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Abstract

Transliteration has emerged as a powerful001
means to bridge the gap between various lan-002
guages in multilingual NLP, showing promising003
results on unseen languages without respect to004
script. While it is widely understood that this005
success is due to the degree to which transliter-006
ation results in a shared representational space007
among languages, we investigate the degree008
to which shared script, an overlap in token vo-009
cabularies, and shared phonology contribute to010
performance of models relying on translitera-011
tion. To investigate this question, we train and012
evaluate models using three kinds of translit-013
eration (romanization, phonemic transcription,014
and substitution ciphers) as well as orthography.015
We evaluate on two downstream tasks, named016
entity recognition (NER) and natural language017
inference (NLI), yielding results largely consis-018
tent with our hypothesis—that romanization is019
most effective because it results in sharing of020
all three kinds.021

1 Introduction022

Multilingual language modeling has drawn signif-023

icant attention from researchers seeking to cover024

diverse languages and promote fairness in AI. Ef-025

forts for effective multilingual language modeling026

include improving the performance of low-resource027

languages (Bharadwaj et al., 2016), dealing with028

tokenization fairness across languages (Ahia et al.,029

2023; Petrov et al., 2023; Limisiewicz et al., 2024),030

investigating the curse of multilinguality (Conneau031

et al., 2020; Wang et al., 2020; Chang et al., 2024;032

Blevins et al., 2024), and breaking the script bar-033

riers (Chaudhary et al., 2018; Moosa et al., 2023;034

J et al., 2024; Sohn et al., 2024; Ahia et al., 2024;035

Liu et al., 2024). One of the recent approaches036

that touches on all of these problems is translitera-037

tion—converting original forms of written text into038

a unified input representations with methods such039

as romanization or grapheme-to-phoneme (G2P)040

transduction.041
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한국어는 한글을 사용합니다.

hankukʌnɯn hankɯlɯl sajoŋhamnita.

Ortho

IPA

hangugeoneun hangeuleul sayonghabnida.Rom

JCPIWIGQPGWP JCPIGWNGWN UCaQPIJCDPKFC.Cipher

(ENG) Korean uses Hangul.

(ENG) kɔɹiən jusəz hɑŋɡəl.

(ENG) Korean uses Hangul.

(ENG) uYbOKX ecOc rKXQeV.
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Figure 1: Top left: Conceptual visualization of the
transliteration analysis schema, positioning input types
(Ortho, IPA, Rom, Cipher) based on shared character
set, token set, and phonology. Top right: KDE plot
showing empirical distribution of overlap ratios for each
quantifiable component. Bottom: Transliteration exam-
ples generated with each method.

Transliteration in multilingual NLP is typically 042

performed using Latin scripts or International Pho- 043

netic Alphabet (IPA), giving various languages a 044

shared input representation. Both representations 045

encode linguistic information—specifically pho- 046

netic and phonological—across languages. Here, 047

we pose a question: Is it the shared script itself or 048

the linguistic information encoded in the scripts 049

that helps the models adapt to other languages? 050

To investigate this question, we define three key 051

factors in transliteration—(i) shared character set, 052

(ii) shared token set, and (iii) shared phonology— 053

that influence how a model processes and gener- 054

alizes across languages. We then run experiments 055

with four different input types, each varying in the 056

degree to which these factors are present: Orthog- 057

raphy, IPA, Romanized, and Substitution Ciphered 058

text (see Figure 1). IPA and Romanized text encode 059

linguistic information (phonetic or phonological) 060
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to different extents, making them more likely to061

