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Abstract

Transliteration has emerged as a powerful
means to bridge the gap between various lan-
guages in multilingual NLP, showing promising
results on unseen languages without respect to
script. While it is widely understood that this
success is due to the degree to which transliter-
ation results in a shared representational space
among languages, we investigate the degree
to which shared script, an overlap in token vo-
cabularies, and shared phonology contribute to
performance of models relying on translitera-
tion. To investigate this question, we train and
evaluate models using three kinds of translit-
eration (romanization, phonemic transcription,
and substitution ciphers) as well as orthography.
We evaluate on two downstream tasks, named
entity recognition (NER) and natural language
inference (NLI), yielding results largely consis-
tent with our hypothesis—that romanization is
most effective because it results in sharing of
all three kinds.

1 Introduction

Multilingual language modeling has drawn signif-
icant attention from researchers seeking to cover
diverse languages and promote fairness in Al. Ef-
forts for effective multilingual language modeling
include improving the performance of low-resource
languages (Bharadwaj et al., 2016), dealing with
tokenization fairness across languages (Ahia et al.,
2023; Petrov et al., 2023; Limisiewicz et al., 2024),
investigating the curse of multilinguality (Conneau
et al., 2020; Wang et al., 2020; Chang et al., 2024;
Blevins et al., 2024), and breaking the script bar-
riers (Chaudhary et al., 2018; Moosa et al., 2023;
J et al., 2024; Sohn et al., 2024; Ahia et al., 2024;
Liu et al., 2024). One of the recent approaches
that touches on all of these problems is translitera-
tion—converting original forms of written text into
a unified input representations with methods such
as romanization or grapheme-to-phoneme (G2P)
transduction.
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Figure 1: Top left: Conceptual visualization of the
transliteration analysis schema, positioning input types
(Ortho, TPA, Rom, Cipher) based on shared character
set, token set, and phonology. Top right: KDE plot
showing empirical distribution of overlap ratios for each
quantifiable component. Bottom: Transliteration exam-
ples generated with each method.

Transliteration in multilingual NLP is typically
performed using Latin scripts or International Pho-
netic Alphabet (IPA), giving various languages a
shared input representation. Both representations
encode linguistic information—specifically pho-
netic and phonological—across languages. Here,
we pose a question: Is it the shared script itself or
the linguistic information encoded in the scripts
that helps the models adapt to other languages?

To investigate this question, we define three key
factors in transliteration—(i) shared character set,
(i1) shared token set, and (iii) shared phonology—
that influence how a model processes and gener-
alizes across languages. We then run experiments
with four different input types, each varying in the
degree to which these factors are present: Orthog-
raphy, IPA, Romanized, and Substitution Ciphered
text (see Figure 1). IPA and Romanized text encode
linguistic information (phonetic or phonological)



to different extents, making them more likely to
leverage shared phonology (e.g., similarity in cog-
nate and borrowed vocabulary items) and contain
shared tokens. On the other hand, ciphered text
shares the same character set as romanized text but
lacks any linguistic information, as each language
is randomly mapped to different letters.

We hypothesize that romanized text yields the
best performance in handling diverse languages as
it improves representations across all three dimen-
sions. Based on this assumption, IPA is expected to
follow, as it enhances two out of three dimensions
(shared phonology and tokens) while ciphered text
only shares the character set and lacks other shared
representations. Throughout the paper, we evalu-
ate our hypothesis by comparing downstream task
performance on seen and unseen languages and
analyze each method in terms of token overlaps.

2 Preliminary: Transliteration for
Multilingual Language Modeling

Transliteration has been recently explored as a
method to enhance cross-lingual transfer in mul-
tilingual NLP by unifying script representations.
Two major approaches in this domain are phone-
mic transcription and romanization.

Phonemic transcriptions use IPA to represent
various languages. It has been explored in cross-
lingual scenarios, particularly to low-resource lan-
guages (Bharadwaj et al., 2016; Chaudhary et al.,
2018; Nguyen et al., 2023; Sohn et al., 2024). Re-
cently, Nguyen et al. (2024) show that IPA prompt-
ing aids large-scale LL.Ms in handling non-Latin
scripts. Similarly, romanization has been widely
used to overcome the difference in scripts and mit-
igate potential out-of-vocabulary problems by re-
stricting the input space (Fujinuma et al., 2022;
Moosa et al., 2023; Liu et al., 2024). This approach
improves POS Tagging and Dependency Parsing
by enhancing token consistency (Fujinuma et al.,
2022) and significantly benefits low-resource lan-
guages without negatively impacting high-resource
ones (Moosa et al., 2023).

