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ABSTRACT

Modern Question Answering (QA) and Reasoning approaches based on Large
Language Models (LLMs) commonly use prompting techniques, such as Chain-
of-Thought (CoT), assuming the resulting generation will have a more granular
exploration and reasoning over the question space and scope. However, such
methods struggle with generating outputs that are faithful to the intermediate
chain of reasoning produced by the model. On the other end of the spectrum,
neuro-symbolic methods such as Faithful CoT (F-CoT) and Logic-LM propose to
combine LLMs with external symbolic solvers. While such approaches boast a
high degree of faithfulness, they usually require a model trained for code genera-
tion and struggle with tasks that are ambiguous or hard to formalise strictly. We
introduce Faithful Logic-Aided Reasoning and Exploration (FLARE), a novel in-
terpretable approach for traversing the problem space using task decompositions.
We use the LLM to plan a solution, formalise the query into facts and predicates,
which form the problem space, using a logic programming code and simulate that
code execution using an exhaustive multi-hop search over the defined space. Our
method allows us to compute the faithfulness of the reasoning process w.r.t. the
generated code and explicitly trace the steps of the multi-hop search without rely-
ing on external solvers. Our methods achieve SOTA results on 7 out of 9 diverse
reasoning benchmarks. We also show that model faithfulness positively correlates
with overall performance and further demonstrate that FLARE allows pinpointing
the decisive factors sufficient for and leading to the correct answer with optimal
reasoning during the multi-hop search. Our findings reveal that successful traces
exhibit, on average, a 18.1% increase in unique emergent facts, a 8.6% higher
overlap between code-defined and execution-trace relations, and a 3.6% reduction
in unused code relations.

1 INTRODUCTION

Complex Reasoning in natural Question Answering (QA) tasks assumes the capability to explore
the problem space of the designated query with a formalised set of facts, relations, commonsense
knowledge and logical implications. In line with this, LLMs have been enhanced with CoT (Wei
et al., 2022) prompting, which supplements the QA process by generating intermediate reasoning
chains given a set of in-context examples (Brown et al., 2020a), as shown in Figure 1. This allowed
for advancement in commonsense (Madaan et al., 2022), symbolic (Wang et al., 2022; Sprague
et al., 2024) and mathematical (Jie et al., 2023) reasoning. Although CoT allows for a problem ex-
ploration in natural language steps, such an approach has been shown to cause performance degrada-
tion for reasoning tasks involving multi-step planning (Valmeekam et al., 2022; Suzgun et al., 2023),
problem exploration (Yao et al., 2022), and arithmetic tasks (Hendrycks et al., 2021b; Madaan &
Yazdanbakhsh, 2022b). These discrepancies arise as CoT suffers from a limited ability to decom-
pose, search, verify and backtrack using intermediate rationale chains (Yao et al., 2022), cascading
hallucinations and errors (Ling et al., 2023) and that natural language might not be an optimal rep-
resentation for describing the reasoning process (Li et al., 2024). Simultaneously, LLM output has
been shown to be unfaithful and inconsistent w.r.t. the intermediate CoT rationale (Jacovi et al.,
2024; Lanham et al., 2023b; Turpin et al., 2023).

To mitigate the problem of CoT faithfulness and allow for more robust reasoning during QA, Lyu
et al. (2023, Faithful CoT) and Logic-LM (Pan et al., 2023) suggested generating code which is
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FLARE

 [Search -> Answer]

 [Path 1] 
{'Result': 'yes'}

Plan 
Explanation

Aloe vera is a plant known for its medicinal
and cosmetic properties... 

Analysis

To address this question, it's essential to
understand the properties and uses of aloe
vera...

Simulation of  Code Execution 

Backtracking

Redo: product(petroleum_derived, Candidate
Variable_2)

 [Path 2]:
   11: Searching: product(petroleum_derived, _) ...

Search Results

Search: query | {'Result': 'yes'}

Multi-hop Logic Based Traversal

[Path 1]: 1: Call: query
  2: Call: combined(aloe_vera, petroleum_derived)
 3:Call: plant(aloe_vera,Candidate_0,Candidate_1)
 4: Search: plant(aloe_vera, medicinal, cosmetic)...

Plan for Answering

Define Key Concepts:
- Define Aloe Vera: Clarify the properties
and uses of aloe vera, including its
medicinal and cosmetic

Code 
Facts 

plant(aloe_vera, medicinal, cosmetic). 
product(petroleum_derived, industrial).
ingredient(emulsifier, oil, water).

Search Goal/Strategy 

query :- combined(aloe_vera,
petroleum_derived).

Relations 

combined(aloe_vera, petroleum_derived) :- 
plant(aloe_vera, _, _) , 
product(petroleum_derived, _) , 
ingredient(emulsifier, _, _).

Measurable
Faithfulness

Explainable
Exploration 

Search with
Backtracking 

LLM only
Reasoning 

Question: Do all parts of the aloe vera plant taste good?

Figure 1: A depiction of the plan, code and simulated search in FLARE. Each module is generated
separately and iteratively, allowing us to obtain the final answer. The green and yellow highlighted
text shows the overlap between the facts and the relations between the code and the simulated search.

further executed using an external symbolic solver. Producing and executing code enables the gen-
eration of outputs guided by external solvers, leveraging search with backtracking to explore the
problem space effectively. However, strict translations of natural language queries into code, such as
autoformalisation (Szegedy, 2020; Wang et al., 2018), is a non-trivial task involving direct inference
of implicit commonsense and domain-specific knowledge and the ability to align abstract and infor-
mal concepts directly to constrained formal definitions for further execution (Wu et al., 2022). An
example query, “Do all parts of the aloe vera plant taste good?”, is challenging to formalize or ad-
dress with a strict algorithmic solution, as it requires interpretative, deductive and context-dependent
reasoning, referred to as soft or fuzzy reasoning. Using external solvers makes such fuzzy reasoning
impossible and requires consistently generating syntactically correct executable code. While some
LLMs have coding capabilities stemming from their pretraining (Jiang et al., 2024; Aryabumi et al.,
2024), relative code consistency is more probable with models explicitly trained for coding (Chen
et al., 2021).

