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Abstract
Multi-agent systems (MAS) have become a re-001
search hotspot since the rise of large language002
models (LLMs). However, current review pa-003
pers lack a thorough examination of the di-004
verse applications of LLM-based multi-agent005
systems (LLM-MAS). This paper presents006
a comprehensive survey of applications of007
LLM-MAS. We provide an overview of the var-008
ious applications of LLM-MAS in (i) solving009
complex tasks, (ii) simulating specific scenar-010
ios, and (iii) evaluating generative agents. Also,011
we highlight several challenges and propose012
future directions for research in this field.013

1 Introduction014

Multi-agent systems (MAS) have seen significant015

expansion owing to their adaptability and ability to016

address complex, distributed challenges (Balaji and017

Srinivasan, 2010). Compared to single-agent set-018

tings, MAS provide a more accurate representation019

of the real world, as many real-world applications020

naturally involve multiple decision-makers interact-021

ing simultaneously (Gronauer and Diepold, 2022).022

Previous research on MAS has predominantly fo-023

cused on reinforcement learning (RL)-based agents,024

as illustrated by their application to classic tasks025

ranging from Atari video games (Mnih, 2013)026

to robotic socket-insertion challenges (Brockman,027

2016), trained in specific environments. However,028

due to limitations in their parameterization and a029

lack of general knowledge, these agents struggle to030

take informed agent actions in unconstrained, open-031

domain scenarios requiring general knowledge.032

Compared to RL-based MAS, LLM-based multi-033

agent systems (LLM-MAS) demonstrate the ability034

to handle a wide range of tasks in open-domain en-035

vironments (Shinn et al., 2023). By leveraging the036

generalization capabilities and linguistic modality037

of LLMs, LLM-MAS enable novel applications038

that are not achievable with RL-based MAS, span-039

ning domains from healthcare (Tang et al., 2024a)040

to embodied AI (Patel et al., 2024). In recent years, 041

numerous studies have explored the diverse appli- 042

cations of LLM-MAS. However, a comprehensive 043

review of LLM-MAS applications is still lacking. 044

In this paper, we provide a comprehensive per- 045

spective on the application of LLM-based multi- 046

agent systems (LLM-MAS). Figure 1 presents an 047

overview of applications of LLM-MAS. There are 048

three categories of applications of LLM-MAS: (i) 049

Solving complex tasks. LLM-MAS perform a wide 050

range of tasks, including simple tasks that do not re- 051

quire long trajectory decisions, complex tasks that 052

involve long trajectory decisions, and even some 053

general-purpose tasks. (ii) Simulating for specific 054

scenarios. LLM-MAS simulate diverse scenarios, 055

facilitating the exploration and validation of rel- 056

evant theories. (iii) Evaluating and Training on 057

generative agents. On the one hand, compared 058

with traditional evaluation on agents, LLM-MAS 059

have the capability of dynamic assessment, which 060

is more flexible and harder for data leakage (Chen 061

et al., 2024c). On the other hand, agents can be 062

trained in LLM-MAS, concluding various training 063

methods. 064

Compared to previous surveys (Guo et al., 2024a; 065

Li et al., 2024d; Han et al., 2024; Gronauer and 066

Diepold, 2022), this survey offers the following key 067

contributions: (i) A clear taxonomy for LLM-MAS 068

applications. We present a framework to organize 069

and categorize different types of LLM-MAS ap- 070

plications. (ii) A definition of the environment 071

in LLM-MAS applications. We provide a spe- 072

cific definition of the LLM-MAS environment, 073

designed to fit the needs of LLM-MAS applica- 074

tions. (iii) A summary of available resources for 075

LLM-MAS research. We compile a list of open- 076

source frameworks and datasets to help researchers 077

study LLM-MAS applications. (iv) Challenges and 078

future directions for LLM-MAS applications. We 079

discuss the current challenges in the field and sug- 080

gest potential areas for future research. 081
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Figure 1: Overview of the application and construction of LLM-MAS.

