
Published as a conference paper at ICLR 2023

Image as Set of Points

Xu Ma1∗, Yuqian Zhou2∗, Huan Wang1, Can Qin1, Bin Sun1, Chang Liu1, Yun Fu1

1Northeastern University 2Adobe Inc.
{ma.xu1,wang.huan,qin.ca,sun.bi,liu.chang6}@northeastern.edu
yuqzhou@adobe.com yunfu@ece.neu.edu

Abstract

What is an image and how to extract latent features?
Convolutional Networks (ConvNets) consider an image as organized pixels in a
rectangular shape and extract features via convolutional operation in local region;
Vision Transformers (ViTs) treat an image as a sequence of patches and extract
features via attention mechanism in a global range. In this work, we introduce a
straightforward and promising paradigm for visual representation, which is called
Context Clusters. Context clusters (CoCs) view an image as a set of unorganized
points and extract features via simplified clustering algorithm. In detail, each point
includes the raw feature (e.g., color) and positional information (e.g., coordinates),
and a simplified clustering algorithm is employed to group and extract deep features
hierarchically. Our CoCs are convolution- and attention-free, and only rely on
clustering algorithm for spatial interaction. Owing to the simple design, we show
CoCs endow gratifying interpretability via the visualization of clustering process.
Our CoCs aim at providing a new perspective on image and visual representation,
which may enjoy broad applications in different domains and exhibit profound
insights. Even though we are not targeting SOTA performance, COCs still achieve
comparable or even better results than ConvNets or ViTs on several benchmarks.
Codes are available at: https://github.com/ma-xu/Context-Cluster.

1 Introduction

The way we extract features depends a lot on how we interpret an image. As a fundamental
paradigm, Convolutional Neural Networks (ConvNets) have dominated the field of computer vision
and considerably improved the performance of various vision tasks in recent years (He et al., 2016;
Xie et al., 2021; Ge et al., 2021). Methodologically, ConvNets conceptualize a picture as a collection
of arranged pixels in a rectangle form, and extract local features using convolution in a sliding
window fashion. Benefiting from some important inductive biases like locality and translation
equivariance, ConvNets are made to be efficient and effective. Recently, Vision Transformers (ViTs)
have significantly challenged ConvNets’ hegemony in the vision domain. Derived from language
processing, Transformers (Vaswani et al., 2017) treat an image as a sequence of patches, and a
global-range self-attention operation is employed to adaptively fuse information from patches. With
the resulting models (i.e., ViTs), the inherent inductive biases in ConvNets are abandoned, and
gratifying results are obtained (Touvron et al., 2021).

Recent work has shown tremendous improvements in vision community, which are mainly built
on top of convolution or attention (e.g., ConvNeXt (Liu et al., 2022), MAE (He et al., 2022), and
CLIP (Radford et al., 2021)). Meanwhile, some attempts combine convolution and attention together,
like CMT (Guo et al., 2022a) and CoAtNet (Dai et al., 2021). These methods scan images in grid
(convolution) yet explore mutual relationships of a sequence (attention), enjoying locality prior
(convolution) without sacrificing global reception (attention). While they inherit the advantages from
both and achieve better empirical performance, the insights and knowledge are still restricted to
ConvNets and ViTs. Instead of being lured into the trap of chasing incremental improvements, we
underline that some feature extractors are also worth investigating beyond convolution and attention.
While convolution and attention are acknowledged to have significant benefits and an enormous
influence on the field of vision, they are not the only choices. MLP-based architectures (Touvron

∗Equal contribution

1

https://github.com/ma-xu/Context-Cluster


Published as a conference paper at ICLR 2023

et al., 2022; Tolstikhin et al., 2021) have demonstrated that a pure MLP-based design can also achieve
similar performance. Besides, considering graph network as the feature extractor is proven to be
feasible (Han et al., 2022). Hence, we expect a new paradigm of feature extraction that can provide
some novel insights instead of incremental performance improvements.

𝐶!

𝑋!
"

𝑋!
"

Figure 1: A context cluster in our network trained for im-
age classification. We view an image as a set of points and
sample c centers for points clustering. Point features are
aggregated and then dispatched within a cluster. For clus-
ter center Ci, we first aggregated all points {x0

i , x
1
i , · · · , x

n
i }

in ith cluster, then the aggregated result is distributed to
all points in the clusters dynamically. See § 3 for details.

In this work, we look back into
the classical algorithm for the funda-
mental visual representation, clustering
method (Bishop & Nasrabadi, 2006).
Holistically, we view an image as a set of
data points and group all points into clus-
ters. In each cluster, we aggregate the
points into a center and then dispatch the
center point to all the points adaptively.
We call this design context cluster. Fig. 1
illustrates the process. Specifically, we
consider each pixel as a 5-dimensional
data point with the information of color
and position. In a sense, we convert
an image as a set of point clouds and
utilize methodologies from point cloud
analysis (Qi et al., 2017b; Ma et al.,
2022) for image visual representation learning. This bridges the representations of image and
point cloud, showing a strong generalization and opening the possibilities for an easy fusion of
multi-modalities. With a set of points, we introduce a simplified clustering method to group the
points into clusters. The clustering processing shares a similar idea as SuperPixel (Ren & Malik,
2003), where similar pixels are grouped, but they are fundamentally different. To our best knowledge,
we are the first ones to introduce the clustering method for the general visual representation and make
it work. On the contrary, SuperPixel and later versions are mainly for image pre-processing (Jampani
et al., 2018) or particular tasks like semantic segmentation (Yang et al., 2020; Yu et al., 2022b).

We instantiate our deep network based on the context cluster and name the resulting models as
Context Clusters (CoCs). Our new design is inherently different from ConvNets or ViTs, but we
also inherit some positive philosophy from them, including the hierarchical representation (Liu et al.,
2022) from ConvNets and Metaformer (Yu et al., 2022c) framework from ViTs. CoCs reveal distinct
advantages. First, by considering image as a set of points, CoCs show great generalization ability
to different data domains, like point clouds, RGBD images, etc. Second, the context clustering
processing provides CoCs gratifying interpretability. By visualizing the clustering in each layer, we
can explicitly understand the learning in each layer. Even though our method does not target SOTA
performance, it still achieves on par or even better performance than ConvNets or ViTs on several
benchmarks. We hope our context cluster will bring new breakthroughs to the vision community.

