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Abstract

We introduce a family of stochastic interventions for discrete treatments that gen-
eralizes incremental propensity score interventions and bridges causal modeling
with cost-sensitive domains. The formulation consists of a cost-penalized infor-
mation projection problem of the independent product of the organic propensity
and a user-specified target, yielding closed-form couplings. The induced marginals
represent modified stochastic interventions and move smoothly, via a single tilt
parameter, from the status quo or from the target distribution toward a product-
of-experts limit when all destination costs are strictly positive. For inference, we
derive efficient influence functions of their expected outcomes under a nonparamet-
ric model and construct one-step estimators with uniform confidence bands that
exhibit stable performance and improved robustness relative to plug-in baselines.
This framework can operationalizes graded scientific hypotheses under realistic
constraints. Because the tilt is continuous, the costs and targets are modular, and
expert-informed targets can integrate naturally with data-driven propensities, ana-
lysts can sweep feasible policy spaces, prototype candidates, and prioritize scarce
experimental resources before committing them. This can help close the loop
between observational evidence and resource-aware experimental design.

1 Introduction

From agricultural field trials to modern biomedicine, science advances by posing causal and coun-
terfactual questions such as what would happen under a different action, policy, treatment dose,
or regimen?, and then intervening in the system to gather evidence and test such queries [1, 2, 3].
Randomized controlled experiments are considered the scientific gold standard for isolating causal
effects, but real-world constraints; including ethical, logistical, and economic considerations; of-
ten make deterministic population-wide interventions infeasible [4, 5, 6]. For some domains, two
implications can follow: (i) experimental interventions may be impractical altogether, requiring
inference from observational data, and (ii) hard interventions, in particular, may be unrealistic or lead
to unstable inference, making soft / stochastic interventions a compelling analytical alternative. In
such settings, studying stochastic interventions with observational data can become an engine for
hypothesis generation and policy prototyping, provided the relevant causal queries are identifiable
and can be estimated efficiently.

Stochastic interventions offer a practical alternative by allowing surgical modifications in treatment
assignment rules using probabilistic or functional shifts [7]. Among them, incremental propensity
score interventions (IPI) [8] represent a particularly useful subclass: by tilting the propensity score
via a single tuning parameter, they generate a continuum of actions that interpolate between a non-
intervention and a hard policy, without the stringent positivity requirements typically needed for the
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latter [9]. Standard IPIs, however, ignore heterogeneous treatment costs and, by design, interpolate
only toward a hard target. In many policy settings, planners instead have a structured soft target
in mind. For example, logistical constraints may call for allocating treatment 1 to 80% of units,
treatment 2 to 10%, and no treatment to the remaining 10%. Because treatment options can carry
different costs, planners also seek to keep the overall deployment costs low.

Contributions. We introduce a formulation that yields two families of stochastic interventions
governed by a single tilt parameter. The first family smoothly interpolates from a non-intervention
to the product of experts (PoE) blend of the observed propensity score and a pre-specified target
distribution; the second interpolates from the target distribution to the PoE. Such PoE limit arises
when all treatment options carry strictly positive costs; if some actions are costless, the limiting
behavior depends on the zero-cost set. These cost-aware interpolations are related to solutions to a
cost-penalized I-projection problem. The first family directly generalizes IPIs and, as with them, does
not require the positivity conditions demanded by hard interventions. Under standard identification
assumptions for observational data, we derive efficient influence functions, under a nonparametric
model, for the expected outcome after these interventions, develop doubly robust one-step estimators,
and construct asymptotically valid confidence bands. We demonstrate consistent performance gains
over naïve plug-in estimators in controlled simulations.

2 Preliminaries

Let A ∈ A be a discrete point-exposure variable, Y ∈ R a continuous outcome variable, W ∈ W
a vector of covariates, and π(a |w) := P(A = a |W = w) the propensity score of treatment
option a ∈ A. Potential outcomes Y a encode unit-level counterfactuals after a hard intervention
do(A = a) [2]. Under counterfactual consistency, positivity π(a |w) ∈ (0, 1),∀w ∈ W , and
conditional ignorability / backdoor admissibility of W , one can identify the expected outcome after
intervention do(A = a) from observational data via the g-computation / backdoor formula, as
E [Y a] = E [Y | do(A = a)] = E {Q(W,a)}, with Q(w, a) = E[Y |W = w,A = a].