leverage shared phonology (e.g., similarity in cog-062

nate and borrowed vocabulary items) and contain063

shared tokens. On the other hand, ciphered text064

shares the same character set as romanized text but065

lacks any linguistic information, as each language066

is randomly mapped to different letters.067

We hypothesize that romanized text yields the068

best performance in handling diverse languages as069

it improves representations across all three dimen-070

sions. Based on this assumption, IPA is expected to071

follow, as it enhances two out of three dimensions072

(shared phonology and tokens) while ciphered text073

only shares the character set and lacks other shared074

representations. Throughout the paper, we evalu-075

ate our hypothesis by comparing downstream task076

performance on seen and unseen languages and077

analyze each method in terms of token overlaps.078

2 Preliminary: Transliteration for079

Multilingual Language Modeling080

Transliteration has been recently explored as a081

method to enhance cross-lingual transfer in mul-082

tilingual NLP by unifying script representations.083

Two major approaches in this domain are phone-084

mic transcription and romanization.085

Phonemic transcriptions use IPA to represent086

various languages. It has been explored in cross-087

lingual scenarios, particularly to low-resource lan-088

guages (Bharadwaj et al., 2016; Chaudhary et al.,089

2018; Nguyen et al., 2023; Sohn et al., 2024). Re-090

cently, Nguyen et al. (2024) show that IPA prompt-091

ing aids large-scale LLMs in handling non-Latin092

scripts. Similarly, romanization has been widely093

used to overcome the difference in scripts and mit-094

igate potential out-of-vocabulary problems by re-095

stricting the input space (Fujinuma et al., 2022;096

Moosa et al., 2023; Liu et al., 2024). This approach097

improves POS Tagging and Dependency Parsing098

by enhancing token consistency (Fujinuma et al.,099

2022) and significantly benefits low-resource lan-100

guages without negatively impacting high-resource101

ones (Moosa et al., 2023).102

3 Input Types103

While transliteration into shared scripts has demon-104

strated promising results in cross-lingual transfer,105

particularly for low-resource languages and non-106

Latin scripts (Soni and Bhattacharyya, 2024; J et al.,107

2024), its underlying mechanisms remain unex-108

plored. As illustrated in Figure 1, we define three109

key factors that explain different aspects of translit- 110

eration. 111

• Shared Character Set. Transliteration usu- 112

ally enforces a shared character set across lan- 113

guages. For example, romanization can only 114

produce Latin characters, which significantly 115

reduces the number of unique characters and 116

patterns that a tokenizer must learn. 117

• Shared Token Set. Here, we specifically dis- 118

tinguish tokens from characters, where by to- 119

kens we refer to subword tokens that contain 120

more than a character. 121

• Shared Phonology. Widely used translitera- 122

tion methods (e.g., G2P and romanization) en- 123

code phonological information in their repre- 124

sentations. Representing languages based on 125

their phonology can capture representations 126

of cognate and borrowed vocabulary shared 127

across languages. 128

To explore these different dimensions of translit- 129

eration, we employ four distinct input types: Or- 130

thography (Ortho), IPA, Romanized text (Rom), 131

and Substitution Ciphered text (Cipher). Here, we 132

explain in detail the process of converting written 133

text data (Ortho) into each of other input types. 134

3.1 G2P Conversion (IPA) 135

Based on Latin scripts, IPA symbols are designed 136

to represent pronunciations of human language in 137

phonemes. While transliteration into IPA enables 138

some degree of character set sharing, differences in 139

phonemic inventories and phonotactic structures 140

cause each language to use its own distinct set 141

of characters and subword tokens. To convert or- 142

thographic data into IPA symbols, we use Epitran 143

(Mortensen et al., 2018), a widely used rule-based 144

G2P tool that supports more than a hundred lan- 145

guages. 146

3.2 Romanization (Rom) 147

Romanization converts various scripts into Latin 148

alphabets, enforcing a stricter limit that enables 149

multiple languages to share the character set. Addi- 150

tionally, unlike G2P, which converts identical Latin- 151

script text into language-specific phonemes, roman- 152

ization preserves the original form of text written 153

in Latin scripts. Since Latin scripts encode sound— 154

though not as precisely as IPA—romanization pro- 155

duces phonologically informed representations for 156

each language. We employ Uroman (Hermjakob 157

et al., 2018) which supports more than 370 lan- 158

guages for romanization. 159
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3.3 Substitution Cipher (Cipher)160

A substitution cipher is a method from cryptog-161

raphy where units of plaintext are replaced with162

ciphertext according to a predefined rule or key.163

We apply substitution cipher to the romanized text164

of each language—in different rules—to remove165

encoded phonological information. While this al-166

lows multilingual text to share the same character167

space as Rom, it no longer contains phonological168

meanings and prevents the sharing of meaningful169

subword tokens across languages. We employ Cae-170

sar cipher, a simple substitution encryption tech-171

nique. Details are provided in Appendix A.4.172

4 Experiments173

4.1 Language Selection174

Script

same diverse

similar swe, por, lij, cat, ron, spa, sqi, fra fra, ben, hin, hrv, ori, rus, srp, urd

dissimilar ilo, sna, lav, uzb, deu, fin, som, swa amh, ben, tel, fra, tha, kat, kor, mya

Table 1: Languages selected for each language set.

To examine how different input types impact175

multilingual adaptation, we selected languages to176

form four language sets: (i) typologically simi-177

lar languages using the same script (sim-same),178

(ii) similar languages using diverse scripts (sim-179

div), (iii) dissimilar languages using the same script180

(dissim-same), and (iv) dissimilar languages us-181

ing diverse scripts (dissim-div). Similar to Chang182

et al. (2024), we utilized lang2vec (Littell et al.,183

2017)1 to compute language similarity. We ex-184

tracted syntactic, geographic, and genetic features185

from lang2vec to obtain cosine similarities, and186

also defined lexical similarity based on word over-187

lap ratio between training corpora of each lan-188

guage2. By aggregating these similarity scores,189

as detailed in Appendix A.1, we assigned eight190

languages to each set (see Table 1) and trained mul-191

tilingual models with varying linguistic similarities192

and scripts.193

4.2 Datasets194

For pre-training, we utilize sampled version of195

a preprocessed Wikipedia corpus from Hugging196

Face.3 For downstream task, we utilized WikiAnn197

(Pan et al., 2017; Rahimi et al., 2019) dataset for198

NER and XNLI (Conneau et al., 2018) for sen-199

tence classification (NLI) task. More details on200

1Utilizing https://github.com/antonisa/lang2vec
2Words are segmented by white spaces.
3https://huggingface.co/datasets/wikimedia/wikipedia