2 RelatedWork

Clustering in Image Processing While clustering approaches in image processing (Castleman,
1996) have gone out of favor in the deep learning era, they never disappear from computer vision. A
time-honored work is SuperPixel (Ren & Malik, 2003), which segments an image into regions by
grouping a set of pixels that share common characteristics. Given the desired sparsity and simple
representation, SuperPixel has become a common practice for image preprocessing. Naive application
of SuperPixel exhaustively clusters (e.g., via K-means algorithm) pixels over the entire image, making
the computational cost heavy. To this end, SLIC (Achanta et al., 2012) limits the clustering operation
in a local region and evenly initializes the K-means centers for better and faster convergence. In
recent years, clustering methods have been experiencing a surge of interest and are closely bound
with deep networks (Li & Chen, 2015; Jampani et al., 2018; Qin et al., 2018; Yang et al., 2020). To
create the superpixels for deep networks, SSN (Jampani et al., 2018) proposes a differentiable SLIC
method, which is end-to-end trainable and enjoys favorable runtime. Most recently, tentative efforts
have been made towards applying clustering methods into networks for specific vision tasks, like
segmentation (Yu et al., 2022b; Xu et al., 2022) and fine-grained recognition (Huang & Li, 2020).
For example, CMT-DeepLab (Yu et al., 2022a) interprets the object queries in segmentation task as

2



Published as a conference paper at ICLR 2023

cluster centers, and the grouped pixels are assigned to the segmentation for each cluster. Nevertheless,
to our best knowledge, there is no work conducted for a general visual representation via clustering.
We aim to make up for the vacancy, along with proving the feasibility numerically and visually.

ConvNets & ViTs ConvNets have dominated the vision community since the deep learning
era (Simonyan & Zisserman, 2015; He et al., 2016). Recently, ViTs (Dosovitskiy et al., 2020)
introduce purely attention-based transformers (Vaswani et al., 2017) to the vision community and
have set new SOTA performances on various vision tasks. A common and plausible conjecture is that
these gratifying achievements are credited to the self-attention mechanism. However, this intuitive
conjecture has soon been challenged. Extensive experiments also showcase that a ResNet (He et al.,
2016) can achieve on par or even better performance than ViTs, with proper training recipe and
minimal modifications (Wightman et al., 2021; Liu et al., 2022). We emphasize that while convolution
and attention may have unique virtues (i.e., ConvNets enjoy inductive biases (Liu et al., 2022) while
ViTs excel at generalization (Yuan et al., 2021b)), they did not show significant performance gap.
Different from convolution and attention, in this work, we radically present a new paradigm for visual
representation using clustering algorithm. With both quantitative and qualitative analysis, we show
that our method can serve as a new general backbone and enjoys gratifying interpretability.

Recent Advances Extensive efforts have been made to push up the vision tasks’ performances
within the framework of ConvNets and ViTs (Liu et al., 2021b; Ding et al., 2022b; Wu et al., 2021).
To take advantage of both convolution and attention, some work learns to mix the two designs in a
hybrid mode, like CoAtNet (Dai et al., 2021) and Mobile-Former (Chen et al., 2022b). We also note
that some recent advances explored more methods for visual representation, beyond convolution and
attention. MLP-like models (Tolstikhin et al., 2021; Touvron et al., 2022; Hou et al., 2022; Chen
et al., 2022a) directly consider a MLP layer for spatial interaction. Besides, some work employs
shifting (Lian et al., 2021; Huang et al., 2021) or pooling (Yu et al., 2022c) for local communication.
Similar to our work that treats the image as unordered data set, Vision GNN (ViG) (Han et al., 2022)
extracts graph-level features for visual tasks. Differently, we directly apply the clustering method
from conventional image processing and exhibit promising generalization ability and interpretability.

3 Method

Context Cluster

cluster 2

cluster 3 cluster 𝑐

M
LP

cluster 1

Input MLP block
a set of data points aggregate & dispatch within a cluster channel communication 

skip connections

Figure 2: A Context Cluster block. We use a context cluster operation
to group a set of data points, and then communicate the points within
clusters. An MLP block is applied later.

Context Clusters forgo the
fashionable convolution or at-
tention in favor of novelly
considering the classical al-
gorithm, clustering, for the
representation of visual learn-
ing. In this section, we first
describe the Context Clus-
ters pipeline. The proposed
context cluster operation (as
shown in Fig. 2) for feature
extraction is then thoroughly
explained. After that, we set
up the Context Cluster architectures. Finally, some open discussions might aid individuals in compre-
hending our work and exploring more directions following our Context Cluster.

3.1 Context Clusters Pipeline

From Image to Set of Points. given an input image I ∈ R3×w×h, we begin by enhancing the
image with the 2D coordinates of each pixel Ii, j, where each pixel’s coordinate is presented as[

i
w − 0.5, j

h − 0.5
]
. It is feasible to investigate further positional augmentation techniques to potentially

improve performance. This design is taken into consideration for its simplicity and practicality. The
augmented image is then converted to a collection of points (i.e., pixels) P ∈ R5×n, where n = w × h
is the number of points, and each point contains both feature (color) and position (coordinates)
information; hence, the points set could be unordered and disorganized.

3



Published as a conference paper at ICLR 2023

C
on

te
xt

 C
lu

st
er

B
lo

ck
s

C
on

te
xt

 C
lu

st
er

B
lo

ck
s

C
on

te
xt

 C
lu

st
er

B
lo

ck
s

C
on

te
xt

 C
lu

st
er

B
lo

ck
s

Stage 1 Stage 2 Stage 3 Stage 4

Image Points Set
[𝟓, 𝒏]

[𝑪𝟏,
𝒏
𝟏𝟔]

[𝑪𝟐,
𝒏
𝟔𝟒
] [𝑪𝟑,

𝒏
𝟐𝟓𝟔

] [𝑪𝟒,
𝒏

𝟏𝟎𝟐𝟒
]

×𝑵𝟏 ×𝑵𝟐 ×𝑵𝟑 ×𝑵𝟒

Po
in

ts
 R

ed
uc

er

Po
in

ts
 R

ed
uc

er

Po
in

ts
 R

ed
uc

er

Po
in

ts
 R

ed
uc

er

Figure 3: Context Cluster architecture with four stages. Given a set of image points, Context Cluster
gradually reduces the point number and extracts deep features. Each stage begins with a points
reducer, after which a succession of context cluster blocks is used to extract features.

We are rewarded with excellent generalization ability by offering a fresh perspective of image, a set
of points. A set of data points can be considered as a universal data representation because data in
most domains can be given as a combination of feature and position information (or either of the
two). This inspires us to conceptualize an image as a set of points.

Feature Extraction with Image Set Points. Following the ConvNets methodology (He et al., 2016;
Liu et al., 2022), we extract deep features using context cluster blocks (see Fig. 2 for reference and
§ 3.2 for explanation) hierarchically. Fig. 3 shows our Context Cluster architecture. Given a set of
points P ∈ R5×n, we first reduce the points number for computational efficiency, then a succession of
context cluster blocks are applied to extract features. To reduce the points number, we evenly select
some anchors in space, and the nearest k points are concatenated and fused by a linear projection.
Note that this reduction can be achieved by a convolutional operation if all points are arranged in
order and k is properly set (i.e., 4 and 9), like in ViT (Dosovitskiy et al., 2020). For clarity on the
centers and anchors stated previously, we strongly suggest the readers check appendix § B.