3 Input Types

While transliteration into shared scripts has demon-
strated promising results in cross-lingual transfer,
particularly for low-resource languages and non-
Latin scripts (Soni and Bhattacharyya, 2024; J et al.,
2024), its underlying mechanisms remain unex-
plored. As illustrated in Figure 1, we define three

key factors that explain different aspects of translit-
eration.

* Shared Character Set. Transliteration usu-
ally enforces a shared character set across lan-
guages. For example, romanization can only
produce Latin characters, which significantly
reduces the number of unique characters and
patterns that a tokenizer must learn.

* Shared Token Set. Here, we specifically dis-
tinguish rokens from characters, where by to-
kens we refer to subword tokens that contain
more than a character.

* Shared Phonology. Widely used translitera-
tion methods (e.g., G2P and romanization) en-
code phonological information in their repre-
sentations. Representing languages based on
their phonology can capture representations
of cognate and borrowed vocabulary shared
across languages.

To explore these different dimensions of translit-
eration, we employ four distinct input types: Or-
thography (Ortho), IPA, Romanized text (Rom),
and Substitution Ciphered text (Cipher). Here, we
explain in detail the process of converting written
text data (Ortho) into each of other input types.

3.1 G2P Conversion (IPA)

Based on Latin scripts, IPA symbols are designed
to represent pronunciations of human language in
phonemes. While transliteration into IPA enables
some degree of character set sharing, differences in
phonemic inventories and phonotactic structures
cause each language to use its own distinct set
of characters and subword tokens. To convert or-
thographic data into IPA symbols, we use Epitran
(Mortensen et al., 2018), a widely used rule-based
G2P tool that supports more than a hundred lan-
guages.

3.2 Romanization (Rom)

Romanization converts various scripts into Latin
alphabets, enforcing a stricter limit that enables
multiple languages to share the character set. Addi-
tionally, unlike G2P, which converts identical Latin-
script text into language-specific phonemes, roman-
ization preserves the original form of text written
in Latin scripts. Since Latin scripts encode sound—
though not as precisely as IPA—romanization pro-
duces phonologically informed representations for
each language. We employ Uroman (Hermjakob
et al., 2018) which supports more than 370 lan-
guages for romanization.



3.3 Substitution Cipher (Cipher)

A substitution cipher is a method from cryptog-
raphy where units of plaintext are replaced with
ciphertext according to a predefined rule or key.
We apply substitution cipher to the romanized text
of each language—in different rules—to remove
encoded phonological information. While this al-
lows multilingual text to share the same character
space as Rom, it no longer contains phonological
meanings and prevents the sharing of meaningful
subword tokens across languages. We employ Cae-
sar cipher, a simple substitution encryption tech-
nique. Details are provided in Appendix A.4.

4 Experiments

4.1 Language Selection

‘ Script

‘ same ‘ diverse

similar ‘ swe, por, lij, cat, ron, spa, sqi, fra ‘ fra, ben, hin, hrv, ori, rus, srp, urd

dissimilar ‘ ilo, sna, lav, uzb, deu, fin, som, swa ‘ ambh, ben, tel, fra, tha, kat, kor, mya

Table 1: Languages selected for each language set.

To examine how different input types impact
multilingual adaptation, we selected languages to
form four language sets: (i) typologically simi-
lar languages using the same script (sim-same),
(i1) similar languages using diverse scripts (sim-
div), (iii) dissimilar languages using the same script
(dissim-same), and (iv) dissimilar languages us-
ing diverse scripts (dissim-div). Similar to Chang
et al. (2024), we utilized lang2vec (Littell et al.,
2017)! to compute language similarity. We ex-
tracted syntactic, geographic, and genetic features
from lang2vec to obtain cosine similarities, and
also defined lexical similarity based on word over-
lap ratio between training corpora of each lan-
guage”. By aggregating these similarity scores,
as detailed in Appendix A.1, we assigned eight
languages to each set (see Table 1) and trained mul-
tilingual models with varying linguistic similarities
and scripts.

4.2 Datasets

For pre-training, we utilize sampled version of

a preprocessed Wikipedia corpus from Hugging

Face.? For downstream task, we utilized WikiAnn

(Pan et al., 2017; Rahimi et al., 2019) dataset for

NER and XNLI (Conneau et al., 2018) for sen-

tence classification (NLI) task. More details on
!'Utilizing https://github.com/antonisa/lang2vec

*Words are segmented by white spaces.
3https://huggingface.co/datasets/wikimedia/wikipedia

preprocessing and dataset statistics can be found
in Appendix A.9. In order to train the model with
different input types, we converted all datasets into
each input type.

4.3 Model Training

To investigate the impact of different input types,
we pre-train 16 models from scratch using four in-
put types and four language sets. We avoid using
publicly available pre-trained models to ensure a
controlled experimental setup, as most such mod-
els are optimized for orthography, preventing fair
comparison across transliteration methods.