2 Core Components of LLM-MAS082

LLM-MAS refer to systems that include a collec-083

tion of generative agents capable of interacting and084

collaborating within a shared environmental set-085

ting (Wang et al., 2024c). We will analyze genera-086

tive agents and the environment in the following.087

2.1 Generative Agents088

Generative agents refer to the components of089

LLM-MAS that have role definitions, can perceive090

the environment, make decisions, and perform com-091

plex actions to interact with the environment (Wang092

et al., 2024a).093

Compared to traditional agents, generative094

agents can be able to perform complex behav-095

iors, such as generating complete personalized blog096

posts based on historical information (Park et al.,097

2022). Therefore, in addition to using LLMs as098

the core, generative agents also require the follow-099

ing characteristics: (i) Profiling refers to agents100

typically assuming distinct roles, each accompa-101

nied by detailed descriptions that encompass their102

characteristics, capabilities, and constraints(Guo103

et al., 2024a). (ii) Memory stores historical trajec-104

tories and retrieves relevant memories for subse-105

quent agent actions, enabling the ability to take106

long-term actions while solving the problem of107

limited LLM context windows. There usually are108

three memory layers: long-term, short-term, and109

sensory memory (Park et al., 2023). (iii) Planning 110

is to formulate general behavior for a longer period 111

in the future (Yao et al., 2023). (iv) Action exe- 112

cutes the interaction between the generative agent 113

and the environment (Wang et al., 2024a). Gener- 114

ative agents are required to choose one of several 115

candidate behaviors to execute, such as voting for 116

whom (Xu et al., 2024a), or generate behaviors 117

without mandatory constraints, such as generating 118

a paragraph of text (Li et al., 2023b). 119

Generative agents can communicate with each 120

other to achieve cooperation within the system. 121

The communication of generative agents can be 122

roughly divided into two purposes. (i) The first 123

purpose is to achieve collaboration, share the infor- 124

mation obtained by themselves with other intelli- 125

gent agents, and to some extent, aggregate multiple 126

intelligent agents into a complete system, achiev- 127

ing performance beyond independent intelligent 128

agents (Yuan et al., 2023); (ii) The second purpose 129

is to achieve consensus, allowing for greater simi- 130

larity in behavior or strategy among some agents, 131

thereby enabling faster convergence to Nash equi- 132

librium (Oroojlooy and Hajinezhad, 2023). 133

The type of communication content can be 134

roughly divided into two types: natural language 135

and vector. Natural language forms of commu- 136

nication have high interpretability. Still, they are 137

difficult to optimize, making them more suitable for 138
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Figure 2: Core components of LLM-MAS environment. Using a software company as an example, agents function
within the framework of rules, which guide and govern their operations. Meanwhile, tools provide APIs for
development, such as the “git push” command, which agents can access. Through the intervention interfaces, the
environment can be modified according to user requirements, enabling continuous optimization of the software.