For a binary exposure, i.e. A = {0, 1}, an IPI tilts the propensity score π(1 |w) to be:

π̃δ(1 |w) :=
eδπ(1 |w)

eδπ(1 |w) + π(0 |w)
, with δ ∈ R. (1)

The value δ = 0 corresponds to a non-intervention, while δ → ∞ (resp. δ → −∞) pushes toward
the hard intervention do(A = 1) (resp. do(A = 0)) [8]. Under conditional ignorability / backdoor
admissibility, the expected outcome under such stochastic intervention remains identifiable without
the positivity condition [8, 9], and it is given by:

E[Y π̃δ ] = E
〈
π̃δ(· |W ), Q(W, ·)

〉
, (2)

where the inner product ⟨·, ·⟩ is taken over A.

3 Cost-penalized I-projection and tilted marginals

Given two input probability measures π (source) and ν (target) over the set A, a cost function on pairs
c : A2→ [0,∞), and a tuning parameter δ > 0, we define the cost-penalized I-projection (CPIP) of
the independent product π ⊗ ν as the joint distribution γ ∈ M1

+(A2) (in the class of distributions
over the Cartesian product A2) that solves:

inf
γ∈M1

+(A2)
DKL(γ |π ⊗ ν) + δ Eγ [c(A1, A2)] . (3)

This formulation is closely related to unconstrained, relaxed, and limiting-case variants of entropic
optimal transport and Schrödinger bridge problems [10, 11, 12, 13]. Yet, while entropic optimal
transport problems typically require iterative solvers such as Sinkhorn’s algorithm, the CPIP problem
admits a closed-form solution thanks to the strong convexity and smoothness of its objective. Its
unique minimizer is given by the Boltzmann–Gibbs kernel:

γ∗
δ (a

′, a′′) ∝ π(a′) ν(a′′) e−δc(a′,a′′). (4)
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3.1 Tilted marginal distributions with treatment-specific costs

Remark 1. Let A ∈ A = {α1, . . . , αK} be a categorical exposure with K > 1 treatment options,
and ν be any valid probability distribution over A. Let the reallocation cost from A = αj to
A = αk ̸= αj be a value that is specific for the received treatment αk and constant over profiles W ,
i.e., c(αj , αk) = c(αk) I(αj ̸= αk), with 0 ≤ c(a) < ∞ for all a ∈ A. Then, for each w ∈ W , the
marginals of the CPIP solution with source π(· |w) and target ν are:

π∗
δ (a |w) :=

(ζδ + ξδ(a))π(a |w)∑
a′∈A(ζδ + ξδ(a′))π(a′ |w)

and ν∗
δ (a |w) :=

ν(a)− ξδ(a)(1− π(a |w))∑
a′∈A(ζδ + ξδ(a′))π(a′ |w)

, (5)

where ξδ(a) := ν(a)
(
1− e−δc(a)

)
and ζδ :=

∑
a′∈A ν(a′) e−δc(a′).

We call π∗
δ and ν∗δ the tilted source / target marginal distributions.

Remark 2. When K = 2, the target ν is set to be the hard policy of giving treatment to everyone,
i.e. ν(a) = I{a = 1}, and the cost structure is the Hamming cost, c(a′, a′′) = I(a′ ̸= a′′), the tilted
source π∗

δ reduces to an IPI with tilt parameter δ.

We provide proofs of these remarks in the technical appendix A. Figure 1 presents the tilted marginal
distributions for a binary exposure under varying configurations of the tilt parameter δ, cost functions
c, and target distribution ν.

Note that at δ = 0 and for all a ∈ A, w ∈ W , one gets π∗
0(a |w) = π(a |w), a non-intervention, and

ν∗0 (a |w) = ν(a), a target intervention. In other words, setting δ = 0 results in no modification of
the input distributions. Furthermore, denote A0 = {a ∈ A : c(a) = 0}, A+ = {a ∈ A : c(a) > 0},
ν†(a) := ν(a) I(a ∈ A+) +

∑
a∈A0

ν(a) and π†(a | w) := π(a | w) + (1 − π(a | w))I(a ∈ A0).
Then, in the limit δ → ∞, one obtains:

π∗
∞(a |w) :=

π(a |w) ν†(a)∑
a′∈A π(a′ |w) ν†(a′)

and ν∗
∞(a |w) :=

π†(a |w) ν(a)∑
a′∈A π†(a′ |w) ν(a′)

. (6)

When all treatment costs are positive, both reduce to the product of experts (PoE) distribution
PoE(a) ∝ π(a |w) ν(a) [14].

