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GENERATING FREEFORM ENDOSKELETAL ROBOTS

Muhan Li, Lingji Kong, Sam Kriegman
Northwestern University

Figure 1: An evolving population of endoskeletal soft robots were encoded by a low dimensional la-
tent design genome with minimal morphological assumptions and optimized for locomotion across
complex terrains in multiphysics simulation using a shared universal controller that was simultane-
ously learned alongside morphological design. Videos and code at https://endoskeletal.github.io.

ABSTRACT

The automatic design of embodied agents (e.g. robots) has existed for 31 years
and is experiencing a renaissance of interest in the literature. To date however, the
field has remained narrowly focused on two kinds of anatomically simple robots:
(1) fully rigid, jointed bodies; and (2) fully soft, jointless bodies. Here we bridge
these two extremes with the open ended creation of terrestrial endoskeletal robots:
deformable soft bodies that leverage jointed internal skeletons to move efficiently
across land. Simultaneous de novo generation of external and internal structures is
achieved by (i) modeling 3D endoskeletal body plans as integrated collections of
elastic and rigid cells that directly attach to form soft tissues anchored to com-
pound rigid bodies; (ii) encoding these discrete mechanical subsystems into a
continuous yet coherent latent embedding; (iii) optimizing the sensorimotor co-
ordination of each decoded design using model-free reinforcement learning; and
(iv) navigating this smooth yet highly non-convex latent manifold using evolution-
ary strategies. This yields an endless stream of novel species of “higher robots”
that, like all higher animals, harness the mechanical advantages of both elastic
tissues and skeletal levers for terrestrial travel. It also provides a plug-and-play
experimental platform for benchmarking evolutionary design and representation
learning algorithms in complex hierarchical embodied systems.

1 INTRODUCTION

The manual synthesis of a single robot for a single task requires years if not decades of labor-
intensive R&D from teams of engineers who rely heavily on expert knowledge, intuition, and hard-
earned experience. The automatic synthesis of robots may reveal designs that are different from or
beyond what human engineers were previously capable of imagining and would be of great use if
robots are to be designed and deployed for many disparate tasks in society. However, automating
the creation and improvement of a robot’s design is notoriously difficult due to the hierarchical
and combinatorial nature of the optimization problem: the objective and variables of the robot’s
controller optimization depend on the optimizer of the robot’s discrete mechanical structure (e.g. its
distribution of motors and limbs). Considerable effort has been and is being expended to ameliorate
(Zhao et al., 2020; Yuan et al., 2022; Strgar et al., 2024) or obviate (Hejna et al., 2021; Gupta et al.,
2022; Matthews et al., 2023) these technical challenges. Nevertheless, automatically designed robots
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Figure 2: Designing endoskeletal robots. A population of 64 robot designs (A-C) was sampled
from a multivariate normal distribution (D) centered about an initially random point in latent space.
The behavior each design in the population was optimized in physics simulation for 20 epochs of
reinforcement learning under a shared universal controller. The ten red behavioral traces to the
right of A-C project the forward locomotion of these randomly generated designs (from 3D to 2D)
into the right hand side of the page, at every other epoch of learning. The fitness of a design was
based on the best performance it achieved during reinforcement learning. After learning, the mean
and covariance matrix of the design distribution were then adapted by evolutionary strategies and
a subsequent generation of 64 new designs was sampled from the shifted distribution (E). This
process was repeated for dozens of generations (F-J) yielding an evolved design distribution (K)
that encodes a population of designs (L-N) with much higher fitness (blue behavioral traces).

have yet to evolve beyond primitive machines with exceedingly simple body plans, which can be
neatly divided into two opposing groups:

1. fully rigid, jointed bodies (Sims, 1994; Lipson & Pollack, 2000; Auerbach & Bongard,
2014; Zhao et al., 2020; Hejna et al., 2021; Gupta et al., 2021; Yuan et al., 2022); and

2. fully soft, jointless bodies (Hiller & Lipson, 2012; Cheney et al., 2018; Kriegman et al.,
2020a; Matthews et al., 2023; Wang et al., 2023b; Li et al., 2024; Strgar et al., 2024).

Here we introduce the de novo optimization of externally soft yet internally rigid, jointed body
plans—endoskeletal robots (Fig. 1)—with minimal assumptions about the robots’ external and in-
ternal structures (Fig. 2). Endoskeletal robots contain bones and joints—the lever systems animals
use to their mechanical advantage as they gallop across uneven surfaces, climb up trees, and swing
from branch to branch. At the same time, endoskeletal robots contain and are encased by soft de-
formable tissues—the springs animals use to conform to uneven surfaces, absorb shocks, store and
release elastic energy, catapult themselves into the air, and capture complex somatosensory signals
about their environment. In order to achieve this confluence of soft and rigid body dynamics within a
single robot—without presupposing the topology or the geometry of the robot’s bones and tissues—
a novel multi-physics voxel-based simulator (Fig. 4) was created and is introduced here alongside
a latent endoskeletal embedding and companion generator that sythensizes elastic and rigid voxel
cells into freeform tissues and bones, and connects the bones by joints within a functional whole.

Several existing simulators support two-way coupling between rigid and deformable bodies with
joint constraints (Shinar et al., 2008; Kim & Pollard, 2011; Li et al., 2020). However they are not
naturally amenable to structural optimization because they do not readily expose building blocks
(e.g. voxels) to the optimizer; instead, they require a bespoke volumetric mesh to be supplied for
each body plan, and the mesh must be carefully designed to remain numerically stable. Jansson &
Vergeest (2003) embedded rigid bodies within a regular grid of passive Hookean springs and masses,
which provides suitable building blocks of freeform structure, but does not support joint constraints,
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Figure 3: A universal controller for freeform endoskeletal robots. The control of an endoskeletal
robot (A) utilizes a graph data structure with edges that map bone connections within its skeleton,
edge features that track the position, orientation and angle of each joint, and node features that track
the position, orientation and movement of each bone (B). The controller also tracks propriocep-
tive and mechanosensory input from the position, velocity and strain of the robot’s soft tissues (C),
which is locally pooled into the center of mass of each bone (D) thereby transforming the soft tis-
sue’s sensory input from voxel space to a graph that aligns with the skeletal sensory graph (E). The
combined rigid+soft sensory graph is then fed as input to a graph transformer (F). The graph trans-
former distils sensory signatures across the graph into updated node features (G), and updated edge
features (H). The Actor (I) takes the updated edge features as input and outputs motor commands
(J): the target rotation angle for each joint (K). The updated node features are pooled by globally by
a channel-wise maximum across the node dimension (L) to retrieve a graph-level output (M), which
the Critic (N) uses to predict a value function based on the robot’s current state information.

