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Abstract

In the rapidly evolving streaming media landscape, accurate bandwidth prediction
is crucial for optimizing user experience and resource utilization. This work intro-
duces BP-LLM, a novel approach that leverages the capabilities of large language
models (LLMs) to enhance bandwidth prediction. Traditional algorithms face
significant limitations due to their reliance on historical data, inability to incorpo-
rate multimodal inputs, and challenges in generalization across diverse network
conditions. BP-LLM addresses these challenges by employing the Transformer ar-
chitecture to capture long-term dependencies in network traffic and integrating var-
ious input modalities—such as user location and communication latency—through
text representations. Our method not only improves prediction accuracy but also
demonstrates superior adaptability to new tasks and environments. Key contri-
butions include the establishment of a comprehensive benchmark for evaluating
bandwidth prediction algorithms across different application scenarios, the inno-
vative application of LLMs to enrich feature representation and align textual and
temporal data, and the demonstration of robust performance across various error
metrics. The results indicate that BP-LLM outperforms state-of-the-art algorithms,
providing reliable guidance for downstream tasks such as resource allocation and
quality of service management. This advancement paves the way for more efficient
network management strategies, enhancing the competitiveness of streaming media
applications.

1 Introduction

In the streaming media industry, bandwidth prediction is essential for ensuring user experience
and optimizing resource use. In low-latency live streaming, it estimates user network conditions
in real-time, adjusts transmission strategies, and reduces stuttering and latency. For long videos, it
helps adaptive algorithms select bitrates intelligently, adapting to network changes and balancing
picture quality, smoothness, and buffering. In short videos, it determines video bitrate combinations
for seamless and high-definition (HD) playback, enhancing user retention. Bandwidth prediction also
affects the cost and efficiency of CDN distribution by optimizing transcoding bitrates and scheduling.
Accurate bandwidth prediction drives decision-making algorithms, optimizes user experience and
technical architecture, and is crucial for competitiveness in the streaming media industry.

Recently, the field of bandwidth prediction has witnessed a surge in innovative approaches, as
researchers and practitioners have sought to harness the power of statistical methods, machine
learning techniques, and time-series analysis to model and forecast network traffic patterns. These
traditional algorithms, designed to predict future bandwidth usage, have predominantly relied on
historical data, employing a range of sophisticated techniques to extract meaningful insights. Among
these techniques, autoregressive models have been widely used for their ability to capture temporal

∗These authors contributed equally.

Submitted to Tsinghua University Course: Advanced Machine Learning (AML 2024). Do not distribute.



Figure 1: Background Elaboration. To further enhance the accuracy and adaptability of bandwidth
prediction, more advanced and flexible prediction models leveraging large language models (LLMs)
should be developed, ultimately better catering to the evolving demands of network applications.

dependencies in the data, while moving averages have proven effective in smoothing out short-term
fluctuations to reveal underlying trends. More recently, supervised learning methods, such as support
vector machines and neural networks, have gained prominence due to their capacity to learn complex
patterns and make accurate predictions.

However, despite these advances, the complexity and dynamics of network conditions pose significant
challenges to traditional bandwidth prediction algorithms, primarily in the following aspects:

1. Long-Term Trend Analysis. Due to the volatility and uncertainty of network traffic, traditional
network architectures often fail to capture the long-term trends of bandwidth changes, resulting
in limited accuracy of prediction results. This limitation is particularly pronounced during peak
network traffic periods, making it difficult for prediction models to provide stable and reliable
bandwidth predictions.

2. Multi-Modal Input Handling. Existing algorithms typically model bandwidth prediction as a
single time-series task, neglecting domain-specific knowledge and failing to account for other
modalities that influence bandwidth, such as network conditions, user location, and communication
latency. This single-perspective modeling approach overlooks the complexity and variability of
network environments, leading to prediction models that cannot comprehensively consider various
factors affecting bandwidth. For instance, changes in user location may impact network signal
strength and stability, while communication latency may be influenced by network congestion and
routing selection. Consequently, prediction models relying solely on time-series data struggle to
accurately reflect the impact of these factors on bandwidth.