The CPIP objective is strictly convex and well-posed for δ > 0, yielding a unique solution. Inter-
estingly, for δ < 0, the joint distribution γ∗

δ in (4) is not the optimizer of the CPIP program, but it
yields smooth and closed-form parametric extensions of π∗

δ and ν∗δ , provided the cost is bounded and
the action set A is finite. In this regime, the induced tilted marginals act as extrapolations that shift
mass toward higher-cost and repulsive pairings. For continuous settings with lower unbounded costs,
additional integrability conditions are needed for δ < 0 to remain well-posed.

Since covariate set W is assumed to fulfill the backdoor criterion, the expected outcomes under the
stochastic interventions π∗

δ and ν∗δ are identified from observational data [7, 15], and given by:

E[Y π∗
δ ] ≡ µS

δ = E ⟨π∗
δ (· |W ), Q(W, ·)⟩ and E[Y ν∗

δ ] ≡ µT
δ = E ⟨ν∗

δ (· |W ), Q(W, ·)⟩ . (7)

Notably, while the identification of µT
δ requires the usual positivity / overlap condition, i.e.

ess supa∈A ν∗δ (a |W )/π(a |W ) < ∞ (PW -almost surely), the expected outcome under the tilted
source, µS

δ , as a generalization of IPIs preserving the support of the organic law, does not impose
any additional positivity beyond the stability condition E

∑
a∈A[π

∗
δ (a |W )/π(a |W )]2 < ∞, also

needed for the former.

4 Estimators and inference

Plug-in estimators for µS
δ and µT

δ can be readily obtained by estimating π and Q, modifying the
former via transformations in equations (5), substituting them into the inner product expressions in
equations (7), and averaging over IID samples. Building upon foundational work in doubly robust
estimation of classical causal effects [16, 17, 18, 19, 20, 21], we also present estimators grounded
in semiparametric theory that incorporate data-adaptive statistical methods while achieving optimal
asymptotic performance under flexible and realistic assumptions about the data-generating process
(DGP) [22]. These Newton–Raphson one-step corrected estimators ensure consistency even under
partial misspecification of some nuisance components [23], and leverage the efficient influence
function (EIF) of the smooth functional of the distribution that defines the parameter of interest [24].
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Figure 1: Tilted source distribution π∗
δ (left) and tilted target distribution ν∗

δ (right) for a binary exposure at
W = w, shown as pointwise transformation of the propensity score π(1 |w), for cases δ = 1.0 and δ = 2.5.
Line color indicates the target configuration: ν = (0, 1) (blue) and ν = (0.7, 0.3) (red). Line style denotes the
cost structure: c = (1, 1) (solid), c = (0, 2) (dashed). The first component is for A = 0 and second for A = 1.

Remark 3. Let Sδ[P ] denote the functional that evaluates expression EP [Y
π∗
δ ] at an arbitrary distri-

bution P . Similarly, let Tδ[P ] represent the corresponding P -functional from expression EP [Y
ν∗
δ ].

Let Oi = (Wi, Ai, Yi) denote a sample drawn from the true DGP P ∗. Under a nonparametric model,
suitable smoothness and regularity conditions, the uncentered EIF of Sδ[P ] at P ∗, evaluated at point
Oi, exists and given by:

DS
δ (Oi) =

π∗
δ (Ai |Wi)

π(Ai |Wi)

[
Yi −

∑
a∈A

π∗
δ (a |Wi)Q(Wi, a)

]
+

∑
a∈A

π∗
δ (a |Wi)Q(Wi, a). (8)

Analogously, the uncentered EIF of Tδ[P ] at P ∗, evaluated at point Oi, exists and is given by:

DT
δ (Oi) =

ν∗
δ (Ai |Wi)

π(Ai |Wi)
[Yi −Q(Wi, Ai)] +

[
2− π∗

δ (Ai |Wi)

π(Ai |Wi)

] ∑
a∈A

ν∗
δ (a |Wi)Q(Wi, a) (9)

+
π∗
δ (Ai |Wi)

π(Ai |Wi)
ϱδ(Ai)Q(Wi, Ai)−

∑
a∈A

π∗
δ (a |Wi) ϱδ(a)Q(Wi, a).

where ϱδ(a) :=
ξδ(a)

ζδ+ξδ(a)
. Derivation is provided in technical appendix A.