We first trained a SentencePiece (character-level)
BPE subword tokenizer for each model with fixed
vocabulary size of 30K for all tokenizers. We em-
ployed a Transformer architecture, following the
training regime of RoBERTa (Liu et al., 2019) with
masked language modeling on a multilingual cor-
pus. After pre-training we fine-tuned each model
on target language dataset to obtain downstream
task performance. For details on the model config-
urations and training, refer to Appendix A.2 and
Appendix A.3.

S Results: Downstream Task
Performance across Input Types

Table 2 presents average scores across target lan-
guages for downstream tasks. Average F1 scores of
each model for seen and unseen languages are pro-
vided for NER,* and average accuracies for XNLI.
p-values obtained from paired t-tests on F1 scores
across different input types can be found in Ap-
pendix A.S.

NER Performance in Seen/Unseen Languages.
Transliteration does not provide a significant advan-
tage over orthographic text when the language was
seen during pre-training. While Rom outperforms
other input types including Ortho, its superiority
over Ortho is not statistically significant (p > 0.05).
On the other hand, for unseen languages, the perfor-
mance of Ortho is significantly lower than that of
all other input types (p < 0.05). Furthermore, we
find that our hypothesis holds, with Rom achiev-
ing the highest average F1 scores in 6 out of 8
cases. Interestingly, IPA and Cipher do not show
statistically significant differences, despite Cipher
containing no shared linguistic information. We
further investigate this in Section 6.

*Unseen languages refer to languages not included in pre-
training of each model.



‘ Named Entity Recognition ‘

Trained Lang. Set ‘ Seen ‘ Unseen ‘ XNLI
| Ortho TPA  Rom Cipher | Ortho TPA  Rom Cipher | Ortho  IPA  Rom  Cipher
simsame | 0.8466 0.8085 0.8395 0.8173 | 0.6611 0.6801 0.7267 0.6824 | 0.5793 0.6045 0.6276 0.6137
sim-div | 0.8409 0.8239 0.8451 0.8270 | 0.6321 0.6787 0.7151 0.6772 | 0.6007 06135 0.6224 0.6096
dissim-same | 0.7860 0.7732 0.7981 0.7725 | 0.6626 0.7468 0.7280 0.7547 | 0.5971 0.6087 0.6137 0.5972
dissim-div. | 0.7402 07524 0.7538 0.7518 | 0.7450 0.7524 0.7832 0.7496 | 0.5860 0.6214 0.6327 0.6254

Table 2: Downstream task performances averaged across target languages—F1 scores for NER and accuracy scores
for XNLI. Bold: best performing input. Underlined: second best.
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Figure 2: Pearson r between overlap ratios of each token
length and NER performance. Correlations with p >
0.05 are masked out.

XNLI Performance. For XNLI, we did not dis-
tinguish between seen and unseen languages due
to the limited number of supported languages. In-
stead, we randomly sampled 10 languages from
the supported languages and fine-tuned on each to
obtain accuracy scores. The trend was consistent
across all models: Rom outperformed the others,
while IPA and Cipher demonstrated comparable
performance.

6 Analysis: Shared Tokens

Transliteration is widely assumed to enhance mul-
tilingual language modeling by increasing token
overlap. However, it is not clear whether it is driven
by the same script itself or the consistent linguis-
tic information encoded in the script. To investi-
gate this question, we analyze length-wise lexical
overlap each transliteration method produces, as
defined in Appendix A.6.

Token Overlap and Transferability. Figure 2
presents the Pearson correlation coefficient be-
tween overlap ratios and NER performance for
each input type. We observe that sharing tokens
with trained languages is crucial for successful
adaptation to unseen languages. Particularly, to-
ken lengths of 2 to 4 exhibit a strong correlation
with F1 scores, highlighting the importance of shar-

Target Language - Korean (Unseen)

Ortho 1= B3 474 -
IPA kwnwn hjantge 4kewal -
mutti (k)(<unk> ) () (unk> ) (n) (S (R) (3] (Kunk> ) (n) (&) [l (=4) K &) (<unk> (1]
Rom geuneun hyeonjae 4gaeweol -
muti (g2} ne) (o) O B ) (o) () @) ) () e (o)
Cipher  IGWPGWP JaGQPLCG 4ICGYGQN -

mutti (16)(we)G)(wr)-)e](G)(er)(U(cc (4l ce)El(en)

Figure 3: Tokenization results for an incomplete Korean
sentence (English: “He is currently 4 months...”). Red
indicates multilingual tokenizers (trained on sim-div),
whereas shows monolingual Korean tokeniz-
ers, serving as an ideal reference.

ing short character sequences as subword patterns
across languages. We additionally provide a box
plot in Figure 5, which shows overlap ratios of each
input type by token length.