3. Generalization and Adaptability. Bandwidth prediction plays a crucial guiding role in down-
stream tasks, but traditional algorithms’ simplistic modeling limits their generalizability, making
it difficult to adapt quickly to new tasks and scenarios. In practical applications, bandwidth
prediction results are often used for optimizing network resource allocation and adaptive video
streaming. However, due to the limited generalizability of traditional algorithms, they often
struggle to maintain consistent prediction performance across different network environments
and application scenarios. This restricts the value and effectiveness of bandwidth prediction in
practical applications, particularly when facing emerging network technologies and application
scenarios, where the limitations of traditional algorithms are more pronounced.

In summary, to overcome these challenges, we need to develop more advanced and flexible prediction
models to improve the accuracy and adaptability of bandwidth prediction, thereby better meeting the
demands of network applications.

In this work, we propose BP-LLM, a strategy leveraging large language models (LLMs) for feature
extraction and long-term dependency modeling, significantly improving bandwidth prediction and
related tasks (as shown in Figure 1). First, by incorporating the Transformer architecture of LLMs,
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our model processes longer sequences and captures dependencies through self-attention, crucial for
predicting volatile network traffic trends. Second, we use LLMs’ pre-trained network knowledge to
align input data (like network conditions, user location, and latency) to text, enhancing prediction
accuracy. This cross-modal fusion harnesses LLMs’ natural language processing capabilities to
integrate multimodal inputs affecting bandwidth. Finally, pre-trained on extensive language and
network knowledge, our model adapts and generalizes well to new tasks and scenarios. Fine-tuning
on bandwidth prediction optimizes performance, ensuring consistent accuracy across various network
environments and applications.

Our main contributions can be summarized as follows:

• We have developed a comprehensive benchmark for evaluating bandwidth prediction algorithms by
employing a tail importance sampling method to collect bandwidth data of varying granularity from
three distinct application scenarios: Video-on-Demand (VoD), Live Streaming, and Real-Time
Communication (RTC). This unified benchmark not only enriches the diversity of the dataset but
also ensures that the evaluation is conducted under a wide range of network conditions, thereby
providing a more robust and realistic assessment of algorithm performance.

• We are the first to introduce Large Language Models (LLMs) into the domain of bandwidth
prediction. BP-LLM not only enriches the feature representation of the input data but also
facilitates the alignment between textual and temporal features, pointing towards the potential of
multimodal foundation models that excel in both language understanding and network conditions
analysis.

• Our proposed method is not only capable of handling data from different time windows but
also provides stable and efficient prediction performance across various error measures. This
versatility is achieved through the effective utilization of LLMs, which are adept at processing
and understanding complex patterns in data. As a result, our method outperforms state-of-the-art
algorithms in terms of comprehensive metrics on the bandwidth prediction task, demonstrating its
superiority in both accuracy and reliability.

• By providing more reliable and effective guidance for downstream tasks, our approach drives the
development and optimization of network applications. This is particularly significant in scenarios
where accurate bandwidth prediction is crucial for resource allocation, congestion control, and
quality of service (QoS) management. The success of our method in downstream tasks opens up
new possibilities for the enhancement of existing algorithms, paving the way for more sophisticated
and efficient network management strategies.

2 Related Work

Bandwidth Prediction. Network transmission time series prediction is essential for forecasting
future network traffic and latency using historical data, aiming to optimize resource management.
Recent advancements include linear model-based methods like TiDE, N-Hits, and Dlinear [5, 8, 29],
which use various forms of linear regression. TiDE excels with simple datasets [8], N-Hits im-
proves accuracy with cyclic data [5], and Dlinear adapts to rapid changes [29]. Transformer-based
approaches, leveraging deep learning, include PatchTST, FEDformer, Pyraformer, Autoformer, and In-
former [18, 20, 25, 32, 33]. These methods use intricate mechanisms like segmented data patches [20],
combined attention mechanisms [33], and sparse attention for efficient long-term predictions and
handling complex data patterns [25, 32]. Linear models are simple and computationally efficient,
while Transformer-based methods excel with complex time series data. Future research may explore
hybrid models that combine the strengths of both approaches for better accuracy and efficiency.

LLMs for Time Series Forecasting. Large language models (LLMs) like GPT-4 and Llama-3
[1, 21] have achieved significant success in natural language processing (NLP) and computer vision
(CV) due to their powerful sequence modeling abilities [4]. Researchers are now exploring their
application in time series forecasting for tasks such as bandwidth prediction [17, 30]. Time series
analysis is vital in many domains, including climate modeling, bandwidth prediction, and financial
analysis [10, 31]. While classical methods like frequency analysis have been used, deep learning
techniques such as CNNs [27], LSTMs [13], and transformers [23] have proven highly effective.