pursuing consensus, such as in coding (Dong et al.,139

2024) and job fair systems (Li et al., 2023b). Vector140

forms are more efficient in terms of communication141

and easier to optimize using policy gradients, mak-142

ing them commonly used for achieving cooperative143

objectives (Liu et al., 2024b).144

2.2 Environment145

Environmental settings include tools, rules, and in-146

tervention interfaces, which are illustrated in Figure147

2. (i) Rules define the mode of communication be-148

tween generative agents or the interaction with the149

environment, directly defining the behavioral struc-150

ture of the entire system. Figure 2 shows the order151

of agents talking and acting under rules. (ii) Tools152

(optional) create an action space for each genera-153

tive agent to take action. Figure 2 illustrates the154

common tools in software development scenario,155

including IDEs and Git. Their APIs, including156

git commands, compilation tools, runtime tools,157

and debugging tools such as “git push”, can be158

accessed by agents. (iii) Intervention interfaces159

(optional) provide an interface for external inter-160

vention systems, which can come from any exter-161

nal source, like human (Wang et al., 2024b), or162

a rule-based model (Chen et al., 2024c), even a163

generative agent (Chen et al., 2024e). Figure 2 il-164

lustrates an example of intervention interfaces in165

the software development: requirements analysis in166

agile development. Throughout each development167

cycle, users from external have the opportunity to168

communicate with the software company to de-169

fine and refine their requirements. This ongoing170

collaboration allows the software company to ad-171

just the development process based on user needs,172

ensuring timely intervention and alignment with173

expectations.174

3 LLM-MAS for Solving Complex Tasks 175

In this section, we explore the application of 176

LLM-MAS to solving complex tasks. We begin 177

by categorizing LLM-MAS based on the complex- 178

ity of the tasks they address. Next, we provide an 179

overview of the relevant code, datasets, and bench- 180

marks available for these applications. Finally, we 181

discuss the evaluation metrics used to assess per- 182

formance in solving complex tasks. 183

3.1 Categories of LLM-MAS based on task 184

complexity 185

We classify LLM-MAS into three distinct cate- 186

gories based on the complexity of tasks they han- 187

dle: (i) LLM-MAS designed for specific tasks 188

that do not require long trajectory decisions, (ii) 189

LLM-MAS tailored for specific tasks involving 190

long trajectory decisions, and (iii) LLM-MAS that 191

are not specialized for any specific tasks. 192

Specific tasks that do not require long trajec- 193

tory decisions. Single tasks refer to tasks without 194

requiring long trajectory decisions. This type of 195

task is commonly seen in tasks requiring knowl- 196

edge, where techniques from multi-agent systems 197

are transferred to existing classic tasks, such as 198

Visual Question Answering (VQA) (Jiang et al., 199

2024), tasks in science (Song et al., 2024), etc. Usu- 200

ally, this type of task has a short (less than 2048) 201

context length. This type of task solving by a single 202

agent requires a long prompt, which is difficult to 203

reuse. It is LLM-MAS technology that optimizes 204

this problem. Collective decision-making and re- 205

flection are commonly used in this type of task. 206

Compared with a single agent method, such as 207

self-consistency (Wang et al., 2023), LLM-MAS 208

with collective decision-making can achieve im- 209

proved performance with less prompting for the 210
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same task (Du et al., 2024a). Reflective method is211