Task-Specific Applications. For classification, we average all points of the last block’s output and use
a FC layer for classification. For downstream dense prediction tasks like detection and segmentation,
we need to rearrange the output points by position after each stage to satisfy the needs of most
detection and segmentation heads (e.g., Mask-RCNN (He et al., 2017)). In other words, Context
Cluster offers remarkable flexibility in classification task, but is limited to a compromise between
dense prediction tasks’ requirements and our model configurations. We expect innovative detection &
segmentation heads (like DETR (Carion et al., 2020)) can seamlessly integrate with our method.

3.2 Context Cluster Operation

In this subsection, we introduce the key contribution in our work, the context cluster operation.
Holistically, we first group the feature points into clusters; then, feature points in each cluster will be
aggregated and then dispatched back, as illustrated in Fig. 1.

Context Clustering. Given a set of feature points P ∈ Rn×d, we group all the points into several
groups based on the similarities, with each point being solely assigned to one cluster. We first
linearly project P to Ps for similarity computation. Following the conventional SuperPixel method
SLIC (Achanta et al., 2012), we evenly propose c centers in space, and the center feature is computed
by averaging its k nearest points. We then calculate the pair-wise cosine similarity matrix S ∈ Rc×n

between Ps and the resulting set of center points. Since each point contains both feature and position
information, while computing similarity, we implicitly highlight the points’ distances (locality) as
well as the feature similarity. After that, we allocate each point to the most similar center, resulting in
c clusters. Of note is that each cluster may have a different number of points. In extreme cases, some
clusters may have zero points, in which case they are redundant.

Feature Aggregating. We dynamically aggregate all points in a cluster based on the similarities
to the center point. Assuming a cluster contains m points (a subset in P) and the similarity between
the m points and the center is s ∈ Rm (a subset in S ), we map the points to a value space to get
Pv ∈ R

m×d′ , where d′ is the value dimension. We also propose a center vc in the value space like the

4



Published as a conference paper at ICLR 2023

clustering center proposal. The aggregated feature g ∈ Rd′ is given by:

g =
1
C

vc +

m∑
i=1

sig (αsi + β) ∗ vi

 , s.t., C = 1 +
m∑

i=1

sig (αsi + β) . (1)

Here α and β are learnable scalars to scale and shift the similarity and sig (·) is a sigmoid function to
re-scale the similarity to (0, 1). vi indicates i-th point in Pv. Empirically, this strategy would achieve
much better results than directly applying the original similarity because no negative value is involved.
Softmax is not considered since the points do not contradict with one another. We incorporate the
value center vc in Eq. 1 for numerical stability1 as well as further emphasize the locality. To control
the magnitude, the aggregated feature is normalized by a factor of C.

Feature Dispatching. The aggregated feature g is then adaptively dispatched to each point in a
cluster based on the similarity. By doing so, the points can communicate with one another and shares
features from all points in the cluster, as shown in Fig. 1. For each point pi, we update it by

p′i = pi + FC
(
sig (αsi + β) ∗ g

)
. (2)

Here we follow the same procedures to handle the similarity and apply a fully-connected (FC) layer
to match the feature dimension (from value space dimension d′ to original dimension d).

Multi-Head Computing. We acknowledge the multi-head design in the self-attention mecha-
nism (Vaswani et al., 2017) and use it to enhance our context cluster. We consider h heads and set the
dimension number of both value space Pv and similarity space Ps to d′ for simplicity. The outputs of
multi-head operations are concatenated and fused by a FC layer. The multi-head architecture also
contributes to a satisfying improvement in our context cluster, as we empirically demonstrate.

3.3 Architecture Initialization

While Context Cluster is fundamentally distinct from convolution and attention, the design philoso-
phies from ConvNets and ViTs, such as hierarchical representations and meta Transformer architec-
ture (Yu et al., 2022c), are still applicable to Context Cluster. To align with other networks and make
our method compatible with most detection and segmentation algorithms, we progressively reduce
the number of points by a factor of 16, 4, 4, and 4 in each stage. We consider 16 nearest neighbors
for selected anchors in the first stage, and we choose their 9 nearest neighbors in the rest stages.

An underlying issue is computational efficiency. Assume we have n d-dimensional points and c clus-
ters, the time complexity to calculate the feature similarity would be O (ncd), which is unacceptable
when the input image resolution is high (e.g., 224 × 224). To circumvent this problem, we introduce
region partition by splitting the points into several local regions like Swin Transformer (Liu et al.,
2021b), and compute similarity locally. As a result, when the number of local regions is set to r, we
noticeably lower the time complexity by a factor of r, from O (ncd) to O

(
r n

r
c
r d
)
. See appendix § A

for detailed configurations. Note that if we split the set of points to several local regions, we limit the
receptive field for context cluster, and no communications among local regions are available.

3.4 Discussion

Fixed or Dynamic centers for clusters? Both conventional clustering algorithms and SuperPixel
techniques iteratively update the centers until converge. However, this will result in exorbitant
computing costs when clustering is used as a key component in each building block. The inference
time will increase exponentially. In Context Cluster, we view fixed centers as an alternative for
inference efficiency, which can be considered as a compromise between accuracy and speed.

Overlap or non-overlap clustering? We allocate the points solely to a specific center, which differs
from previous point cloud analysis design philosophies. We intentionally adhere to the conventional
clustering approach (non-overlap clustering) since we want to demonstrate that the simple and
traditional algorithm can serve as a generic backbone. Although it might produce higher performance,
overlapped clustering is not essential to our approach and could result in extra computing burdens.

1If there were no vc involved and no points are grouped into the cluster coincidentally, C would be zero, and
the network cannot be optimized. In our research, this conundrum occurs frequently. Adding a small value like
1e−5 does not help and would lead to the problem of vanishing gradients.

5



Published as a conference paper at ICLR 2023

Table 1: Comparison with representative backbones on ImageNet-1k benchmark. Throughput (images
/ s) is measured on a single V100 GPU with a batch size of 128, and is averaged by the last 500
iterations. All models are trained and tested at 224×224 resolution, except ViT-B and ViT-L.