Comparison between IPA and Cipher. While
both IPA and Cipher perform better than Ortho on
unseen languages, they are suboptimal compared
to Rom. IPA represents phonological information,
allowing for shared character sequences across lan-
guages, such as those capturing common syllable
structures. However, phonemic transcription re-
flects language-specific phonological inventories,
hindering a shared character set and thereby caus-
ing unknown tokens ([UNK]) (See Figure 3). On
the other hand, Cipher shares a character set, but
each character encodes no linguistic information
common across languages. Yet, sharing charac-
ters allows the model to adapt token embeddings,
resulting in performance comparable to IPA.

By comparing IPA and Cipher, we disentangle
the roles of linguistic information and character
sharing, observing that both contribute to transfer
to unseen languages. This supports the effective-
ness of Rom, which combines both properties and
yields more transferable shared tokens.



7 Limitation

The results reported here are suggestive, but there
are three major limitations which prevent us from
generalizing them too broadly. First, we only tested
one type of transformer model with one tokeniza-
tion scheme. It is possible, for example, that we
would have obtained much different results if we
had trained character- or byte-level models. Also,
we only tested one romanizer and one G2P trans-
ducer. It is entirely possible that we would have
obtained different results if different tools had been
used.

8 Ethics Statement

We believe that this research raises no significant
ethical concerns or violations of the code of ethics
mandated by the Association for Computational
Linguistics. The data used in this study, all of
which are publicly available, were collected in ac-
cordance with legal and institutional protocols, to
the best of our knowledge. Furthermore, our use
of these resources is compatible with the uses in-
tended by the creators.
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A Appendix

A.1 Language Selection

To examine the impact on multilingual adaptation
that differences in input types have, we selected
four language sets : (i) similar languages using the
same script (sim-same), (ii) similar languages using
diverse scripts (sim-div), (iii) dissimilar languages
using the same script (dissim-same), and (iv) dis-
similar languages using diverse scripts (dissim-div).
These sets were used to train multilingual models
with varying linguistic similarities and scripts. For
each set, we assigned eight languages based on a
computed similarity score as shown in Table 1.
Similar to Chang et al. (2024), we utilized
lang2vec (Littell et al., 2017)° to compute language

SUtilizing https://github.com/antonisa/lang2vec
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similarity. Specifically, we extracted syntactic, ge-
ographic, and genetic features from lang2vec and
computed cosine similarities, denoted as Ssyn, Sgeo-
and s, in Eq. 1. We also defined lexical similar-
ity Sjeq, Which is obtained by calculating the word
overlap ratio between training corpora of each lan-
guage®. Finally, we aggregated all similarity scores
(i.e., syntactic, geographic, genetic, and lexical)
to derive the overall similarity score between two
languages:

sims (2, y) = Ssyn (%, Y) + Sgeo (2, Y)

(1
+ Sgen(xv y) + Slez(x7 y)

With initial set of languages L that are supported
by Wikipedia corpus and Epitran, we use average
pairwise similarity scores to compute similarity
score for a set of languages and obtain an optimal
set L*, where s € {sim-same, sim-div} :

b ‘argi?%’i(w T 2 2 S

x€Lsyels
y#T

2

+a- (]]-se{sim-div}lscLs‘

T se (dissim-div} ISCL, \)) ;

As for an optimal set L), where d €
{dissim-same, dissim-div} :

LY =ar rnm simg(z, 1
e (Lde—l)Zz o)

z€LqyELy
y#T

+o- (lde{sim-div} ‘SCLd‘ (3)
= Lae(dissim-div} |SCL,,|>> .

To select languages for the sets with same script
(i.e., sim-same and dissim-same), we limited the
search space to languages that use the Latin script
to maximize the number of languages available for
similarity-based sampling.

For sets with diverse scripts (i.e., -div), we ad-
ditionally consider how many different scripts are
involved in each set.

A.2 Model Configuration

Table 3 summarizes the key configuration details of
our RoBERTa-based model. Number of parameters
per model is 109,082,112.

®Words are segmented by white spaces.

Parameter Value
Vocabulary Size 30,000
Hidden Size 768
Hidden Layers 12
Attention Heads 12
Intermediate Size 3072
Activation Function GELU

Dropout (Hidden/Attention) 0.1
Max Position Embeddings 514

Table 3: Model Configuration

A.3 Training Setup

To investigate the impact of different input types,
we pre-trained and fine-tuned a total of 16 models
across four distinct input types and language sets.
In addition, we trained a SentencePiece BPE tok-
enizer for each model, fixing the vocabulary size to
30K. Table 4 summarizes the key hyperparameters
used in our experiments for both the pretraining
phase and the downstream NER task.