Observe that ϱ0(a) = 0 and π∗
0(a |w)/π(a |w) = 1 for all a ∈ A, w ∈ W . Hence, when δ = 0

and ν(a) = I(a = a′), we recover the standard uncentered EIF for the expected outcome of a hard
intervention do(A = a′), identified with E[Q(W,a′)] [17, 18].

Consequently, one-step estimators of the expected outcomes in expressions (7), along with asymptoti-
cal confidence intervals can be constructed as follows:

1. Split data into K folds. On each training fold k, fit π̂k and Q̂k with data-adaptive learners (ML).
2. For a grid G of δ-values, compute π̂∗

δ,k, ν̂
∗
δ,k via transformations (5).

3. Evaluate and average D̂S
δ,k, D̂

T
δ,k on held-out folds and units to form one-step estimates µ̂S

δ , µ̂
T
δ .

4. Uniform confidence bands: For each b ∈ {1, . . . , B}, draw {χ(b)
i }ni=1

iid∼ N(0, 1), compute

ζ(b) = supδ∈G

∣∣∣n−1/2
∑

i χ
(b)
i (D̂S

δ (Oi)− µ̂S
δ )/v̂ar

(
DS

δ (O)
)1/2∣∣∣, and save the 95% quantile

of {ζ(b)}Bb=1 for band construction around µ̂S
δ . Do the same for µ̂T

δ .
5. Compute final estimates and intervals:

µ̂S
δ ∓ zS

v̂ar
(
DS

δ (O)
)1/2

√
n

and µ̂T
δ ∓ zT

v̂ar
(
DT

δ (O)
)1/2

√
n

, (10)

where zS , zT equal 1.96 for a 95% pointwise Wald-type confidence interval at a fixed value of δ, or
correspond to the saved 95% quantile of the respective samples {ζ(b)}Bb=1 for uniform confidence
bands [25].

5 Empirical evaluation

We conducted an evaluation task for the proposed estimators using repeated simulations with synthetic
data. The employed DGP is adapted from Kang and Schafer [26] and Kennedy [8], with bespoke
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Table 1: Integrated bias (iBias) and root mean squared error (iRMSE) for the estimated expected outcome under
stochastic interventions π∗

δ and ν∗
δ . Results are averaged over 200 simulations and shown for two estimators

(plug-in and one-step), across three model specifications: (i) correctly specified, (ii) misspecified outcome
regression Q, and (iii) misspecified propensity score π; and under three combinations of cost c and target ν.

Setup 1: Setup 2: Setup 3:
c = (2.0, 1.0, 1.0) c = (1.0, 0.5, 2.0) c = (1.0, 1.0, 2.0)
ν = (0.4, 0.4, 0.2) ν = (0.5, 0.3, 0.2) ν = (0.0, 0.2, 0.8)

µ̂S
δ µ̂T

δ µ̂S
δ µ̂T

δ µ̂S
δ µ̂T

δ

Estim. Misspec. iBias iRMSE iBias iRMSE iBias iRMSE iBias iRMSE iBias iRMSE iBias iRMSE

plug-in – 0.40 2.36 3.03 5.69 0.21 2.20 3.43 5.66 1.20 3.04 9.46 11.82
plug-in Q 1.99 3.21 15.22 15.43 0.54 2.25 17.61 17.80 3.82 4.77 27.41 27.76
plug-in π 14.00 14.57 7.92 9.48 14.67 15.14 3.08 5.59 13.32 14.12 10.28 12.68
one-step – 0.02 2.20 0.57 8.44 0.02 2.14 0.38 7.38 0.04 2.40 0.75 8.86
one-step Q 0.03 2.20 0.35 13.89 0.02 2.14 0.50 11.24 0.06 2.39 0.49 16.07
one-step π 0.39 2.32 3.98 5.86 0.36 2.23 2.66 4.82 1.15 2.83 5.17 7.50

modifications to introduce a three-leveled categorical exposure and to increase the noise in the system,
thereby aligning the signal-to-noise ratio with amounts commonly observed in social science and
observational clinical data. The DGP is given in appendix B.