To overcome these problems, we propose Faithful Logic-Aided Reasoning and Exploration
(FLARE), an interpretable method that allows for planning, fuzzy reasoning, and traversing the
problem space with backtracking, exact task decomposition, and measuring faithfulness. In FLARE,
given a natural language query, we prompt an LLM to sequentially generate a plan that includes an
analysis and the logical steps necessary for formalising and answering the question, a logic program-
ming (Wielemaker et al., 2012) code that allows formalising the query into a set of facts, relations
and their composition forming the space for exploring that query and the search, which is an LLM-
generated code execution simulation. An illustration of FLARE can be seen in Figure 1. In our
framework, the generated code must not be consistently executable by an external solver, allowing
for the soft-formalisation of natural language. Although we see that even generalist LLMs are able
to produce executable code in ≥ 50% of cases. FLARE allows us to measure the faithfulness of
the outcome w.r.t. the simulated code execution by directly comparing the search paths produced
by the external solver to that LLM generation. This comparison also allows for pinpointing model
hallucinations and inconsistencies. We systematically study the effectiveness of our method using 4
general-purpose LLMs of varying scales across 9 diverse QA and 3 logical inference benchmarks,
covering Math World Problems, Multi-hop QA, Relation inference, deductive and analytical reason-
ing and show that our method achieves state-of-the-art results in 7 out of 9 QA datasets and 2 out
of 3 logic datasets in comparison to CoT, F-CoT and Logic-LM. We also show that the method is
competitive for models tuned for coding, with an average overall increase of 16% over F-Cot and
9% over CoT. Our findings show that model accuracy strongly correlates with the faithfulness of
the reasoning process towards search traces from the simulated code execution. We also provide ab-
lations showing that the model can interpretably pinpoint hallucinations, underutilized knowledge,
and the limitations of the search over the problem space. Our key contributions are the following:

• We introduce FLARE a novel paradigm for logic-aided and interpretable formalisation and search
over the problem space in QA and logic reasoning tasks.
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• We perform a systematic evaluation across 9 QA and 3 logical inference benchmarks and 4 models
of varying scales, showing the advantages of using FLARE for QA in a few-shot setup over prior
approaches.

• The modularity of FLARE allows defining a simple ingrained method for measuring model faith-
fulness, which is further shown to be strongly correlated with performance.

• We further show that using FLARE allows us to interpretably and rigorously detect hallucinations
along with sub-optimal and inconsistent reasoning patterns.

2 RELATED WORK

Reasoning in Natural Language Few-shot prompting (Brown et al., 2020b) has been shown to
be an effective approach for increasing the reasoning capabilities of LLMs in natural language gen-
eration (Gehrmann et al., 2021; Reif et al., 2022; Sanh et al., 2022). LLM reasoning can be further
enhanced with prompting techniques such as CoT (Wei et al., 2022), which attempts to segment
reasoning into explicitly written intermediate steps. Concurrent work has also proposed that models
“think step by step” (Kojima et al., 2022), or divide the problem into subtasks before the solu-
tion (Zhou et al., 2023, Least-to-Most). These approaches have been shown to suffer from arith-
metic inaccuracies (Lewkowycz et al., 2022; Hendrycks et al., 2021a) and reasoning inconsistencies
(Madaan & Yazdanbakhsh, 2022a). Further attempts have been made to add a planning stage before
reasoning by dividing the process into recursive plan formulation and execution steps (Yao et al.,
2023b; Wang et al., 2023a). The plan generation step in FLARE is a hybrid technique inspired by
these methods but focused on generating a natural language strategy for formalising the query into
code.

Reasoning with Search Several lines of work propose using techniques to expand the reasoning
paths over the problem space. Self-consistency decoding (Wang et al., 2023b) is an approach used
to sample many natural language reasoning paths and take a majority vote for an answer. Another
popular approach is Tree-of-Thoughts (ToT; Yao et al., 2023a), which proposes to explore the query
with reasoning similar to a tree traversal, where each state is created and evaluated using an LLM.
Similar techniques try to adapt symbolic search approaches akin to DFS, BFS (Besta et al., 2024),
A∗ (Lehnert et al., 2024) or other combinations (Gandhi et al., 2024) with direct tuning (Lehnert
et al., 2024), imitation training (Yang et al., 2022) or few-shot prompting (Zhang et al., 2024). It
must be noted that all of these techniques have only been tested in constrained mathematical puzzle-
solving and algorithmic domains like the 24 Game (Yang et al., 2022), Countdown (Wikipedia,
2024), Sorting (Besta et al., 2024), maze solving (Yang et al., 2022), Sokoban (Lehnert et al., 2024),
and others. Although the search component of FLARE has some similarities to these techniques, we
argue that our method allows for generalistic reasoning with interpretable multi-hop search through
simulated code execution.