Hyperparameter Sweep We conducted grid
search to find learning rates that converges or
achieves the best results. For pre-training, the
search space was {le-5, 2e-5, 3e-5, Se-5, le-4,
2e-4, 3e-4} and for NER, it was {3e-5, Se-5, le-4}.

Parameter Pretraining NER Task
FP16 Training True True
Max Sequence Length 512 512
Batch Size (per device) 64 64
Gradient Accumulation Steps 1 -
Warmup Steps 50 -
Learning Rate le-4 Se-5
Weight Decay 0.01 0.01
LR Scheduler Type Linear -
MLM Probability 0.15 -
Epochs 300 20
Log Interval - 1

GPU Resources 4 NVIDIA L40S 2 NVIDIA RTX A6000

Table 4: Training Configurations

A.4 Substitution Cipher (Cipher)

A substitution cipher is a method from cryptog-
raphy where units of plaintext are replaced with
ciphertext according to a predefined rule or key.
We apply substitution cipher to the Romanized text
to remove encoded phonological information.
Specifically, we use the Caesar cipher (Kahn,
1996), a simple substitution encryption technique
that shifts each letter in the text by a fixed num-
ber of positions in the Latin alphabet. For each
language, we assign an integer that determines the
shift from the current position of each letter. For



example, if English is assigned the integer 4, the
word ‘apple’ would be represented as ‘ettpi’, with
each letter replaced by the one four positions ahead
in the alphabet.

A.5 P-values of Paired t-tests

Table 2 presents the NER scores for different input
types across various language settings. To assess
the significance of the observed differences, we
performed paired t-tests. Figure 4 displays the
corresponding P-values derived from these tests.

Seen Languages Unseen Languages

ipa ortho
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Figure 4: P-value for paired t-test on NER scores across
different input types.
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A.6 Lexical Overlap

We measure lexical overlap of an unseen target
language by taking the overlap ratios, as defined in
l; as follows:

ZwE(BlsﬂBlt)unique fBlt (z)

Lexical Overlap(l;) = lsmeaL}i By,

“4)

where [; is a target language, [, is one of the

pre-trained languages L, B; is a multiset (or bag)

of subword tokens of a dataset of language /, and
fB(z) is number of element = in multiset B.

A.7 Lexical Overlap of Each Input Type
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Figure 5: Distribution of lexical overlap across token
lengths for different input types.

A.8 External Tools for Transliteration

In this study, we used Epitran and Uroman as
transliteration tools to unify script and facilitate

multilingual processing. These tools are widely
used for converting text into standardized phone-
mic or Romanized forms, which aids in cross-
lingual learning and transferability. Below, we
describe their functionalities and implementation
details.

Epitran(Mortensen et al., 2018) is a tool
for grapheme-to-phoneme (G2P) conversion,
capable of converting text into the Interna-
tional Phonetic Alphabet (IPA) representations.
It can be downloaded from the link below
https://github.com/dmort27/epitran

Uroman(Hermjakob et al., 2018) is a uni-
versal transliteration tool that converts text
from various scripts into a Romanized format.
It can be downloaded from the link below
https://github.com/isi-nlp/uroman

A.9 Datasets

In Table 5, the specific number of datasets per
corresponding language is provided. For pre-
training, we utilized sampled version of prepro-
cessed Wikipedia corpus from Huggingface’.

We limited each language with its number of
words around 10M8. For those languages with less
number of tokens than 10M, we kept all the docu-
ments and oversampled during training, to match
the model’s exposure to all languages. For down-
stream task, we utilized WikiAnn (Pan et al., 2017;
Rahimi et al., 2019) dataset for named entity recog-
nition and XNLI (Conneau et al., 2018) for natural
language inference. In order to train the model with
different input types, we converted all datasets into
each corresponding input type.

Wikipedia corpora used for pre-training are
licensed under the GNU Free Documentation
License (GFDL) and the Creative Commons
Attribution-Share-Alike 3.0 License. License type
for WikiAnn dataset is ODC-BY.

A.10 Detailed Experimental Results

Tables 6, 7, 8, 9 summarize the performance results
(F1 scores) across different language sets under
various evaluation settings. In our experiments,
"Seen" refers to languages included in both pre-
training and fine-tuning, "Unseen" to those entirely

"https://huggingface.co/datasets/wikimedia/wikipedia

8For each language, we randomly shuffled the order of the
documents, and iterated over each document, counting the
words segmented by whitespaces. We stop adding the docu-
ments when adding the number of words of the last document
exceeds 10M.



absent during training. Detailed results for each
setting are provided in the respective tables.