However, LLMs are initially trained on discrete text data, which presents challenges for aligning
different modalities in time series forecasting tasks. Addressing these challenges is critical to
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Figure 2: Benchmark Construction.

enhancing model performance in this context [6, 12]. Existing methods for cross-modality alignment
include prompting [10, 26], quantization [3, 9], and aligning [11, 15, 34]. Through these methods,
LLMs can significantly improve their ability to handle multi-modal data [22], thereby enhancing
their performance in time series forecasting tasks.

3 Benchmark Construction

The construction of a suitable benchmark is indeed a critical prerequisite for training a bandwidth
prediction algorithm that can effectively handle the complexities of real-world network conditions.
Given the intricate nature of network dynamics and the diversity of downstream tasks, there currently
exists no unified benchmark that comprehensively captures the full spectrum of online distributions.
To address this gap and better fit the online data distribution, we have adopted a strategy based on tail
importance sampling to prioritize data collection from scenarios with lower bandwidth, which are
often more challenging and critical for accurate prediction.

Our approach involves categorizing data based on tail importance sampling, focusing on low-
bandwidth scenarios that are typically underrepresented in conventional datasets. To cater to a
wide range of business scenarios, we have collected data from three distinct application domains:
Video-on-Demand (VoD), Live Streaming, and Real-Time Communication (RTC). These domains
present unique challenges and requirements, necessitating a comprehensive dataset that can capture
the nuances of each scenario. By doing so, we aim to ensure that the offline dataset mirrors the
real-world online environments more accurately, especially in conditions that are prone to instability
and variability.

As shown in Figure 2, we have successfully constructed a dataset that encompasses over 5 million
records, meticulously gathered to cover a broad spectrum of business scenarios. This dataset not only
includes bandwidth data but also encompasses a rich set of parameters such as network type, device
information, and other relevant metadata. By including such a wide array of input features, we aim to
provide a standardized input framework that can be readily applied across different applications and
network environments.

4 Methodology

4.1 System Overview

Our model architecture, illustrated in Figure 3, is designed to address the complexities of bandwidth
prediction by integrating historical bandwidth data and network conditions. Given a sequence of
historical bandwidth XB ∈ RN×T , which consists of N different bandwidth data points across T
time steps, along with the corresponding network conditions XN presented in text modality, including
details such as network type, device information, and app platform, our objective is to train a large
language model f(·) to understand the input series and accurately forecast the readings at H future
time steps. The forecast is denoted by Ŷ ∈ RN×H , where each element Ŷh represents the predicted
values at the h-th future time step for all N variables. The overall goal is to minimize the errors
between the ground truth values Y and the predictions Ŷ . This objective can be quantified by the
following loss function:
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Here, ∥·∥F denotes the Frobenius norm, which measures the Euclidean norm of the matrix after
flattening it into a vector. The Frobenius norm is employed to calculate the distance between the
predicted matrix Ŷh and the ground truth matrix Yh at each future time step h. By minimizing this
loss function, our model is trained to learn the underlying patterns and dependencies in the historical
data and network conditions, enabling it to make accurate predictions for future bandwidth readings.

Indeed, our method is meticulously designed with three core components: (1) Network Context-
Informed Embedding Guidance, (2) Alignment between Text and Temporal Modalities, (3) Parameter-
Efficient Fine-Tuning of Large Language Models, each addressing specific challenges and leveraging
unique strengths to enhance the accuracy and adaptability of bandwidth prediction. This framework
is a significant departure from traditional approaches, integrating advanced techniques to address the
complexities of network dynamics and multi-modal data.

We highlight that by integrating these three components, our model can seamlessly integrate network
context, handle multi-modal data, and optimize the performance of a large language model for band-
width prediction. This framework represents a significant advancement in the field, offering a robust
solution to the challenges of bandwidth prediction in complex and dynamic network environments.
Our approach not only addresses the limitations of traditional approaches but also leverages the
strengths of LLMs, aiming to achieve more accurate and adaptable bandwidth predictions.