Table 1 presents the results across three setups, with varying costs and targets, with n = 1000 and
after 200 repetitions. We compare plug-in vs. one-step estimators for the expected outcome under
both stochastic policies π∗

δ and ν∗δ , based on the integrated bias (iBias) and integrated RMSE (iRMSE)
averaged over δ ∈ [−2, 2]. The one-step method dominates overall: under correct specification it
delivers near-zero bias and lower or comparable RMSE, especially for the tilted source intervention.
For the tilted target intervention, a more diffuse target ν trades small bias for a modest RMSE increase,
but the one-step estimator remains competitive. Under misspecification, gains are decisive: with a
misspecified outcome model Q̂, one-step maintains low iBias / iRMSE across all setups while plug-in
degrades sharply (most notably for the tilted target case); with a misspecified propensity π̂, one-step
still substantially reduces both metrics relative to plug-in, though performance drops more than in
the Q-misspecified case. Overall, the one-step correction consistently attenuates misspecification
sensitivity, yielding the most reliable performance.

6 Conclusion

This work introduces a cost-aware family of stochastic interventions for discrete treatments that
generalizes incremental propensity score interventions (IPI) and provides an explicit bridge between
causal modeling and domains with cost-sensitive interventions. By formulating a cost-penalized
I-projection (CPIP) of the independent product of organic and target distributions, we obtain closed-
form Boltzmann–Gibbs couplings whose induced marginals interpolate, via a single tilting parameter
δ, from the propensity scores or from the target intervention, respectively, toward a product-of-
experts (PoE) limit when all destination costs are strictly positive. On the inferential side, we
derive efficient influence functions (EIF), under a nonparametric model, for the expected outcomes
under these policies and construct one-step estimators that deliver stable performance and improved
misspecification robustness compared to plug-in baselines, with uniform bands over δ.

These policies can operationalize graded scientific hypotheses under realistic constraints. Because δ is
continuous and the costs c and targets ν are modular, analysts can sweep feasible spaces to prototype
and evaluate policies for prospective study (e.g., stepped-wedge trials), turning rich observational
registries into a pre-experimental policy prototyping engine. The explicit appearance of costs of
actions makes prioritization more transparent: planners can align candidate interventions with budgets
and logistical burdens, and quantify trade-offs before committing experimental resources. In clinical
and other applied settings, clinician-informed targets (e.g. favoring a low dose of medication) can
integrate naturally in this framework, ensuring that proposed policies reflect both expert priors and
empirical regularities. Taken together, these features could help close the loop between causal
identification and estimation from observational data and resource-aware experimental design when
hard interventions are impractical, as is common in social, economic and clinical sciences.
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A Technical appendix

A.1 Remark 1: tilted marginal distributions

Consider cost-penalized I-projection (CPIP) of the independent product of input distributions π and
ν over discrete sample space A, formulated as:

inf
γ∈M1

+(A2)

∑
a′,a′′∈A

c(a′, a′′) γ(a′, a′′) +
1

δ
DKL(γ |π ⊗ ν),

where δ > 0, M1
+(A2) denotes the set of probability measures over sample space A2, and c : A2 →

R is a nonnegative and integrable cost function. Owing to the strict convexity of the objective, the
unique minimizer satisfies the KKT conditions obtained from the Lagrangian:

L(γ, λ) =
∑

a′,a′′∈A

[
c(a′, a′′) +

1

δ
log

(
γ(a′, a′′)

π(a′) ν(a′′)

)]
γ(a′, a′′)− λ

 ∑
a′,a′′∈A

γ(a′, a′′)− 1

 ,

which admits a unique closed-form solution. The first-order condition is given by:

dL
dγ(a′, a′′)

= c(a′, a′′) +
1

δ

[
log

(
γ(a′, a′′)

π(a′) ν(a′′)

)
+ 1

]
− λ = 0,

⇒ log

(
γ(a′, a′′)

π(a′) ν(a′′)

)
= δ[λ− c(a′, a′′)]− 1,

⇒ γ(a′, a′′) = π(a′) ν(a′′) e−δc(a′,a′′) eδλ−1 ∝ π(a′) ν(a′′) e−δc(a′,a′′).

Now suppose π ≡ π(· |w) is a conditional distribution, and the cost function c does not depend on
the covariate profile W = w. Then, for each profile w, the solution plan becomes:

γ∗(a′, a′′ |w) =
π(a′ |w) ν(a′′) e−δc(a′,a′′)∑

a′,a′′∈A π(a′ |w) ν(a′′) e−δc(a′,a′′)
.

The marginals of γ∗(a′, a′′ |w) are then straightforward to compute:

π∗
δ (a |w) =

π(a |w)
∑

a′′∈A ν(a′′) e−δc(a,a′′)∑
a′,a′′∈A π(a′ |w) ν(a′′) e−δc(a′,a′′)

and ν∗
δ (a |w) =

ν(a)
∑

a′∈A π(a′ |w) e−δc(a′,a)∑
a′,a′′∈A π(a′ |w) ν(a′′) e−δc(a′,a′′)

.