actuation, volume preservation under twisting deformations, or the parallelization necessary to scale
design to complex bodies composed of large numbers of building blocks. Here, in contrast, we
present a massively-parallel simulator that uses a more accurate, twistable model of elasticity (Hiller
& Lipson, 2014) as the basis of building blocks of soft tissues which directly attach to rigid building
blocks of bones and articulated skeletons with joint constraints and actuation (Baraff, 2001).

Cheney et al. (2013) evolved robots composed of elastic building blocks they called “muscle”, “fat”
and “bone”. The muscles rhythmically pulsed, expanding and contracting in volume; the fat was
passive; and the “bone” was equivalent to fat in density and mass but had an order-of-magnitude
higher stiffness (Young’s modulus). They found that any further increases to bone stiffness pre-
vented the pulsating muscle blocks from sufficiently deforming the robot’s jointless body and thus
inhibited locomotion. In reality, animal bones are seven orders-of-magnitude stiffer than animal fat
(Guimarães et al., 2020), and are pulled by tendons and muscles about joints to rapid generate large
yet precise dynamic movements of load bearing limbs. One could simply add joints to this elas-
tic model; however, accurate simulations of elastic elements with higher stiffness (and thus higher
resonance frequencies) approaching that of animal bones quickly become prohibitively expensive
as ever smaller time steps are required to avoid numerical instability. Moreover, the fully “soft”
(entirely non-rigid) and jointless robots evolved by Cheney et al. (2013) also lacked sensors, were
composed of no more than a few hundred elastic blocks, and could only move along a perfectly flat
surface plane. Here, in contrast, we introduce a new approach that combines hundreds of thousands
of both elastically deformable and rigid building blocks into multi-physics bodies that use joints and
sensors to navigate complex terrestrial environments.

Following Hiller & Lipson (2010), Compositional Pattern Producing Networks (CPPNs; Stanley
(2007)) have been used by many others (Cheney et al., 2013; Auerbach & Bongard, 2014; Cheney
et al., 2018; Kriegman et al., 2021; Wang et al., 2023a; Cochevelou et al., 2023) to encode robot
designs. CPPNs are a class of feedforward neural networks with spatial inputs (e.g. cartesian coordi-
nates) and hence spatially correlated outputs, which can be used to determine the absence or presence
of a cell at each queried spatial coordinate. CPPNs thus provide a simple way to “paint” material
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Figure 4: Simulating endoskeletal robots. Soft tissues (green masses) were modeled by a grid of
Euler–Bernoulli beams (A) that may twist and stretch and directly attach to bones (blue masses; B
and C) that follow rigid bodied dynamics with joint constraints (D). More details about the simulator
can be found in Sect. 2.1 and Appx. B.

into a workspace; however, they struggle to integrate basic structural and functional constraints, such
as those which ensure that rigid cells belonging to the same bone form a single contiguous object,
that joints are only placed between nearby bones, and that bones remain inside the body. Moreover,
one CPPN (its entire architecture) encodes a single design rather than a latent manifold of continu-
ous variables that encode a generative model of robot designs. Here we learn one such continuous
representation for endoskeletal robots and demonstrate the learned representation’s structural and
functional coherence, expressivity, smoothness (Fig. 5) and interpretability (Figs. 13-15).

Prior work encoded robot designs into a continuous latent embedding (Hu et al., 2023); however, the
design space (Zhao et al., 2020) was limited by graph grammars to simple body plans containing a
small number of jointed rigid links with predefined shapes. These simplifying assumptions allowed
for effective model predictive control (Lowrey et al., 2019), which requires an explicit and accurate
model of the robot’s dynamics, including its interaction with the environment. Here, in contrast,
we use a model-free, end-to-end learning approach to design and control externally-soft body plans
with highly non-linear dynamics and multi-physics interactions that are difficult to model explicitly.

More specifically, we here train a single reinforcement learning system—a “universal controller”
(Fig. 3)—across an evolving population of freeform endoskeletal robots. This is achieved by lo-
cally pooling (Peng et al., 2020) each robot’s arbitrary arrangement of high-resolution (voxel-level)
sensory channels to align with its skeletal graph, which may then be fed as input to a graph trans-
former (Yun et al., 2019). Graph transformers were previously employed for universal control of
many robots with differing physical layouts (Gupta et al., 2022); however, these robots were con-
strained to bilaterally symmetrical “stick figures” composed of jointed rigid cylinders (Ventrella,
1994). There was no need to learn a 3D volumetric representation of sensor integration as the stick
figures were already in a simple graph form with their sensors directly aligned to the edges of their
graph. We here evolve embodied agents beyond the rigid stick figures (Yuan et al., 2022; Gupta
et al., 2022) and boneless “blobs” (Wang et al., 2023a; Huang et al., 2024) found in recent work
with the multiphysics simulation, freeform design and universal control of endoskeletal robots.

2 METHODS

In this section we describe how endoskeletal robots were simulated (Sect. 2.1), encoded (Sect. 2.2)
and optimized (Sect. 2.3). A symbol table is provided on the very last page of the paper, in Table. 9.

2.1 SIMULATING ENDOSKELETAL ROBOTS

We here introduce a novel voxel-based experimental platform that was built from the ground up
to support the development of novel representations and algorithms for co-designing the form and
function of endoskeletal soft robots. Fig. 4 provides a high level overview of the underlying physics
simulator, which enables two-way coupling between freeform soft tissues and freeform rigid bones
with joint constraints. In this voxel-based simulator, elastic voxels and rigid voxels are used as
building blocks of soft tissues and bones, respectively. Elastic voxels and rigid voxels are subject to
their own respective update rules, which are outlined in Appx. B.
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Figure 5: Interpolating between three points in endoskeletal latent space. Designs sampled from
a 2D slice of the learned latent embedding (A-O) and their internal jointed skeletons (A′-O′), where
A′ reveals the skeleton of A and cyan cylinders show the location of hinge joints between bones in
each skeleton. The three corner designs (A,K,O) were drawn from arbitrarily selected latent coordi-
nates and the 12 designs between them sit with equal spacing along a plane of linear interpolation.
The visible smoothness, mechanical coherence, and geometric and topological expressiveness of the
voxel-based latent space facilitated the co-design of morphology and control.