also a common technique, Bo et al. (2024) explore212

reflection in LLM-MAS, proposing a novel frame-213

work, that exhibits excellent generalization perfor-214

mance across different actor models. The perfor-215

mance of collective decision-making or reflection216

depends on the capabilities of individual agents.217

However, as the complexity of the task increases,218

within long trajectory decisions, LLM-MAS re-219

quire a new mod.220

Specific tasks that require long trajectory deci-221

sions. Complex tasks are defined as those that re-222

quire decisions over long trajectories. They are typ-223

ically encountered in multi-stage scenarios where224

the collaboration of multiple agents is essential for225

finding a solution (Chen et al., 2024f). Soft de-226

velopment is a representative scenario requiring227

multi-stage collaboration (Islam et al., 2024). As228

a representative of this domain, ChatDev (Qian229

et al., 2024a) leverages software engineer agents230

in distinct roles to collaboratively develop soft-231

ware. Based on this, additional forms of coop-232

eration are explored (Du et al., 2024b). Further,233

the scaling law is explored in this scenario (Qian234

et al., 2024b), but no significant pattern was ob-235

served. Another typical scenario is long-context236

tasks. LONGAGENT (Zhao et al., 2024a) and237

Chain of Agents (Zhang et al., 2024c) apply MAS238

technology to split the long context, enabling239

smaller models like LLaMA-2 7B to possess strong240

contextual capabilities, even better than GPT-4.241

Similarly, embodied reasoning and planning are242

also a representative scenario requiring long tra-243

jectories of collaboration (Dasgupta et al., 2023).244

Agents solve their respective subtasks and merge245

the results, which introduces higher communica-246

tion costs and challenges related to information247

aggregation.248

General tasks. In this part, LLM-MAS are not249

limited to specific tasks but are instead a method ap-250

plicable to a wide range of general tasks. MetaGPT251

(Hong et al., 2023) assigns different roles to gener-252

ative agents to form a collaborative entity for com-253

plex tasks. Gao et al. (2024) propose AgentScope254

with message exchange as its core communication255

mechanism. Open AI proposes Swarm (OpenAI,256

2024b), an experimental multi-agent orchestra-257

tion framework that is ergonomic and lightweight.258

KAOS (Zhuo et al., 2024) addresses the challenges259

of resource coordination management by propos-260

ing a unified user experience across various foun-261

dational software platforms. In LLM-MAS, fully262

connected communication poses significant chal- 263

lenges, including combinatorial explosion and pri- 264

vacy risks. To mitigate these issues, researchers 265

have focused on enhancing communication effi- 266

ciency. For instance, some studies explore meth- 267

ods to accelerate agent interactions through nonver- 268

bal communication techniques (Liu et al., 2024b), 269

while others aim to streamline communication by 270

reducing the length of generated messages (Chen 271

et al., 2024g). These approaches collectively ad- 272

dress the inherent limitations of fully connected 273

communication in LLM-MAS. Among the works, 274

DroidSpeak achieves up to a 2.78× speedup in pre- 275

fill latency with negligible loss in accuracy. 276

3.2 Resources for solving complex tasks 277

We analyze common LLM-MAS for solving com- 278

plex tasks in Table 1, including code, datasets, 279

and benchmarks. Among the datasets, QA-style 280

datasets are the most commonly used, a trend 281

that reflects the legacy of traditional NLP task- 282

specific datasets and benchmarks. ToolBench (Guo 283

et al., 2024b), SRDD, ToolAlpaca (Tang et al., 284

2023), etc. are specifically designed for agent 285

tools. Overcooked-AI (Carroll et al., 2020) is a 286

benchmark for LLM-MAS in the past, which il- 287

lustrates the potential to transform the game envi- 288

ronment originally used for RL based MAS into 289

LLM-MAS. 290

3.3 Evaluation metric of solving complex task 291

Performance on specific tasks. Shown as Table 292

1, the performance of LLM-MAS can be evalu- 293

ated by specific tasks, which is intuitive and con- 294

venient. For example, in an APP system (Zhang 295

et al., 2023b), the average number of steps and 296

tools used by an agent to complete a specific task is 297

considered as an indicator; in BOLAA (Liu et al., 298

2023c), the recall and QA accuracy of intelligent 299

physical examination retrieval are also considered 300

as evaluation indicators; 301

Communication cost analysis. The concern lies 302

in the operational cost of the system. Given that 303

a substantial proportion of contemporary systems 304

incorporate LLM-MAS as a pivotal module, the 305

additional expenditure incurred during system op- 306

eration has emerged as a pivotal area of interest. As 307

an illustrative example, In the evaluation of Droid- 308

Speak (Liu et al., 2024b), the response time has 309

been used as a metric to evaluate the acceleration 310

of the method. 311
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Table 1: Codes and Benchmarks in LLM-MAS for solving task studies. “No Code” or “No Benchmark or Dataset”
means the code or benchmark is unavailable.

Field Subdomain Paper Code Benchmark and Dataset

Tasks without
long trajectory

decision

Knowledge oriented tasks

(Zhao et al., 2024c) Code Link MCQA
(Wang et al., 2024c) Code Link FOLIO-wiki

(Chen et al., 2024e) Code Link StrategyQA, CSQA, GSM8K, AQuA,
MATH, Date Understanding, ANLI

(Chen et al., 2024a) Code Link TriviaQA
(Wang et al., 2024d) Code Link TriviaQA
(Liang et al., 2024) Code Link MT-Bench
(Lei et al., 2024) Code Link MATH

(Zhang et al., 2024a) Code Link MMLU, MATH, Chess Move Validity
(Cheng et al., 2024) Code Link ESConv dataset, P4G dataset
(Tang et al., 2024b) Code Link Trans-Review, AutoTransform, T5-Review

Interaction oriented tasks (Zhang et al., 2024b) Code Link RoCoBench,Overcooked-AI
(Zhang et al., 2023a) Code Link Overcooked-AI

Tasks within
long trajectory

decision
Multi-stage tasks

(Qian et al., 2024a) Code Link SRDD
(Du et al., 2024b) Code Link SRDD
(Yue et al., 2024) Code Link SMART (self)
(Liu et al., 2023c) Code Link WebShop
(Lin et al., 2024) Code Link FG-C, CG-O

(Islam et al., 2024) Code Link HumanEval, EvalPlus, MBPP,
APPS, xCodeEval, CodeContest