Let:

• A ∈ A = {α1, . . . , αK} be a categorical point-exposure variable with K treatment options,
• The target marginal ν be any valid probability distribution over A,
• The reallocation cost from A = αj to A = αk ̸= αj be a value that is specific for the received

treatment αk and constant over profiles W = w, i.e., c(αj , αk) = c(αk) I(αj ̸= αk), with
0 ≤ c(a) < ∞ for all a ∈ A.

7

https://doi.org/10.1093/biostatistics/kxz042
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08068
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08068


Then, the tilted source marginal of the CPIP solution with parameter δ corresponds to:

π∗
δ (a |w) =

π(a |w)
∑

a′′∈A ν(a′′) e−δc(a′′) I(a̸=a′′)∑
a′,a′′∈A π(a′ |w) ν(a′′) e−δc(a′′) I(a′ ̸=a′′)

=
π(a |w)

[
ν(a) +

∑
a′′ ̸=a ν(a

′′) e−δc(a′′)
]

∑
a′∈A π(a′ |w)

[
ν(a′) +

∑
a′′ ̸=a′ ν(a′′) e−δc(a′′)

] ,
=

π(a |w)
[
ν(a) +

∑
a′′∈A ν(a′′) e−δc(a′′) − ν(a) e−δc(a)

]
∑

a′∈A π(a′ |w)
[
ν(a′) +

∑
a′′∈A ν(a′′) e−δc(a′′) − ν(a′) e−δc(a′)

] =
π(a |w) (ζδ + ξδ(a))∑

a′∈A π(a′ |w) (ζδ + ξδ(a′))
,

where ξδ(a) := ν(a)
(
1− e−δc(a)

)
and ζδ :=

∑
a′∈A ν(a′) e−δc(a′).

Similarly, the tilted target marginal of the CPIP solution with parameter δ corresponds to:

ν∗
δ (a |w) =

ν(a)
∑

a′∈A π(a′ |w) e−δc(a) I(a′ ̸=a)∑
a′,a′′∈A π(a′ |w) ν(a′′) e−δc(a′′) I(a′ ̸=a′′)

=
ν(a)

[
π(a |w) +

∑
a′ ̸=a π(a

′ |w) e−δc(a)
]

∑
a′∈A π(a′ |w)

[
ν(a′) +

∑
a′′ ̸=a′ ν(a′′) e−δc(a′′)

] ,
=

ν(a)
[
π(a |w) + e−δc(a)(1− π(a |w))

]
∑

a′∈A π(a′ |w)
[
ν(a′) +

∑
a′′∈A ν(a′′) e−δc(a′′) − ν(a′) e−δc(a′)

] ,
=

ν(a)
[
1− (1− e−δc(a))(1− π(a |w))

]
∑

a′∈A π(a′ |w) (ζδ + ξδ(a′))
=

ν(a)− ξδ(a)(1− π(a |w))∑
a′∈A π(a′ |w) (ζδ + ξδ(a′))

.

A.2 Remark 2: IPIs as a special case

Let A ∈ {0, 1} be a binary point-exposure. Let the target marginal ν be the degenerate distribution
that always assigns treatment, ν(a) = I(a = 1), and let c(a′, a′′) = I(a′ ̸= a′′) be the Hamming
cost. Then, the tilted source marginal of the CPIP solution with regularization parameter δ is:

π∗
δ (a |w) =

π(a |w)
∑

a′′∈A I(a′′ = 1) e−δI(a̸=a′′)∑
a′,a′′∈A π(a′ |w) I(a′′ = 1) e−δI(a′ ̸=a′′)

=
π(a |w) e−δI(a̸=1)∑

a′∈A π(a′ |w) e−δI(a′ ̸=1)
,

⇒ π∗
δ (1 |w) =

π(1 |w) e−δ·0

π(1 |w) e−δ·0 + π(0 |w) e−δ·1 =
π(1 |w) eδ

π(1 |w) eδ + π(0 |w)
,

which coincides with an IPI with tilt parameter δ, and thus π∗
δ (1 |w) = π̃δ(1 |w) for all w ∈ W .