The most challenging part of building such a simulator was integrating the dynamics of soft and
rigid components, which can be summarized by a single equation for all voxels:

MvẌv = F v
b + F v

ext + I(v ∈ bone)F v
c , (1)

where v is a single voxel, Mv ∈ R6×6 is the generalized mass matrix combining mass and inertia
terms, Ẍv ∈ R6 is the second derivative of generalized position Xv with respect to time t, F v

b ∈ R6

and F v
ext ∈ R6 are the generalized force terms including force and torque terms, F v

b is the effect of
all elastic beams (Fig. 4A) and F v

ext is the effect of all external forces such as gravity and friction.
Fc is the generalized constraint force term which is only applied on rigid voxels using the indicator
function I(v ∈ bone). For more details see Appx. B.

2.2 ENCODING ENDOSKELETAL MORPHOLOGY

We began by procedurally generating synthetic training data—examples of valid endoskeletal body
plans—in 3D voxel space using multi-star graphs (Fig. 10A), which consist of random number of
randomly positioned star nodes like this∗with a variable number of arms radiating from their center
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points. The radius and length of the bone and the radius of the surrounding soft tissue in each arm
were all randomly assigned. Each arm may connect by a joint to an arm of an adjacent star, or
remain unconnected. Synthetic data generation pseudocode and hyperparameters can be found in
Appx E. The resulting body was voxelized within a 64 × 64 × 64 cartesian grid. Each voxel in
the grid was assigned an integer label i ∈ [1,K + 2], where i = 1 represents empty space, i = 2
represents a soft tissue, and i > 2 was used to represent the (at most K) independent rigid bones. A
one-hot encoding was used to represent the workspace: a tensor with shape (64, 64, 64, k + 2).

A variational autoencoder (VAE; Kingma & Welling (2013)) with four blocks of Voxception-ResNet
modules (Brock et al., 2016) was then trained to map voxel space into a highly compressed latent
distribution consisting of 512 latent dimensions. Prior work that used voxel-based autoencoders con-
sidered fixed dataset, which limited their depth and required data augmentation to avoid overfitting
(Brock et al., 2016). Because we can generate new synthetic data points on demand, our training
data is unlimited, and the depth of our autoencoder—and thus its potential for compress, generalize
and capture complex hierarchical features—is not constrained by lack of data.

Each design decoded from the latent space was automatically jointified (as detailed in Fig. 9),
and any exposed bone was covered with a thin layer of soft tissue. This tissue patching process
was highly targeted; in randomly generated designs, patching was applied to less than 3% of the
workspace and covered less than 13% of the robots’ bodies. See Appx. F for VAE hyperparameters.

2.3 CO-OPTIMIZING ENDOSKELETAL MORPHOLOGY AND CONTROL

State space. Endoskeletal robots receive high dimensional mechanosensory data sv =
{(xv, yv, zv, ϵv,vv), . . . | v ∈ soft} with 3D position x, y, z, strain ϵ and velocity v from a variable
number of soft voxels that are distributed at variable locations in 3D space (Fig. 3C), depending on
the size, shape and deformation of its soft tissues. In addition to sensing the movement and distor-
tion of the soft tissues, proprioception of each rigid bone r and joint j between bones is also taken as
input. The state of bones can be represented as sr = {(xr, yr, zr,mr,qr,vr,ωr), . . . | r ∈ bone}
where x, y, z is the position of the center of mass of the bone, m is the mass, q is quaternion repre-
senting the orientation, and v and ω are the linear velocity and angular velocity. The state of joints
can be represented as sj = {(hj ,dj

1,d
j
2, θ

j , θjmin, θ
j
max), . . . | j ∈ joints} where h is the hinge axis

direction of joint, d1 is the vector from the joint position to the center of mass of the first connected
bone, d2 is the vector from the joint position to the center of mass of the second connected bone,
θj is the current joint angle, and θjmin and θjmax are the minimum and maximum joint angle limits,
respectively. Soft voxel sensing is locally pooled into nodes at the center of mass of each bone
(Fig. 3D) thus aligning soft tissue and skeletal inputs (Fig. 3E) and promoting “reflex partitioning”
(Windhorst et al., 1989) whereby motors are affected more by local sensors than distant sensors.

Action space. The action space consists of joint angles, which control the movements and ar-
ticulation of the robot’s internal skeleton. We use a uniform discrete angle action space A =
{-1.4 rad, -0.7 rad, 0 rad, 0.7 rad, 1.4 rad} for all joints. We selected 1.4 rad as the limit for joint
rotation range to prevent extremely large unrealistic deformation of the soft materials surrounding
the joints (Bonet & Wood, 2008). We found that a discrete action space greatly simplified and
stabilized policy training compared to an otherwise equivalent continuous action space (Fig. 16).

Reward. Reward was based on net displacement of the robot across 100 pairs of observations and
actions sampled at 10Hz during a simulation episode of 10 seconds. Rewards were generated per
episode in the following way:

ut = (xt−1 − x0, yt−1 − y0) (2)

ût =
ut

||ut||
(3)

vt = (xt − xt−1, yt − yt−1) (4)

rt =

{
−Plarge, if ||vt|| < δ

max(ût · vt,−Psmall), otherwise
(5)

where xt and yt are the x and y position of the center of mass of the robot at time step t, rt the
reward received by the robot, δ is a small threshold value for detecting stationary, and ut is the
history movement vector up to the previous frame projected to the xy plane. If the norm of ut is
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0, we replace ût with vector (1, 0) pointing in the positive X direction. We apply a large penalty if
robot is static and clip a negative reward to a smaller penalty if the robot is moving but in an unde-
sired direction. Eq. 5 encourages the robot to maintain consistent forward motion while penalizing
stagnation or drastic directional changes, which was found to be more robust for identifying designs
with high locomotive ability compared to using a naive reward based on moving distance in a fixed
direction, such as rt = xt − xt−1. This is because the naive reward may discard designs with high
locomotive ability in the wrong direction. In some experiments the reward function was augmented
to encourage robots to lift themselves above the surface plane using legs.