Reasoning with Formalisation Another line of research has tried formalising natural language
queries into code (Gao et al., 2023; Li et al., 2024) or pseudo-code (Chae et al., 2024; Gandhi et al.,
2024). This allows the translation of the query into a strict structure and offloads the reasoning and
search components to deterministic solvers like Python Chen et al. (2023), PDDL Lyu et al. (2023);
Liu et al. (2023), DataLog Lyu et al. (2023) and others. While models are capable of synthesising
programs (Austin et al., 2021; Nijkamp et al., 2023) and benefit from the use of code in numerical
and algorithmic reasoning settings (Chen et al., 2023; Gao et al., 2023), the usage of code for general
QA has not been rigorously explored. The reasons are that formalisation from natural language into
a strict and executable code is challenging (Wu et al., 2022), following the exact syntactic constraints
of the programming language not abundantly used during pre-training is onerous (Liu et al., 2024)
and can require models explicitly tuned for coding (Chen et al., 2021). Using an external solver for
reasoning also limits the capability for soft reasoning in commonsense knowledge and implications.
Although we formalise the natural language query into a logic programming Prolog program during
the code generation part of FLARE, we do not explicitly require the code to be executable and
do not use external solvers during inference. This allows for the further use of the LLM for soft-
reasoning to simulate code execution in a logic-based problem space traversal similar to Prolog
while circumventing the need for code tuning a generalist model.
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Math Word Problems Multi-hop QA Relation
Method GSM8K SVAMP MultiArith ASDiv AQuA StrategyQA Date Sport CLUTRR

Llama-3.1-8BFLARE 72.7 86.0 96.3 83.1 62.9 70.2 59.3 76.6 36.8
Llama-3.1-8BF-CoT 0 0 0 0 12.2 53.2 0 0 32
Llama-3.1-8BCoT 59.2 58.6 60.1 61.9 35 2.9 20.9 95.8 42.2
CmDRFLARE 52.4 74.0 84.5 72.2 43.7 67.0 52.3 78.9 29.1
CmDRF-CoT 0 0 0 0 0 59.7 0 0 8.6
CmDRCoT 46.5 57.3 83.1 37.2 28.3 21.3 47.4 55.2 29.5
CmDR+FLARE 71.4 83.5 90.4 81.3 55.9 70.8 61.8 77.7 41.0
CmDR+F-CoT 0 0 0 0 15.4 57.6 0 0 35.3
CmDR+CoT 48.7 81.1 86.6 44.6 44.1 48.4 79.1 62.6 42.5

GPT-3.5FLARE 68.1 82.7 98.3 85.4 55.1 65.5 82.4 85.6 49.8
GPT-3.5F-CoT 75.8 83.0 95.3 81.7 53.5 51.5 73.5 52.3 12.1
GPT-3.5CoT 79.8 82.4 98.2 75.8 59.4 51.7 69.9 95.8 4.3

Table 1: The following table shows the performance of each of the tested models given a technique
for reasoning. Each bold, underlined, and italicised element highlights the best, second best and
worst technique per specific model. The overall best method per dataset is highlighted in green .

Reasoning Faithfulness An explanation is considered faithful if it explicitly and accurately de-
scribes the reasoning process of the model during inference (Gilpin et al., 2018; Jacovi & Goldberg,
2020). In the context of prompting techniques such as CoT, we are interested in the faithfulness of
the intermediate reasoning chains towards the final output. Faithful intermediate reasoning chains
should not just look plausible (Herman, 2017) but have exact reflections of the problem exploration
and reasoning used to arrive at the final answer. Natural language reasoning chains prevalent in
CoT and similar methods are shown to be unfaithful, either masking the reasoning biases (Turpin
et al., 2023) of the model or outright ignoring the intermediate reasoning (Lanham et al., 2023a). In
FLARE, we introduce a method to seamlessly measure the faithfulness of the final outcome w.r.t.
completed search.

3 METHODOLOGY

3.1 LLM SIMULATED SEARCH

FLARE comprises three modules for generating a plan, code and simulated search for answering a
natural language query Q = {TQ

1 . . . TQ
|Q|}, where each TQ

i is a token in the query Q.

Generating A Plan For each query Q, given an LLM M, we initially use instructions IP to
prompt it to generate a plan P , which should be comprised of task explanation, analysis and a plan
for further formalising the query. An example of this can be seen in the plan section in Figure 1.
We use in-context few shot examples EP of such plan generations along with greedy decoding for
obtaining the final plan.

Pi ∼ argmax pM(TP
i | TP

:i−1, EP ,Q, IP) (1)

Where Pi and TP
i is the i-th token in the generated plan P and pM is the probability of the next

token over the vocabulary obtained from modelM.

Generating Code After generating the plan, we use instructions IC to prompt the LLM M to
generate a Prolog code C, an example of which can be seen in Figure 1. We append executable
code generation samples Csample to the previous in-context examples EP and obtain few-shot code
generation demonstrations EC = [EP ; Csample]

Ci ∼ argmax pM(T C
i | T C

:i−1EC ,Q, IP ,P, IC) (2)
Fcode,Rcode,Gcode = EXTRACT(Ci)

Where Ci and T C
i is the i-th token in the generated code C.

4
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Figure 2: The trend of mean model accuracy w.r.t mean faithfulness for all the models.

Benefits of Prolog Prolog is a symbolic logic-programming engine (Bowen, 1979) designed
for heuristic search over Horn Clauses (Chandra & Harel, 1985). As a declarative programming
paradigm (Lloyd, 1994), the code is expressed as the logic of computation, expressed as a set of
facts F and relationsR defining the problem space, with the goal G being a first-order logic combi-
nation of them. Prolog employs depth-first search (DFS) (Bowen, 1979) for sub-goal decomposition
and traversal of the problem space, satisfying G through a sequence of steps known as the trace.
Each step either confirms/invalidates a sub-goal, expands the search tree, or retries failed sub-goals
with new combinations. An example of such a search is shown in Figure 1. Prolog supports exhaus-
tive search by exploring all paths that satisfy or fail the goal. This explicit segmentation of facts,
relations, and search strategies simplifies query formalization. As a declarative language, Prolog
enables segmentation using a simple regexp heuristic, referred to as EXTRACT in Equation (2) and
Equation (3). Including exhaustive traces in-context allows an LLM to simulate sub-goal decompo-
sition, backtracking, and intermediate goal invalidation, discussed further in the next paragraph.

