
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INNER INFORMATION ANALYSIS ALGORITHM FOR
DEEP NEURAL NETWORK BASED ON COMMUNITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has achieved advancements across a variety of forefront fields.
However, its inherent ‘black box’ characteristic poses challenges to the com-
prehension and trustworthiness of the decision-making processes within neu-
ral networks. To mitigate these challenges, we introduce InnerSightNet, an in-
ner information analysis algorithm designed to illuminate the inner workings of
deep neural networks through the perspectives of community. This approach
is aimed at deciphering the intricate patterns of neurons within deep neural
networks, thereby shedding light on the networks’ information processing and
decision-making pathways. InnerSightNet operates in three primary phases,
‘neuronization-aggregation-evaluation’. Initially, it transforms learnable units into
a structured network of neurons. Subsequently, these neurons are aggregated into
distinct communities according to representation attributes. The final phase in-
volves the evaluation of these communities’ roles and functionalities, to unpick
the information flow and decision-making. By transcending focus on single-layer
or individual neuron, InnerSightNet broadens the horizon for deep neural network
interpretation. InnerSightNet offers a unique vantage point, enabling insights
into the collective behavior of communities within the overarching architecture,
thereby enhancing transparency and trust in deep learning systems.

1 INTRODUCTION

Deep learning has been instrumental in driving advancements across a range of domains, such as im-
age recognition Krizhevsky et al. (2017); He et al. (2016), natural language processing Chowdhary
& Chowdhary (2020), and reinforcement learning Moerland et al. (2023). Despite their impressive
performance on diverse tasks, these networks typically operate as black-boxes with limited trans-
parency. To address this issue, researchers have been actively investigating various strategies to
demystify the inner workings of deep neural networks. These include visualization, model simpli-
fication, attribute specific features, etc. The focus of this work is to delve into the micro-structure
of deep neural networks, particularly investigating the community partitioning among neurons. By
identifying collaborative neural communities and analysing their role throughout the entire network,
we can gain a deeper understanding of how neural networks process and make decisions internally.

The information flow and decision-making are controlled by complex non-linear interactions among
parameters. Effective inner information analysis is crucial for identifying problems, correcting er-
rors, and enhancing understanding. Inner information analysis can be defined as a method to de-
scribe the computational processes of deep neural networks in a way that is understandable to hu-
mans. In previous works, researchers have presented theories and tools from various perspectives,
including weights, neurons, subnetworks, and latent representations. Regarding weights, ones train
weight masks to determine which are important for specific tasks Wortsman et al. (2020); Csordás
et al. (2021). This method is commonly used for network pruning Blalock et al. (2020); Frankle &
Carbin (2018) to eliminate redundant neurons. Concerning neurons, a common evaluation method
involves dataset-based analysis to identify neurons with maximum activation characteristics Zhou
et al. (2014); Bau et al. (2017; 2018b). Additionally, establishing causal relationships between net-
work behaviour and individual neurons by perturbing them is a common method Hod et al. (2021);
Bau et al. (2018a). In terms of subnetworks, modularity is a universal principle that enables mod-
els to be understood by their independent parts Watanabe et al. (2018); Ruggeri et al. (2023). By

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

analysing subnetworks, one aims to uncover hierarchical structures. Regarding latent representa-
tions, researchers infer the reasoning process of deep neural networks by analysing similarities with
a group of learned ‘prototypes’ Alvarez Melis & Jaakkola (2018); Chen et al. (2019). Bengio et al.
(2013); Koh et al. (2020) elucidate the behaviour of inner information by decoupling latent repre-
sentations. Fong & Vedaldi (2018); Kim et al. (2018) explain the encoding of inner information by
inducing images in conceptual datasets. Although the aforementioned works provide new insights
into understanding deep neural networks, few studies have explored the behaviour and information
flow from a holistic community perspective. This limitation restricts our ability to fully compre-
hend the inner mechanisms governing deep neural networks, particularly how these mechanisms
contribute to the networks’ decision-making processes. Consequently, further research is necessary
to investigate the behaviour and information flow from a community-wide perspective.