Policy. We employed Proximal Policy Optimization (PPO; Schulman et al. (2017)) to train a single
universal controller for an evolving population of 64 endoskeletal robots. A clone of each design in
the population was created, yielding a batch of 128 designs. This last step is intended to broaden
the evaluation of each design and so reduce the likelihood of erroneously discarding a good design.
At each time step t, the policy’s observation st = (svt , s

j
t , s

r
t ) consists of soft voxel observations svt ,

joint observations sjt , and rigid bone observations srt . Given these observations as input, the policy
returns actions and value estimates according to the following equations:

slt = SpatialPool(svt ) (6)

nt = [srt , s
l
t] (7)

(ñt, ẽt) = GraphTransformer(nt, s
j
t ) (8)

n∗
t = MaxPool(ñt) (9)

V (st) = ResNetV (n∗
t ) (10)

zt,j = ResNetπ(ẽt,j) (11)
π(at,j |st) = Softmax(zt,j) (12)

π(at|st) =
∏
j

π(at,j |st) (13)

Soft voxel observations svt are locally pooled (Peng et al., 2020) into a 643 grid using the robot center
of mass as the grid origin. The convoluted feature grid is then queried at the center of masses of
each rigid bone, forming locally pooled node features slt (Fig. 3D). This operation aligns soft tissue
sensory inputs with skeletal sensing. The pooled features are then concatenated with the rigid bone
observations srt to form the node features nt, as shown in Fig. 3E.

A graph transformer (Shi et al., 2021) processes the robot’s topology graph, taking the node features
nt and edge features sjt (joint observations) as input, and outputting processed node features ñt and
processed edge features ẽt. The processed edge features are produced by concatenating processed
node features across the two nodes connected by each edge. By max pooling (Fig. 3L) over the
processed node features ñt we obtain a global feature vector n∗

t (Fig. 3M), which summarizes the
overall state of the robot. The Critic (Fig. 3N) uses ResNetV to take the pooled node feature n∗

t and
output the value function V (st). The Actor (Fig. 3I) processes edge features ẽt,j , corresponding
to each joint j, and passes them through ResNetπ to compute the action logits zt,j which define
the action distribution for joint j. By computing the softmax over the logits zt,j , probabilities are
obtained over the discrete action space A. The overall policy π(at|st) was thus defined as the
product of the action distributions over all joints, assuming independence between joints.

By utilizing a graph transformer to process the robot’s topology, the policy effectively learns
to condition on both the sensory input and the morphology of a robot. This architecture al-
lows the actor to generate joint-specific actions while the critic evaluates the discounted score
V (st) = Eπ

[∑T
t=0 γ

trt

]
.

Fitness. The aggregate behavior of a robot across an entire simulation episode was evaluated against
a fitness function. After 20 epochs of learning, each design in the current population was assigned a
fitness score equal to the peak fitness it achieved across 40 episodes of simulation.

Evolutionary design. The population of designs fed to the universal controller was optimized by
covariance matrix evolutionary strategies (CMA-ES; Hansen & Ostermeier (2001)). Briefly, a mul-
tivariate normal distribution of designs is sampled from the latent space and the mean vector is
“pulled” toward the latent coordinates of sampled designs with the highest fitness and the covari-
ance matrix is adapted to stretch along the most promising dimensions and shrink within others.
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Figure 6: Task environments. We considered four task environments: Flat Ground (A), Upright
Locomotion (on flat ground; B), Potholes (C) and Mountain Range (D). In each one, two indepen-
dent evolutionary trials were conducted, and the peak fitness achieved by each design was averaged
across the population before plotting the cumulative max (E-H). The best design is shown for each
environment (A-D). Rewarding net displacement over flat ground (A,E) results in the evolution of
snakes (A). We ran optimization for extra time (100 generations) to see if legs would emerge, but
evolution failed to escape the local optima of snakes. Adding a second component to the reward
function that tracks the proportion of body voxels that fall below a prespecified height threshold
during behavior (B,F) resulted in legged locomotion (B), and continued to innovate when provided
extra time. Increasing the difficultly of the terrain also promoted morphological diversity (C,D).

Because CMA-ES uses ranked fitness scores instead of raw fitness scores to update the mean design
vector, undesirable designs can be assigned a large negative rank without interfering with the stabil-
ity of the optimizer. Body plans that have less than two joints or less than 20% bone, were deemed
“invalid designs” and assigned a large negative reward as described below in Sect. 2.3. Less than
15% of the randomly generated robots were invalid under this definition of validity.

3 RESULTS

In this section, we present our learned endoskeletal latent embedding and its use in body-brain co-
design across four different task environments. We also perform a series of control experiments
that isolate the effect of morphological evolution in order to determine its role in achieving high
performing endoskeletal robots.

3.1 ENDOSKELETAL LATENT SPACE

The learned latent space is smooth and expressive (Fig. 5) and was found to contain tunable genes
that encode specific morphological traits, such as body height, length, width, volume and bone count
(Figs. 13-15). The trained VAE is able to encode and decode previously unseen training data points
with high accuracy (Fig. 10) while generalizing beyond the training data: Most designs sampled
from the latent space look very different from the multi-star graphs (see e.g. Fig. 10A) used to train
the VAE. For example, skeletal voids (i.e. holes that pass through individual bones) were not present
in the generated synthetic training data set but they are present in the bones of decoded designs from
randomly-sampled latent codes (Fig. 5A′).