Simulating Search After generating the logic-programming code, we want to simulate program
execution by generating a problem space traversal trace with our LLM M. We use instructions
IS and update our in-context samples by appending search traces Ssample constructed from Prolog
execution of sample codes Csample, i.e. ES = [EC ;Ssample].

Si ∼ argmax pM(TS
i | TS

:i−1EC ,Q, IP ,P, IC , C, IS) (3)
Asearch,Fsearch,Rsearch = EXTRACT(Si)

Where TS
i is the i-th token in the generated search trace S. During iterative problem space traver-

sal, we can segment the facts Fsearch, relations Rsearch, completed and backtracked paths with their
answers Asearch used during the search simulation. To get the final answer we update in-context
samples with their correct final answersAsample from the executed search Ssample, EA = [ES ;Asample]
and use instructions IA to obtain the final answer from the model.

AFinal ∼ argmax pM(TA
i | TA

:i−1EC ,Q, IP ,P, IC , C, IS ,S, IA) (4)

The prompts used for generating each part in FLARE can be seen in Appendix A along with a
complete example in Table 8 and a pseudo-code in Appendix A.3.

3.2 DETECTING REASONING INCONSISTENCIES

For each query Q given the code C and the simulated search S along with the extracted facts
Fcode,Fsearch and relations Rcode,Rsearch from each designated module, we aim to detect the in-
consistencies during the reasoning process of the LLM. We use exact string matching between all
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these facts and relations in code and simulated search.
∀i,∃j such that F i

code = F
j
search and ∀v,∃q Rv

code = R
q
search (5)

∀j,∃i such that F i
code = F

j
search and ∀q,∃v Rv

code = R
q
search (6)

With this framework in mind, we define two reasoning failure modes.

Dataset ChatGPT (gpt-3.5-turbo)

Standard CoT Logic-LM FLARE

PrOntoQA 47.40 67.80 61.00 73.40
LogicalDeduction 40.00 42.33 65.67 58.60

AR-LSAT 20.34 17.31 26.41 27.39

Table 2: Comparison of Direct Prompting, CoT,
Logic-LM and FLARE.

In the first failure mode, given that some fact
or relation was used in the simulated search
but did not exist in the generated code, i.e.
∃j such that F j

search /∈ Fcode, we claim that the
LLM has hallucinated. We postulate that the
model either produced incomplete knowledge
during formalisation to code or created a piece
of non-existing information during the search.
We do not consider facts that emerged dur-
ing a direct inference step within the simulated
search during our calculation. For example, if
we are dealing with a mathematical query 4 · (5 + 6) =?, the search would involve separately eval-
uating the expression 5 + 6 = 11. In this case, 11 will not be treated as a hallucinated fact within
the search but rather as an emergent fact obtained from direct inference. The second failure mode
is the reciprocal case, where a fact or relation present in the code is not used during the search. We
refer to this phenomenon as sub-optimal reasoning as it shows that the LLM could not explore the
problem space completely or injected unsuitable knowledge during formalisation into code.

3.3 MEASURING FAITHFULNESS

We propose a method to measure the faithfulness of the LLM reasoning process when using FLARE.
As mentioned in Section 3.1, for each query in a dataset D = [Q1, . . . ,Q|D|], we generate a set of
codes Φ = [C1, . . . , C|Φ|] and simulated problem space searches Ψ = [S1, . . . ,S|Ψ|]. We use the
Prolog engine to execute all of the codes Φ and obtain a set of correctly written programs Φ′ and
exact search paths Ψ′. As we do not require explicit programmatic correctness during inference in
FLARE for any code Ci, some Prolog executions resulting in an error are filtered out in Ψ′. To assess
model reasoning faithfulness towards code formalisations, we compare the search paths Φ′ obtained
from Prolog execution with their designated counterparts Φ′

gen generated by the LLM from the same
code. We use ROUGE (Lin, 2004) to compute the matching score for each executed and simulated
search path. In particular, we use ROUGE-Lsum, which uses the longest common subsequence
(LCS) over each line to obtain the final score. This method fits our cause as a line in a Prolog search
execution represents a single logic step within the traversal. This allows us to measure the similarity
of the reasoning contents and structure in exact and simulated searches.

4 EXPERIMENTAL SETUP

4.1 DATASETS

To evaluate FLARE, we use a benchmark of 9 tasks covering Math Word Problems (MWP), multi-
hop QA and relation inference, and 3 common logical reasoning datasets. For testing numeric and
mathematical reasoning, we follow CoT (Wei et al., 2022) by including GSM8K (Cobbe et al.,
2021), SVAMP (Patel et al., 2021), MultiArith (Roy & Roth, 2015), ASDiv (Miao et al., 2020) and
AQuA (Ling et al., 2017). Among these, GSM8K, SVAMP, MultiArith and ASDiv cover elementary
and middle school arithmetic word problems with a set of integers or decimals as the answer. AQuA
is a multiple-choice numerical, symbolic reasoning dataset where each answer is a mathematical ex-
pression containing notations, values and expressions not defined in the query. We also test FLARE
using three multi-hop QA datasets. We use StrategyQA (Geva et al., 2021), which is a boolean QA
task that requires sub-goal decomposition and a multi-hop reasoning strategy to answer. The exam-
ple “Do all parts of the aloe vera plant taste good?” used in Figure 1, is taken from StrategyQA. The
multi-hop QA testing also includes Date and Sports Understanding, subsets of BIG-Bench (bench
authors, 2023). The tasks involve inferring an exact date given some calculations in the relative time
period and understanding if an artificially created sports statement is feasible. Furthermore, we as-
sess FLARE on Relational Inference using CLUTRR (Sinha et al., 2019), which involves inferring
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Method CmDRFLARE CmDRplan-only CmDR+FLARE CmDR+plan-only GPT-3.5FLARE GPT-3.5plan-only