Lang | Dataset | # Train # Validate # Test ‘ Lang ‘ Dataset | # Train # Validate # Test
amh wikipedia | 5328 - - mva wikipedia | 34309 - -
wikiann 100 100 100 y wikiann 100 100 100
ara wikipedia - - - ori wikipedia | 11018 - -
wikiann | 20000 10000 10000 wikiann | 100 100 100
ben wikipedia | 28496 - - | wikipedia - - -
© wikiann | 10000 1000 1000 | P° wikiann | 20000 10000 10000
( wikipedia | 26031 - - wikipedia | 26510 - -
ca wikiann | 20000 10000 10000 | P°" | wikiann | 20000 10000 10000
o | wikipedia | 22724 ] ] wikipedia | 28890 - -
ce wikiann | 100 100 100 | ™" | wikiann | 20000 10000 10000
deu wikipedia | 30460 - - s wikipedia | 32636 - -
wikiann | 20000 10000 10000 wikiann | 20000 10000 10000
. wikipedia | 25727 - - i wikipedia | 23084 - -
sp wikiann | 20000 10000 10000 | ° wikiann | 100 100 100
fin wikipedia | 36190 - - m wikipedia | 5204 - -
wikiann | 20000 10000 10000 | *° wikiann | 100 100 100
h wikipedia | 25353 - - . wikipedia | 27406 - -
) wikiann | 20000 10000 10000 | 4" | wikiann | 5000 1000 1000
N wikipedia | 25492 ] ] wikipedia | 29961 - -
M Wikiann | 5000 1000 1000 | *®P | wikiann | 20000 10000 10000
hrv wikipedia | 30764 - - swe wikipedia | 29839 - -
wikiann | 20000 10000 10000 | " | wikiann | 20000 10000 10000
1 wikipedia | 5828 - - wikipedia | 25911 - -
° wikiann | 100 100 100 | °™* | wikiann | 1000 1000 1000
Kat wikipedia | 33713 - - el wikipedia | 28543 - -
a wikiann | 10000 10000 10000 | © wikiann | 1000 1000 1000
K wikipedia | 38885 - - th wikipedia | 76083 - -
O | wikiann | 20000 10000 10000 | " | wikiann | 20000 10000 10000
[ | wikipedia | 4002 ] ] o | wikipedia | 23568 - -
Y wikiann | 100 100 100 | " wikiann | 20000 1000 1000
at wikipedia | 32836 - - b wikipedia | 29833 - -
wikiann | 10000 10000 10000 | © wikiann | 1000 1000 1000
1 wikipedia | 31152 - - - - - -
A | wikiann | 10000 10000 10000 | - ; ; - -

Table 5: Statistic of transliterated dataset. All dataset exist in four parallel versions ; original Orthographic, phonemic
IPA, Romanized, and Cipher transcribed version. - refers to unavailable values. The wikipedia dataset is used for
pre-training without validation or test. Languages ‘ar’ and ‘pl” do not have available wikipedia dataset for pre-train.
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‘ ‘ Monolingual Multilingual

