
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Navigating the Accuracy-Size Trade-Off with
FlexibleModelMerging

Anonymous authors
Paper under double-blind review

Abstract

Model merging has emerged as an efficient method to combine multiple single-task
fine-tuned models. The merged model can enjoy multi-task capabilities without
expensive training. While promising, merging into a single model often suffers from
an accuracy gap with respect to individual fine-tuned models. On the other hand,
deploying all individual fine-tuned models incurs high storage costs. We propose
FlexMerge, a novel data-free model merging framework that: (a) flexibly generates
merged models of varying sizes, spanning the full spectrum from a single merged
model to retaining all individual fine-tuned models; and (b) supports multiple
merging algorithms in a unified framework. Using FlexMerge, we systematically
characterize the accuracy–size trade-off of different algorithms. Our study reveals
two key findings: first, even modestly larger merged models can yield steep
accuracy gains (up to 13.5% when just doubling the size); second, algorithm
rankings are not consistent as size increases, with some methods overtaking others
beyond the one-model regime. These results uncover a new design dimension for
model merging: developing and comparing algorithms across the full spectrum of
sizes rather than only at the single-model limit. Extensive experiments on vision
and NLP benchmarks, with up to 30 tasks, confirm the generality and practicality
of FlexMerge.

1 Introduction

In recent years, the pre-training followed by fine-tuning paradigm has become the leading approach
in both natural language processing (NLP) and computer vision, showcasing remarkable success on a
wide range of tasks (Devlin et al., 2018; Dodge et al., 2020; Dosovitskiy et al., 2021; Bommasani et al.,
2021). Pre-trained models (PTMs), which learn generalized features from large-scale datasets, serve
as powerful starting points, enabling fine-tuning to achieve superior performance on downstream
tasks with less labeled data. This has led to an exponential growth in the number of fine-tuned models
driven further by the availability of open-source repositories (maintainers & contributors, 2016; Wolf
et al., 2019). However, deploying individual fine-tuned models for specific tasks incurs high storage
and deployment costs. The alternative is Multi-task learning (MTL), which aims to jointly train a
single model across multiple tasks (Vandenhende et al., 2021; Sanh et al., 2022). But MTL comes
with its own drawbacks, such as significant computational overhead and the need to simultaneously
access the data from all tasks, which might be infeasible due to privacy constraints (Jin et al., 2023).

To mitigate these limitations, model merging has emerged as a promising solution, allowing the
combination of multiple fine-tuned models into a single model without access to training data. To this
end, several model merging methods have been proposed (Gargiulo et al., 2025; Huang et al., 2024;
Yang et al., 2024a; Yadav et al., 2023; Ilharco et al., 2023; Matena & Raffel, 2022). However, a single
model is often unable to perfectly resolve parameter conflicts between tasks, leaving an accuracy gap
with respect to the individual fine-tuned models (Zhang et al., 2025; Huang et al., 2024). This gap
becomes more significant as a higher number of models are merged (Yadav et al., 2023; Ilharco et al.,
2023). To mitigate this issue, some methods leverage additional data to facilitate merging (Lu et al.,
2024; Yang et al., 2024a; Tang et al., 2024; Yang et al., 2024b). Yet, the data-dependency might be
difficult to meet in practice due to privacy constraints or proprietary restrictions, leading to a growing
focus on data-free model merging techniques (Gargiulo et al., 2025; Huang et al., 2024; Du et al.,
2024; Yu et al., 2024; Yadav et al., 2023). Nevertheless, in the absence of data, the accuracy gap
remains significant, highlighting the need for novel solutions.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

task a
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task e

{a,b,c,
d,e}
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d,e}

{a,d,e}

{b,c}

{a,e}

{d}

{b,c}

Original models – size 5x FlexMerge – size 1.75x

task d

(a) FlexMerge illustration (b) FlexMerge on 8 tasks (ViT-L/14)

Figure 1: (a) Fine-tuned models are sequences of blocks. FlexMerge iteratively merges block pairs
until reaching the desired size (e.g., size 1.75→). (b) Algorithm rankings change as size is increased.