GSM8K 52.4 24.7 71.4 40.7 68.1 36.1
AQuA 43.7 35.0 55.9 55.1 55.1 54.3
StrategyQA 67.0 65.5 70.8 75.7 65.5 62.3

Table 3: The table shows the accuracy of an LLM with FLARE compared to prompting for a final
answer directly after generating (plan-only) a plan P .
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Figure 3: The figure shows the percentage of executable code per model (right) and the accuracy of
the executable code when answering the queries (left).

the familial relation between two entities mentioned in a natural language description of the partial
family graph. We evaluate FLARE on challenging logic inference datasets: ProntoQA (Saparov
& He, 2023), AR-LSAT (Zhong et al., 2021), and LogicalDeductions from BigBench (et al., 2023),
focusing on harder subsets proposed by Pan et al. (2023). These datasets, covering deductive, analyt-
ical, and logical reasoning, allow us to assess FLARE’s performance. Details, including descriptions
and examples, are in Table 9 of Appendix A.

4.2 BENCHMARKS

We compare FLARE with CoT (Wei et al., 2022) as a prompting method that reasons using natural
language chains and with F-CoT (Lyu et al., 2023) and Logic-LM (Pan et al., 2023) that formalise the
query into a code and offload the reasoning to an external symbolic solver. We use Llama3.1 (8B)
(Dubey et al., 2024), CmDR (30B) (Cohere, 2024), CmDR+ (100B) (Cohere, 2024) and GPT3.5
(Brown et al., 2020b) (≥ 100B (Ye et al., 2023)). As the coding model OpenAI Codex (code-
DaVinci-002) (Chen et al., 2021) used in F-CoT has been deprecated, we replace it with the new
GPT3.5 as suggested by OpenAI and recalculate the results accordingly.

5 RESULTS

5.1 FEW-SHOT PROMPTING

To evaluate FLARE, we use a set of models of varying sizes on diverse benchmarks, as defined
in Section 4. We compare the performance of each model while using FLARE, CoT and F-CoT
prompting. The results for F-CoT and CoT on all the models are computed using the codebase of
the original study (Lyu et al., 2023). We additionally compare Logic-LM and FLARE using the
logic reasoning benchmarks proposed in Pan et al. (2023).
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Model Avg. Number of Paths Avg. #Hops per path Avg. #Fails per path Avg. Total Hops Avg. Total Fails

Incorrect Answers
Llama-3.1-8BFLARE 1.55 11.12 1.52 15.09 2.26
CmDRFLARE 1.51 6.55 0.68 10.56 1.39
CmDR+FLARE 0.92 7.52 1.13 8.57 1.32
GPT-3.5 0.68 5.22 0.71 5.32 0.74

Correct Answers
Llama-3.1-8BFLARE 1.43 9.12 0.62 12.36 0.96
CmDRFLARE 1.19 7.10 0.42 11.29 0.66
CmDR+FLARE 0.97 7.19 0.42 8.22 0.61
GPT-3.5FLARE 0.82 5.65 0.26 5.69 0.27

Table 4: The table depicts the difference in the average explored paths, hops, and fails during the
reasoning process, which leads to incorrect or correct answers. The purple colour illustrates that
incorrect reasoning paths have fewer explorations that led to Failed search paths.

LLMs for general reasoning Our results, presented in Table 1, show that using FLARE allows
the LLMs to achieve state-of-the-art results on 7 out of 9 datasets, with an average 28% increase over
CoT. We can see a clear trend that FLARE increases the performance compared to CoT and F-CoT
for all the models of varying scales. We also see that LLMs that are not explicitly tuned for coding
suffer massive degeneracies when using F-CoT. We postulate that they are unable to consistently
produce executable programs that satisfy a predefined scheme in F-CoT, thus resulting in an error
during execution. This further highlights the value of simulating program execution using an LLM
instead of using external solvers. The results show that using FLARE yields more benefit on datasets
that require longer chains of multi-hop and symbolic reasoning, like AQuA and StrategyQA. Our
findings in Table 2 show that FLAREachieves state-of-the-art results on 2 out of 3 logic inference
benchmarks with 10% increase over CoT and 7% increase over Logic-LM.

LLMs for code generation To understand the effect of FLARE on models tuned for coding, we
use GPT3.5 (Brown et al., 2020a) as it was the OpenAI suggested succession model for Codex (Chen
et al., 2021) which is used in F-CoT and possesses strong coding capabilities (Ye et al., 2023). The
results in Table 1 show that using FLARE is beneficial for models that are tuned for coding and
boost the accuracy with a 16% increase over F-CoT and 9% over CoT. The reason is that many
natural language queries with non-trivial formalisations are more suited to be tackled with more
commonsense soft reasoning than direct code execution. This is evident in Table 1 where FLARE
and CoT are consistently better than F-CoT in StrategyQA, Sports and CLUTRR. The opposite
case of numeric and algorithmic heavy reasoning tasks is also covered by FLARE as it maintains
strong performance similar to F-CoT on MWP problems Table 1. Consequently, FLARE allows
combining algorithmic formalisation with simulated soft-reasoning, circumventing the pitfalls of
using a deterministic external solver while still producing a query formalisation and problem space
traversal.