3.2 TASK ENVIRONMENTS

Flat Ground. On perfectly flat ground, selection for forward locomotion resulted in the evolution
of snake-like body plans with two joints (Fig. 6A) that are able to move at high speeds.
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Figure 7: Evolution of learning. A population of 64 designs was iteratively drawn from an evolving
design distribution and used by reinforcement learning to obtain a universal controller. The peak
fitness achieved by each design across 20 epochs of RL is plotted (with 95% bootstrapped confidence
intervals) at each generation of design evolution in the Upright Locomotion task environment (A).
The dark gray line in A is mean peak fitness across the 64 designs in the population; the shaded
region is the CI of the mean. Similarly, the average fitness achieved by each design across its
simulation episodes is shown at each learning epoch (in B). An otherwise equivalent experiment
with random morphological search instead of evolution strategies was also performed (purple curves
in A and B). After 30 generations of evolution (600 total epochs of RL), the 64 designs from the
best evolved population (blue dot; gen 23) were compared to the 64 designs from initial randomly-
generated population (green dot; gen 0). To do so, the designs within each population were frozen
and their behavior was re-optimized (C) starting with the optimized universal controller from gen 23
(Optimized RL). A second comparison was then made in which a new universal controller re-learned
for each population separately, from scratch (RL from scratch). In both comparisons, the learning
conditions were equivalent and the only differences between the populations were morphological.
And in both comparisons the evolved designs easily outperformed the initial designs. This indicates
that design evolution was necessary: it pushed search into regions of the latent space containing
better morphologies with higher fitness potential that better support universal controller training.

Upright Locomotion. Given the impressive speed of snakes on flat ground, a second term was
added to the reward function to promote body plans that exhibit upright legged locomotion. To do
so, the proportion of body voxels that fell within 5 cm of the surface plane during behavior was
subtracted from the original reward at each step of learning, and the original fitness was divided by
the mean proportion of voxels that fell below this threshold across the full simulation episode. This
resulted in less serpentine body plans with more joints (Fig. 12). The best evolved design is much
more complex, and uses its legs to lift its body above the ground during locomotion (Fig. 6B).

Potholes. Next, we explored a more challenging terrain. In the Potholes environment, there are
regularly-spaced depressions (“potholes”) along the surface plane. The depth, width, and spacing
of the potholes can be easily adjusted in the provided code (indeed any 2D height matrix can be
supplied to change the terrain). With relatively small, tightly-spaced potholes, the best evolved
designs (Fig. 6C) are longer and more complex than the snakes that dominated flat ground under
the same fitness function (Fig. 6A). A common adaptation that evolved for navigating potholes was
broad feet, which the robots used to push off and pull against the vertical walls inside the potholes.

Mountain Range. In our fourth and final environment, robots must climb up a slope in order to
move away from the origin. In this mountain environment, the best evolved designs (Fig. 6D) were
also slightly more complex than the flatland snakes.

3.3 THE NECESSITY OF MORPHOLOGICAL EVOLUTION

Across all four task environments, evolved design populations significantly outperform the
randomly-generated initial populations of designs from the first generation of evolution. This could
be due to improvements in the universal controller or better body plans, or both. In order to isolate
the effects of morphological evolution and policy training, we performed the following three control
experiments using the Upright Locomotion task environment.
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In the first experiment, we extracted the design population that achieved the highest mean reward
during evolution (Evolved designs in Fig. 7B), as well as the RL model checkpoint at this point
(Optimized RL in Fig. 7C). We also extracted the initial designs that were randomly generated at
the very beginning of evolution (gen 0). The initial designs (Fig. 11) were frozen and the controller
was re-optimized using this population of frozen designs for 100 epochs starting from optimized RL
checkpoint. In a parallel independent experiment, the evolved designs (Fig. 12) were likewise frozen
and the controller was re-optimized using the frozen evolved population of designs for 100 epochs
starting from optimized RL checkpoint. The same procedure was repeated, this time retraining the
control policy from scratch, for both frozen design populations separately. In both cases—starting
policy training from scratch or from the RL checkpoint—the frozen evolved designs significantly
outperformed the frozen initial designs (Fig. 7C). In both frozen design populations, the universal
controller from the checkpoint immediately exhibits the best performance achieved after retraining
from scratch. This shows that RL does not suffer catastrophic forgetting: the policy does not forget
how to control the initial designs as the population evolves to contain different, better designs.

These results suggest that morphological evolution yields better designs but they do not prove that
evolution is necessary. It could be the case that good designs will simply arise by random muta-
tions alone, without cumulative selection across discrete generations. As a final control experiment
we tested this hypothesis by replacing evolutionary strategies with random search (purple curve in
Fig. 7A,B). Random morphological search performed significantly worse than evolutionary strate-
gies. This suggests that morphological evolution (mutation and selection) is indeed necessary.

4 DISCUSSION

In this paper we introduced the computational design of freeform endoskeletal robots. The open-
ended nature of the design problem allowed us to procedurally generate a never-ending synthetic
data flow of endoskeletal training examples for representation learning, which in turn allowed for
effective learning of a much deeper voxel-based autoencoder than those learned in prior work with
fixed datasets (Brock et al., 2016). This resulted in a very smooth and highly expressive latent
embedding of design space (Fig. 5), which we employed as a genotype space (and the decoder as
the genotype-phenotype mapping) for morphological evolution.

We found that a universal controller could be simultaneously obtained by reinforcement learning
during morphological evolution despite the wide range of endoskeletal geometries and topologies
that emerged within the evolving population. We observed across several independent experimen-
tal trials that morphological evolution tended to push search into promising regions of latent space
consisting of high performing body plans that facilitated policy training. For flat ground, this re-
sulted in the evolution of simple two-jointed snakes (Fig. 6A), which in hindsight makes intuitive
sense: such bodies are easier to control. But, in the other three task environments we tested, many
other, more complex solutions evolved, including legged locomotion (Fig. 6B). This suggests that
other researchers may leverage the open-endedness of this computational design platform to identify
which physical environments and fitness pressures lead to the emergence of particular abilities and
the embodied structures required to support those abilities

Others may use our simulator as an easy-to-integrate software library for benchmarking their own
voxel-based representations and learning algorithms in the four task environments released here,
or by creating their own terrain maps and reward functions based on these examples. To this end,
we also provide an example of object manipulation (“dribbling a football”; Fig. 8), which we hope
inspires others to create their own objects and build more, and more intricate, virtual worlds.