preprocessing and dataset statistics can be found 201

in Appendix A.9. In order to train the model with 202

different input types, we converted all datasets into 203

each input type. 204

4.3 Model Training 205

To investigate the impact of different input types, 206

we pre-train 16 models from scratch using four in- 207

put types and four language sets. We avoid using 208

publicly available pre-trained models to ensure a 209

controlled experimental setup, as most such mod- 210

els are optimized for orthography, preventing fair 211

comparison across transliteration methods. 212

We first trained a SentencePiece (character-level) 213

BPE subword tokenizer for each model with fixed 214

vocabulary size of 30K for all tokenizers. We em- 215

ployed a Transformer architecture, following the 216

training regime of RoBERTa (Liu et al., 2019) with 217

masked language modeling on a multilingual cor- 218

pus. After pre-training we fine-tuned each model 219

on target language dataset to obtain downstream 220

task performance. For details on the model config- 221

urations and training, refer to Appendix A.2 and 222

Appendix A.3. 223

5 Results: Downstream Task 224

Performance across Input Types 225

Table 2 presents average scores across target lan- 226

guages for downstream tasks. Average F1 scores of 227

each model for seen and unseen languages are pro- 228

vided for NER,4 and average accuracies for XNLI. 229

p-values obtained from paired t-tests on F1 scores 230

across different input types can be found in Ap- 231

pendix A.5. 232

NER Performance in Seen/Unseen Languages. 233

Transliteration does not provide a significant advan- 234

tage over orthographic text when the language was 235

seen during pre-training. While Rom outperforms 236

other input types including Ortho, its superiority 237

over Ortho is not statistically significant (p > 0.05). 238

On the other hand, for unseen languages, the perfor- 239

mance of Ortho is significantly lower than that of 240

all other input types (p < 0.05). Furthermore, we 241

find that our hypothesis holds, with Rom achiev- 242

ing the highest average F1 scores in 6 out of 8 243

cases. Interestingly, IPA and Cipher do not show 244

statistically significant differences, despite Cipher 245

containing no shared linguistic information. We 246

further investigate this in Section 6. 247

4Unseen languages refer to languages not included in pre-
training of each model.
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Trained Lang. Set
Named Entity Recognition

XNLI
Seen Unseen

Ortho IPA Rom Cipher Ortho IPA Rom Cipher Ortho IPA Rom Cipher

sim-same 0.8466 0.8085 0.8395 0.8173 0.6611 0.6801 0.7267 0.6824 0.5793 0.6045 0.6276 0.6137

sim-div 0.8409 0.8239 0.8451 0.8270 0.6321 0.6787 0.7151 0.6772 0.6007 0.6135 0.6224 0.6096

dissim-same 0.7860 0.7732 0.7981 0.7725 0.6626 0.7468 0.7280 0.7547 0.5971 0.6087 0.6137 0.5972

dissim-div 0.7402 0.7524 0.7538 0.7518 0.7450 0.7524 0.7832 0.7496 0.5860 0.6214 0.6327 0.6254

Table 2: Downstream task performances averaged across target languages—F1 scores for NER and accuracy scores
for XNLI. Bold: best performing input. Underlined: second best.

Figure 2: Pearson r between overlap ratios of each token
length and NER performance. Correlations with p >
0.05 are masked out.

XNLI Performance. For XNLI, we did not dis-248

tinguish between seen and unseen languages due249

to the limited number of supported languages. In-250

stead, we randomly sampled 10 languages from251

the supported languages and fine-tuned on each to252

obtain accuracy scores. The trend was consistent253

across all models: Rom outperformed the others,254

while IPA and Cipher demonstrated comparable255

performance.256

6 Analysis: Shared Tokens257

Transliteration is widely assumed to enhance mul-258

tilingual language modeling by increasing token259

overlap. However, it is not clear whether it is driven260

by the same script itself or the consistent linguis-261

tic information encoded in the script. To investi-262

gate this question, we analyze length-wise lexical263

overlap each transliteration method produces, as264

defined in Appendix A.6.265

Token Overlap and Transferability. Figure 2266

presents the Pearson correlation coefficient be-267

tween overlap ratios and NER performance for268

each input type. We observe that sharing tokens269

with trained languages is crucial for successful270

adaptation to unseen languages. Particularly, to-271

ken lengths of 2 to 4 exhibit a strong correlation272

with F1 scores, highlighting the importance of shar-273

Ortho 그는�현재�4개월�…

Rom geuneun�hyeonjae�4gaeweol�…

Cipher IGWPGWP�JaGQPLCG�4ICGYGQN�…

IPA kɯnɯn�hjʌnt͡ɕɛ�4kɛwʌl�…
k <unk> n <unk> n ▁ h j <unk> n t ͡ɕ ɛ ▁4 k ɛ w <unk> l

kɯnɯn ▁ hjʌnt ͡ɕɛ ▁4kɛwʌl

ge une un ▁ h ye on ja e ▁4 gae we ol

geuneun ▁ hyeonjae ▁4gaeweol

IG WP G ▁ Ja G QP L ▁4 I QN

IGWPGWP ▁ JaGQPLCG ▁4ICGYGQN

WP CG CG Y G

multi

mono

multi

mono

multi

mono

Target�Language��Korean�(Unseen)