(Shen et al., 2024) Code Link ToolBench, ToolAlpaca

General tasks (Li et al., 2023a) Code Link CAMEL AI Society, CAMEL Code,
CAMEL Math, CAMEL Science

4 LLM-MAS for Simulating Specific312

Scenarios313

This section will illustrate the application for314

LLM-MAS in simulation. LLM-MAS are applied315

by researchers to simulate certain scenarios to study316

their impact on specific subjects such as social sci-317

ences. On the one hand, compared with rule-based318

methods (Chuang and Rogers, 2023), generative319

agents with natural language communication can320

be more intuitive for humans. On the other hand,321

environment determines the properties of the simu-322

lation, which is the core of the entire simulation.323

4.1 Categories of simulation scenarios324

The typical scenarios for LLM-MAS simulations325

are described as follows. We will introduce the326

following work according to the subject.327

Social domain. Social large-scale experiments328

in the real world have high costs, and the sheer329

scale of social participation can sometimes esca-330

late into violence and destruction, posing potential331

ramifications (Mou et al., 2024). Therefore, it is332

necessary to simulate in the virtual environment;333

simulation can solve the problem of excessive over-334

head in the real environment and can simulate the335

process in the real world for a long time at a faster336

speed (Li et al., 2024a). At the same time, the337

whole process can be easily repeated, which is con-338

ducive to further research. Researchers have done339

a lot of work to simulate social media scenarios. 340

Based on the social media simulation archetype 341

(Park et al., 2022), Park et al. (2023) propose Stan- 342

ford Town, which leads to a one-day simulation of 343

the life of 25 agents with different occupations 344

in a small American town. At the same time, 345

there was work on emotional propagation influ- 346

ence (Gao et al., 2023b), information cocoon room 347

based on recommendation scenario research (Wang 348

et al., 2024b), and study of social movements (Mou 349

et al., 2024). Researchers propose Urban Genera- 350

tive Intelligence (UGI) (Xu et al., 2023a) to address 351

specific urban issues and simulate complex urban 352

systems, providing a multidisciplinary approach 353

to understanding and managing urban complex- 354

ity. Li et al. (2024a) study doctor agent evolution 355

method by hospital simulation. Because doctor 356

agent training is both inexpensive and highly effec- 357

tive, this work can quickly scale up the agent to 358

handle tens of thousands of cases in just a few days, 359

a task that would take a human doctor years to 360

complete. Pan et al. (2024) propose a huge scale of 361

agent simulation, increasing the number of agents 362

to 106. In social games, like Werewolf (Xu et al., 363

2024a), Avalon (Lan et al., 2024), and Minecraft 364

(Gong et al., 2024) for LLM-MAS simulation are 365

attempted. 366

Physical domain. For the physical domain, the 367

applications for generative agent simulation in- 368
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Table 2: Codes and Benchmarks in LLM-MAS for simulation studies. “No Code” or “No Benchmark or Dataset”
means the code or benchmark is unavailable.

Domain Subdomain Paper Code Benchmark and Dataset

Social

Tiny Society

(Huang et al., 2024b) No Code AdaSociety
(Chen et al., 2024b) Code Link AgentCourt
(Park et al., 2023) Code Link No Benchmark or Dataset
(Piatti et al., 2024) Code Link No Benchmark

(Chuang et al., 2024) Code Link No Benchmark or Dataset

Economics (Li et al., 2024b) Code Link No Benchmark or Dataset

Social Media
(Wang et al., 2024b) Code Link Movielens-1M
(Gao et al., 2023b) No Code Blog Authorship Corpus
(Mou et al., 2024) Code Link SoMoSiMu-Bench(self)