However, there were key limitations of the present work that may be overcome by future work.
First, because skeletons were assumed to be inside of each robot, rigid body collisions were not
modeled, and thus external rigid horns, claws, shells, etc. were not possible. Also, fluids were not
modeled, and thus the simulator was restricted to terrestrial environments and land based behav-
iors. But the most important limitation of this paper is that simulated designs were not realized as
physical robots. Recent advances in volumetric 3D printing (Darkes-Burkey & Shepherd, 2024) are
beginning to enable the fabrication of endoskeletal bodies that flex their muscles but are not yet ca-
pable of locomotion. This suggests that artificial endoskeletal systems will soon move through our
world, opening the way to evolved endoskeletal robots that begin to approach the sophisticated—and
perhaps eventually cognitive behavior of evolved endoskeletal organisms.
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A SUPPLEMENTAL FIGURES

Figure 8: Object manipulation. One of the designs that evolved for Upright Locomotion performs
a new task: it pushes an object forward. This design was among several others that we sampled
from the evolving population analyzed in Fig. 7, placed behind a soft sphere (teal), and actuated
using the universal controller from the Optimized RL checkpoint in Fig. 7C. Videos of the resulting
behaviors and the source code necessary to reproduce our results can be found on our project page.
https://endoskeletal.github.io.

Internal structureExternal structure  Bone interface
Extract 

contact surface
Build PCA 

bounding box Add joint

A B C D E F

Figure 9: Jointification. The learned latent space encodes a generative model of an endoskeletal
body plan: a external soft tissue geometry (A) and an internally segmented skeleton (B). The la-
tent space also implicitly encodes the location and orientation of each joint in the skeleton: at the
interface of each pair of bones in voxel space (C). In order to simulate a joint, voxels along the
contact surface of two opposing bones are extracted (D) and Principal Component Analysis is used
to construct an oriented bounded box around them (E). A hinge joint is then positioned at the center
of mass of the contact surface with a direction along with the longest axis of the bounding box (F).

Figure 10: Examples of encoding previously unseen sythentic training data (A) and reconstructing
each one (B) using the fully optimized VAE. Each column displays a sample/reconstruction pair.
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Figure 11: Ancestors. Part of a random initial population, sorted by net displacement (in meters).

Figure 12: Descendants. Part of the evolved population that descended from the initial population
shown above in Fig. 11 for Upright Locomotion. Under each design, its net displacement in meters.
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Figure 13: Screening for latent genes. We measured the Pearson correlation coefficient (ρ) of the
512 latent features and the body volume of one million randomly sampled designs (A). The set of
latent features that are highly correlated with volume (|ρ| > 0.1) were extracted as “the gene for
volume”, the effect of which can be increased or decreased on demand (B). The effect of tuning the
gene for volume ±2σ is shown for the design decoded from the sample mean of the latent space (µ).
The same procedure was repeated to identify and modulate genes for bone count (C, D), length (E,
F), width (G, H) and height (I, J).
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Figure 14: Gene editing. The best design that evolved for Upright Locomotion was extracted (A)
and the set of latent features found to be individually correlated with body volume—the gene for
volume—was incrementally increased and the volume of the resulting design was measured (B-G).
The entire latent genome is shown to the right of each decoded design, with features outside the
volume gene grayed out. Positively correlated features (240, 390 and 471) were amplified, and neg-
atively correlated features (189 and 361) were reversed by 0.25σ in each row, yielding progressively
thicker body parts within the evolved body shape.
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Figure 15: Programmable morphology. The best design that evolved for Upright Locomotion
was extracted (from Fig. 6B,F) and the found genes for volume (A), bone count (B), length (C),
width (D) and height (E) were individually modulated to demonstrate the precision with which
evolved morphologies can be manually redesigned through “genetic engineering”. Some genes
afford greater control over a specific morphological trait than others; however, this may be attributed
to the simplicity of the procedure employed to screen for genes, which only captures pairwise linear
associations between a manually-specified morphological trait and an individual latent feature.
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Figure 16: Discrete and continuous action spaces. Peak (A) and average (B) fitness is plotted
for the Upright Locomotion task, as in Fig. 7A and B. Two kinds of action spaces were compared:
discrete (gray) and continuous (pink). The discrete action space is {-1.4 rad, -0.7 rad, 0 rad, 0.7 rad,
1.4 rad} and the continuous action space is [-1.4 rad, 1.4 rad], for all joints. In both panels, each line
is a mean across the 64 designs in the population and the shaded regions are a 95% bootstrapped
CI of the mean. Although both continuous and discrete action spaces are viable, a discrete set of
actions greatly simplified and stabilized universal policy training under the tested conditions.

Figure 17: Universal and individual controllers. An otherwise equivalent experiment was con-
ducted in which the universal controller shared by all 64 designs in the population was replaced
with a bespoke individual controller for each design. As in Fig. 6, the peak fitness achieved by each
design was averaged across the population before plotting the cumulative max (A). This statistic,
which we term “best so far”, captures the progress of the entire population. Training 64 indepen-
dent policies for 30 epochs required 44.8 hours on 4 NVIDIA H100 SXM GPUs. During the same
time frame on the same hardware the universal controller can be trained for 451 epochs and thereby
achieve much higher fitness. Over the first 30 epochs of learning, the performance of the universal
controller was not statistically different from that of the individual controllers (B), and since design
evolution was only advanced a single generation, the designs under universal control were visually
similar to those with independent controllers, with both populations closely resembling the random
initial population (Fig. 11).
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B SIMULATION

In this section we describe the underyling soft and rigid body physics behind our endoskeletal robot
simulator. We will use the symbol τ for both moment and torque to avoid confusion. Subscripts are
used to indicate the source of an effect and superscripts indicate the target of an effect.

B.1 SOFT VOXELS

Following Hiller & Lipson (2014), soft voxels are defined as a point of mass with rotational inertia
in space. Each surface of a soft voxel may connect by a Euler–Bernoulli beam with zero mass to an
adjacent soft voxel (Fig. 4A) or rigid voxel (Fig. 4B,C). Each beam exerts moment τb and force fb

onto the corresponding connected voxel when deformed from expansion, compression or twisting.
Although Euler–Bernoulli beams are more complex to compute than Hookean springs, the additional
torsional moment τb contributes to preserving volume when the structure is under external torsional
stress. Since endoskeletal robots embed joints between rigid bones inside soft tissue and produce
large deformations, preserving volume prevents generating invalid force and moment values when
soft tissues are radically compressed and thereby stabilizes simulation.