Figure 3: Tokenization results for an incomplete Korean
sentence (English: “He is currently 4 months...”). Red
indicates multilingual tokenizers (trained on sim-div),
whereas light green shows monolingual Korean tokeniz-
ers, serving as an ideal reference.

ing short character sequences as subword patterns 274

across languages. We additionally provide a box 275

plot in Figure 5, which shows overlap ratios of each 276

input type by token length. 277

Comparison between IPA and Cipher. While 278

both IPA and Cipher perform better than Ortho on 279

unseen languages, they are suboptimal compared 280

to Rom. IPA represents phonological information, 281

allowing for shared character sequences across lan- 282

guages, such as those capturing common syllable 283

structures. However, phonemic transcription re- 284

flects language-specific phonological inventories, 285

hindering a shared character set and thereby caus- 286

ing unknown tokens ([UNK]) (See Figure 3). On 287

the other hand, Cipher shares a character set, but 288

each character encodes no linguistic information 289

common across languages. Yet, sharing charac- 290

ters allows the model to adapt token embeddings, 291

resulting in performance comparable to IPA. 292

By comparing IPA and Cipher, we disentangle 293

the roles of linguistic information and character 294

sharing, observing that both contribute to transfer 295

to unseen languages. This supports the effective- 296

ness of Rom, which combines both properties and 297

yields more transferable shared tokens. 298
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7 Limitation299

The results reported here are suggestive, but there300

are three major limitations which prevent us from301

generalizing them too broadly. First, we only tested302

one type of transformer model with one tokeniza-303

tion scheme. It is possible, for example, that we304

would have obtained much different results if we305

had trained character- or byte-level models. Also,306

we only tested one romanizer and one G2P trans-307

ducer. It is entirely possible that we would have308

obtained different results if different tools had been309

used.310

8 Ethics Statement311

We believe that this research raises no significant312

ethical concerns or violations of the code of ethics313

mandated by the Association for Computational314

Linguistics. The data used in this study, all of315

which are publicly available, were collected in ac-316

cordance with legal and institutional protocols, to317

the best of our knowledge. Furthermore, our use318

of these resources is compatible with the uses in-319

tended by the creators.320
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A Appendix 502

A.1 Language Selection 503

To examine the impact on multilingual adaptation 504

that differences in input types have, we selected 505

four language sets : (i) similar languages using the 506

same script (sim-same), (ii) similar languages using 507

diverse scripts (sim-div), (iii) dissimilar languages 508

using the same script (dissim-same), and (iv) dis- 509

similar languages using diverse scripts (dissim-div). 510

These sets were used to train multilingual models 511

with varying linguistic similarities and scripts. For 512

each set, we assigned eight languages based on a 513

computed similarity score as shown in Table 1. 514

Similar to Chang et al. (2024), we utilized 515

lang2vec (Littell et al., 2017)5 to compute language 516

5Utilizing https://github.com/antonisa/lang2vec
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similarity. Specifically, we extracted syntactic, ge-517

ographic, and genetic features from lang2vec and518

computed cosine similarities, denoted as ssyn, sgeo,519

and sgen in Eq. 1. We also defined lexical similar-520

ity slex, which is obtained by calculating the word521

overlap ratio between training corpora of each lan-522

guage6. Finally, we aggregated all similarity scores523

(i.e., syntactic, geographic, genetic, and lexical)524

to derive the overall similarity score between two525

languages:526

sims(x, y) = ssyn(x, y) + sgeo(x, y)

+ sgen(x, y) + slex(x, y).
(1)527

With initial set of languages L that are supported528

by Wikipedia corpus and Epitran, we use average529

pairwise similarity scores to compute similarity530

score for a set of languages and obtain an optimal531

set L∗
s, where s ∈ {sim-same, sim-div} :532

L∗
s = arg max

Ls⊂L
|Ls|=8

(
1

|Ls|(|Ls| − 1)

∑
x∈Ls

∑
y∈Ls
y ̸=x

sims(x, y)

+ α ·
(
1s∈{sim-div}|SCLs |

− 1s∈{dissim-div}|SCLs |
))

,

(2)533

.534

As for an optimal set L∗
d, where d ∈535

{dissim-same, dissim-div} :536

L∗
d = arg min

Ld⊂L
|Ld|=8

(
1

|Ld|(|Ld| − 1)

∑
x∈Ld

∑
y∈Ld
y ̸=x

sims(x, y)

+ α ·
(
1d∈{sim-div} |SCLd

|

− 1d∈{dissim-div} |SCLd
|
))

.