To enhance understanding of neural networks, we propose InnerSightNet, a novel approach that
examines networks from a community perspective rather than focusing on individual neurons or
layers. InnerSightNet operates in three phases: neuronization (structuring learnable units into neu-
rons), aggregation (grouping neurons into communities), and evaluation (analyzing their roles and
interactions). This framework reveals intricate patterns of information flow and decision-making,
offering deeper insights into the functions and interactions of these communities.

Our contribution We summarize the contribution of this work. Algorithm We propose a
community-based inner information analysis algorithm for the transparency of deep neural net-
works, which broadens the perspective of deep neural network interpretation. We use the informa-
tion representation of neurons to explore the community clustering effect in deep neural networks.
In addition, this paper provides the mechanisms for analysing the role and function of the commu-
nities. Applications We apply InnerSightNet to commonly used structures in deep neural networks:
linear neural networks and convolutional neural networks, and prove its effectiveness.

2 RELATED LITERATURE

The quest to demystify deep learning models has led to extensive research into various interpretabil-
ity methods. We review in the field of deep learning interpretability, internal information analysis,
community detection and the unique aspects that set our InnerSightNet apart from existing methods.

Interpretability of Deep Learning: Deep learning has achieved remarkable success across mul-
tiple domains; however, their ‘black box’ nature has prompted researchers to develop techniques
aimed at improving their transparency. Visualization methods, such as Grad-CAM Selvaraju et al.
(2017) and saliency maps Adebayo et al. (2018), have been widely used to highlight the regions
that contribute most to the network’s output, thus providing insights into the model’s reasoning pro-
cess. In additional, model simplification techniques, including pruning and quantization, have been
proposed to reduce the complexity of neural networks, making them more interpretable. Feature
attribution methods like LIME Zhao et al. (2021); Marvin et al. (2023) and SHAP Lundberg & Lee
(2017); Bordt & von Luxburg (2023) further contribute to this effort by assigning importance scores
to individual features, thereby elucidating how specific inputs influence the model’s predictions.

Internal Information Flow and Representation Analysis: In addition to visualization and simpli-
fication, some work focuses on analyzing the internal information flow of neural networks. This type
of analysis typically involves evaluating the importance of weights and neurons to identify the com-
ponents that are crucial to performance. Weight masking techniques play a crucial role in network
pruning and optimization by training specific weight masks to determine which weights are most
important in a particular task Blalock et al. (2020); Frankle & Carbin (2018). In addition, neuron
activation analysis helps to understand which parts have greatest impact on a specific task by de-
tecting which neurons in the network exhibit the greatest activation. Latent representation analysis
provides an understanding of how neural networks process and store information by studying the la-
tent variables and eigenvectors within the network Bengio et al. (2013); Koh et al. (2020). Prototype
inference helps reveal the classification and decision-making basis of the network by comparing its
output with the prototype of known concepts Alvarez Melis & Jaakkola (2018); Chen et al. (2019).

Community detection: is a concept in network science Bedi & Sharma (2016), Elali & Rachid
(2023), Goodley et al. (2024), aimed at identifying connected subgroups in a network, where the
connections within these subgroups are denser than those with external nodes. Recently, commu-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

nity detection has been introduced into the analysis of GNN, becoming an innovative means of
understanding the internal structure Sun et al. (2021); Su et al. (2022). These methods provide a
new perspective for understanding the modularity of graph by identifying closely related groups of
nodes that work together to achieve specific functions. Traditional community detection, such as
modular optimization Que et al. (2015); Traag et al. (2019) or clustering methods Li et al. (2021);
Van Lierde et al. (2019), has been improved and adjusted to adapt to high-dimensional, nonlinear
features. The information exchange between neurons within a neural network can be conceptual-
ized as a specialized unidirectional graph, where neurons serve as nodes and the information flow
serve as directed edges. This inherent structure makes the application of community detection in the
internal analysis of neural networks both logical and effective.

In summary, the existing methods advance our understanding of neural networks, they fail to capture
the dynamic interactions and functional roles within neuron communities. InnerSightNet addresses
these limitations, and enable a more nuanced exploration of community and information flow.