5.2 IS SIMULATING SEARCH USEFUL?

To understand if simulating a search over the problem space is useful, we compare the performance
of FLARE where we only generate the plan without the subsequent code or search components. We
refer to this framework setup as plan-only, which can be seen in Figure 1 if we were to use only the
plan for answer generation. We completed this ablation using CmDR, CmDR+, and GPT-3.5, and
we used GSM8K, AQuA, and StrategyQA as our baselines. The results in Table 3 confirm that all
of the models suffer massive performance degradation from 61.1 → 49.9 when omitting the code
and the search components of FLARE. We hypothesise that this is caused by insufficient problem
space exploration when using the plan-only setting. Furthermore, we have already seen in Table 1
that in methods, like F-CoT, that do not use simulated problem space exploration for soft-reasoning
and only rely on plan and code, the performance also deteriorates even resulting in a complete
breakdown of reasoning over the designated datasets. This can be viewed as a constrained version
of FLARE with code-only execution. Consequently, our results show that simulating problem space
traversal is highly beneficial as it avoids the pitfalls posed by plan-only and code-only modes by
exploring the problem space more rigorously and soft-reasoning during that traversal instead of
using external solvers.
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5.3 FAITHFUL REASONING IMPROVES PERFORMANCE

Model UEF (%) in Search OR (%) UR (%) in code

Correct Answers
Llama-3.1-8BFLARE 74.14 43.65 5.73
CmDRFLARE 59.06 35.96 4.02
CmDR+FLARE 64.30 34.47 4.54
GPT-3.5FLARE 64.46 37.55 1.90

Avg. (Correct) 65.49 37.91 4.05

Incorrect Answers
Llama-3.1-8BFLARE 54.69 35.04 9.28
CmDRFLARE 54.50 32.76 6.23
CmDR+FLARE 44.12 24.98 8.22
GPT-3.5FLARE 36.02 24.44 6.94

Avg. (Incorrect) 47.33 29.31 7.67

∆ 18.16 8.60 -3.62

Table 5: The table shows how the percentage of
unique emergent facts (UEF) in search, overlap-
ping relations (OR) between code and search, and
unused relations (UR) in code impact answer cor-
rectness.

As described in Section 3, using FLARE al-
lows us to measure the faithfulness of the LLM
reasoning process by comparing the simulated
problem space traversals Φ′

gen with actual traces
Φ′ produced from a symbolic Prolog solver. To
do this, we initially compute the percentage of
syntactically correct executable code each LLM
produces. We can see from the right part of Fig-
ure 3 that all of the models are capable of pro-
ducing correct executable Prolog code in 67%
of cases on average and ≥ 50% of cases at
the very least. This shows that the simulated
searches Φ′

gen can be considered a representa-
tive sample that will be further used to accu-
rately measure the faithfulness of the simulated
search w.r.t. the generated code. After measur-
ing the reasoning faithfulness for each model,
we want to understand what impact it has on
the performance of the LLM. In Figure 2, we
segment the models w.r.t. their ROUGE-Lsum
scores. The results show that model perfor-
mance is strongly positively correlated with reasoning faithfulness. However, we also observe in
the left part of Figure 3 that executing semantically precise code results in an accurate answer only
in 47% of cases on average. Indeed, having a simulated search trace with a ROUGE-Lsum faith-
fulness score of 1, would be equivalent to simply executing the program as proposed in F-CoT. Yet
we have priorly shown that F-CoT struggles with reasoning tasks that are hard to formalise and re-
quire multi-hop commonsense and soft reasoning. These two discoveries show that optimal LLM
reasoning, conditioned on a search in the problem space, should be increasingly faithful toward the
facts, relations and the search strategy defined within the code while simultaneously maintaining the
capability for soft-reasoning along more abstractly defined concepts. Our results show that FLARE
allows LLMs to maintain a similar reasoning capacity.

5.4 WHAT IS IMPORTANT DURING THE SEARCH?

Model Hops per Paths Halluc. (%) Unutil. (%)

Llama-3.1-8B 9.4 63.3 62.9
CmDR 6.7 54.7 56.9
CmDR+ 7.2 54.3 56.3
GPT-3.5 5.5 49.3 52.1

Table 6: The table shows the changes in simulated
search averaged statistics when using FLARE
w.r.t model scale from 8B to 100B+. Halluci-
nations (Halluc.) refer to facts and predicates
only used in trace, while unutilised knowledge
(Unutil.) relates to the facts and relations only
seen in the code.

We expand the analysis of the simulated search
traces to detect the reasons which can lead to
optimal reasoning within an LLM. For this pur-
pose, we calculate several statistics, like the av-
erage number of explored paths, average and
total hops and failures per path, for each model
during the simulated traversal. The failure in
a path is an invalidation of a solution for a
sub-goal explored during the search, which is
used for backtracking, as explained in Sec-
tion 3. Calculating these statistics is simple as
the search component of FLARE, seen in Fig-
ure 1, is a structured simulation of a Prolog
trace, where each line contains a hop of reason-
ing inference. We split these statistics for the
reasoning paths that lead to correct or incorrect outcomes. Our results in Table 4 show that LLM
performance and reasoning optimally are not directly connected to the amount of explored paths or
multi-hop inferences per path. We also see that traces that lead to incorrect answers have a higher
number of failures per path and in total. We explain this phenomenon with the hypothesis that
LLMs with traces that were optimal for reasoning and led to correct answers could skip exploring
degenerate solutions due to strong commonsense reasoning capabilities. Further analyses focus on
identifying inconsistencies and failure modes (Section 3.2). By comparing relations in code with
those in search traces, we measure emergent hallucinations and unused relations, highlighting areas
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Figure 4: The effect of the model parameter scale from 8B to 100B+ on model accuracy (left) and
faithfulness (right).

of sub-optimal reasoning. Additionally, we assess the uniqueness of emergent facts per inference
hop, which indicates the extent of problem-space exploration (Table 5). The results in Table 5 show
consistently over each model that, on average, traces that lead to correct answers had a higher per-
centage of unique emergent facts (UEF) and overlap in the relations (OR) used between the code
and search, while the portion of underutilized relations (UR) was lower. This means that optimal
reasoning with an LLM requires a great degree of problem-space exploration with fewer relation
hallucinations during the search and more relation utilization from the defined code. This aligns
with our prior discoveries, which show a strong correlation between simulated search faithfulness
towards the formalised code and model performance. Our framework FLARE has these reasoning
patterns ingrained within its inference pipeline.