We argue that an effective solution to this challenge is to go beyond the conventional one model
approach, and merge into model(s) of bigger sizes. Merging multiple fine-tuned models naturally
presents a trade-off between maintaining accuracy and achieving model compactness, dictated by the
size of the merged model. This trade-off spans a spectrum: at one extreme, retaining all individual
fine-tuned models for each task achieves maximal accuracy but at the cost of larger overall size; at
the other, fully merging all tasks into a single model minimizes storage size but sacrifices accuracy.
Despite this clear trade-off, a systematic investigation of the accuracy-size relationship in model
merging has been lacking. In this light, we pose two key research questions: (RQ1) How can we
derive merged models across the full range of model sizes in a data-free manner? and (RQ2) What is
the nature of the accuracy-size trade-off exhibited by different data-free merging algorithms?

Figure 2: FlexMerge enables
large accuracy gains when just
doubling the deployed model
size and attains full accuracy
well before the maximum size.

In response to (RQ1), we propose FlexMerge, a flexible framework
that enables data-free fusion into model(s) of any desired size. At
its core, FlexMerge treats each fine-tuned model as composed of
sequential blocks, as illustrated in Figure 1(a), whose granularity
can be controlled (e.g., a transformer block, a few layers, or even
a single layer). It then takes a bottom-up approach starting with all
fine-tuned models with their respective blocks and greedily merging
a pair of blocks with the highest cosine similarity in each merging
iteration. This merging can leverage any existing data-free merging
method such as Task Arithmetic (TA) (Ilharco et al., 2023), TIES-
Merging (Yadav et al., 2023), EMR-Merging (Huang et al., 2024),
TSV-M (Gargiulo et al., 2025), etc., applied at the block-level. With
each merging iteration, the size of the deployed model is reduced,
and the process can be halted once the desired size is met. For
instance, in Figure 1(a), the merging is halted when the merged
model is 1.75→ the size of a single fine-tuned model. The entire
merging process in FlexMerge needs no additional data or tuning,
making FlexMerge fully data-free.

In response to (RQ2), we demonstrate with FlexMerge that a range
of data-free merging algorithms exhibit highly favorable accuracy-
size trade-offs. Remarkably, the accuracy-size trade-off is charac-
terized by steep gains in accuracy for even modestly bigger merged
models beyond one model, followed by steady improvements, reach-
ing near fine-tuning accuracy well before the maximum size. To
illustrate this in practice, Figure 2 charts the merged model accuracy
versus deployed size for 8 tasks (top) and 30 tasks (bottom) using the
ViT-B/32 model, with TA (Ilharco et al., 2023) and Consensus (Wang et al., 2024) as the respective
merging methods. ! and ↭ annotate the accuracy at both ends of the spectrum i.e., lowest fused
size and retaining all fine-tuned models respectively. FlexMerge + TA gains 13.5% in average
accuracy when going from 1→ to 2→ while FlexMerge + Consensus gains 8.5% when doubling the
size from approximately 3→ to 6→. We note that Consensus requires storing masks and the pre-trained
parameters alongside the unified parameters (Wang et al., 2024), resulting in the lowest possible
size of ↑ 3→ for 30 tasks. We observe that the steep rise is followed by relatively slower accuracy
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growth in the middle. Yet, a near fine-tuning accuracy is attained well before the maximum size. For
8 tasks, this is obtained around size 6→ and for 30 tasks, around size 23.5→. Secondly, we observe
that algorithm rankings are not consistent even at modestly bigger sizes. Figure 1(b) shows that
vanilla averaging exceeds TIES-Merging while TA attains the performance of PCB-Merging at size
3→ despite starting from a large gap at 1→. Our findings open a new design dimension: encouraging
algorithm development and comparison for sizes > 1→ instead of restricting only to 1→.

Contributions. To the best of our knowledge, we present the first study of model merging that:

• Generates merged models across full spectrum of sizes, including non-integer sizes;
• Supports a wide range of data-free merging algorithms, within a unified framework;
• Provides a systematic characterization of the accuracy-size trade-off in data-free model merging,

revealing general trends, highly favorable regions and inconsistency of algorithm rankings;
• Demonstrates that larger merged sizes incur negligible inference-time overhead, enabled by our

efficient implementation.

We confirm our findings through extensive experiments spanning language and vision modalities,
multiple model families, multi-modal datasets, using both full-parameter fine-tuning (FFT) and
parameter efficient fine-tuning (PEFT), scaling up to 30 tasks.