4.2 Network Context-Informed Embedding Guidance

Recognizing the vital importance of domain-specific knowledge and the influence of factors beyond
historical bandwidth data, we introduce a novel Network Context-Informed Embedding Guidance
mechanism. We acknowledge that additional network status information, such as packet loss rates,
delay variability, and network congestion levels, play a crucial auxiliary role in the bandwidth
prediction task. To overcome the challenge of integrating these heterogeneous data types, which are
often represented in different modalities, we harness the powerful understanding ability of LLMs
in the text modality. By converting these network status data into text descriptions as inputs, we
enable the model to effectively tap into their valuable information, thereby enhancing its predictive
capabilities.

This innovative approach allows the model to leverage textual representations that capture the intricate
nuances of network dynamics, including the complex interplay between network components and the
subtle variations in user behavior. By incorporating this contextual information, the model transcends
traditional data-driven approaches, becoming not only data-driven but also informed by the broader
network environment. This context-aware approach leads to more accurate and informed predictions,
ultimately enhancing the model’s ability to optimize network resource allocation and improve user
experience.
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Figure 4: Preliminary feature extraction. Identifying prototypes from vocabulary to streamline
cross-attention, enabling efficient and accurate integration of multi-modal data.

4.3 Alignment between Text and Temporal Modalities

Recognizing that time series data and textual information belong to different modalities, direct
processing by Large Language Models (LLMs) is not straightforward. To bridge this gap and facilitate
the integration of multi-modal data, we propose the utilization of a cross-attention mechanism as a
pivotal component in our approach to bridge the gap between these modalities, thereby enabling the
seamless integration of multi-modal data.

The cross-attention mechanism we employ is designed to facilitate the alignment of textual and
temporal features, a critical step in amalgamating the contextual richness provided by the Network
Context-Informed Embedding Guidance with the historical bandwidth data. This alignment is
achieved by allowing the model to focus on relevant features across modalities, ensuring that the
textual context is effectively integrated with the temporal dynamics of the network conditions.

As shown in Figure 4, we introduce a preliminary feature extraction step to optimize computational
efficiency and mitigate the potential computational overhead associated with processing multi-modal
data. This involves a meticulous analysis of the vocabulary to identify prototypes that encapsulate
the essence of network conditions. These prototypes serve as a condensed representation of the key
aspects of the network environment, thereby streamlining the cross-attention process. By leveraging
these prototypes, our model is able to process and integrate multi-modal data with enhanced efficiency,
without compromising on performance or accuracy.

Furthermore, this approach ensures that the model can effectively leverage the contextual information
embedded in textual data to enrich its understanding of the time series data. This not only enhances
the model’s ability to make informed predictions but also opens up new avenues for exploring the
complex interplay between textual and temporal data in network analysis. In essence, our methodology
represents a significant advancement in the field of multi-modal data integration, offering a robust
and efficient solution for processing and understanding complex data landscapes.

4.4 Parameter-Efficient Fine-Tuning of Large Language Models

In the culmination of our architectural framework, the training of the Large Language Model (LLM)
module assumes a pivotal role, serving as the linchpin for our bandwidth prediction endeavors.
We have judiciously chosen the Llama2-7B model as the foundational architecture, a decision
underpinned by its established prowess in grappling with intricate patterns and its inherent scalability.
This selection is not merely arbitrary; it is a testament to the model’s capability to handle the
multifaceted nature of our data, ensuring that our predictions are grounded in robust computational
foundations.

To tailor this pre-trained LLM to our specific bandwidth prediction task, we harness the power of
the LoRA (Low-Rank Adaptation) technique. LoRA’s elegance lies in its ability to adapt the model
to our task with a minimal alteration of the original model parameters. This approach is not only
efficient but also strategic, as it allows us to preserve the rich knowledge encapsulated within the
pre-training phase while simultaneously optimizing the model for our bandwidth prediction objectives.
By doing so, we strike a delicate balance between leveraging the general knowledge acquired during
pre-training and acquiring task-specific insights, a synergy that is crucial for enhancing the model’s
performance.
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Table 1: Bandwidth Prediction Result. A lower value indicates better performance. The best results
for each metric are noted in bold and the second best results are underlined.