5.5 THE EFFECT OF SCALE

We want to assess the impact of the number of parameters in the model on the overall performance
and faithfulness. The results in Figure 4 show no precise relation between model scale, performance
and faithfulness. However, scaled models from the same family, i.e. CmDR (30B) and CmDR+
(100B), show improvements in reasoning faithfulness and model performance. We can also see in
Table 6 that as the model size increases, the average number of hops and the portion of hallucinations
and unutilised knowledge decreases. This further confirms our prior assumptions that models with
strong commonsense soft-reasoning capabilities can skip steps during the search while maintaining
the knowledge and structure of the traversal strategy outlined in the code.

6 CONCLUSION

This work introduces FLARE, a novel approach for logic-aided interpretable formalisation and rea-
soning with simulated search over the problem space. We show that models of varying scales obtain
state-of-the-art results compared to prompting paradigms like CoT and F-CoT. We further pinpoint
that using FLARE allows us to perform soft-reasoning with simulated search, making it flexible
for diverse reasoning benchmarks. We introduce a method to measure model reasoning faithfulness
w.r.t. the problem formalization ingrained within FLARE. Our results show that model performance
is positively correlated with the faithfulness of the reasoning process. The systematic studies of
the method show the benefits of using simulated search compared to natural language reasoning
and external symbolic solvers. We further show that using FLARE allows us to interpretably and
rigorously detect hallucinations and sub-optimal and inconsistent reasoning patterns.
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REPRODUCIBILITY REPORT

To reproduce the results of our study, we provide the complete codebase, processing pipelines and
prompts for each dataset. The only model hyper-parameter we explicitly fix is the temperature for
greedy decoding. We also make the inference of all of the models using FLARE, F-CoT and CoT
across all of the datasets publicly available for further experimentation and exploration.
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A APPENDIX

A.1 LLM PROMPTS

We define straight-forward prompts for generating plan, code and search simulation in FLARE,
which can be observed in Appendix A.2.

A.2 DATASET STATISTICS

The datasets used in this study encompass a variety of domains, specifically targeting the perfor-
mance of the models in interpreting Math Word Problems, multi-hop question answering, and re-
lational inference. Table 9 provides a detailed breakdown of each dataset, including the number of
few-shot in-context samples (shots), the number of test samples, and representative examples from
each dataset. The datasets provide a comprehensive basis for evaluating the models’ abilities to han-
dle complex tasks across different domains, facilitating an in-depth analysis of model performance
under few-shot conditions.

Task Prompt Description
Plan Generation

Generate an explanation and analy-
sis, and plan to generate a prompt
for writing a swi-prolog code for
the last task. The 3 sections should
be exactly outlined. Your plan
should show enough intermediate
reasoning steps towards the answer.
Construct the plan as much as you
can and describe the logic specifi-
cally. When constructing the plan
for the code prompt, actively use
swi prolog search capabilities.

Detailed instructions for generating
an outline and plan, with an em-
phasis on reasoning steps and using
Prolog’s search capabilities.

Code Generation
Write a Prolog code to solve using
the plan. If there are unknown or
stochastic atoms or predicates, fill
in the values for them as a logical
assumption and add a comment in
the same line Assumed atom/pred-
icate”. Do not use write and read
commands within the code. The
code should be very detailed and
utilize swi prolog capabilities to the
fullest. To run the program, at
the end create a predicate named
”query” that returns the correct nu-
merical answer. The last line of the
program should be the commented-
out driver predicate ”query”. Write
only the code.

Instructions for generating a Pro-
log code based on the plan with as-
sumptions for unknown atoms. Em-
phasizes code details and a final
“query” predicate.

Simulated Search
Ignoring the read commands, ex-
plicitly write out the search paths
that are explored by the code: ####
Here are the paths [Starting Search
Simulation]: #### [Path 1]:

A task to simulate and display the
search paths that the Prolog code
would follow during execution.

Final Answer
Given the plan, the code and the
explored search paths answer the
question above. Answer with the
correct numerical answer. #####
Here is the answer:

Final prompt asking for the correct
numerical answer based on the pre-
vious steps.

Table 7: Table of Prompts for Plan, Code, Simulated Search, and Final Answer generation for
GSM8K (Cobbe et al., 2021).
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A.3 FLARE PSEUDO-CODE

Below, we present the pseudo-code for the execution of the plan, code, and search procedures in
FLARE. The pseudo-code describes the modular pipeline in FLARE for tackling natural language
queries with faithful simulated search.

• Plan Generation: This stage creates a structured natural language outline of the reasoning
process, breaking down the query into logical steps and analysis. The plan serves as the
foundation for formalization into a logic-based representation.

• Code Generation: Based on the generated plan, a logic programming code (e.g., in Prolog)
is synthesized. This code formalizes the query into a set of facts, relations, and goals, which
collectively define the problem space for reasoning.

• Search Simulation: The generated code is utilized to simulate a search trace over the
problem space. This includes iterative reasoning, backtracking when goals are unmet, and
extracting emergent facts or relations during the process.

Each of these stages is implemented as a modular component. The generation from each of the
stages feeds into the next, allowing seamless integration and incremental improvement in reasoning
accuracy. A detailed pseudo-code is provided below in Appendix A.3.