2 RelatedWork

Initial studies on model merging focused on vanilla averaging as a way of combining models obtained
from same or different training runs of a task into one higher performing model (Izmailov et al.,
2018; Gupta et al., 2020; Wortsman et al., 2022; Cha et al., 2021). Vanilla averaging is also used in
federated learning to merge different client models (McMahan et al., 2017; Konečn! et al., 2016).
Ilharco et al. (2023) introduced task vectors, representing the difference between fine-tuned and
pre-trained models, enabling model combination through vector arithmetic.

Data-based merging methods leverage validation data to facilitate merging. Techniques like Fisher
Merging (Matena & Raffel, 2022) and RegMean (Jin et al., 2023) compute the Fisher Information
and Gram matrices, respectively, for weighted averaging of model parameters. Surgery (Yang et al.,
2024a) trains task-specific adapters to debias the representations produced by the merged model.
AdaMerging (Yang et al., 2024b) introduces per-task, per-layer merging co-efficients, and proposes
to learn these co-efficients by solving an entropy minimization objective. WEMoE (Tang et al.,
2024) merges all modules except for task-specific MLPs, which are retained as weight-ensembled
mixture-of-experts (MoE) with learned routers. Twin-Merging (Lu et al., 2024) leverages MoE on
difference vectors i.e., the difference between the fine-tuned models and the merged model. While the
availability of validation data enhances accuracy, such data might be difficult to obtain in practice.

Data-free merging directly merges model parameters without any data. TIES-Merging (Yadav
et al., 2023) resolves parameter interference by trimming redundant parameters and resolving sign
conflicts. PCB-Merging (Du et al., 2024) considers both intra- and inter-parameter competition
balancing. DARE (Yu et al., 2024) reduces parameter interference by randomly dropping parameters
and proportionally rescaling remaining ones. EMR-Merging (Huang et al., 2024) introduces the
paradigm of maintaining light-weight task specific masks in addition to the merged model to enhance
performance. Consensus (Wang et al., 2024) also relies on task specific masks, but creates them
differently compared to EMR-Merging. Both approaches significantly improve accuracy over
previous methods, albeit at the cost of test-time reconstruction overhead (Gargiulo et al., 2025).
TSV-M (Gargiulo et al., 2025) merges SVD-decomposed task singular vectors, reducing interference
by retaining only prominent singular directions and orthogonalizing them across tasks.

Recent work by Zhang et al. (2025) explores merging into sizes > 1→. Their method, Channel
Merging, relies on layer-wise K-Means clustering followed by merging within each cluster using
only TA. However, this approach is restrictive as it cannot generate fractional-sized models. Despite
the emergence of advanced methods and attempts at merging into bigger sizes, to the best of our
knowledge, no prior work has systematically investigated the accuracy–size trade-off in model
merging under a single unified framework. For completeness, we provide additional related work and
a taxonomy of existing algorithms based on their data-free/data-based nature in Appendix A.
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3 FlexMerge

3.1 Preliminaries

We consider a set of M tasks: {T1, . . . ,TM}, where the fine-tuned model parameters for task Ti are
denoted by ωi. These fine-tuned parameters are typically obtained by adapting a pre-trained model,
such as ViT (Dosovitskiy et al., 2021) or T5 (Raffel et al., 2020) using either full parameter fine-
tuning (FT) or parameter-efficient fine-tuning (PEFT) methods (Liu et al., 2022). Thus, it is assumed
that all the fine-tuned models have the same size and the model architecture as the pre-trained model,
as also considered in prior work (Ilharco et al., 2023; Yadav et al., 2023). To analyze the changes
introduced by fine-tuning, we use the concept of task vectors εi introduced by Ilharco et al. (2023),
where εi = ωi ↓ ωpre, with ωpre being the pre-trained weights. These task vectors capture the specific
modifications needed for each task and provide a compact representation for merging.