Method Param. GFLOPs Top-1 Throughputs
(images/s)

M
L

P

♣ ResMLP-12 (Touvron et al., 2022) 15.0 3.0 76.6 511.4
♣ ResMLP-24 (Touvron et al., 2022) 30.0 6.0 79.4 509.7
♣ ResMLP-36 (Touvron et al., 2022) 45.0 8.9 79.7 452.9
♣MLP-Mixer-B/16 (Tolstikhin et al., 2021) 59.0 12.7 76.4 400.8
♣MLP-Mixer-L/16 (Tolstikhin et al., 2021) 207.0 44.8 71.8 125.2
♣ gMLP-Ti (Liu et al., 2021a) 6.0 1.4 72.3 511.6
♣ gMLP-S (Liu et al., 2021a) 20.0 4.5 79.6 509.4

A
tt

en
tio

n

q ViT-B/16 (Dosovitskiy et al., 2020) 86.0 55.5 77.9 292.0
q ViT-L/16 (Dosovitskiy et al., 2020) 307 190.7 76.5 92.8
q PVT-Tiny (Wang et al., 2021) 13.2 1.9 75.1 -
q PVT-Small (Wang et al., 2021) 24.5 3.8 79.8 -
q T2T-ViT-7 (Yuan et al., 2021a) 4.3 1.1 71.7 -
q DeiT-Tiny/16 (Touvron et al., 2021) 5.7 1.3 72.2 523.8
q DeiT-Small/16 (Touvron et al., 2021) 22.1 4.6 79.8 521.3
q Swin-T (Liu et al., 2021b) 29 4.5 81.3 -

C
on

vo
lu

tio
n ♠ ResNet18 (He et al., 2016) 12 1.8 69.8 584.9

♠ ResNet50 (He et al., 2016) 26 4.1 79.8 524.8
♠ ConvMixer-512/16 (Trockman et al., 2022) 5.4 - 73.8 -
♠ ConvMixer-1024/12 (Trockman et al., 2022) 14.6 - 77.8 -
♠ ConvMixer-768/32 (Trockman et al., 2022) 21.1 - 80.16 142.9

C
lu

st
er r Context-Cluster-Ti (ours) 5.3 1.0 71.8 518.4

r Context-Cluster-Ti‡ (ours) 5.3 1.0 71.7 510.8
r Context-Cluster-Small (ours) 14.0 2.6 77.5 513.0C

lu
st

er

r Context-Cluster-Medium (ours) 27.9 5.5 81.0 325.2

4 Experiments

We validate Context Cluster on ImageNet-1K (Deng et al., 2009), ScanObjectNN (Uy et al., 2019),
MS COCO (Lin et al., 2014), and ADE20k (Zhou et al., 2017) datasets for image classification, point
cloud classification, object detection, instance segmentation, and semantic segmentation tasks.

Even we are not in pursuit of state-of-the-art performance like ConvNeXt (Liu et al., 2022) and
DaViT (Ding et al., 2022a), Context Cluster still presents promising results on all tasks. Detailed
studies demonstrate the interpretability and the generalization ability of our Context Cluster.

4.1 Image Classification on ImageNet-1K

We train Context Clusters on the ImageNet-1K training set (about 1.3M images) and evaluate upon the
validation set. In this work, we adhere to the conventional training recipe in (Dai et al., 2021; Wight-
man, 2019; Touvron et al., 2021; Yu et al., 2022c). For data augmentation, we mainly adopt random
horizontal flipping, random pixel erase, mixup, cutmix, and label smoothing. AdamW (Loshchilov
& Hutter, 2019) is used to train all of our models across 310 epochs with a momentum of 0.9 and
a weight decay of 0.05. The learning rate is set to 0.001 by default and adjusted using a cosine
schedular (Loshchilov & Hutter, 2017). By default, the models are trained on 8 A100 GPUs with a
128 mini-batch size (that is 1024 in total). We use Exponential Moving Average (EMA) to enhance
the training, similar to earlier studies (Guo et al., 2022b; Touvron et al., 2021). Table 1 reports
the parameters used, FLOPs, classification accuracy, and throughputs. ‡ denotes a different region
partition approach that we used to divide the points into [49, 49, 1, 1] in the four stages.

Empirically, results in Table 1 indicate the effectiveness of our proposed Context Cluster. Our Context
Cluster is capable of attaining comparable or even better performance than the widely-used baselines
using a similar number of parameters and FLOPs. With about 25M parameters, our Context Cluster
surpasses the enhanced ResNet50 (Wightman et al., 2021) and PVT-small by 1.1% and achieves 80.9%

6



Published as a conference paper at ICLR 2023

Vi
T-
B/

16
Re

sN
et
50

Co
C-

M
(a

tte
nt

io
n 

m
ap

)
(c

la
ss

 a
ct

. m
ap

)
(c

lu
st

er
in

g 
m

ap
)

Co
C-

T
w

/o
 r

eg
io

n 
pa

rt
iti

on
(c

lu
st

er
in

g 
m

ap
)

Figure 4: Visualization of activation map, class activation map, and clustering map for ViT-B/16,
ResNet50, our CoC-M, and CoC-T without region partition, respectively. We plot the results of the
last block in the four stages from left to right. For ViT-B/16, we select the [3rd, 6th, 9th, 12th] blocks,
and show the cosine attention map for the cls-token. The clustering maps show that our Context
Cluster is able to cluster similar contexts together, and tell what model learned visually.

top-1 accuracy. Additionally, our Context Cluster obviously outperforms MLP-based methods. This
phenomenon indicates that the performance of our method is not credited to MLP blocks, and context
cluster blocks substantially contribute to the visual representation. The performance differences
between Context-Cluster-Ti and Context-Cluster-Ti‡ are negligible, demonstrating the robustness of
our Context Cluster to the local region partitioning strategy. We recognize that our results cannot
match the SOTA performance (e.g., CoAtNet-0 arrives 81.6% accuracy with a comparable number
of parameters as CoC-Tiny), but we emphasize that we are pursuing and proving the viability of a
new feature extraction paradigm. We successfully forsake convolution and attention in our networks
by conceptualizing image as a set of points and naturally applying clustering algorithm for feature
extraction. In contrast to convolution and attention, our context cluster has excellent generalizability
to other domain data and enjoys promising interpretability.

Table 2: Component ablation studies of
Context-Cluster-Small on ImageNet-1k.

position
info.

context
cluster

multi
head

top-1
acc.

✗ ✗ ✗ -
✓ ✗ ✗ 74.2(↓3.3)
✓ ✓ ✗ 76.6(↓0.9)
✓ ✓ ✓ 77.5

Component Ablation. Table 2 reports the results on
ImageNet-1K of eliminating each individual compo-
nent in Context-Cluster-Small variant. To remove the
multi-head design, we utilize one head for each block
and set the head dimension number to [16, 32, 96, 128]
in the four stages, respectively. When the positional
information is removed, the model becomes untrainable
since points are disorganized. A similar phenomenon
can also be seen from cifar (Krizhevsky et al., 2009)
datasets. Performance dropped 3.3% without the con-
text cluster operation. Besides, multi-head design is
able to boost the result by 0.9%. Combining all the components, we arrive at a 77.5% top-1 accuracy.

4.2 Visualization of Clustering

To better understand Context Cluster, we draw the clustering map in Fig. 4, and we also show the
attention map of ViTs and the class activation map (i.e., CAM) (Zhou et al., 2016) of ConvNets.
Notice that the three kinds of maps are conceptually different and cannot be compared directly. We list
the other two (attention and class activation) maps for reference and demonstrate the inner operations
in ViTs, ConvNets, and our Context Cluster. Detail settings can be found in the caption of Fig. 4.