The moment τb and force fb generated by beams can be computed from position x = (x, y, z) and
rotation θ of voxels v1 and v2 attached on both ends using a constant stiffness matrix K:f

v1
b

τ v1
b

fv2
b

τ v2
b

 = [K]

x
v1

θv1

xv2

θv2

 (14)

Following Newton’s second law, we can express the equation of motion for soft voxels as:

mvẍv =
∑

fv
b + fv

ext

Ivθ̈v =
∑

τ v
b + τ v

ext

(15)

where fvext and τvext represent external force and moment caused by gravity, friction, and contacting
force etc. For simplicity, we will define generalized mass, position and force representations Mv ,
Xv and F v and rewrite Eq. 15 as:

MvẌv =
∑

F v
b + F v

ext with Xv =

[
xv

θv

]
, F v =

[
fv

τ v

]
,Mv =

[
mvE 0
0 Iv

]
(16)

where E is the identity matrix.

B.2 RIGID VOXELS

Rigid voxels are affected by the beams of connected soft voxels (Fig. 4C), generalized external
forces F v

ext, and additional generalized constraint forces F v
c , as from joints (Fig. 4D). Since rigid

voxels belonging to the same rigid bone r do not have relative motion, we compute the generalized
position Xr of the compound rigid bone r and infer Xv . As each rigid bone will be connected by
many beams to its surrounding soft voxels, we will use F r

b as the total generalized force exerted by
all beams to simplify the representation:

MrẌr = F r
b + F r

ext + F r
c (17)

For F r
b and F r

ext, torque is also generated by forces applied to the center of component rigid voxels.
Thus:

F r
b =

∑
v∈r,b∈v

[
fv
b

τ v
b + (xv − xr)× fv

b

]
and F r

ext =
∑
v∈r

[
fv

ext
τ v

ext + (xv − xr)× fv
ext

]
(18)

where xr represents the center of mass of the corresponding rigid bone r.

Contacts were modeled between voxel pairs and contact forces were thus aligned to the center of
colliding voxels instead of the center of mass of the rigid bones. To prevent generating a false torque
term in F v

ext, the contact force does not contribute to the torque.
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Finally, constrained dynamics were used to compute F r
c as follows. Constraints were defined as

functions between two rigid bones r1 and r2:

c(Xr1 , Xr2) ≥ 0 (19)

For convenience, we now remove superscripts and use concatenated X , F , and block-diagonalized
M to represent attributes of both bones. By taking the time derivative of constraint function c we
obtain the Jacobian matrix J which maps global space to constraint space:

ċ(X) = JẊ (20)

Introducing Lagrange multiplier λ, which physically represents applied constraint forces, and we
can rewrite Eq. 17 as:

MẌ = F + JTλ with F = Fb + Fext (21)

By substituting Eq. 21 into Eq. 20 we get:

ċ(X) = J ˙Xold + JM−1(F + JTλ)∆t (22)

where ˙Xold is speed from the last time step; this derivative needs to be non-negative if we wish the
constraint to be satisfied at last time point. We also add a bias factor (Baumgarte, 1972) to correct
constraint errors incrementally:

ċ(X) = J ˙Xold + JM−1(F + JTλ)∆t+
β

∆t
cold(X) ≥ 0 (23)

where β is a constant that controls the constraint error correction rate in each time step.

Reordering terms in Eq. 23 and we obtain equation system in the form of a linear complementarity
problem (LCP) and then solve λ using the projected Gauss-Seidel (PGS) algorithm (Erleben, 2013):

A = JM−1JT , (24)

w = J ˙Xold + JM−1F∆t+
β

∆t
cold(X), (25)

Aλ+ w ≥ 0 (26)
λ ≥ 0 (27)
λ ⊥ Aλ+ w (28)

Note that Eq. 27 is required since λ is in constraint space and it should be in the positive direction
that satisfies the constraint. Note also that Eq. 28 is required since constraint forces does not add
energy to the system and thus should always be perpendicular to the direction of the constraint
change.

C FROM SIMULATION TO REALITY: FUTURE WORK

The endoskeletal robots in this paper were confined to simulated tasks within a virtual world.
Though significant effort was dedicated to ensuring that the simulated mechanics, simulated en-
vironments and simulated materials closely resembled physical reality and realizable morphologies
(Table 7), it is in general difficult to guarantee that the behavior of a system optimized in simulation
will transfer with sufficient fidelity to reality (Jakobi et al., 1995). It remains to determine the ef-
fect that universal controllers have on sim2real transfer, since sim2real of universal control has yet
to be attempted. But because our approach simultaneously optimizes a population of many robots
with differing topological, geometrical, sensory and motor layouts, it realizes the desired behavior in
many unique ways and thereby provides many more opportunities for successful sim2real transfer
compared to other methods that optimize a single design (Kriegman et al., 2020b). We also pre-
dict that the inherent capacity of a universal controller to generalize across these differing action
and observation spaces will render the policy more transferable across certain differences between
simulation and reality, compared to a bespoke single-morphology controller.
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D OVERVIEW OF THE ENTIRE CO-DESIGN PIPELINE

Figure 18: Data flow. Synthetic examples are used to encode the latent search space in which
evolution operates. An evolving population of designs decoded from this space are simulated and
used to train a controller. The population is updated based on the fitness of the designs.

E SYNTHETIC DATA GENERATION

Algorithm 1 Procedural Generation of Synthetic Robot Body Plan
1: Input: Node range [Kmin,Kmax], degrade ratio ψ
2: Randomly select number of nodes k in [Kmin,Kmax]
3: for each node i = 1 to k do
4: Randomly initialize:
5: Max children Ci

6: Limb length Li

7: Rigid radius rrigid,i
8: Soft radius rsoft,i
9: Create StarNode i

10: end for
11: Set node 1 as root (level 0)
12: for each node i = 2 to k do
13: Select parent node p with lowest level that can attach more children
14: Decrease limb length: Li = Li × ψlevelp

15: Compute offset vector opposite to p’s existing children, blend with random unit vector
16: From p, use Lp and offset to find attachment point; use Li to place center of node i
17: Attach node i to parent node p
18: end for

Table 1: Hyperparameters and their ranges used in the procedural generation of synthetic robot body
plans.