Standard model merging approaches involve combining the task-vectors {ε1, . . . , εM} into a unified
task vector εuni = F ({ε1, . . . , εM}) and then adding the unified task vector to the pre-trained weights
to get the final merged model, ωuni = ωpre + εuni. Here F denotes the merging algorithm used to
obtain the unified task vector’s weights. For example, the unified task vector εuni can be computed via
simple averaging εuni =

1
M
∑M

i=1 εi or via TA (Ilharco et al., 2023) that uses a coefficient ω to weigh
the contribution1 of the unified task vector εuni = ω · 1

M
∑M

i=1 εi in the final merged model. It is shown
that just by tuning ω, one can outperform weight averaging (Ilharco et al., 2023).

Motivation. Merging into one model ωuni may cause accuracy deterioration due to parameter
interference between different fine-tuned models (Zhang et al., 2025; Yadav et al., 2023). This
behavior becomes prominent as more and more fine-tuned models are merged, as discussed in
Section 1. On the other hand, retaining all fine-tuned models preserves full fine-tuning accuracy
but results in a net size M→ that of one fine-tuned model, which is impractical due to the high
memory requirements. In this work, we investigate the problem of generating models of any
desired size in the range [1,M], including models with fractional size such as 2.25→ model units.

Algorithm 1: FlexMerge framework
Input: Task vectors {εb

k} for all k ↔ [M], b ↔ [B];
merging algorithm F ; target size S target

Output: Merged task vectors with reduced size
1 S ↗ 0 ε Initialize deployed size
2 for b = 1 to B do
3 Gb ↗ ↘
4 for k = 1 to M do
5 Gb ↗ Gb ≃

(
{k}, εb

k

)

6 S ↗ S + size(εb
k)

7 while S > S target or not all blocks merged do
8 Find block b⇐ and pair (gi⇐ , g j⇐ ) ↔ Gb⇐ with the

highest similarity:
9

(b⇐, gi⇐ , g j⇐ ) = arg max
b↔[B], gi,g j↔Gb

similarity(gi, g j)

10 T b⇐
i⇐ ,T b⇐

j⇐ ↗ gi⇐ (0), g j⇐ (0) ε Get task subsets
11 T b⇐

uni ↗ T b⇐
i⇐ ≃ T b⇐

j⇐ ε Merge task subsets
12 εb⇐

uni ↗ F ({εb⇐
k | k ↔ T b⇐

uni}) ε Merge task vectors

13 Gb⇐ ↗ Gb⇐ ≃
(
T b⇐

uni, ε
b⇐
uni

)
\ {gi⇐ , g j⇐ } ε Update the block

14 S ↗ S ↓ size(εb⇐
uni) ε Update current size

3.2 Proposed approach

To enable a more granular fusion,
we consider the model to be com-
posed of B sequential blocks, for
instance transformer blocks in a
ViT model or even layers within
each transformer block such as at-
tention or MLP layers could be
considered as unique blocks. As-
suming B total blocks, we consider
the task vectors for each block as
{εb

k}Bb=1 corresponding to the origi-
nal task vector εk for a task k. Our
proposed framework, FlexMerge,
takes a greedy approach to effi-
ciently merge task vectors from
multiple tasks at the granularity of
blocks, aiming to reduce the de-
ployed model size while maintain-
ing utility. The pseudo-code for
FlexMerge is presented in Algo-
rithm 1.

1We add a scaling factor of 1/M to the standard definition εuni = ω ·
∑M

i=1 εi given in (Ilharco et al., 2023) to
better suit its usage in FlexMerge where M can vary across blocks.
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Initialization (Lines 1–6). The merging proceeds bottom-up. Initially, no merging has occurred,
and we retain εb

k for all tasks k ↔ [M] and all blocks b ↔ [B] (see Figure 1(a)). For each block
b, we initialize a set of tuples: Gb =

{(
{k}, εb

k

)
| k ↔ [M]

}
. Each tuple in Gb consists of: (i) a task

set {k} (tracking which tasks are represented) and (ii) the corresponding block task vector εb
k . For

example, in Figure 1(a) for the first block, we would have G1 =
{(
{a}, ε1

a

)
, . . . ,

(
{e}, ε1

e

)}
. When the

merging terminates, the resulting G1 for Figure 1(a) would be G1 =
{(
{a, . . . , e}, ε̂1

uni

)}
, where ε̂1

uni is
the merged task vector for the first block for all tasks. The initial size S is calculated as the cumulative
size of all block parameters across M tasks.