3 INNERSIGHTNET

InnerSightNet adaptively searches for community associations and explores information flow and
decision-making. To achieve this, InnerSightNet neuronizes learnable units and aggregates neu-
rons with similar roles as communities based on the input-output representations. InnerSight-
Net represents an iterative algorithm that finds the best community allocation through continuous
‘aggregation-evaluation’. InnerSightNet is divided into three steps: ‘neuronization-aggregation-
evaluation.’ The details are as follows. (We provide Theoretical background in Appendix: A.2)

3.1 INNERSIGHTNET: NEURONIZATION

We emphasize that structure plays a pivotal role in information flow and decision-making. We
classify the fundamental structures into two categories: learnable units (convolutional layer, linear
layers, etc.) and invariant non-linear units (normalization layers, pooling layers, activation functions,
etc.). The invariant non-linear units are treated as a consistent non-linear function, unaffected by any
alterations in the weights. Consequently, our study focus on the learnable units.

A linear layer consists of multiple hidden nodes, functioning as idealized neurons. In contrast, a
convolutional layer, composed of kernels, outputs 2D representations, with each kernel analogous
to a neuron. Based on the continuity of convolutional kernel outputs revealed by Bau et al. (2017),
we quantify the correlation between the p-th kernel in layer d, κdp, and the q-th kernel in layer d+ 1,
κd+1
q , as shown in Eq. 1.

δ(p, q) =
1

N

N∑
i=1

KLi(κ
d
p
+
, κd+1
q

+
) +KLi(κ

d
p
−
, κd+1
q
−

)

θi(κdp, κ
d+1
q)/|θi(κdp, κd+1

q)|
(1)

where i represents the calculation under data Xi, κ+ and κ− respectively represent the positive
and negative value regions in the extracted information, θ represent the cosine similarity, and KL
represents the calculation of KL divergence between two representative information.

3.2 INNERSIGHTNET: AGGREGATION

The community aggregation algorithm is predicated on following foundational principles: Newman
(2006) argue that using probabilistic mixed models and expectation maximization algorithm can
detect a wide range of structural types without prior knowledge.

Preliminaries: Let’s establish some foundational concepts firstly.

Definition 1: A connection weight between neurons can be categorized as an activation connection
if its value is positive, or an inhibition connection if its value is negative.

Definition 2: A connection is considered valid if its activation weight exceeds a certain threshold
ξ1, or if its inhibition weight is below a certain threshold ξ2. We denote valid connections by the
value 1. Conversely, a connection is considered invalid if its activation weight is less than ξ3, or its
inhibition weight is greater than ξ4. Invalid connections are denoted by the value 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let Ad−1,di,k (Id−1,di,k) denote the activation (inhibition) connection between the k-th neuron in layer
d and the i-th neuron in layer d− 1. Similarly, let Ad,d+1

k,j (Id,d+1
k,j) denote the activation (inhibition)

connection between the k-th neuron in layer d and the j-th neuron in layer d + 1. Therefore, we
define four connection matrices: Ad−1,d, Id−1,d, Ad,d+1, and Id,d+1. For clarity, these are denoted
as A, I , A

′
, and I

′
, respectively.

Definition 3: The probability of connection refers to the likelihood that a specific connection be-
tween neurons is valid. We define τAi,k and τ Ii,k as the probabilities of the activation and inhibition
connections between the k-th neuron in layer d and the i-th neuron in layer d−1 being valid, respec-
tively. Similarly, τA

′

k,j and τ I
′

k,j denote the probabilities of the activation and inhibition connections
between the k-th neuron in layer d and the j-th neuron in layer d+ 1 being valid.

Definition 4: We define πc as the probability that a neuron belongs to the c-th community within
the network, where

∑
πc = 1.

τAi,k and τ Ii,k as the probabilities of the activation and inhibition connections between the k-th neuron

in layer d and the i-th neuron in layer d− 1. τA
′

k,j and τ I
′

k,j are the probabilities of the activation and
inhibition connections between the k-th neuron in layer d and the j-th neuron in layer d+ 1.

Newman (2006) pointed out that the standard framework for fitting such models to a given dataset is
likelihood maximization. To address this issues, we enter g = {gk} for calculating the expected log
likelihood estimation. gk represents the community assignment of the k-th neuron in the d-th layer.
The probabilities of A, I , A

′
, I

′
and g can be expressed by Eq. 2.