(3)537

To select languages for the sets with same script538

(i.e., sim-same and dissim-same), we limited the539

search space to languages that use the Latin script540

to maximize the number of languages available for541

similarity-based sampling.542

For sets with diverse scripts (i.e., -div), we ad-543

ditionally consider how many different scripts are544

involved in each set.545

A.2 Model Configuration546

Table 3 summarizes the key configuration details of547

our RoBERTa-based model. Number of parameters548

per model is 109,082,112.549

6Words are segmented by white spaces.

Parameter Value
Vocabulary Size 30,000
Hidden Size 768
Hidden Layers 12
Attention Heads 12
Intermediate Size 3072
Activation Function GELU
Dropout (Hidden/Attention) 0.1
Max Position Embeddings 514

Table 3: Model Configuration

A.3 Training Setup 550

To investigate the impact of different input types, 551

we pre-trained and fine-tuned a total of 16 models 552

across four distinct input types and language sets. 553

In addition, we trained a SentencePiece BPE tok- 554

enizer for each model, fixing the vocabulary size to 555

30K. Table 4 summarizes the key hyperparameters 556

used in our experiments for both the pretraining 557

phase and the downstream NER task. 558

Hyperparameter Sweep We conducted grid 559

search to find learning rates that converges or 560

achieves the best results. For pre-training, the 561

search space was {1e-5, 2e-5, 3e-5, 5e-5, 1e-4, 562

2e-4, 3e-4} and for NER, it was {3e-5, 5e-5, 1e-4}. 563

Parameter Pretraining NER Task
FP16 Training True True
Max Sequence Length 512 512
Batch Size (per device) 64 64
Gradient Accumulation Steps 1 -
Warmup Steps 50 -
Learning Rate 1e-4 5e-5
Weight Decay 0.01 0.01
LR Scheduler Type Linear -
MLM Probability 0.15 -
Epochs 300 20
Log Interval - 1
GPU Resources 4 NVIDIA L40S 2 NVIDIA RTX A6000

Table 4: Training Configurations

A.4 Substitution Cipher (Cipher) 564

A substitution cipher is a method from cryptog- 565

raphy where units of plaintext are replaced with 566

ciphertext according to a predefined rule or key. 567

We apply substitution cipher to the Romanized text 568

to remove encoded phonological information. 569

Specifically, we use the Caesar cipher (Kahn, 570

1996), a simple substitution encryption technique 571

that shifts each letter in the text by a fixed num- 572

ber of positions in the Latin alphabet. For each 573

language, we assign an integer that determines the 574

shift from the current position of each letter. For 575

7



example, if English is assigned the integer 4, the576

word ‘apple’ would be represented as ‘ettpi’, with577

each letter replaced by the one four positions ahead578

in the alphabet.579

A.5 P -values of Paired t-tests580

Table 2 presents the NER scores for different input581

types across various language settings. To assess582

the significance of the observed differences, we583

performed paired t-tests. Figure 4 displays the584

corresponding P -values derived from these tests.585
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Figure 4: P -value for paired t-test on NER scores across
different input types.

A.6 Lexical Overlap586

We measure lexical overlap of an unseen target587

language by taking the overlap ratios, as defined in588

lt as follows:589

Lexical Overlap(lt) = max
ls∈Ls

∑
x∈(Bls

∩Blt
)unique

fBlt
(x)

|Blt
|

(4)590

where lt is a target language, ls is one of the591

pre-trained languages Ls, Bl is a multiset (or bag)592

of subword tokens of a dataset of language l, and593

fB(x) is number of element x in multiset B.594

A.7 Lexical Overlap of Each Input Type595
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Figure 5: Distribution of lexical overlap across token
lengths for different input types.