\ | Otho IPA Rom  Cip Ortho TPA  Rom  Cip | | Monolingual Multilingual
cat | 09117 0.8970 09005 09024 | 0.8997 0.8725 0.8993 0.8803 |  |otho IPA  Rom Cip |Orho IPA  Rom Cip
spa | 0.8929 08759 08802 09141 | 08773 08584 08788 08657 ben | 0.9584 09543 09524 0.9506 | 0.9380 0.9375 09466 0.9377
fra | 0.8779 0.8607 0.8717 08693 | 0.8628 0.8252 0.8639 0.8384 | 08779 08507 08717 08693 | 08436 08255 08430 08378
Seen |1 |03269 02927 04306 02775 05064 04052 04615 04082 hin | 0.8909 0.8695 0.8890 0.8877 | 0.8524 0.8577 0.8394 0.8314
por | 0.8931 08842 0.8891 08850 | 0.8798 0.8605 0.8796 0.8674 hrv | 0.8986 0.8876 0.8931 0.8950 | 0.8741 0.8527 0.8767 0.8605
ron | 09143 09106 09153 09141 | 0.9129 0.8855 09103 0.8956 Seen | | 6032 0.6584 06235 06721 | 05483 04981 05873 04962
sqi | 09052 0.8958 09011 0.8981 | 09120 0.8738 0.8979 0.8785 rus | 0.8614 08515 0.8604 0.8578 | 0.8395 0.8286 0.8375 0.8304
swe | 09300 09238 09320 09311 | 09215 0.8872 09247 0.9046 sp | 09099 08413 09175 09117 | 08918 03434 08969 08900
amh | - R E - 02000 03089 03383 0.3623 urd | 09447 09410 09476 09408 | 0.9396 09424 09333 09318
ben | - - - - 0.8230 0.8907 09081 0.8969 . § § - 00079 02902 03282 02695
deu | - . : - 08204 07400 0.8236 0.7676 deu |- i i i 07934 07381 0.8047 07608
fin |- - - - 0.8573  0.8050 0.8609 0.8237 spa | - - - - 08511 08144 08573 0.8265
hin | - . . . 07395 0.8043 0.8225 0.7861 o e i i i 08127 07993 0.8460 0.8201
by | - - - - 0.8682 08318 08727 0.8403 o |- - - - 05333 05356 05537 0.4627
io |- - - - 0.6400 0.5714  0.6757  0.4498 ka |- : : . 05860 0.7961 0.8162 0.7872
kat | - - - - 0.6878 07920 08227 0.7780 kor |- - - - 05244 07318 07792 07577
kor | - - - - 0.5329 07578 0.7883  0.7626 L |- B B - 03071 03684 02975 0.3064
lav | - - - - 0.8940 08463 08919 0.8695 lav | - - - - 0.8826 0.8468 0.8891 0.8605
Unseen | mya | - . . . 02286 02541 02857 02232 mya | - i i i 01596 01721 02075 02424
ori | - - - - 0.2738 02647 0.3492 03533 Unseen | por | - B B B 0.8535 0.8206 0.8547 0.8312
s | - . . . 0.8083 0.7842 0.8268 0.8010 - i i i 08389 08754 0.8963 0.8695
sna | - - - - - - - - sna | - R R R K K - -
s |- . . . 0.6256 04641 05500 04397 com | i i i 04874 04870 05128 05236
sp | - . . . 0.8574 0.8442 0.8879 0.8691 i i i i 08557 0.8315 08604 08313
swa | - . . . 0.8250 0.7381 0.8195 0.7494 e | i i i 09030 0.8583 09043 08850
tel |- - - - 03384 05336 05797 0.5252 oun | i i i 07630 07425 071955 07330
tha |- - - - 04762 0.6637 0.6622 0.6477 e |- i i i 03297 05753 06480 05119
urd | - - - - 09032 09101 09273 09172 |- i i i 03531 05680 0.6470 0.6302
uzb | - - - - 0.8266 07962 0.8402 0.7862 b |- i i i 0838d 07819 0.8360 07863

Table 6: Performance results (F1 scores) on the sim-
same language set, which consists of typologically sim-
ilar languages that share the same script. The table
reports results for three evaluation settings. Seen: lan-
guages used during both pretraining and fine-tuning,
Unseen: languages not encountered during training
and Zero-Shot: languages evaluated without any task-
specific fine-tuning. Results are provided for four differ-
ent input types: Orthographic (Ortho), IPA, Romanized
(Rom), and Ciphered (Cip)

11

Table 7: Performance results (F1 scores) on the sim-
div language set, which comprises similar languages
that use diverse scripts. The table reports results for
three evaluation settings. Seen: languages used during
both pretraining and fine-tuning, Unseen: languages not
encountered during training and Zero-Shot: languages
evaluated without any task-specific fine-tuning. Results
are provided for four different input types: Orthographic
(Ortho), IPA, Romanized (Rom), and Ciphered (Cip)



‘ ‘ Monolingual

Multilingual

‘ ‘ Ortho  TPA Rom Cip Ortho  TPA Rom Cip
deu | 0.8716 0.8518 0.8599 0.8622 | 0.8184 0.7924 0.8248 0.8095
fin | 0.8855 0.8813 0.8850 0.8861 | 0.8618 0.8264 0.8638 0.8436
ilo | 0.6053 0.6216 0.6881 0.6996 | 0.6757 0.7123 0.6368 0.6549

Seen lav. | 09284 0.9205 0.9232 0.9230 | 0.8995 0.8736 0.9006 0.8998
sna | - - - - - - - -
som | 0.6111 0.5648 0.6000 0.5249 | 0.5551 0.5887 0.6577 0.5556
swa | 0.8481 0.8385 0.8532 0.8481 | 0.8291 0.7981 0.8421 0.8125
uzb | 0.8648 0.8655 0.8665 0.8836 | 0.8621 0.8210 0.8608 0.8314
amh | - - - - 0.2833  0.5560 0.2845 0.5018
ben | - - - - 0.8269 0.8791 0.9005 0.9430
cat | - - - - 0.8733  0.8255 0.8750 0.8542
spa | - - - - 0.8518 0.8103 0.8583 0.8377
fra |- - - - 0.8312  0.7607 0.8294 0.8447
hin | - - - - 0.7128 0.8210 0.8055 0.7981
hrv | - - - - 0.8531 0.8404 0.8532 0.8495
kat | - - - - 0.6289 0.8577 0.8103 0.8606
kor | - - - - 0.5282 0.8297 0.7652 0.8381
1ij - - - - 03319 0.2893 0.3333  0.2979

