinical interview, participants are provided with an E4 Empatica wristband2 and
they are required to wear for about 48 hours. E4 devices have sensors collecting the following
physiological data (sampling rates): 3D acceleration (ACC, 32Hz), inter-beat intervals (IBI, i.e. the
time between two consecutive heart ventricular contractions), skin temperature (TEMP, 4Hz), blood
volume pressure (BVP, 64Hz), electrodermal activity (EDA, 4Hz), and heart rate (HR, 1Hz). In
total, data obtained from 25 healthy controls and 64 patients with mood disorders are used in this
work, and an overview of the clinical-demographic variables of the population is available in Table 1.
Figure A.1 shows the number of recording sessions by diagnosis.

2.2 Preprocessing

The raw data from an E4 Empatica recording session comes as a collection of recorded channels:
ACC (3-dimensional), EDA, BVP, IBI, HR, and TEMP. IBI is computed from BVP signals and the
reliability of its derivation depends upon the level of movement exhibited by the wearer3. Since IBI

2empatica.com/en-int/research/e4
3support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
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Table 1: Clinical-demographic summary of the study population (N = 89). HC (Healthy Controls);
IQR (inter-quartile range); SD (standard deviation); N (number).

AGE (YEARS) MEAN (SD) MEDIAN (IQR)

41.34 (14.68) 39.5 (24.75)

SEX
MALES - N (%) FEMALES - N (%)

44 (49.44%) 45 (50.56%)

DIAGNOSIS
HC - N (%) DISEASE - N (%)

25 (28.09%) 64 (71.91%)

YMRS (TOTAL SCORE) MEAN (SD) MEDIAN (IQR)

7.54 (10.27) 3 (12)

HDRS (TOTAL SCORE) MEAN (SD) MEDIAN (IQR)

6.86 (7.88) 4 (6)

is mostly used to study heart rate variability, which is not the focus of this study, we thus decided to
exclude the channel from this work. Data from wearable devices (especially in a naturalistic setting)
is inherently noisy, we, therefore, quality-controlled our data with the rules by Kleckner et al. [12] and
the addition of a rule to remove HR values that exceed the physiologically plausible range (25-250
bpm). Each recording session was segmented using a sliding window of w and enforcing no overlap
between bordering segments. After a grid search on w ∈ (4, 2048), we found that a segment length
of w = 64 seconds to be the optimal size. Since the sampling rate varies across different channels,
the raw recordings were time-aligned to the level of a second in wall time. This method was used in a
number of works that involve sensory data [1, 13], nevertheless, the down-sampling process (usually
via max-pooling or averaging) can risk removing useful information in the raw recordings. As an
alternative, we instead learned a latent representation for raw channel data, such dimension reduction
approach has been proved effective in other tasks such as language and signal processing [15, 19]. To
that end, we used either a fully-connected layer or a Gated Recurrent Unit (GRU) [4] layer to learn
an embedding for each channel of the same dimensionality, i.e. 128. We could then concatenate the
embeddings and feed them to the regression model in the same manner as the time-aligned data.

2.3 Experimental Design

We randomly divided each recording session from our dataset into train, validation, and test sets
with a ratio of 70-15-15. We took a hard parameter-sharing approach to the multi-label problem,
i.e. all 28 items shared the same model trunk, and thus the same base representation of the input
data, but had one task-specific output layer. We experimented with a bidirectional Long Short-Term
Memory (BiLSTM) model [20] with 256 hidden units and tanh activation followed by a dense layer
to output 28 items. The model was trained to minimize the sum of mean squared error (MSE) from
individual items weighted proportionally to the step size between consecutive ranks. The channel
embeddings and the model were trained with Adam optimizer [11] end-to-end, with early stopping,
for a maximum of 100 epochs. The codebase is available at github.com/INTREPIBD/TS4H2022.

3 Results

Towards comparability with previous studies and easier clinical interpretation, we computed the
Root Mean Square Error (RMSE) on YMRS and HDRS in terms of total scores, i.e. RMSE over
the sum of YMRS and HDRS, and item average, i.e. the average per-item RMSE over YMRS and
HDRS. The results are shown in Table 2. Models trained with embedding representation of the raw
recordings result in better test performance across both HDRS and YMRS, with GRU outperforming
MLP embeddings (RMSE on YMRS total score = 5.6340; RMSE on HDRS total score = 4.4089).

An illustration of the per-item test performance (average and standard deviation of the residuals, i.e.
signed difference between predicted and observed item values) is provided in Figure 1. Residuals are
generally lower on the HDRS items. Some items stand out as having either very high (e.g. YMRS-6,
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Table 2: Regression results on the test set where the RMSE are computed in terms of (1) total score,
i.e. the sum of all items, and (2) item average, i.e. the average error of individual items.

TOTAL SCORE ITEM AVERAGE
MODEL TIME-ALIGNED EMBEDDINGS (DIM) YMRS HDRS YMRS HDRS

1 TRUE N/A 6.0558 4.5957 1.3336 0.8599
2 FALSE MLP (128) 5.8560 4.5602 1.3316 0.8561
3 FALSE GRU (128) 5.6340 4.4089 1.3343 0.8550

Figure 1: The per item regression differences in YMRS and HDRS using Model 3. Error bars report
the standard deviation of the predictions. The residual is defined as the signed difference between the
predicted and target values, therefore, a positive residual indicates an over-prediction and vice versa.
Note that certain items (e.g. YMRS-6 and YMRS-8) have an interval of 2, which, naturally, can lead
to larger prediction errors. Table A.1 and Table A.2 list the items in HDRS and YMRS.