Parameter Range / Values Description
Global Parameters
Kmin 3 Minimum number of nodes (stars) per robot.
Kmax 8 Maximum number of nodes (stars) per robot.
ψ 0.9 Degradation ratio multiplier for limb length per hierar-

chical level.
Node Parameters (for each node i)
Ci {2, 3, 4} Maximum number of children (arms) for node i.
Li [0.1, 0.3] Limb length for node i.
rrigid,i [0.02, 0.05] Radius of the rigid (bone) parts for node i.
rsoft,i [0.02, 0.07] Radius of the soft (tissue) parts for node i.
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F MORE HYPERPARAMETERS

Table 2: VAE encoder architecture hyperparameters.

Layer Description
Input Voxel input, 643 × (k + 2)
VRN0 Voxception-ResNet (VRN), kernel size 33, 32 channels

Block 1 5x VRN, 32 channels, downsample to 323, 64 channels
Block 2 5x VRN, 64 channels, downsample to 163, 128 channels
Block 3 5x VRN, 128 channels, downsample to 83, 256 channels
Block 4 5x VRN, 256 channels, downsample to 43, 512 channels
ResConv Residual Conv, kernel size 33, 512 channels
Max Pool Max pooling, 512 channels

Linear in: 512, out: 1024, GeLU
Linear-mu, Linear-logvar mu: in: 512, out: 512, logvar: in: 512, out: 512

Output mu: 512, logvar: 512

Table 3: VAE decoder architecture hyperparameters.

Layer Description
Input Embedding input, 512
Linear in: 512, out: 32768, reshaped to 43 × 512

Block 1 5x VRN, 512 channels, ConvTranspose3D to 83, 256 channels
Block 2 5x VRN, 256 channels, ConvTranspose3D to 163, 128 channels
Block 3 5x VRN, 128 channels, ConvTranspose3D to 323, 64 channels
Block 4 5x VRN, 64 channels, ConvTranspose3D to 643, k + 2 channels (voxel prediction)
Output Voxel logits, 643 × (k + 2)

Table 4: RL encoder architecture hyperparameters. The RL encoder is shared by the actor and critic,
combining spatial pooling and graph transformer.

Layer Description
Input sv (4 channels), sr (14 channels), sj (9 channels)

ResNet (voxels wise) in: 4, out: 64

Spatial Encoder-Decoder Net
Peng et al. (2020)

Feature grid dim: 643 × 64
UNet3D levels: 2
UNet3D groups: 8

UNet3D feature maps: 64
TransformerConv 1 node in: 78 (64 + 14), node out: 256, edge in: 9
TransformerConv 2 node in: 256, node out: 512, edge in: 9
TransformerConv 3 node in: 512, node out: 512, edge in: 9

Output ñt: 512
ẽt : 1024 (by concatenate node features ñt)
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Table 5: Actor architecture hyperparameters.

Layer Description
Input ẽt Outputs from RL encoder (see Table 4)

ResNet 1 in: 1024, out: 256
ResNet 2 in: 256, out: 64
ResNet 3 in: 64, out: ||A||
Output zt: ||A||

Table 6: Critic architecture hyperparameters.

Layer Description
Input ñt Outputs from RL encoder (see Table 4)

Max Pool Max pooling, 512 channels
ResNet 1 in: 512, out: 128
ResNet 2 in: 128, out: 32
ResNet 3 in: 32, out: 1
Output V (st): 1

Table 7: Simulation configuration hyperparameters.

Parameter Value
Environment

Rigid solver iterations 10
Baumgarte ratio (β) 0.01
Gravity acceleration 9.81 m/s2

Control signal frequency 10 Hz
Max joint motor torque 6 N*m

Voxel size 0.01 m
Soft Material

Elastic modulus 3× 104 Pa
Density 800 kg/m3

Poisson’s ratio 0.35
Static friction 1

Dynamic friction 0.8
Rigid Material

Density 1500 kg/m3

Static friction 1
Dynamic friction 0.8

Table 8: Reinforcement learning and evolution hyperparameters.

Parameter Value
RL Hyperparameters

Actor learning rate 6× 10−5

Critic learning rate 6× 10−5

Discount (γ) 0.9
Entropy weight 0.01

GAE Not used
Learning epochs 20

PPO train batch size 64
PPO train steps per epoch 60

Psmall 0.1 [voxels]
Plarge 10 [voxels]

Minimum movement threshold (δ) 0.001 m
Population and Rollouts

Population size (Plarge) 64
Clones per individual (rollout num) 2
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Table 9: Symbols.

Symbol Meaning
Simulation
m Mass
x, y, z Position of each axis in space
ϵ Average strain of a soft voxel
x Position in space
v Linear velocity
ω Angular velocity of a rigid bone
q Quaternion representing the orientation
θ Rotation in space
τ Moment or torque
f Force
X Generalized position
Ẋ Generalized velocity
Ẍ Generalized acceleration
Ẋold Generalized velocity from the previous time step
M Generalized mass matrix
K Stiffness matrix of a beam
I Inertia
F Generalized force vector
c(X) Constraint function between two rigid bones
J Jacobian matrix
λ Lagrange multiplier
A Matrix in the LCP
w Term involving velocities and external forces in the LCP
∆t Time step size in simulation
β Constraint error correction rate
Reinforcement Learning
r Reward
s State
a Action
V Value function
π Policy function
γ Discount factor
z Action logits
A Action space
n Node features
e Edge features
θ Joint angle
h Hinge axis direction of a joint
d1,d2 Vectors from joint to the center of mass of connected bones
u History movement vector
v Movement vector between two time steps, or linear velocity
Utilities
I Indicator function
E Identity matrix
Subscript and Superscript Conventions
b Beam (subscript)
ext External (subscript)
t Time step in RL (subscript)
v Soft voxel (superscript)
r Rigid bone (superscript)
j Joint (subscript/superscript)
l Local pool (superscript)
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