Unseen | mya | - - - - 0.2128 0.5263 0.2785 0.5750
ori |- - - - 0.0708 0.4082 0.3851 0.2339
por | - - - - 0.8566 0.8015 0.8558 0.8449
ron | - - - - 0.8906 0.8548 0.8880 0.8768
rus | - - - - 0.7992  0.7922 0.8132 0.8051
sqi | - - - - 0.8658 0.8120 0.8627 0.8259
stp | - - - - 0.8540 0.8201 0.8790 0.8739
swe | - - - - 0.9075 0.8484 0.9076 0.8919
tel | - - - - 0.3278 0.7441 0.5494 0.7632
tha | - - - - 0.5162  0.6841 0.6320 0.6110
urd | - - - - 0.8906  0.9208 0.9205 0.9220

Table 8: Performance results (F1 scores) on the dissim-
same language set, which comprises typologically dis-
similar languages that share the same script. The table
reports results for three evaluation settings. Seen: lan-
guages used during both pretraining and fine-tuning,
Unseen: languages not encountered during training
and Zero-Shot: languages evaluated without any task-
specific fine-tuning. Results are provided for four differ-
ent input types: Orthographic (Ortho), IPA, Romanized
(Rom), and Ciphered (Cip)
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‘ ‘ Monolingual Multilingual
‘ Ortho  IPA Rom Cip Ortho  IPA Rom Cip
amh | 0.4796 0.4615 0.5388 0.5203 | 0.4941 0.5403 0.5760 0.5364
ben | 0.9584 09100 0.9524 0.9506 | 0.9579 0.9488 0.9552 0.9479
fra 0.8779 0.8607 0.8717 0.8693 | 0.8528 0.8265 0.8487 0.8432
Seen kat | 0.8866 0.8873 0.8850 0.8837 | 0.8647 0.8607 0.8619 0.8598
kor | 0.8611 0.8576 0.8623 0.8628 | 0.7699 0.8347 0.8382 0.8333
mya | 0.5401 0.5852 0.5617 0.5188 | 0.5259 0.5738 0.5164 0.5477
tel 0.7880 0.7983 0.7822 0.7922 | 0.7532 0.7529 0.7528 0.7734
tha | 0.7052 0.6880 0.6656 0.6726 | 0.7031 0.6813 0.6810 0.6727
cat - - - 0.8797 0.8503 0.8803 0.8513
deu - - - 0.8088 0.7555 0.8134 0.7855
spa - - - 0.8615 0.8315 0.8687 0.8352
fin |- - - - 0.8504 0.8188 0.8532 0.8311
hin | - - - - 0.6585 0.8223 0.8472 0.7939
hrv | - - - - 0.8642 0.8381 0.8652 0.8428
ilo | - - - - 05272 0.5726 0.5122 0.4516
1ij - - - - 0.3465 0.3243 0.3793 0.2833
lav | - - - - 0.8948 0.8544 0.891  0.8762
ori | - - - - 0.3840 0.3931 0.4373 0.2913
Unseen | por | - - - - 0.8609 0.8245 0.8630 0.8437
ron | - - - - 0.8940 0.8746 0.8979 0.8788
rus | - - - - 0.6753  0.7941 0.8207 0.8049
sna | - - - - - - - -
som | - - - - 0.6140 0.4893 0.5462 0.5299
sqi - - - - 0.8720 0.8395 0.8533 0.8389
stp | - - - - 0.6697 0.8405 0.8826 0.8735
swe | - - - - 09117 0.8641 09119 0.8920
swa | - - - - 0.7968 0.7527 0.7855 0.7536
urd | - - - - 0.6974 0.9072 0.9243 0.9226
uzb | - - - - 0.8317 0.8004 0.8300 0.8121

Table 9: Performance results (F1 scores) on the dissim-
div language set, which comprises typologically dis-
similar languages that utilize diverse scripts. The table
reports results for two evaluation settings. Seen: lan-
guages used during both pretraining and fine-tuning
and Unseen: languages not encountered during train-
ing. Zero-shot evaluation was omitted due to the mini-
mal shared representations among dissim-div languages,
which limits the effectiveness of zero-shot transfer. Re-
sults are provided for four different input types: Ortho-
graphic (Ortho), IPA, Romanized (Rom), and Ciphered

(Cip)
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