Iteration (lines 7-14). In each iteration, the algorithm identifies a block b⇐ and pair of tuples
(gi⇐ , g j⇐) ↔ Gb⇐ , which have the highest similarity (as defined below). Then they are merged as
follows. Let T b⇐

i⇐ and T b⇐
j⇐ be the subset of tasks associated with gi⇐ and g j⇐ respectively, i.e., the

first elements of gi⇐ and g j⇐ respectively. First, T b⇐
i⇐ and T b⇐

j⇐ are merged via a union operation:
T b⇐

uni = T b⇐
i⇐ ≃ T b⇐

j⇐ . Next, the merged task vector corresponding to block b⇐ and set T b⇐
uni is created as

follows: εb⇐
uni = F ({εb⇐

k | k ↔ T b⇐
uni}). Here F can be any data-free merging algorithm. The tuple set

Gb⇐ is then updated by removing the tuples gi⇐ , g j⇐ and adding the new merged tuple (T b⇐
uni, ε

b⇐
uni). Each

merge reduces the model size by the size of the task vector corresponding to block b⇐, and the process
continues until the current size S meets the desired size S target or no further merges are possible.

Similarity function. We measure the similarity between two groups gi, g j in any block b using the
lowest cosine similarity between any pair of original task vectors corresponding to the tasks in the
sets T b

i and T b
j :

similarity(gi, g j) = min
k1↔T b

i , k2↔T b
j

cosine_sim(εb
k1
, εb

k2
). (1)

Our choice of the min similarity derives from our ablations comparing different strategies—max,min,
and average—as well as computing similarity between merged group task vectors directly. Among
these, min yields the best performance. Thus at each iteration, we merge the pair of groups with the
highest of these minimum similarities (line 9, Algorithm 1). While the cosine similarity between full
task vectors can be relatively low (Ilharco et al., 2023), the block-level similarities tend to be higher
and effective for merging. ChannelMerging (Zhang et al., 2025) also employs cosine similarity.

Enhancing efficiency. The pairwise similarities can be precomputed once for all pairs and accessed
in constant time during the merging process. Furthermore, we leverage the Disjoint Set Union
(DSU) (Cormen et al., 2009) data structure to efficiently track and unify task sets for each block. Our
design enables FlexMerge to perform very efficient merging even under many tasks (see Table 2).

3.3 Existing merging methods in combination with FlexMerge

FlexMerge provides the flexibility to choose any data-free merging algorithm F from a diverse
set of existing approaches. Unlike traditional methods that operate at the level of full task vectors,
FlexMerge applies merging algorithms at the block level, fusing block task vectors. We detail the
exact block-level merging procedure for different algorithms next. In standard approaches like TA,
TSV-M, and PCB-Merging, task vectors are merged into a single unified task vector. When applied
at the block-level, the merging outcome for any block b can be denoted as: εb

uni ↗ F ({εb
k | k ↔ T b

uni})

Table 1: Summary of existing data-free merging methods. Column F ({εb
k | k ↔ T b

uni}) denotes the
result of merging. Figure 7 (Section B) provides an illustrative diagram.

Algorithm F ({εb
k | k ↔ T b

uni}) Final Model What is stored?
TA (Ilharco et al., 2023), TIES (Yadav et al., 2023),
Avg. (Ilharco et al., 2023), PCB (Du et al., 2024),

TSV-M (Gargiulo et al., 2025)
εb

uni ωb
uni = ω

b
pre + ε

b
uni ωb

uni

Consensus (Wang et al., 2024) εb
uni, {mb

k | k ↔ Tuni} ω̂
b
k = ω

b
pre + ε

b
uni ⇒ mb

k ωb
pre, ε

b
uni, {mb

k | k ↔ Tuni}(reconstructed per-task k)

EMR-Merging (Huang et al., 2024) εb
uni, {mb

k , ϑ
b
k | k ↔ T b

uni}
ω̂

b
k = ω

b
pre + ϑ

b
k · εb

uni ⇒ mb
k ωb

pre, ε
b
uni, {mb

k , ϑ
b
k | k ↔ Tuni}(reconstructed per-task k)
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Figure 3: Merging 8 (top) and 30 (bottom) tasks. The accuracy-size trade-off shows rapid initial gains,
followed by gradual improvement, reaching near fine-tuning accuracy well before the maximum size.