Method BP-LLM Reformer Informer TSMixer MICN DLinear Autoformer
Time Metric (Ours) (2020) (2021) (2023) (2023) (2023) (2021)

4-4
MSE 0.296 0.287 0.288 0.293 0.291 0.298 0.334
MAE 0.407 0.400 0.400 0.413 0.408 0.412 0.420
RMSE 0.545 0.536 0.537 0.541 0.539 0.546 0.578

16-16
MSE 0.319 0.309 0.310 0.311 0.313 0.319 0.348
MAE 0.430 0.422 0.421 0.428 0.429 0.432 0.436
RMSE 0.564 0.556 0.557 0.558 0.559 0.565 0.590

64-64
MSE 0.296 0.321 0.319 0.320 0.321 0.323 0.328
MAE 0.407 0.435 0.433 0.439 0.437 0.437 0.441
RMSE 0.545 0.567 0.565 0.566 0.567 0.568 0.572

Average
MSE 0.304 0.306 0.306 0.308 0.308 0.313 0.337
MAE 0.415 0.419 0.418 0.427 0.424 0.427 0.433
RMSE 0.551 0.553 0.553 0.555 0.555 0.560 0.580

Count 6 5 2 0 0 0 0

The fine-tuning process, facilitated by LoRA, is indispensable for our bandwidth prediction task.
It empowers the model to learn patterns that are uniquely relevant to our specific domain, thereby
enriching its predictive capabilities. This enhancement is not merely quantitative; it is qualitative,
leading to predictions that are not only more accurate but also more adaptable to the dynamic nature
of network conditions. In essence, this fine-tuning phase is the crucible in which the model’s potential
is fully realized, transforming it into a powerful tool for bandwidth prediction that is both precise and
versatile.

5 Experiments

5.1 Bandwidth Prediction

Baselines. In this experiment, we compare the results of BP-LLM with the current state-of-the-
art time series forecasting methods. The methods used as comparisons include Reformer [16],
Informer [32], TSMixer [7], MICN [24], DLinear [29] and Autoformer [25].

Setup. The experiment’s input consisted of three dimensions from the previous time step: sampling
time, sampling duration, and bandwidth value, with the output being the predicted bandwidth value.
We evaluated the models across three different time windows (4-4, 16-16, 64-64) and measured
their performance using Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE).

Result. The results are shown in Table 1. Despite exhibiting slightly inferior performance in
shorter time windows such as 4-4, where its Mean Squared Error (MSE) was marginally higher
compared to models like Reformer and Informer, BP-LLM showcased its true prowess as the time
window expanded. Notably, in the 64-64 time window, BP-LLM achieved the lowest MSE value
of 0.296, underscoring its exceptional capability to maintain high-precision bandwidth prediction
performance even with significantly larger data volumes. This trend is indicative of BP-LLM’s
strength in long-term modeling, where it effectively captures and predicts bandwidth trends over
extended periods.

Moreover, BP-LLM’s robust performance was not limited to MSE alone. It also demonstrated
strong results in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
across different time windows, further solidifying its position as a superior model in the bandwidth
prediction domain. These comprehensive results highlight BP-LLM’s versatility and reliability, as
it not only handles data from varying time windows adeptly but also delivers stable and efficient
prediction performance across a spectrum of error measures.

7



Figure 5: BP-LLM for Adaptive Bitrate Streaming (ABR).

In summary, while BP-LLM may face slight challenges in very short time windows, its overall
performance, especially in longer time frames, is outstanding. It consistently outperforms or matches
state-of-the-art models in critical metrics such as MSE and MAE, positioning it as a highly competitive
solution for bandwidth prediction tasks. The model’s ability to adapt and excel across different time
windows and error measures makes it a reliable choice for optimizing network resource allocation
and enhancing user experience in various network applications.

5.2 Downstream Evaluation

We conducted a comprehensive evaluation of our proposed method, BP-LLM, against a variety of
traditional algorithms in the context of downstream tasks that are critical for optimizing network
performance and enhancing user experience. Our evaluation focused on two key downstream tasks:
Adaptive Bitrate Streaming (ABR) and Quality of Experience (QoE) improvement. ABR is a critical
component in streaming media applications, where the goal is to dynamically adjust the video quality
based on the available network bandwidth to ensure smooth playback and minimize buffering. QoE,
on the other hand, encompasses a broader range of factors that contribute to the overall satisfaction of
users, including video quality, buffering frequency, and playback continuity.