Pr(A, I,A
′
, I

′
, g|π, τA, τ I , τA

′

, τ I
′

) =Pr(A, I,A
′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

)·

Pr(g|π, τA, τ I , τA
′

, τ I
′

)
(2)

where the two factors in Eq.2 is shown in Eq.3 and Eq.4.

Pr(A, I,A
′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

) =∏
k{
∏
i(τ

A
i,gk

)Ai,k(1− τAi,gk)1−Ai,k(τ Ii,gk)Ii,k(1− τ Ii,gk)1−Ii,k}∏
k{
∏
j(τ

A
′

gk,j
)A

′
k,j (1− τA

′

gk,j
)1−A

′
k,j (τ I

′

gk,j
)I

′
i,k(1− τ I

′

gk,j
)1−I

′
k,j}

(3)

Pr(g|π, τA, τ I , τA
′

, τ I
′

) =
∏
kπgk (4)

The expected log likelihood estimation Lg on g = {gk} can be obtained by Eq. 5.

Lg =
∑
gPr(g|π, τA, τ I , τA

′

, τ I
′

) · 1

ld
lnPr(A, I,A

′
, I

′
) (5)

qk,c represents the probability of that the k-th neuron is assigned to c-th community. ld is the number
of neurons in d-th layer. According to Bayesian, we can conclude that qk,c is represented as Eq. 6.

qk,c =
Pr(A, I,A

′
, I

′
, gk = c|π, τA, τ I , τA

′

, τ I
′

)

Pr(A, I,A′ , I ′ |π, τA, τ I , τA′
, τ I

′
)

(6)

Through Eq. 2 to Eq. 6, we maximize Lg to solve for the best assignment of neurons. Using the

Lagrangian multiplier method, we can get qk,c, πc, τAi,k, τ Ii,k, τA
′

k,j and τ I
′

k,j as Eq. 7.

qk,c =
pk,c∑
s pk,c

, πc =

∑
k qk,c
ld

, τA =

∑
k Ai,kqk,c∑
k qk,c

τ I =

∑
k Ii,kqk,c∑
k qk,c

, τA
′

=

∑
k A

′

k,jqk,c∑
k qk,c

, τ I
′

=

∑
k I

′

k,jqk,c∑
k qk,c

(7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where pk,c is shown as Eq. 8, ϕ is equal to c or s.

pk,ϕ =πc · [
∏
i(τ

A
i,ϕ)Ai,ϕ(1− τAi,ϕ)1−Ai,k(τ Ii,ϕ)Ii,k(1− τ Ii,ϕ)1−Ii,k]·

[
∏
j(τ

A
′

ϕ,j)
A

′
ϕ,j (1− τA

′

ϕ,j)
1−A

′
i,k(τ I

′

i,ϕ)I
′
k,j (1− τ I

′

iϕ,j)
1−I

′
i,k]

(8)

See appendix A.3 for detailed inferential proof process.

3.3 INNERSIGHTNET: EVALUATION

To confirm the best number of communities, we introduce Q. Q determines whether the division is
the most reasonable by measuring the consistency of input-output and structure-related metric.

Similarity based on input sensitivity: Inspired by Lange et al. (2022), we measure the similarity in
input sensitivity of individual neurons in a community. Let Jdxi

be the n×m Jacobian matrix, where

xi is the input, and d is the layer index. The i-th row and j-th column in the Jdxi
· Jdxi

T ∈ Rn×n
is the similarity measure of sensitivity between the i-th and j-th neurons in layer d when the input
sample is xi. The sensitivity similarity between the i-th and j-th neurons is:

Sin(i, j) =
1

K
|
∑k=1
K Jdxi

· Jdxi

T |(i,j) (9)

where K is the sample number of test set. The similarity of neurons within a community can be
recorded as: Sin =

∑
Sin(i, j)/n(n− 1),∀i, j ∈ c, i > j and i 6= j.

Similarity based on output representation: To measure the consistency of outputs within a com-
munity, we introduce a new statistic called normalization consistency score (ncs). Firstly, we calcu-
late the average output representation F̄out of each neuron. Then, ncs calculates the output Fout of
each sample after input into the deep neural network, and get the standard deviation s.

s =
1

K − 1

∑K
k=1norm(Fout − F̄out)2; ncs =

1

s+ 1
(10)

where norm is a normalization process, in order to ensure that ncs only measures the consistency,
and is not affected by the values. 1/(s+ 1) converts the ncs to a consistency score between 0 and 1.
The sign consistency metric Γ is introduced to consider the directionality of numerical deviations.