As the number of points is reduced, the details are merged to form a context cluster. Three observations
justify the correctness and effectiveness of our Context Cluster. First, our method clearly clusters the

7



Published as a conference paper at ICLR 2023

goose as one object context in the last stage and groups the background grass together. A similar
phenomenon can also be observed from the previous stages but in more detailed and local regions.
Second, our context cluster can even cluster similar contexts in the very early stages (e.g., the first
and second stages). Zoom in the details in the red boxes, we can see that the points belonging to the
goose’s neck are clearly clustered together, suggesting the strong clustering ability of our method.
Last, we notice that most clusters emphasize the locality, while some (colored in bright green) show
the globality a lot, as shown in the clustering map of the last stage. This further demonstrates the
design philosophy; we encourage similar points to be grouped but make no restriction to the receptive
field. Visual clustering map and detailed analysis indicate that our Context Cluster is effective and
exhibit promising interpretability. Notably, our method demonstrates promising clustering results in a
SuperPixel-style when removing the region partition operation. See appendix for more examples.

4.3 3D Point Cloud Classification on ScanObjectNN

Table 3: Classification results on ScanObjectNN. All results are
reported on the most challenging variant (PB_T50_RS).

Method mAcc(%) OA(%)

♠ SpiderCNN (Xu et al., 2018) 69.8 73.7
♠ DGCNN (Wang et al., 2019) 73.6 78.1
♠ PointCNN (Li et al., 2018) 75.1 78.5
♠ GBNet (Qiu et al., 2021) 77.8 80.5

q PointBert (Yu et al., 2022d) - 83.1
q Point-MAE (Pang et al., 2022) - 85.2
q Point-TnT (Berg et al., 2022) 81.0 83.5

♣ PointNet (Qi et al., 2017a) 63.4 68.2
♣ PointNet++ (Qi et al., 2017b) 75.4 77.9
♣ BGA-PN++ (Uy et al., 2019) 77.5 80.2
♣ PointMLP (Ma et al., 2022) 83.9 85.4
♣ PointMLP-elite (Ma et al., 2022) 81.8 83.8
r PointMLP-CoC (ours) 84.4↑0.5 86.2↑0.8

Context Clusters are a nat-
ural fit for point clouds Qi
et al. (2017b); Lu et al. (2022).
Therefore we also examine
our method for the task of
point cloud classification. We
choose PointMLP (Ma et al.,
2022) as the foundation for
our model because of its per-
formance and ease of use. In
detail, we only consider one
head and set the head dimen-
sion number to min

(
c
4 , 32
)

where c indicates the chan-
nel number in each layer.
We place our Context Clus-
ter block before each Resid-
ual Point Block in PointMLP.
The resulting model is termed
PointMLP-CoC. Note that
better settings would result in improved performance, but that is not the focus of our study. We report
the mean accuracy over all classes (mAcc) and overall accuracy over all examples (OA) in Table 3.

In Table 3, we present the mean accuracy across all classes (mAcc) and the overall accuracy across
all samples (OA). Experimental results show that our method can substantially increase PointMLP’s
performance, with improvements in mean accuracy of 0.5% (84.4% vs. 83.9%) and overall accuracy
of 0.8% (86.2% vs. 85.4%). Note that the promising gain has only been made by the introduction
of one head in the context cluster; with more heads and elaborate settings, performance would be
improved. Most importantly, the outcomes show that our approach is highly generalizable to different
domains, such as point clouds. We anticipate that our Context Cluster will operate satisfactorily when
applied to more domains with little to no modifications.

4.4 Object Detection and Instance Segmentation onMS-COCO

Next, we investigate Context Cluster’s generalisability to downstream tasks, including object detection
and instance segmentation. We conduct our experiments on the MS COCO 2017 benchmark (Lin et al.,
2014), which has 118k images for training and 5k images for validation. Following previous work,
we train and test our model integrating with Mask RCNN (He et al., 2017) for both object detection
and instance segmentation tasks. All models are trained with 1× scheduler (12 epochs) and initialized
with ImageNet pre-trained weights. For comparison, we consider ResNet as a representative for
ConvNets and PVT for ViTs. We report evaluation metric mean Average Precision (mAP) in Table 4.

We notice that owing to the differences in image resolution, directly adopting the Context Cluster
configuration for ImageNet may not be appropriate for the downstream tasks. For classification task,
we would have 49 points and 4 centers in a local region. The detection and segmentation tasks

8



Published as a conference paper at ICLR 2023

Table 4: COCO object detection and instance segmentation results using Mask-RCNN (1×).

Family Backbone Params APbox APbox
50 APbox

75 APmask APmask
50 APmask

75
Conv. ♠ ResNet-18 31.2M 34.0 54.0 36.7 31.2 51.0 32.7
Attention q PVT-Tiny 32.9M 36.7 59.2 39.3 35.1 56.7 37.3

r CoC-Small/4 33.6M 35.9 58.3 38.3 33.8 55.3 35.8
r CoC-Small/25 33.6M 37.5 60.1 40.0 35.4 57.1 37.9Cluster
r CoC-Small/49 33.6M 37.2 59.8 39.7 34.9 56.7 37.0

would have 1000 points with the same configuration for image size (1280, 800). It is obvious that
grouping 1000 points into 4 clusters would produce an inferior result. To this end, we investigate 4,
25, and 49 centers for a local region, and we refer to the resulting models as Small/4, Small/25, and
Small/49, respectively. Results in Table 4 indicate that our Context Cluster demonstrates promising
generalisability to downstream tasks. Our CoC-Small/25 outperforms the ConvNet and ViT baselines
on both detection and instance segmentation tasks when properly configured (25 centers in a local
region). In line with our expectations, only 4 centers cannot accurately model the large local region,
and unnecessary centers cannot further enhance the performance. See appendix § C for more results.

4.5 Semantic Segmentation on ADE20K

We examine our Context Cluster equipped with semantic FPN (Kirillov et al., 2019) for semantic
segmentation task on the ADE20K (Zhou et al., 2017) dataset. For training, validation, and testing,
ADE20K includes 20k, 2k, and 3k images, each of which corresponds to one of 150 semantic
categories. For a fair comparison, we train all of our models for 80k iterations with a batch size of 16
on four V100 GPUs and adopt the standard data augmentation methods used in PVT (Wang et al.,
2021). With an initial learning rate of 2x10-4, the AdamW optimizer is used to train all of our models.
We use a polynomial decay schedule with a power of 0.9 to decrease the learning rate.

Table 5: Semantic segmentation perfor-
mance of different backbones with Seman-
tic FPN on the ADE20K validation set.