A.8 External Tools for Transliteration596

In this study, we used Epitran and Uroman as597

transliteration tools to unify script and facilitate598

multilingual processing. These tools are widely 599

used for converting text into standardized phone- 600

mic or Romanized forms, which aids in cross- 601

lingual learning and transferability. Below, we 602

describe their functionalities and implementation 603

details. 604

Epitran(Mortensen et al., 2018) is a tool 605

for grapheme-to-phoneme (G2P) conversion, 606

capable of converting text into the Interna- 607

tional Phonetic Alphabet (IPA) representations. 608

It can be downloaded from the link below 609

https://github.com/dmort27/epitran 610

Uroman(Hermjakob et al., 2018) is a uni- 611

versal transliteration tool that converts text 612

from various scripts into a Romanized format. 613

It can be downloaded from the link below 614

https://github.com/isi-nlp/uroman 615

A.9 Datasets 616

In Table 5, the specific number of datasets per 617

corresponding language is provided. For pre- 618

training, we utilized sampled version of prepro- 619

cessed Wikipedia corpus from Huggingface7. 620

We limited each language with its number of 621

words around 10M8. For those languages with less 622

number of tokens than 10M, we kept all the docu- 623

ments and oversampled during training, to match 624

the model’s exposure to all languages. For down- 625

stream task, we utilized WikiAnn (Pan et al., 2017; 626

Rahimi et al., 2019) dataset for named entity recog- 627

nition and XNLI (Conneau et al., 2018) for natural 628

language inference. In order to train the model with 629

different input types, we converted all datasets into 630

each corresponding input type. 631

Wikipedia corpora used for pre-training are 632

licensed under the GNU Free Documentation 633

License (GFDL) and the Creative Commons 634

Attribution-Share-Alike 3.0 License. License type 635

for WikiAnn dataset is ODC-BY. 636

A.10 Detailed Experimental Results 637

Tables 6, 7, 8, 9 summarize the performance results 638

(F1 scores) across different language sets under 639

various evaluation settings. In our experiments, 640

"Seen" refers to languages included in both pre- 641

training and fine-tuning, "Unseen" to those entirely 642

7https://huggingface.co/datasets/wikimedia/wikipedia
8For each language, we randomly shuffled the order of the

documents, and iterated over each document, counting the
words segmented by whitespaces. We stop adding the docu-
ments when adding the number of words of the last document
exceeds 10M.
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absent during training. Detailed results for each643

setting are provided in the respective tables.644
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Lang Dataset # Train # Validate # Test Lang Dataset # Train # Validate # Test

amh
wikipedia 5328 - -

mya
wikipedia 34309 - -

wikiann 100 100 100 wikiann 100 100 100

ara
wikipedia - - -

ori
wikipedia 11018 - -

wikiann 20000 10000 10000 wikiann 100 100 100

ben
wikipedia 28496 - -

pol
wikipedia - - -

wikiann 10000 1000 1000 wikiann 20000 10000 10000

cat
wikipedia 26031 - -

por
wikipedia 26510 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

ceb
wikipedia 22724 - -

ron
wikipedia 28890 - -

wikiann 100 100 100 wikiann 20000 10000 10000

deu
wikipedia 30460 - -

rus
wikipedia 32636 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

spa
wikipedia 25727 - -

sin
wikipedia 23084 - -

wikiann 20000 10000 10000 wikiann 100 100 100

fin
wikipedia 36190 - -

som
wikipedia 5204 - -

wikiann 20000 10000 10000 wikiann 100 100 100

fra
wikipedia 25353 - -

sqi
wikipedia 27406 - -

wikiann 20000 10000 10000 wikiann 5000 1000 1000

hin
wikipedia 25492 - -

srp
wikipedia 29961 - -

wikiann 5000 1000 1000 wikiann 20000 10000 10000

hrv
wikipedia 30764 - -

swe
wikipedia 29839 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

ilo
wikipedia 5828 - -

swa
wikipedia 25911 - -

wikiann 100 100 100 wikiann 1000 1000 1000

kat
wikipedia 33713 - -

tel
wikipedia 28543 - -

wikiann 10000 10000 10000 wikiann 1000 1000 1000

kor
wikipedia 38885 - -

tha
wikipedia 76083 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

lij
wikipedia 4002 - -

urd
wikipedia 23568 - -

wikiann 100 100 100 wikiann 20000 1000 1000

lat
wikipedia 32836 - -

uzb
wikipedia 29833 - -

wikiann 10000 10000 10000 wikiann 1000 1000 1000

lav
wikipedia 31152 - -

-
- - - -

wikiann 10000 10000 10000 - - - -

Table 5: Statistic of transliterated dataset. All dataset exist in four parallel versions ; original Orthographic, phonemic
IPA, Romanized, and Cipher transcribed version. - refers to unavailable values. The wikipedia dataset is used for
pre-training without validation or test. Languages ‘ar’ and ‘pl’ do not have available wikipedia dataset for pre-train.
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Monolingual Multilingual

Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

cat 0.9117 0.8970 0.9005 0.9024 0.8997 0.8725 0.8993 0.8803
spa 0.8929 0.8759 0.8802 0.9141 0.8773 0.8584 0.8788 0.8657
fra 0.8779 0.8607 0.8717 0.8693 0.8628 0.8252 0.8639 0.8384
lij 0.3269 0.2927 0.4306 0.2775 0.5064 0.4052 0.4615 0.4082
por 0.8931 0.8842 0.8891 0.8850 0.8798 0.8605 0.8796 0.8674
ron 0.9143 0.9106 0.9153 0.9141 0.9129 0.8855 0.9103 0.8956
sqi 0.9052 0.8958 0.9011 0.8981 0.9120 0.8738 0.8979 0.8785
swe 0.9300 0.9238 0.9320 0.9311 0.9215 0.8872 0.9247 0.9046