A.3 Remark 3

Let ν and c be given, Q(W,A) = E[Y |W,A], and:

Sδ[P ] ≡ µS
δ = E ⟨π∗

δ (· |W ), Q(W, ·)⟩ =
∑
a∈A

E [π∗
δ (a |W )Q(W,a)] ,

Tδ[P ] ≡ µs
δ = E ⟨ν∗

δ (· |W ), Q(W, ·)⟩ =
∑
a∈A

E [ν∗
δ (a |W )Q(W,a)] ,

Consider parametric submodel Pϵ ∈ P indexed by a small fluctuation parameter ϵ ∈ R, and a point-
mass contamination Oi = (Wi, Ai, Yi) ∼ P ∗, such that, Pϵ(O) = ϵ I(O = Oi) + (1 − ϵ)P ∗(O),
where P ∗ ∈ P is the true DGP distribution. Under some technical conditions involving (i) fully
nonparametric or saturated model P, (ii) smoothness for the paths within the model, and (iii)
boundedness of the outcome mean, the Gâteaux derivative and their variances, one has that Sδ[P ]
and Tδ[P ] are pathwise differentiable at P ∗.

The uncentered efficient influence function (EIF) of Sδ[P ] at P ∗ evaluated at Oi is given by
DS

δ (Oi) :=
dSδ[Pϵ]

dϵ

∣∣
ϵ=0

+ Sδ[P
∗], and can be computed using the using the chain rule and gradient

algebra for the Gâteaux derivative, as follows:

DS
δ (Oi) =

∑
a∈A

1

Zδ(Wi)2
[
Zδ(Wi)

(
sδ(Wi, a)Q

′(Oi, a) + s′δ(Wi, a)Q(Wi, a)
)

−sδ(Wi, a)Q(Wi, a)Z
′
δ(Oi)

]
,

=
∑
a∈A

{
sδ(Wi, a)Q

′(Oi, a)

Zδ(Wi)
+

s′δ(Wi, a)Q(Wi, a)

Zδ(Wi)
− sδ(Wi, a)Q(Wi, a)Z

′
δ(Oi)

Zδ(Wi)2

}
,
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Q′(Oi, a) =
I(a = Ai)

π(a |Wi)
[Yi −Q(Wi, a)] +Q(Wi, a),

sδ(Wi, a) = (ζδ + ξδ(a))π(a |Wi), s′δ(Wi, a) = (ζδ + ξδ(a)) I(a = Ai)− sδ(Wi, a),

Zδ(Wi) =
∑
a′∈A

(
ζδ + ξδ(a

′)
)
π(a′ |Wi), Z′

δ(Oi) = (ζδ + ξδ(Ai))− Zδ(Wi).

These expressions satisfy the following equivalences:
sδ(Wi, a

′)/Zδ(Wi) = π∗
δ (a

′ |Wi) and (ζδ + ξδ(a
′))/Zδ(Wi) = π∗

δ (a
′ |Wi)/π(a

′ |Wi).

Therefore,
DS

δ (Oi) =
∑
a∈A

{
π∗
δ (a |Wi)

[
I(a = Ai)

π(a |Wi)
[Yi −Q(Wi, a)] +Q(Wi, a)

]
+

[
π∗
δ (a |Wi)

I(a = Ai)

π(a |Wi)
− π∗

δ (a |Wi)

]
Q(Wi, a)− π∗

δ (a |Wi)Q(Wi, a)

[
π∗
δ (Ai |Wi)

π(Ai |Wi)
− 1

]}
,

=
π∗
δ (Ai |Wi)

π(Ai |Wi)
[Yi −Q(Wi, Ai)] +

∑
a∈A

π∗
δ (a |Wi)Q(Wi, a) +

π∗
δ (Ai |Wi)

π(Ai |Wi)
Q(Wi, Ai)

− π∗
δ (Ai |Wi)

π(Ai |Wi)

∑
a∈A

π∗
δ (a |Wi)Q(Wi, a),

=
π∗
δ (Ai |Wi)

π(Ai |Wi)

[
Yi −

∑
a∈A

π∗
δ (a |Wi)Q(Wi, a)

]
︸ ︷︷ ︸

D
S,1
δ

(Oi)

+
∑
a∈A

π∗
δ (a |Wi)Q(Wi, a)︸ ︷︷ ︸

D
S,2
δ

(Oi)

.