Backbone Params mIoU(%)
♠ ResNet18 15.5M 32.9
q PVT-Tiny 17.0M 35.7
r CoC-Small/4 17.7M 36.6
r CoC-Small/25 17.7M 36.4
r CoC-Small/49 17.7M 36.3

Experimental results on ADE20K are reported in Ta-
ble 5. We show that our Context Clusters clearly out-
perform PVT and ResNet using a similar number of
parameters. The promising improvements can be cred-
ited to our novel context cluster operation. Our context
cluster is similar to the SuperPixel, which is an over-
segmentation technology. When applied for feature
extraction, we expect context cluster can over-segment
the contexts in intermediate features, and show im-
provements for semantic segmentation tasks. Unlike in
object detection and semantic segmentation tasks, the
centers number shows little influence on the results. More results can be found in appendix § C.

5 Conclusion

We introduce Context Cluster, a novel feature extraction paradigm for visual representation. Inspired
by point cloud analysis and SuperPixel algorithms, we view an image as a set of unorganized points
and employ the simplified clustering approach to extract features. In terms of image interpretation and
feature extraction operation, Context Cluster is fundamentally distinct from ConvNets and ViTs, and
no convolution or attention is involved in our architecture. Instead of chasing SOTA performance, we
show that our Context Cluster can achieve comparable or even better results than ConvNet and ViT
baselines on multiple tasks and domains. Most notably, our method shows promising interpretability
and generalization properties. We hope our Context Cluster can be considered as a novel visual
representation method in addition to convolution and attention.

As discussed at the end of § 3, our new perspective and design for visual representation also come
with new challenges, primarily in the compromise between accuracy and speed. Better strategies are
worth exploring. Departing from the current framework of detection and segmentation to apply our
context cluster philosophy to other tasks is also a worthwhile direction to pursue.

9



Published as a conference paper at ICLR 2023

Ethics Statement

In our paper, we strictly follow the ICLR ethical research standards and laws. All datasets we
employed are publicly available, and all related publications and source codes are cited appropriately.

Reproducibility Statement

We adhere to ICLR reproducibility standards and ensure the reproducibility of our work in multiple
ways, including:

• We upload our codes, pre-trained models, and the training log files to a GitHub repository,
as stated in the abstract. A clear description is presented to ease the reviewing work.
• Besides the main results of each task, we also upload the codes and checkpoints for all our

ablation studies to ensure each experiment is strictly proved.
• We clearly present the design of Context Cluster in Section 3.
• Detailed framework and more experiments are presented in appendix § A and § C.

By doing so, each experiment in our submission is easy to reproduce. We always open-source our
research work for each submission to help the community better understand our work.

References
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.

Slic superpixels compared to state-of-the-art superpixel methods. TPAMI, 34(11):2274–2282,
2012.

Axel Berg, Magnus Oskarsson, and Mark O’Connor. Points to patches: Enabling the use of self-
attention for 3d shape recognition. arXiv preprint arXiv:2204.03957, 2022.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Kenneth R Castleman. Digital image processing. Prentice Hall Press, 1996.

Shoufa Chen, Enze Xie, Chongjian GE, Runjian Chen, Ding Liang, and Ping Luo. CycleMLP: A
MLP-like architecture for dense prediction. In ICLR, 2022a.

Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
Liu. Mobile-former: Bridging mobilenet and transformer. In CVPR, 2022b.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. NeurIPS, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit: Dual attention
vision transformers. ECCV, 2022a.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In CVPR, 2022b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430, 2021.

10



Published as a conference paper at ICLR 2023

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In CVPR, 2022a.

Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, and Shi-Min Hu. Visual
attention network. arXiv preprint arXiv:2202.09741, 2022b.

Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision gnn: An image is worth
graph of nodes. NeurIPS, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. Vision
permutator: A permutable mlp-like architecture for visual recognition. IEEE TPAMI, 2022.

Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, and Bin Fu. Shuffle transformer:
Rethinking spatial shuffle for vision transformer. arXiv preprint arXiv:2106.03650, 2021.

Zixuan Huang and Yin Li. Interpretable and accurate fine-grained recognition via region grouping.
In CVPR, 2020.

Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan Yang, and Jan Kautz. Superpixel sampling
networks. In ECCV, 2018.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
In CVPR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on x-transformed points. NeurIPS, 2018.

Zhengqin Li and Jiansheng Chen. Superpixel segmentation using linear spectral clustering. In CVPR,
2015.

Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-mlp: An axial shifted mlp architecture
for vision. In ICLR, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV. Springer,
2014.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. NeurIPS, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. ICLR, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Tao Lu, Chunxu Liu, Youxin Chen, Gangshan Wu, and Limin Wang. App-net: Auxiliary-point-based
push and pull operations for efficient point cloud classification. arXiv preprint arXiv:2205.00847,
2022.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. ICLR, 2022.

11



Published as a conference paper at ICLR 2023

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. ECCV, 2022.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. NeurIPS, 2017b.

Can Qin, Maoguo Gong, Yue Wu, Dayong Tian, and Puzhao Zhang. Efficient scene labeling via
sparse annotations. In AAAIW, 2018.

Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-projection network for point cloud
classification. IEEE Transactions on Multimedia, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation. In ICCV, 2003.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. NeurIPS, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In ICML, 2021.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al. Resmlp: Feedfor-
ward networks for image classification with data-efficient training. IEEE TPAMI, 2022.

Asher Trockman et al. Patches are all you need? arXiv preprint arXiv:2201.09792, 2022.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung.
Revisiting point cloud classification: A new benchmark dataset and classification model on
real-world data. In ICCV, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In ICCV, 2021.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12,
2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back: An improved training
procedure in timm. In NeurIPS 2021 Workshop on ImageNet, 2021. URL https://openreview.
net/forum?id=NG6MJnVl6M5.

Lemeng Wu, Xingchao Liu, and Qiang Liu. Centroid transformers: Learning to abstract with attention.
arXiv preprint arXiv:2102.08606, 2021.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
Simple and efficient design for semantic segmentation with transformers. NeurIPS, 2021.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://openreview.net/forum?id=NG6MJnVl6M5
https://openreview.net/forum?id=NG6MJnVl6M5


Published as a conference paper at ICLR 2023

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
Wang. Groupvit: Semantic segmentation emerges from text supervision. In CVPR, 2022.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point sets
with parameterized convolutional filters. In ECCV, 2018.

Fengting Yang, Qian Sun, Hailin Jin, and Zihan Zhou. Superpixel segmentation with fully convolu-
tional networks. In CVPR, 2020.

Qihang Yu, Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Cmt-deeplab: Clustering mask transformers for panoptic
segmentation. In CVPR, 2022a.

Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hatwig Adam, Alan Yuille,
and Liang-Chieh Chen. k-means mask transformer. ECCV, 2022b.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In CVPR, 2022c.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-training
3d point cloud transformers with masked point modeling. In CVPR, 2022d.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In ICCV, 2021a.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021b.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In CVPR, 2016.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, 2017.