Game
(Du and Zhang, 2024) Code Link WWQA

(Pan et al., 2024) Code Link No Benchmark or Dataset

Physical Wireless (Zou et al., 2023) No Code No Benchmark or Dataset

clude mobility behaviors, transportation (Gao et al.,369

2023a), wireless networks, etc. However, there is370

limited research in the area of generative agents.371

Zou et al. (2023) explore the application of multiple372

agents in the wireless field, proposing a framework373

where multiple on-device agents can interact with374

the environment to simulate real world scenarios.375

This is an area of critical importance for the future376

of embodied intelligence.377

4.2 Resources for LLM-MAS simulation378

We analyze common and open-source LLM-MAS379

for simulation with their datasets in Table 2, includ-380

ing code and benchmarks.381

To prove the effectiveness of the simulation, that382

is, to fit the reality, researchers usually evaluate the383

simulation system by simulating real data. There-384

fore, a realistic dataset with dense users and records385

is very important for evaluation simulation (Mou386

et al., 2024). An ideal dataset will be dense: that387

is, data with a smaller number of users on the same388

scale can better evaluate the simulation capability389

of the LLM-MAS. Du and Zhang (2024) propose390

WWQA based on werewolf scenarios to evaluate391

the agent’s capability in a werewolf scenario.392

4.3 Evaluation Metric of LLM-MAS393

simulation394

We will summarize the metrics for the overall eval-395

uation of LLM-MAS , rather than the capabilities396

of individual agents.397

Consistency. LLM-MAS necessitate a robust con-398

gruence with the real world to ensure the deriva- 399

tion of meaningful and insightful experimental out- 400

comes. In the context of simulation systems, exem- 401

plified by UGI (Xu et al., 2023a), the primary objec- 402

tive lies in faithfully replicating specific real-world 403

scenarios. When employed for training agents like 404

SMART (Yue et al., 2024), only those agents that 405

have undergone rigorous training within a virtual 406

environment that closely mirrors the real environ- 407

ment can be deemed suitable for deployment in 408

real-world settings. Similarly, when utilized for 409

evaluation purposes, such as in AgentSims (Lin 410

et al., 2023), the attainment of authentic and reli- 411

able evaluation results is contingent upon the vir- 412

tual environment maintaining a high degree of con- 413

sistency with its real-world counterpart. Finally, in 414

the system for collecting data such as BOLAA (Liu 415

et al., 2023c), consistency also ensures the validity 416

of the data. Therefore, an important performance 417

measure of LLM-MAS is its consistency with the 418

real situation. 419

Information dissemination. Compare the differ- 420

ences between information dissemination behavior 421

in the system and reality using time series analysis 422

methods. Information dissemination can to some 423

extent reflect the nature of media; therefore, a re- 424

alistic multi-agent system should have a similar 425

information dissemination trend to the real world. 426

Abdelzaher et al. (2020) compare the changes in 427

the number of events occurring each day in an on- 428

line social media simulation environment; S3 (Gao 429

et al., 2023b) compare the number of users who 430

6

https://github.com/relic-yuexi/AgentCourt
https://github.com/joonspk-research/generative_agents
https://github.com/giorgiopiatti/govsim
https://github.com/yunshiuan/llm-agent-opinion-dynamics
https://github.com/tsinghua-fib-lab/ACL24-EconAgent
https://github.com/RUC-GSAI/YuLan-Rec
https://github.com/xymou/social_simulation
https://github.com/doslim/Evaluate-the-Opinion-Leadership-of-LLMs
https://github.com/modelscope/agentscope/tree/main/examples/paper_large_scale_simulation