Baselines. The algorithms we compared against include BBA [14], Pensieve [19], RobustMPC [28],
and HYB [2], each of which represents a different approach to addressing network challenges and
improving service quality.

ABR Test. We assessed the ability of BP-LLM and the competing algorithms to adapt the bitrate
of the streaming content in response to changes in network conditions. The results are depicted
in Figure 5. Notably, BP-LLM demonstrates a bitrate smoothness of approximately 0.075 Mbps,
with a corresponding video bitrate nearing 4.25 Mbps. This positioning suggests that our method
effectively manages bandwidth fluctuations while maintaining a high level of video quality. In
comparison, other algorithms exhibit higher bitrate smoothness but achieve lower video bitrates. This
indicates that while they may handle bandwidth variability well, they compromise on video quality.
Overall, BP-LLM’s performance strikes a commendable balance between bitrate smoothness and
video bitrate, thereby providing a more consistent and higher-quality streaming experience.

QoE Improvement Test. We evaluated the overall impact of each algorithm on user satisfaction.
This included analyzing factors such as video quality, buffering duration, and the overall smoothness
of the playback. Our findings revealed that BP-LLM significantly enhanced QoE compared to the
traditional algorithms, with users reporting higher satisfaction levels due to fewer interruptions and
higher video quality throughout the streaming session. As is shown in Figure 6, BP-LLM achieves
the highest QoE score of 4.22, surpassing all other algorithms, with RobustMPC [28] and HYB [2]
following at 4.14 and 4.17 respectively and BBA [14] performing the lowest. The CDF indicates
that as the QoE score increases, the probability of achieving that score also rises, with BP-LLM
demonstrating a steeper ascent, suggesting a higher concentration of users experiencing superior
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Figure 6: BP-LLM for QoE improvement.

quality. This analysis highlights BP-LLM’s effectiveness in optimizing user experience, making it a
promising choice for applications demanding high QoE.

In summary, our comparative analysis of BP-LLM against traditional algorithms in the context of ABR
and QoE improvement tasks showcased the superior performance of our method. BP-LLM’s ability to
accurately predict bandwidth and adapt to changing network conditions resulted in a more stable and
higher-quality streaming experience, as evidenced by the improved ABR performance and enhanced
QoE metrics. This underscores the potential of BP-LLM to revolutionize network management
strategies and significantly contribute to the optimization of streaming media applications.

6 Conclusion

In summary, this research has introduced a groundbreaking methodology for bandwidth prediction,
coined BP-LLM, which leverages the sophisticated capabilities of large language models (LLMs)
to significantly enhance prediction accuracy and adaptability. By confronting and overcoming the
inherent limitations of traditional bandwidth prediction algorithms, BP-LLM has demonstrated its
superiority in several critical aspects. It excels in capturing long-term dependencies in network
traffic patterns, effectively handling multimodal inputs that include network status, user location,
and communication latency, and demonstrates remarkable generalization capabilities across a wide
spectrum of network conditions.

We establish a comprehensive benchmark that spans diverse application scenarios such as Video-on-
Demand (VoD), Live Streaming, and Real-Time Communication (RTC). This benchmark enhances the
evaluation process and ensures that BP-LLM is tested under realistic and varied network conditions,
providing a robust foundation to assess its capabilities.

BP-LLM excels across error metrics such as mean absolute error (MAE), mean squared error (MSE),
and root mean squared error (RMSE), outperforming state-of-the-art algorithms. This reliability
supports downstream tasks like resource allocation, congestion control, and quality of service (QoS)
management, enhancing network resource utilization and user experience in streaming applications.

Future research directions include integrating BP-LLM with advanced machine learning techniques
like reinforcement learning or graph neural networks, and exploring its applicability to emerging
technologies such as 5G. Continuous refinement and optimization will ensure BP-LLM’s effectiveness
across diverse network conditions and scenarios.

In conclusion, the development and evaluation of BP-LLM represent a significant milestone in
the field of bandwidth prediction. By addressing critical challenges and demonstrating superior
performance, this work not only advances the state of the art but also paves the way for more efficient
and intelligent network management strategies. The potential impact of BP-LLM on enhancing
the competitiveness of streaming media applications and optimizing network resource allocation is
substantial, underscoring the importance of continued research and innovation in this domain.
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