13



Published as a conference paper at ICLR 2023

A Model Configurations

We first introduce the detailed configurations of our Context clusters in Table 6. Point reducer block
is consistent with image downsize blocks, like in PVT and ConvNeXt. In the context of points, we
select k_neighbors of the nearest points for a proposed anchor, and fuse all the points using FC layer.
We reduce the number of points by a factor of downsample_r. The key contribution in our work is
context cluster blocks. We first evenly split the whole set of points into regions local regions in the
space. In each local region, we propose local_centers for clustering. We set the heads number and
dimension of each head to heads and head_dim, respectively, in our context cluster operation. The
channel number is expanded by a factor of mlp_r (i.e., to mlp_r × dim) and then reduced to dim in
the MLP block. The Context Cluster block would be repeated by several times in each stage. We
mark all variables in blue for easy understanding. For the Context-Cluster-Ti‡ variation, it shares
the same network structure as Context-Cluster-Ti, with the exception that we configure the region
partition and local center numbers differently. In particular, the number of region partitions is set to
[49, 49, 1, 1] and the number of centers in each local region is set to [16, 4, 49, 16] for the four stages.

Table 6: Detailed configurations for our Context Cluster. We initialize three variants, CoC-Tiny,
CoC-Small, and CoC-Medium, with different model capacities.

Stage Points Block CoC-Tiny CoC-Small CoC-Medium

S1 50176 Point
Reducer

 k_neighbors = 16
downsample_r = 16

dim = 32


 k_neighbors = 16
downsample_r = 16

dim = 64


 k_neighbors = 16
downsample_r = 16

dim = 64


3136

Context
Cluster
Blocks



regions = 64
local_centers = 4

heads = 4
head_dim = 24

mlp_r. = 8
dim = 32


× 3



regions = 64
local_centers = 4

heads = 4
head_dim = 32

mlp_r. = 8
dim = 64


× 2



regions = 64
local_centers = 4

heads = 6
head_dim = 32

mlp_r. = 8
dim = 64


× 4

S2 3136 Point
Reducer

 k_neighbors = 9
downsample_r = 4

dim = 64


 k_neighbors = 9
downsample_r = 4

dim = 128


 k_neighbors = 9
downsample_r = 4

dim = 128


784

Context
Cluster
Blocks



regions = 16
local_centers = 4

heads = 4
head_dim = 24

mlp_r. = 8
dim = 64


× 4



regions = 16
local_centers = 4

heads = 4
head_dim = 32

mlp_r. = 8
dim = 128


× 2



regions = 16
local_centers = 4

heads = 6
head_dim = 32

mlp_r. = 8
dim = 128


× 4

S3 784 Point
Reducer

 k_neighbors = 9
downsample_r = 4

dim = 196


 k_neighbors = 9
downsample_r = 4

dim = 320


 k_neighbors = 9
downsample_r = 4

dim = 320


196

Context
Cluster
Blocks



regions = 4
local_centers = 4

heads = 8
head_dim = 24

mlp_r. = 4
dim = 196


× 5



regions = 4
local_centers = 4

heads = 8
head_dim = 32

mlp_r. = 4
dim = 320


× 6



regions = 4
local_centers = 4

heads = 12
head_dim = 32

mlp_r. = 4
dim = 320


× 12

S4 196 Point
Reducer.

 k_neighbors = 9
downsample_r = 4

dim = 320


 k_neighbors = 9
downsample_r = 4

dim = 512


 k_neighbors = 9
downsample_r = 4

dim = 512


49

Context
Cluster
Blocks



regions = 1
local_centers = 4

heads = 8
head_dim = 24

mlp_r. = 4
dim = 320


× 2



regions = 1
local_centers = 4

heads = 8
head_dim = 32

mlp_r. = 4
dim = 512


× 2



regions = 1
local_centers = 4

heads = 12
head_dim = 32

mlp_r. = 4
dim = 512


× 4

B Detail Explanations

One may be confused about how to specify the anchors in our point reducer block and the centers in
our context cluster block. We provide illustrative and thorough explanations of them in this section.

For both anchor and center, they are generated evenly in the space. In order to better illustrate this,
we plot organized image points in Fig. 5.

14



Published as a conference paper at ICLR 2023

FC

(a) Illustration of anchors for points reduction. (b) Demo of centers in CoC.

Figure 5: Detail explanations on the anchors in points reducer block and centers for context cluster
block. The image points (represented in patch) are organized for easy understanding and illustration.
In a sense, the anchors are for reducing point numbers, and centers are used for clustering. Both of
them are evenly distributed in design. On the left, we evenly propose 4 anchors (marked in blue
dot) with 4 neighbors for each anchor. On the right, we evenly sample 9 centers (marked in red
block), hence leading to 9 irregular clusters. The center feature value is achieved by averaging its k
neighbors. In this figure, we show the neighbors in the big blue circle for the second center.

On the left, we display 16 points with 4 proposed anchors for point reduction, each of which takes
its closest 4 neighbors into account. All neighbors are concatenated along the channel dimension,
and a FC layer is used to lower the dimensional number and fuse the information. After reducing the
number of points, we arrive at a new set of points with the same number of proposed anchors.

On the right, we show 9 centers (red blocks) generated from the set of image points and corresponding
9 clusters. The feature of generated centers will be given by averaging the k neighbors (for the second
center, we average the 9 points in the big blue circle).

The number of neighbors can be of any value. We set it to 4 or 9 due to three reasons. First, we
follow the design of ConvNets and pyramid ViTs to ensure the set of points can be reorganized to a
rectangular feature map. Second, this strategy eases our coding by employing convolution or pooling
operations (which are equivalent to our description) and avoids heavy indices searching work. Last, a
rectangular feature map is required by most detection and segmentation methods.

C More Experiments

We conduct more experiments to validate the effectiveness of our Context Cluster.

Table 7: Semantic segmentation results of different back-
bones with Semantic-FPN on the ADE20K validation set.

Family Backbone Params mIoU(%)
Conv. ♠ ResNet50 28.5M 36.7
Atten. q PVT-Small 28.2M 39.8
Cluster r CoC-Medium/4 25.2M 40.2
Cluster r CoC-Medium/25 25.2M 40.6
Cluster r CoC-Medium/49 25.2M 40.8

More results for Segmentation. We re-
port the CoC-Small with Semantic FPN’s
performance on the ADE20K validation
set in Table 7 under the same conditions
as previous. We notice that performance
increases modestly as more centers are
added in a local region, but the compu-
tational cost rises a lot. With 4 V100
GPUs, training CoC-Small/4 would take
9 hours. As a comparison, it would take
11 hours for CoC-Small/25 and 14 hours for CoC-Small/49. The cost of computing increases linearly
with the complexity of the computations in our context cluster blocks.