are aware of a certain event every day, as well as431

the changes in emotional density and support rate432

for that event every day; a similar approach is also433

used in Stanford Town (Park et al., 2023).434

5 LLM-MAS for Evaluating and Training435

Generative Agents436

With generative agents prevailing in the commu-437

nity (Wang et al., 2024a), how to evaluate the438

ability of generative agents is an open question.439

Existing evaluation methods suffer from the fol-440

lowing shortcomings: (i) constrained evaluation441

abilities, (ii) vulnerable benchmarks, and (iii) un-442

objective metrics. The complexity and diversity443

of LLM-MAS have indicated that LLM-MAS can444

evaluate generative agent. However, how to design445

specific evaluation indicators and evaluation meth-446

ods has puzzled researchers. Similarly, LLM-MAS447

can also be used in training generative agents. We448

summarize three aspects of training: (i) Supervised449

Fine-Tuning (SFT) (ii) reinforcement learning (RL)450

(iii) Synthesizing data for training.451

5.1 Methods of Evaluation and Training on452

Generative Agents453

LLM-MAS can provide rewards to agents, and454

these rewards can be used to evaluate or train gen-455

erative agents, which will be discussed below.456

Evaluation of generative agents. Researchers457

study generative agents by putting them into458

LLM-MAS. In LLM-MAS, researchers can further459

study the LLM’s strategic capabilities in different460

scenes, such as long strategic ability (Chen et al.,461

2024c), corporation strategy (Xu et al., 2023b), and462

competitiveness strategy (Zhao et al., 2024b). In463

the emotional field, MuMA-ToM (Shi et al., 2024)464

is used to evaluate the ability of agents to under-465

stand and reason about human interactions in a real466

home environment through video and text descrip-467

tions.468

Training on generative agents. Li et al. (2024c)469

enhance the data to Supervised Fine-Tuning470

(SFT) generative agents with LLM-MAS. Xu et al.471

(2024b) have created generative agents to over-472

come the intrinsic bias from LLMs by proposing473

a novel framework that powers generative agents474

with multi-agent reinforcement learning. For475

LLM-MAS, Yue et al. (2024) split complex trajec-476

tories in knowledge-intensive tasks into subtasks,477

proposing a co-training paradigm of the multi-478

agent framework, Long- and Short-Trajectory479

Learning, which ensures synergy while keeping the 480

fine-grained performance of each agent. RLHF has 481

been criticized for its high cost. Liu et al. (2023a) 482

propose an alignment scheme based on a multi- 483

agent system, effectively addressing instability and 484

reward gaming concerns associated with reward- 485

based RL optimization. Either way, LLM-MAS 486

are essentially viewed as an environment in RL 487

with different ways of getting rewards from the 488

environment. 489

5.2 Resources of LLM-MAS for evaluations 490

Table 3 shows the work with code, dataset, and 491

benchmark we analyze, serving as a reference for 492

future researchers. Our findings indicate that the 493

current body of research is predominantly cen- 494

tered on the evaluation of generative agents, which 495

means training with LLM-MAS will be a great po- 496

tential for further exploration. 497

6 Challenges and Future Directions 498

While previous work on LLM-MAS has obtained 499

many remarkable successes, this field is still at its 500

initial stage, and there are several significant chal- 501

lenges that need to be addressed in its development. 502

In the following, we outline several key challenges 503

along with potential future directions. 504

6.1 Challenges posed by generative agents 505

Generative agents are an integral part of 506

LLM-MAS. However, the generative agents 507

have some shortcomings due to the inherent 508

characteristics of the base model LLMs, which 509

will be carefully discussed below. 510

Challenges. (i) Generalized alignment for 511

simulation (Liu et al., 2023a). When the agents 512

are leveraged for real-world simulation, a perfect 513

generative agent should be able to depict diverse 514

traits (Wang et al., 2024a) honestly. However, 515

due to the training method of the foundation 516

model (OpenAI et al., 2024), generative agents 517

usually cannot be aligned with mock objects. (ii) 518

Hallucination. Generative agents have a certain 519

probability of hallucination in their interaction 520

with other agents (Du et al., 2024a). Various 521

enhancement methods can alleviate this problem 522

but cannot solve it (iii) Lack of sufficient long text 523

capability. When processing complex information, 524

generative agents forget the input information 525

because of the lack of long-text ability (Zhao et al., 526

2024a). 527

Future directions. The improvement of the 528
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Table 3: Codes and Benchmarks in LLM-MAS for evaluation studies. “No Code” or “No Benchmark or Dataset”
means the code or benchmark is unavailable.