Unseen

amh - - - - 0.2000 0.3089 0.3383 0.3623
ben - - - - 0.8230 0.8907 0.9081 0.8969
deu - - - - 0.8204 0.7400 0.8236 0.7676
fin - - - - 0.8573 0.8050 0.8609 0.8237
hin - - - - 0.7395 0.8043 0.8225 0.7861
hrv - - - - 0.8682 0.8318 0.8727 0.8403
ilo - - - - 0.6400 0.5714 0.6757 0.4498
kat - - - - 0.6878 0.7920 0.8227 0.7780
kor - - - - 0.5329 0.7578 0.7883 0.7626
lav - - - - 0.8940 0.8463 0.8919 0.8695
mya - - - - 0.2286 0.2541 0.2857 0.2232
ori - - - - 0.2738 0.2647 0.3492 0.3533
rus - - - - 0.8083 0.7842 0.8268 0.8010
sna - - - - - - - -
so - - - - 0.6256 0.4641 0.5500 0.4397
srp - - - - 0.8574 0.8442 0.8879 0.8691
swa - - - - 0.8250 0.7381 0.8195 0.7494
tel - - - - 0.3384 0.5336 0.5797 0.5252
tha - - - - 0.4762 0.6637 0.6622 0.6477
urd - - - - 0.9032 0.9101 0.9273 0.9172
uzb - - - - 0.8266 0.7962 0.8402 0.7862

Table 6: Performance results (F1 scores) on the sim-
same language set, which consists of typologically sim-
ilar languages that share the same script. The table
reports results for three evaluation settings. Seen: lan-
guages used during both pretraining and fine-tuning,
Unseen: languages not encountered during training
and Zero-Shot: languages evaluated without any task-
specific fine-tuning. Results are provided for four differ-
ent input types: Orthographic (Ortho), IPA, Romanized
(Rom), and Ciphered (Cip)

Monolingual Multilingual

Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

ben 0.9584 0.9543 0.9524 0.9506 0.9380 0.9375 0.9466 0.9377
fra 0.8779 0.8607 0.8717 0.8693 0.8436 0.8255 0.8430 0.8378
hin 0.8909 0.8695 0.8890 0.8877 0.8524 0.8577 0.8394 0.8314
hrv 0.8986 0.8876 0.8931 0.8950 0.8741 0.8527 0.8767 0.8605
ori 0.6032 0.6584 0.6235 0.6721 0.5483 0.4981 0.5873 0.4962
rus 0.8614 0.8515 0.8604 0.8578 0.8395 0.8286 0.8375 0.8304
srp 0.9099 0.8413 0.9175 0.9117 0.8918 0.8484 0.8969 0.8900
urd 0.9447 0.9410 0.9476 0.9408 0.9396 0.9424 0.9333 0.9318

Unseen

amh - - - - 0.0079 0.2902 0.3282 0.2695
deu - - - - 0.7934 0.7381 0.8047 0.7608
spa - - - - 0.8511 0.8144 0.8573 0.8265
fin - - - - 0.8427 0.7993 0.8460 0.8201
ilo - - - - 0.5333 0.5356 0.5537 0.4627
ka - - - - 0.5860 0.7961 0.8162 0.7872
kor - - - - 0.5244 0.7318 0.7792 0.7577
lij - - - - 0.3071 0.3684 0.2975 0.3064
lav - - - - 0.8826 0.8468 0.8891 0.8605
mya - - - - 0.1596 0.1721 0.2975 0.2424
por - - - - 0.8535 0.8206 0.8547 0.8312
ron - - - - 0.8889 0.8754 0.8963 0.8695
sna - - - - - - - -
som - - - - 0.4874 0.4870 0.5128 0.5236
sqi - - - 0.8557 0.8319 0.8604 0.8315
swe - - - - 0.9059 0.8583 0.9043 0.8850
swa - - - - 0.7634 0.7429 0.7955 0.7359
tel - - - - 0.3297 0.5753 0.6440 0.5119
tha - - - - 0.3531 0.6680 0.6479 0.6302
uzb - - - - 0.8384 0.7819 0.8360 0.7863

Table 7: Performance results (F1 scores) on the sim-
div language set, which comprises similar languages
that use diverse scripts. The table reports results for
three evaluation settings. Seen: languages used during
both pretraining and fine-tuning, Unseen: languages not
encountered during training and Zero-Shot: languages
evaluated without any task-specific fine-tuning. Results
are provided for four different input types: Orthographic
(Ortho), IPA, Romanized (Rom), and Ciphered (Cip)

11



Monolingual Multilingual

Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

deu 0.8716 0.8518 0.8599 0.8622 0.8184 0.7924 0.8248 0.8095
fin 0.8855 0.8813 0.8850 0.8861 0.8618 0.8264 0.8638 0.8436
ilo 0.6053 0.6216 0.6881 0.6996 0.6757 0.7123 0.6368 0.6549
lav 0.9284 0.9205 0.9232 0.9230 0.8995 0.8736 0.9006 0.8998
sna - - - - - - - -
som 0.6111 0.5648 0.6000 0.5249 0.5551 0.5887 0.6577 0.5556
swa 0.8481 0.8385 0.8532 0.8481 0.8291 0.7981 0.8421 0.8125
uzb 0.8648 0.8655 0.8665 0.8836 0.8621 0.8210 0.8608 0.8314