More results for Detection. We also conduct more results for object detection and instance segmen-
tation task. Besides the experiments reported in Table 4, we also conduct experiments based on the
pre-trained CoC-Medium. Results are reported in Table 8. In line with CoC-Small, CoC-Medium
shows comparable performance as in ResNet50 and PVT-Small.

15



Published as a conference paper at ICLR 2023

Table 8: COCO object detection and instance segmentation results using Mask-RCNN (1×).

Family Backbone Params APbox APbox
50 APbox

75 APmask APmask
50 APmask

75
Conv. ♠ ResNet-50 44.2M 38.0 58.6 41.4 34.4 55.1 36.7
Atten q PVT-Small 44.1M 40.4 62.9 43.8 37.8 60.1 40.3
Cluster r CoC-Medium/4 42.1M 38.6 61.1 41.5 36.1 58.2 38.0
Cluster r CoC-Medium/25 42.1M 40.1 62.8 43.6 37.4 59.9 40.0
Cluster r CoC-Medium/49 42.1M 40.6 63.3 43.9 37.6 60.1 39.9

St
ag

e 
3

St
ag

e 
4

Figure 6: We visualize the clustering maps of all heads in the last block of stage3 and stage4 in our
Context Cluster-Medium. While context cluster operation shows a preference for the locality as we
expected, we notice that it also favors vertical or horizontal directions.

Clustering map of all heads. To have a better understanding of our context clustering operation,
we show the clustering maps of all heads in the last block of stage3 and stage4 in our Context
Cluster-Medium. As we expected, results in Fig. 6 indicate that our method is able to cluster
semantically similar contexts together and exhibits decent locality. An interesting observation is that
the context cluster operation also tends to cluster contexts along vertical or horizontal directions.
Similar phenomena can also be observed in other images and model variants.

Table 9: Ablation study on region partition operation. Based on CoC-Tiny, we eliminated all region
partition operations. To make the model trainable, the cluster numbers were changed to 16 in the first
two stages and to 4 in the last two stages. We train models on 8×A100 GPUs with a batch size of 32
on each GPU, and report the training memory demand of one GPU. We test our model on one GPU.

Model Partition? Parameters FLOPs Infer. Memory Train Memory Top-1

CoC-Tiny ✓ 5.3M 1.0G 1.58G 23.39G 71.8%
✗ 5.3M 1.0G 2.19G 34.76G 72.7%

Ablation on region partition operation. While sacrificing the ability to model global interactions,
region partition would introduce useful inductive biases like locality. We remove all CoC-Tiny region
partition operations to see where the performance is coming from and report the results in Table 9.
Experimental results indicate that without the region partition operation, the performance increased
by 0.9% on ImageNet, indicating the effectiveness of our Context Cluster methodology. However, the
training time and the memory demands are significantly increased (as discussed in § 3.3). Despite the
fact that we agree that the region partition operation does introduce useful inductive bias, the results
show that global interaction is also constructive to the success of our Context Cluster (as well as in
other designs like ConvNets and ViTs).

Interestingly, we find that our Context Cluster even offers a meaningful clustering result in
the early stages without the restriction of locality from region partition, as shown in Fig. 7.

16



Published as a conference paper at ICLR 2023

Figure 7: The clustering results of the last context cluster block in the first CoC-Tiny stage (without
region partition). Without region partition, Our Context Cluster astonishingly displays "SuperPixel"-
like clustering results, even in the early stage. we pick the most intriguing one out of the four heads.

Input Stage 1 Stage 2 Stage 3 Stage 4

Figure 9: Clustering results of CoC-Tiny without region partition operations.

Input Clustering results in 4 heads (16 clusters)

Figure 8: A sample of all groups’ clustering results.

Also, by eliminating the limitation of lo-
cality, our Context Cluster presents more
promising clustering results, across all
stages, as shown in Fig. 9. This phe-
nomenon supports our motivation and in-
dicates gratifying interpretability (which
is not easy for convolution nor attention).
Right figure shows an example for the
clustering results of all four heads in the
first stage, different clustering patterns are learned (with some noises).

17



Published as a conference paper at ICLR 2023

(a) Discrete pixels (b) Masked image (c) Irregular image (d) RGB-D image

Figure 10: Four examples of image formats. Remember that there are no pixels in the white area.

In summary, these ablation studies on region partition operation indicate great potential of our
Context Cluster. It would be a fascinating challenge to figure out how to eliminate the region partition
operation without introducing prohibitive computation and memory requirements.

Ablation on iteratively updating centers. As mentioned in the discussion section, we simplified
the clustering algorithm for computational efficiency by fixing the centers without updating. We also
conduct a simple experiment to confirm the effectiveness of dynamic centers. By updating centers for
two times, we attain a 71.85% accuracy on ImageNet-1K based on CoC-Tiny (71.83%), showing
negligible improvements (0.02%).

D Generalization Outlook

The clustering algorithm is a general method not limited to a particular input format. Previously, we
validated the generalization ability of Context Cluster on both image and point clouds. Here, we
further outlook the generalization ability to different image formats as shown in Fig. 10.

We starts from the discussion on the discrete pixels. Because of the clustering algorithm, our Context
Cluster actually has a significant advantage over ConvNets and ViTs in processing discrete images.
In other words, our Context Cluster does not require an image pixel to be in a continuous space.
In detail, given an image consisting of discrete pixels, we extract features like regular images but
change the center proposal method. In our submission, we describe the center proposal method by
evenly proposing c centers in space, and the center feature is computed by averaging its k nearest
points (which can be easily implemented by pooling). For the discrete pixels, we can consider the
Farthest Point Sampling (FPS) method (Qi et al., 2017b) from point cloud processing. Notice that
our method is inspired by point cloud methods, and an image with discrete pixels is naturally a point
cloud set with RGB information. In addition to FPS, other discrete sampling techniques can also be
investigated to propose centers for discrete pixels, including random sampling, grid sampling, etc.

In addition to discrete pixels, our context cluster can also be used with a variety of additional image
formats. For masked images and irregular images, traditional ConvNets or ViTs require the image to
be filled with white pixels. Differently, by conceptualizing an image as a set of points, we escape
this step. We interpret masked or irregular images as discrete points and handle them as previously
described. Thanks to the clustering algorithm, our Context Cluster exhibits great generalization
ability to various image formats.

18


	Introduction
	Related Work
	Method
	Context Clusters Pipeline
	Context Cluster Operation
	Architecture Initialization
	Discussion

	Experiments
	Image Classification on ImageNet-1K
	Visualization of Clustering
	3D Point Cloud Classification on ScanObjectNN
	Object Detection and Instance Segmentation on MS-COCO
	Semantic Segmentation on ADE20K

	Conclusion
	Model Configurations
	Detail Explanations
	More Experiments
	Generalization Outlook