where F is the specific merging algorithm and T b
uni is the subset of tasks for which the merging

occurs. The final block parameters are then computed as ωb
uni = ω

b
pre + ε

b
uni. Approaches such as

Consensus generate task-specific masks in addition to the unified vector: εb
uni, {mb

k | k ↔ Tuni} ↗
F ({εb

k | k ↔ T b
uni}). Then during inference, the task-specific weights for task k are reconstructed as

ω̂
b
k = ω

b
pre + ε

b
uni ⇒ mb

k . Consensus thus stores ωb
pre, εb

uni, and the binary masks {mb
k | k ↔ Tuni} and

defers per-task reconstruction to the inference time. This leads to a storage cost exceeding 2→ that
of standard methods, which only store ωb

uni. EMR-Merging further generates task-specific scalars
{ϑb

k | k ↔ Tuni} in addition to the masks, however the storage cost of these scalars is negligible. Table 1
summarizes the merging outcomes for different algorithms, applied at block-level within FlexMerge.
Figure 7 (Section B) provides an illustrative diagram.

4 Experiments

We split our evaluation as follows: (i) Merging on vision, PEFT and FFT benchmarks in Section 4.1;
(ii) FlexMerge vs Channel Merging in Section 4.2; and (iii) ablation and efficiency analysis in
Section 4.3. Lastly, multi-modal and OOD results are in Appendices C.4 and C.6.2.

Merging algorithms. We investigate the accuracy-size trade-off for several data-free merging
algorithms including Vanilla Averaging, TA (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023),
PCB-Merging (Du et al., 2024), TSV-M (Gargiulo et al., 2025), Consensus (Wang et al., 2024) and
EMR-Merging (Huang et al., 2024) on extensive vision and NLP benchmarks. As noted earlier,
the focus of our work is data-free model merging. Hence, existing data-based algorithms such as
Surgery (Yang et al., 2024a), AdaMerging (Yang et al., 2024b), Twin-Merging (Lu et al., 2024), etc.
are not directly comparable in our setting.

Hyperparameters. For TA, we set ω = 1.5. For TIES-Merging, we use a sparsity ratio of 0.1 and
employ the recommended value of ω = 1. For Consensus, we set the hyperparameter responsible for
controlling the amount of information extracted by masks to 0.6 for all tasks and use TIES-Merging
as the algorithm to generate unified task vectors. For FlexMerge, we set the block granularity at
the level of individual components within the transformer layer, i.e., the attention, MLP, and layer
normalization modules are treated as separate blocks during the merging process.

2Our anonymized code is available at: https://anonymous.4open.science/r/model-merging-84F2
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Figure 4: FlexMerge + TA gains 7.2% for (IA)3 going from 1→ to 3→ and more than 9% for FFT
when just doubling the size from 1→ to 2→. EMR begins with higher accuracy, yet, substantially
benefits from increased size.

4.1 Merging Results

Merging 8 and 30 vision models. For the image classification tasks, we follow the setup from
existing work (Huang et al., 2024; Yadav et al., 2023). Specifically, we use two versions of the CLIP
model (Radford et al., 2021), incorporating ViT-B/32 and ViT-L/14 as visual encoders (Dosovitskiy
et al., 2021). We evaluate on the standard 8 task benchmark (Ilharco et al., 2023) as well as an
extended 30 task benchmark (detailed in Appendix B.2). Figure 3 plots average accuracy vs. deployed
model size (in multiples of a single fine-tuned model). For FlexMerge + TA, the accuracy increases
fairly rapidly as the model size grows beyond 1→. The gains are significant (top row), where the
accuracy reaches > 80% at size 2→ from only 67.5% at size 1→ for the ViT-B/32 model in the 8 task
setup. Similar gains are also observed for 30 tasks (bottom row).