Unseen

amh - - - - 0.2833 0.5560 0.2845 0.5018
ben - - - - 0.8269 0.8791 0.9005 0.9430
cat - - - - 0.8733 0.8255 0.8750 0.8542
spa - - - - 0.8518 0.8103 0.8583 0.8377
fra - - - - 0.8312 0.7607 0.8294 0.8447
hin - - - - 0.7128 0.8210 0.8055 0.7981
hrv - - - - 0.8531 0.8404 0.8532 0.8495
kat - - - - 0.6289 0.8577 0.8103 0.8606
kor - - - - 0.5282 0.8297 0.7652 0.8381
lij - - - - 0.3319 0.2893 0.3333 0.2979
mya - - - - 0.2128 0.5263 0.2785 0.5750
ori - - - - 0.0708 0.4082 0.3851 0.2339
por - - - - 0.8566 0.8015 0.8558 0.8449
ron - - - - 0.8906 0.8548 0.8880 0.8768
rus - - - - 0.7992 0.7922 0.8132 0.8051
sqi - - - - 0.8658 0.8120 0.8627 0.8259
srp - - - - 0.8540 0.8201 0.8790 0.8739
swe - - - - 0.9075 0.8484 0.9076 0.8919
tel - - - - 0.3278 0.7441 0.5494 0.7632
tha - - - - 0.5162 0.6841 0.6320 0.6110
urd - - - - 0.8906 0.9208 0.9205 0.9220

Table 8: Performance results (F1 scores) on the dissim-
same language set, which comprises typologically dis-
similar languages that share the same script. The table
reports results for three evaluation settings. Seen: lan-
guages used during both pretraining and fine-tuning,
Unseen: languages not encountered during training
and Zero-Shot: languages evaluated without any task-
specific fine-tuning. Results are provided for four differ-
ent input types: Orthographic (Ortho), IPA, Romanized
(Rom), and Ciphered (Cip)

Monolingual Multilingual

Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

amh 0.4796 0.4615 0.5388 0.5203 0.4941 0.5403 0.5760 0.5364
ben 0.9584 0.9100 0.9524 0.9506 0.9579 0.9488 0.9552 0.9479
fra 0.8779 0.8607 0.8717 0.8693 0.8528 0.8265 0.8487 0.8432
kat 0.8866 0.8873 0.8850 0.8837 0.8647 0.8607 0.8619 0.8598
kor 0.8611 0.8576 0.8623 0.8628 0.7699 0.8347 0.8382 0.8333
mya 0.5401 0.5852 0.5617 0.5188 0.5259 0.5738 0.5164 0.5477
tel 0.7880 0.7983 0.7822 0.7922 0.7532 0.7529 0.7528 0.7734
tha 0.7052 0.6880 0.6656 0.6726 0.7031 0.6813 0.6810 0.6727

Unseen

cat - - - - 0.8797 0.8503 0.8803 0.8513
deu - - - - 0.8088 0.7555 0.8134 0.7855
spa - - - - 0.8615 0.8315 0.8687 0.8352
fin - - - - 0.8504 0.8188 0.8532 0.8311
hin - - - - 0.6585 0.8223 0.8472 0.7939
hrv - - - - 0.8642 0.8381 0.8652 0.8428
ilo - - - - 0.5272 0.5726 0.5122 0.4516
lij - - - - 0.3465 0.3243 0.3793 0.2833
lav - - - - 0.8948 0.8544 0.891 0.8762
ori - - - - 0.3840 0.3931 0.4373 0.2913
por - - - - 0.8609 0.8245 0.8630 0.8437
ron - - - - 0.8940 0.8746 0.8979 0.8788
rus - - - - 0.6753 0.7941 0.8207 0.8049
sna - - - - - - - -
som - - - - 0.6140 0.4893 0.5462 0.5299
sqi - - - - 0.8720 0.8395 0.8533 0.8389
srp - - - - 0.6697 0.8405 0.8826 0.8735
swe - - - - 0.9117 0.8641 0.9119 0.8920
swa - - - - 0.7968 0.7527 0.7855 0.7536
urd - - - - 0.6974 0.9072 0.9243 0.9226
uzb - - - - 0.8317 0.8004 0.8300 0.8121

Table 9: Performance results (F1 scores) on the dissim-
div language set, which comprises typologically dis-
similar languages that utilize diverse scripts. The table
reports results for two evaluation settings. Seen: lan-
guages used during both pretraining and fine-tuning
and Unseen: languages not encountered during train-
ing. Zero-shot evaluation was omitted due to the mini-
mal shared representations among dissim-div languages,
which limits the effectiveness of zero-shot transfer. Re-
sults are provided for four different input types: Ortho-
graphic (Ortho), IPA, Romanized (Rom), and Ciphered
(Cip)
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