YMRS-8, and HDRS-7) or very low (e.g. YMRS-9, HDRS-16) residuals. We should consider,
however, that YMRS and HDRS are not designed to have the same range and have indeed as expected
different distributions in our sample (Table 1). Furthermore, items admit different rank numbers (3, 4,
or 5) and step-size (1 or 2) between consecutive ranks. Still, it is noteworthy that some comparable
items have indeed quite different residuals distribution.

4 Discussion

It should be noted that acquiring data from a psychiatric population is a laborious process. On this
note, previous studies trying to infer mental states from wearable device data in an actual psychiatric
cohort had a sample size varying from about a dozen to only a few dozen subjects [1, 5, 6, 7, 21].
On the other hand, our analyses used a large sample size (N = 89). With reference to our research
question, our results show that regressing YMRS and HDRS with a clinically acceptable error is
viable. To provide some clinical perspective, it is common practice in psychiatry to discretize YMRS
and HDRS total scores in five symptom severity bands. A five and three-point interval are the smallest
bin widths for YMRS and HDRS respectively [3, 14], e.g. a YMRS total score in the range of
[20 - 25] is considered a mild mania, and an HDRS total score in [19 - 22] is considered as severe
depression. This shows that on average our model would be off by two score bands at most, in case
of a true score falling on the edge of a tight severity bin (i.e. the ones reported above). Furthermore,
our framework goes one step beyond merely providing YMRS and HDRS total scores since it outputs
individual item ranks. This is of great clinical relevance since significant clinically meaningful
information would be overlooked when reducing the fine-grained psychometric scales into a single
score. On a more technical note, we noted that learning a latent representation of each channel can
outperform time-aligning raw recordings, the preferred approach in previous works.

4.1 Future works

While it is common in the psychiatry literature to treat YMRS and HDRS items as continuous
variables [17], each item is actually ordinal. For instance, YMRS-4 evaluates the sleep quality of
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the subject, from no decrease in sleep (rank 0) to denying the need for sleep (rank 4), which has a
natural ordering. Therefore, instead of regressing on each item as nominal scales, ordinal regression
can take advantage of the ordered nature of the psychiatric scales [22]. Secondly, linking the item
residuals to other clinical-demographic variables available in our dataset is another future research
direction. Thirdly, as psychometric measurements are noisy and prone to low rate of inter-specialists
as well as intra-specialist agreement [23], unsupervised approaches would seem a promising pathway
to data representations associated with clinically meaningful outcomes. Lastly, even though we
ensured there were no overlapping segments, data from the same recording session could exist in
the train, validation, and test sets depending on the random shuffle operation, where no-disease
relevant features can potentially be learned by the model. A crucial direction of work is to assess
out-of-sample performance, i.e. examine whether a model developed on a given population can
generalize to new, previously unseen subjects.
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A Appendix

Table A.1: Hamilton Depression Rating Scale (HDRS) by Hamilton [8]

Item Description Ranking

1 Depressed mood 0, 1, 2, 3, 4
2 Feelings of guilt 0, 1, 2, 3, 4
3 Suicide 0, 1, 2, 3, 4
4 Insomnia: early in the night 0, 1, 2
5 Insomnia: middle of the night 0, 1, 2
6 Insomnia: early hours of the morning 0, 1, 2
7 Work and activities 0, 1, 2, 3, 4
8 Retardation 0, 1, 2, 3, 4
9 Agitation 0, 1, 2, 3, 4

10 Anxiety psychic 0, 1, 2, 3, 4
11 Anxiety somatic 0, 1, 2, 3, 4
12 Somatic symptoms gastrointestinal 0, 1, 2
13 General somatic symptoms 0, 1, 2
14 Genital symptoms 0, 1, 2
15 Hypochondriasis 0, 1, 2, 3, 4
16 Loss of weight 0, 1, 2
17 Insight 0, 1, 2

Table A.2: Young Mania Rating Scale (YMRS) by Young et al. [24]

Item Description Ranking

1 Elevated mood 0, 1, 2, 3, 4
2 Increased motor activity-energy 0, 1, 2, 3, 4
3 Sexual interest 0, 1, 2, 3, 4
4 Sleep 0, 1, 2, 3, 4
5 Irritability 0, 2, 4, 6, 8
6 Speech (rate and amount) 0, 2, 4, 6, 8
7 Language-thought disorder 0, 1, 2, 3, 4
8 Content 0, 2, 4, 6, 8
9 Disruptive-aggressive behavior 0, 2, 4, 6, 8

10 Appearance 0, 1, 2, 3, 4
11 Insight 0, 1, 2, 3, 4
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Figure A.1: Number of recordings session available at different time points by diagnosis. Some of the
collected recordings and the corresponding clinical info have not yet been uploaded to our data storage
and have therefore not been used for analyses. Mood disorders manifest in two polarities, mania,
and depression. Major Depressive Disorder (MDD) is characterized by Major Depressive Episodes
(MDEs) only, whereas Bipolar Disorder (BD) is characterized by the presence of (hypo)manic
episodes (ME) that can alternate with MDEs. The presence of symptoms from both polarities within
the same episode connotes a mixed episode (MX). Patients with a former mood disorder diagnosis,
clinically stable at present are said to be Euthymic. With the exception of Healthy Controls (HCs) and
Euthymic Patients, other subjects are recruited at the onset of a disease episode. They are assessed at
subsequent stages (maximum four) during their clinical course. Exclusion criteria are co-morbidity
with another psychiatric or neurological disorder or current drug abuse and pregnancy.
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