Domain Subdomain Paper Code Benchmark and Dataset

Evaluation of
generative agents

Strategy

(Liu et al., 2023b) Code Link AGENTBENCH
(Bandi and Harrasse, 2024) No Code MT-Bench

(Chan et al., 2023) Code Link ChatEval
(Chen et al., 2024d) Code Link LLMARENA
(Xu et al., 2023b) Code Link MAgIC

(Huang et al., 2024a) Code Link MLAgentBench
(Chen et al., 2024c) Code Link AUCARENA

Emotion
(Zhang et al., 2024d) Code Link PsySafe

(Shi et al., 2024) Code Link MuMA-ToM

Training on
generative agents

SFT on LLM-MAS (Li et al., 2024c) Code Link MT-Bench, AlpacaEval

MARL on LLM-MAS (Xu et al., 2024b) No Code No Benchmark or Dataset

Synthesized Ddata (Liu et al., 2023a) Code Link
HH, Moral Stories, MIC,

ETHICS-Deontology, TruthfulQA

ability of a single agent or the ability of the base529

model has always been a hot topic. Researchers530

have focused on enhancing alignment, reducing531

hallucination, and improving the ability of long532

text. The proposal of the new generation of Open533

AI model o1 (OpenAI, 2024a) provides researchers534

with new ideas, that is, to use more complex535

reasoning to enhance the ability of the model.536

537

6.2 Challenges posed by interactions538

Challenges. Due to the complexity, autoregres-539

sive, and other characteristics of LLM-MAS, there540

are many problems in the practical application of541

the system. How to solve (i) communication ef-542

ficiency (Liu et al., 2024b; Zhuang et al., 2024),543

(ii) imperfect communication (Zhang et al., 2023a;544

Liu et al., 2024a; Zhuang et al., 2024), and (iii)545

communication security (de Cerqueira et al., 2024)546

is a long-term goal of the researchers.547

Future directions. Establishing a comprehensive548

and standardized benchmark to evaluate the com-549

munication latency of LLM-MAS is an urgent is-550

sue that needs to be addressed in the short term.551

Therefore, optimizing the communication structure552

of LLM-MAS presents an intriguing research prob-553

lem for the near future.554

6.3 Challenges of Evaluation for LLM-MAS555

Lack of Objective metrics for group behavior.556

As shown in Section 4.3, due to the diversity,557

complexity, and unpredictability of multi-agent558

environments, it is difficult to obtain sufficiently559

detailed, specific, and direct system evaluation560

indicators from current work at the system level. 561

Automated evaluation and benchmark. Dif- 562

ferent LLM-MAS of the same kind cannot be 563

compared because of the lack of a benchmark for 564

LLM-MAS. Further, there is a lack of a common 565

benchmark framework for both individual and 566

total-based evaluation, that can be used to evaluate 567

most LLM-MAS. 568

Future directions. Studying large-scale 569

LLM-MAS will be a new research hotspot, from 570

which researchers will evaluate and discover new 571

scale effects. In the meantime, common test 572

benchmarks and evaluation methods will also 573

emerge in future research. 574

7 Conclusion 575

In this survey, we systematically summarize exist- 576

ing research in the application of LLM-based multi- 577

agent systems (LLM-MAS) field. We present and 578

review these studies from three application aspects: 579

task-solving, simulation, and evaluation of the gen- 580

erative agents. We provide a detailed taxonomy 581

to draw connections among the existing research, 582

summarizing the major techniques and their de- 583

velopment histories for each of these aspects. In 584

addition to reviewing the previous work, we also 585

propose several challenges in this field, which are 586

expected to guide potential future directions. 587

8

https://github.com/THUDM/AgentBench
https://github.com/thunlp/ChatEval
https://github.com/THU-BPM/LLMArena.
https://github.com/cathyxl/MAgIC
https://github.com/snap-stanford/MLAgentBench
https://github.com/jiangjiechen/auction-arena
https://github.com/AI4Good24/PsySafe
https://github.com/SCAI-JHU/MuMMA-ToM
https://github.com/lirenhao1997/CoEvol
https://github.com/agi-templar/Stable-Alignment


Limitations588

Due to page limitations, we provide only brief sum-589

maries of each method without delving into exhaus-590

tive technical details. Furthermore, our primary591

collection includes studies from *ACL, NeurIPS,592

ICLR, AAAI, and arXiv, which means some im-593

portant work from other venues might have been594

inadvertently omitted. In the application section,595

we have listed representative LLM-MAS resources596

with open code in Tables 1, 2, and 3. We recognize597

the timeliness of our work and are committed to598

keeping pace with ongoing discussions in the re-599

search community, updating our perspectives and600

supplementing any overlooked contributions in fu-601

ture revisions.602
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