Algorithm 1 FLARE Methodology: Faithful Logic-Aided Reasoning and Exploration

Require: Query Q, Language ModelM
Ensure: Answer A

1: Initialization: Load few-shot examples for plans (EP ), code (EC), and search traces (ES)
2: Input: Natural language query Q
3: procedure GENERATE PLAN
4: PromptM with instructions IP and examples EP to generate a plan P
5: P ← argmax pM(TP |TP :<i, EP ,Q, IP )
6: end procedure
7: procedure GENERATE CODE
8: Append examples EC to EP
9: PromptM with instructions IC to generate logic programming code C

10: C ← argmax pM(TC |TC:<i, EC ,Q,P, IC)
11: (Fcode, Rcode, Gcode)← EXTRACT(C)
12: end procedure
13: procedure SIMULATE SEARCH
14: Append search trace examples ES to EC
15: PromptM with instructions IS to simulate a search trace S
16: S ← argmax pM(TS |TS:<i, ES ,Q,P, C, IS)
17: (Fsearch, Rsearch,Asearch)← EXTRACT(S)
18: while Goal Gcode is not satisfied do
19: Explore next sub-goal in S
20: if Sub-goal fails then
21: Backtrack to the previous state (Learned through in-context sampels)
22: end if
23: end while
24: end procedure
25: procedure FINAL ANSWER GENERATION
26: Append correct answers from Asearch to examples
27: PromptM with instructions IA to finalize answer A
28: A ← argmax pM(TA|TA:<i, EA,Q,P, C,S, IA)
29: end procedure
30: return A
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Section Content
Question ”Can Reiki be stored in a bottle?”
Explanation Reiki is a form of alternative therapy that involves the channeling of energy

to promote healing and relaxation. It is often administered through the practi-
tioner’s hands, with the energy flowing directly to the recipient. The question
raises the possibility of storing Reiki energy in a bottle, which may be a com-
mon query due to the abstract nature of energy healing.

Analysis To address the question of whether Reiki can be stored in a bottle, it is important
to consider the nature of Reiki energy, the principles of energy healing, and the
practical implications of containing and preserving such energy.

Plan
• Understand Reiki Energy: ...

• Explore Energy Storage: ...

• Consider Symbolism and Intention: ...

• Evaluate Practicality: ...

• Reflect on Tradition: ...

Code % Define the nature of Reiki energy reiki energy(spiritual energy).
reiki energy(channeling through touch).
% Define the feasibility of storing energy in a bottle
store energy in bottle(feasible) :-
reiki energy(spiritual energy),
reiki energy(channeling through touch).
% Define the assumption that storing Reiki energy in a bottle is not a common
practice not common practice(store reiki in bottle).
% Query to determine if Reiki can be stored in a bottle
query :-
store energy in bottle(feasible),
not common practice(store reiki in bottle).

Search Paths
Path 1: – 0: Start of execution: Beginning Search

– 1: Call: query
– 2: Call: store energy in bottle(feasible)
– 3: Call: reiki energy(spiritual energy)
– 4: Call: reiki energy(channeling through touch)
– 5: Call: not common practice(store reiki in bottle)
– 6: Call: feasible=no
– 7: Fail: feasible=no — ’Result’: ’Search Failed’
– 8: Fail: query — ’Result’: ’Search Failed’

Answer ”No, Reiki energy cannot be stored in a bottle based on the logical evaluation
of its abstract, non-physical nature and traditional practices of Reiki.”

Table 8: Complete example of FLARE
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Domain Dataset Shots Test Samples Example

Math
Word

Problems

GSM8K 8 1,319
Q: A robe takes 2 bolts of blue fiber and half that much white fiber.

How many bolts in total does it take?
A: 3

SVAMP 8 1,000 Q: Dan had $3 left with him after he bought a candy bar. If he had $4 at the start, how much did the candy bar cost?A: 1

MultiArith 8 600
Q: A pet store had 13 siamese cats and 5 house cats. During a sale they sold 10 cats.

How many cats do they have left?
A: 8

ASDiv 8 2,096
Q: Adam has five more apples than Jackie. Jackie has nine apples. How many apples does Adam have?

A: 14

AQuA 8 254
Q: A man walks at 5 kmph for 6 hrs and at 4 kmph for 12 hrs. His average speed is

Answer option: A)4 1/3 km/h, B)7 2/3 km/h, C)9 ½ km/h, D)8 km/h, E)81 km/h
A: A

Multi-
hop
QA

StrategyQA 6 2,290 Q: Did Aristotle use a laptop?
A: False

Date
Understanding 10 359 Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/DD/YYYY?

A: ”05/02/2021”
Sports

Understanding 10 977 Q: Is the following sentence plausible? Lionel Messi was called for icing?
A: False

Relational
Inference CLUTRR 8 1,042

Q: [Carlos] is [Clarence]’s brother. [Carlos] and his sister, [Annie], went shopping.
asked her mom [Valerie] if she wanted anything, but [Valerie] said no.

How is [Valerie] related to [Clarence]?
A: ”mother”

Table 9: The statistics and examples of the datasets used in benchmarking. Shots refers to the
number of few-shot in-context samples used during benchmarking.

22


	Introduction
	Related Work
	Methodology
	LLM Simulated Search
	Detecting Reasoning Inconsistencies
	Measuring Faithfulness

	Experimental Setup
	Datasets
	Benchmarks

	Results
	Few-shot prompting
	Is simulating search useful?
	Faithful Reasoning Improves Performance
	What is important during the search?
	The effect of scale

	Conclusion
	Appendix
	LLM Prompts
	Dataset Statistics
	FLARE Pseudo-code