Masking-based approaches, Consensus and EMR-Merging, begin with substantially higher accuracy
than TA and TIES-Merging, but their smallest size exceeds 1→ due to the need to store pre-trained
weights and binary masks (Section 3.3). On 8 tasks, Consensus was shown to match fine-tuned
accuracy at small sizes, but only when its extraction parameter is separately tuned per task (Wang
et al., 2024). FlexMerge + Consensus also shows strong gains, improving from 76% at ↑ 3→ to
84.5% at ↑ 6→ for ViT-B/32 in 30 tasks. EMR-Merging maintains high accuracy even at the smallest
size. Yet, it exhibits an accuracy gap w.r.t the fine-tuned models, which can be effectively reduced
by increasing the deployed model size. Larger ViT-L/14 models achieve higher accuracy across all
methods, but the accuracy-size trade-off remains similar: rapid initial gains followed by gradual
improvements. Most algorithms approach the fine-tuning accuracy (denoted by ↭) well before
maximum size, around 6→ for 8 tasks and 23.5→ for 30 tasks. Thus, in cases requiring storage of all
fine-tuned models, FlexMerge can reduce size by about 25% with little accuracy loss.

Merging 11 PEFT models. We adopt the experimental setup from prior work (Huang et al., 2024;
Yadav et al., 2023). Specifically, we employ the (IA)3 (Liu et al., 2022) PEFT method on the
T0-3B (Sanh et al., 2022) base model using 11 diverse datasets sourced from (Yadav et al., 2023)
(detailed in Section B.3). Figure 4(a) demonstrates the benefits of deploying larger model sizes,
where in this case the model size is measured with respect to the (IA)3 modules. FlexMerge + TA
achieves notable gains, increasing accuracy from 59% at size 1→ to 66.2% at 3→, a 7.2% improvement.
Similarly, FlexMerge + EMR-Merging surpasses 70% accuracy at 5→, starting from 67.6% at the
lowest size of 2.34→. We observe similar trends for other algorithms, included in Appendix C.2.

Merging 7 FFT models. For this experiment, we closely follow the setup from prior work (Du et al.,
2024; Yadav et al., 2023). We use T5-Base and T5-Large as base models, applying full-parameter
fine-tuning on 7 datasets sourced from (Yadav et al., 2023) (detailed in Appendix B.4). Figure 4(b)
illustrates the trade-off between model size and accuracy for the T5-Large model. Here, one unit
of model size corresponds to the full size of a single model. FlexMerge + TA gains more than 9%
to reach an accuracy of 75% when just doubling the size from 1→ to 2→. Similarly, FlexMerge +
EMR-Merging surpasses 86% at size 4→, starting from 85.2% at its lowest size of 2.2→. Consistent
with our observations on vision tasks, FlexMerge + TA reaches very close to the fine-tuning accuracy
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Figure 5: (Left) FlexMerge + TA outperforms Channel Merging + TA across all sizes. (Center,
Right) Algorithm rankings shift even at modestly larger sizes, with simpler methods rivaling advanced
ones. We show sizes just over Consensus and EMR-Merging’s lowest size for a wholistic comparison.

around size 5→, much in advance of full size 7→. Thus, scaling the model size benefits both ends of
the spectrum. Results for other combinations are included in Appendix C.3.

Cross-algorithm analysis. Thus far, we evaluated the accuracy-size trade-off per algorithm. We now
compare algorithms at same size, yielding two interesting findings: (i) the performance gap between
different algorithms significantly narrows at slightly larger sizes; and (ii) the algorithms rankings also
alter in many cases, with simpler algorithms rivaling or surpassing advanced ones. In Figure 5 on
vision tasks, vanilla averaging exceeds TIES-Merging at size 3.25→ while TA overlaps with PCB.
While EMR-Merging and Consensus stay atop on vision, they are surpassed by PCB on PEFT at size
4.5→. Crucially, all algorithms remain within 3 ↓ 4% on both benchmarks at increased sizes despite
originating with a much larger gap at size 1→ (see Figure 1(b)). Our findings provide encouraging
evidence to develop and compare algorithms at sizes > 1→ rather than only at 1→.

4.2 FlexMerge vs ChannelMerging

ChannelMerging (Zhang et al., 2025) uses K-Means clustering per layer, following a fixed same
value of K for every layer. Each choice of K ↔ {2, 3, . . . ,M ↓ 1} results in a merged model of the
corresponding size. Figure 5 charts the average accuracy with TA and ViT-B/32 for a set of integer
model sizes, excluding the extremes 1→ and 8→ where both approaches have the identical accuracy.
Recall that ChannelMerging does not support fractional sizes. FlexMerge achieves higher accuracy
than ChannelMerging in all cases, thanks to its greedy pairwise merging approach which allows
flexible number of groups per layer instead of restrictive clustering. Results with TIES-Merging and
visualization of clusters is included in Appendix C.5.