Analogously, the uncentered EIF of Tδ[P ] at P ∗ evaluated at point Oi is given by DT
δ (Oi) :=

dTδ[Pϵ]
dϵ

∣∣
ϵ=0

+ Tδ[P ∗], and can be computed as:

DS
δ (Oi) =

∑
a∈A

{
tδ(Wi, a)Q

′(Oi, a)

Zδ(Wi)
+

t′δ(Wi, a)Q(Wi, a)

Zδ(Wi)
− tδ(Wi, a)Q(Wi, a)Z

′
δ(Oi)

Zδ(Wi)2

}
,

where tδ(Wi, a) = ν(a)− ξδ(a)(1− π(a |Wi)) and t′δ(Wi, a) = ξδ(a) [I(a = Ai)− π(a |Wi)].

These expressions satisfy the following equivalences:
tδ(Wi, a

′)/Zδ(Wi) = ν∗
δ (a

′ |Wi),

ξδ(a
′)/Zδ(Wi) = ϱδ(a

′)π∗
δ (a

′ |Wi)/π(a
′ |Wi), with

ϱδ(a
′) = ξδ(a

′)/(ζδ + ξδ(a
′)).

Therefore,

DT
δ (Oi) =

∑
a∈A

{
ν∗
δ (a |Wi)

[
I(a = Ai)

π(a |Wi)
[Yi −Q(Wi, a)] +Q(Wi, a)

]
+

[
ϱδ(a)π

∗
δ (a |Wi)

I(a = Ai)

π(a |Wi)
− ϱδ(a)π

∗
δ (a |Wi)

]
Q(Wi, a)− ν∗

δ (a |Wi)Q(Wi, a)

[
π∗
δ (Ai |Wi)

π(Ai |Wi)
− 1

]}
,

=
ν∗
δ (Ai |Wi)

π(Ai |Wi)
[Yi −Q(Wi, Ai)] + 2

∑
a∈A

ν∗
δ (a |Wi)Q(Wi, a) +

π∗
δ (Ai |Wi)

π(Ai |Wi)
ϱδ(Ai)Q(Wi, Ai)

−
∑
a∈A

π∗
δ (a |Wi) ϱδ(a)Q(Wi, a)−

π∗
δ (Ai |Wi)

π(Ai |Wi)

∑
a∈A

ν∗
δ (a |Wi)Q(Wi, a),

=
ν∗
δ (Ai |Wi)

π(Ai |Wi)
[Yi −Q(Wi, Ai)]︸ ︷︷ ︸

D
T,1
δ

(Oi)

+

[
2− π∗

δ (Ai |Wi)

π(Ai |Wi)

] ∑
a∈A

ν∗
δ (a |Wi)Q(Wi, a)︸ ︷︷ ︸

D
T,2
δ

(Oi)

+
π∗
δ (Ai |Wi)

π(Ai |Wi)
ϱδ(Ai)Q(Wi, Ai)−

∑
a∈A

π∗
δ (a |Wi) ϱδ(a)Q(Wi, a)︸ ︷︷ ︸

D
T,3
δ

(Oi)

.
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B Empirical evaluation details

The data-generating process (DGP) used in the evaluation task with synthetic data is given by:

W
iid∼ N (⃗0, I4),

η′(W ) = exp(−2W1 +W2 − 0.5W3 − 0.25W4),

η′′(W ) = exp(−W1 + 0.25W2 + 2W3 + 0.5W4),

π(αk |W ) = ηk(W )/
[
η′(W ) + η′′(W ) + 1

]
, k ∈ {1, 2},

A |W iid∼ Cat3
(
π(α′ |W ), π(α′′ |W ), 1− π(α′ |W )− π(α′′ |W )

)
,

q(W ) = 2W1 +W2 +W3 +W4,

Q(W,A) =


10− 8.7 q(W ) if A = a′

40 + 17.4 q(W ) if A = a′′

50 + 26.1 q(W ) if A = a3

,

Y = Q(W,A) + ε, where ε
iid∼ N(0, 50).

For the exposure model class, we use multinomial logistic regression with a linear predictor, and for
the outcome we employ multivariate adaptive regression splines (MARS) with extra linear predictors
W . These model classes are correctly specified in the sense that they contain the true propensity score
π and outcome regression function Q, respectively. Following the approach of Kang and Schafer
[26], we introduce ad hoc misspecification in π and Q by using the same model classes but replacing
the original covariates W ∈ R4 with a nonlinear transformation Z(W ) ∈ R3, which also constitutes
a valid adjustment set, defined as:

Z1 = 10 +W2/(1 + exp(W1)),

Z2 = (0.6 +W1W3/25)
3,

Z3 = (W2 +W4 + 20)2.
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