4.3 Analysis

Ablations on the merging procedure. We ablate on the similarity functions (min, max, average,
comparing unified vectors) for Equation (1) and merging orders (left-to-right, right-to-left, greedy) in
FlexMerge using the ViT-B/32 model on 8 tasks. We also investigate random block selection over
cosine similarity. Figure 6 shows that the min strategy performs the best, though other strategies are
also competitive. For merging order, right to left performs the worst as expected since the final layers
in neural networks tend to be more specialized and merging them first hurts accuracy. While left to
right seems ideal, it can be too strict and therefore greedy emerges as the best. We further analyze
the merging order of greedy in Appendix C.10. Random selection is competitive, but generally
underperforms when compared across algorithm. Based on these findings, we set FlexMerge to use
greedy with cosine similarity (min strategy) by default. For more ablations, see Appendix C.8.

Merging and inference efficiency. Table 2 shows that FlexMerge achieves highly efficient data-
free merging, generating all deployed sizes in about 20 sec for up to 30 tasks. For inference with
FlexMerge, each request follows a unique forward path through the merged model using task-specific
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Figure 6: Ablation results for FlexMerge reveal that the min similarity strategy and greedy merging
perform the best, while cosine similarity generally outperforms random selection.

blocks (Figure 1(a)). For a model of size 1→, all tasks share a single path, but the classification heads
are always applied separately. We load the tensors of merged model (size > 1→) into the GPU memory
once and create M task-specific model views that reference these shared tensors to process task
batches in parallel. Standard merging, by contrast, processes all tasks in a single batch before splitting
for task-specific heads. We simulate the worst case arrival, where inference batches corresponding to
all tasks arrive at once. We consider 50 consecutive batches of size 256 (totaling 12800 samples).
Each batch contains 32 samples per task across 8 tasks. Table 3 shows that FlexMerge maintains
inference speed comparable to standard merging for both ViT-B/32 and ViT-L/14, demonstrating that
larger models can enhance accuracy without slowing inference.

Table 2: Merging time for FlexMerge
with the ViT-B/32 model.

# Tasks Method Merging time

8 Tasks TA (only size 1→) ↑ 0.8 s
FlexMerge (all sizes) ↑ 2.3 s

30 Tasks TA (only size 1→) ↑ 1.9 s
FlexMerge (all sizes) ↑ 20 s

Table 3: Comparing inference time of FlexMerge against
standard model merging. The overheads are negligible.

Model Algorithm Size Inference Cost (/12800 items)

ViT-B-32 Standard Merging 1→ 12.30 ± 0.21 ms
FlexMerge > 1→ 12.21 ± 0.41 ms

ViT-L-14 Standard Merging 1→ 118.70 ± 1.78 ms
FlexMerge > 1→ 120.53 ± 0.32 ms

5 Discussion and Conclusion

Benefits. Different merging algorithms have different advantages: EMR and Consensus achieve high
accuracy but require task-specific reconstruction during inference, incurring overheads. FlexMerge
can also mitigate this overhead as larger deployed models need fewer blocks to be reconstructed (see
Appendix C.9). In contrast, TIES and TA avoid reconstruction but have lower accuracy. FlexMerge
provides flexibility, letting practitioners choose algorithms and balance accuracy, reconstruction
overhead, and model size for various deployment scenarios.

Limitations. Most works, including FlexMerge, are limited to merging models with the same
architecture as merging heterogeneous models remains challenging (Singh & Jaggi, 2020; Imfeld
et al., 2024). Secondly, the theoretical insights for effective model merging are limited (Ortiz-Jimenez
et al., 2023). For FlexMerge, how to obtain the optimal merged model for any given size remains
unclear. Although extensive ablations help guide (Section 4.3), further investigation is needed to
understand the bounds of the accuracy-size trade-off.

We introduced FlexMerge, a flexible, data-free model merging framework that extends beyond tradi-
tional single-model fusion and offers precise control over fused model size. Extensive experiments
show that the accuracy-size trade-off exhibits favorable properties for several algorithms, benefit-
ing from rapid accuracy gains with modest size increments. Future work may explore specialized
algorithms for block-level merging.
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