Γ =

∑
|Fout − F̄out| · sign(Fout − F̄out)∑

|Fout − F̄out|
(11)

where sign is the sign function. Sout = |Γ| · ncs.

Score based on Structure: Sstru, a modularity variant, evaluates the consistency of neuronal be-
havior within a community and differences between communities. It generates four connection ma-
trices using varying weight thresholds. A function u(ci, cj) calculates the number of shared connec-
tions between ci and cj , measuring intra-community similarity (when i = j) and inter-community
differences (when i 6= j). Subsequently, we iterate over each pair of communities (ci, cj), calculate
and construct two connection matrices Uact and Uinh, which the size is i × i. Each element in the
matrix represents the common connection between the corresponding communities. Sstru needs to
represent the activation and inhibition connections of weights, Sstru = Sactstru + Sinhstru, where the
factors are calculated as shown in Eq. 12.

S
act/inh
stru =

∑n
i=1(

Uact/inh(ci, cj)∑
Uact/inh + ζ

− (

∑
jUact/inh(ci, cj)∑
Uact/inh + ζ

)2) (12)

where n is the number of communities,
∑
Uact/inh is the sum of all elements. ζ = 10−6 to avoid the

denominator to 0. The evaluation indicator Q can be calculated by weighting Sin, Sout and Sstru.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Q =
∑c
ci=1ωci · (αS

ci
in + Sciin) + βSstru (13)

where ωci = len(ci)/
∑

len(ci) is the weight. len(ci) represents the number of neurons in ci. α
and β are the hyper-parameters to trade-off the Sin, Sout and Sstru. We demonstrate the three steps
of the InnerSightNet: ‘neuronization’, ‘aggregation’, and ‘evaluation’, as shown in Algorithm 1.

Algorithm 1 Inner Information Analysis Algorithm for Deep Neural Network based on Community
1: Input: deep neural network N
2: Output: optimal neuron community partition
3: if N is a convolutional layer then
4: Neuronize(N) . According to Eq. 1
5: end if
6: Initialize optimal evaluation metric Qopt ← −∞
7: Initialize optimal community count ropt ← 0
8: for r ← 1 to 20 do
9: for iter← 1 to 200 do

10: Perform EM algorithm to update community partition
11: Randomly initialize model parameters πc, τactci , τ

inh
ci , τactcj′ , τ

inh
cj′ . According to Eq. 7

12: Initialize probability matrix qkc(k, c) . According to Eq. 7
13: Compute probability qkc(k, c)
14: Update model parameters based on qkc(k, c)
15: end for
16: Q← Calculate evaluation metric Q value . According to Eq. 13
17: if Q > Qopt then
18: Qopt ← Q
19: ropt ← r
20: qkcopt ← qkc
21: end if
22: end for
23: return community partition for ropt, qkcopt

4 EXPERIMENTS & APPLICATIONS

We use differential output analysis and perturbation statistical analysis to analyze the results of
InnerSightNet. For more details, please refer to appendix A.5.

4.1 INNERSIGHTNET IN LINEAR LAYER AND CONVOLUTIONAL LAYER

We use InnerSightNet to analyse two typical structures: linear layer and convolutional layer. We
use differential output analysis and perturbation statistical analysis (an improved method based on
Watanabe et al. (2018)) to explore the representation of community.

4.1.1 INNERSIGHTNET IN LINEAR LAYER

Overview: During our investigation into the InnerSightNet on linear layers, we focus on a classic
benchmark: the MNIST recognition task, a problem of classifying into 10 categories. We design
a linear neural network Rosenblatt (1958) with three hidden layers, with 128, 64, and 32 hidden
nodes respectively, and the output layer is a 1 × 10 vector . The MNIST dataset LeCun et al. (1998)
consists of handwritten digits, comprised of 60,000 samples within the train-set and an additional
10,000 samples in the test-set. Each sample takes the form of a 28 × 28 pixel grayscale image,
where each pixel’s value, ranging from 0 to 255, signifies varying levels of color intensity.

We conduct InnerSightNet on the well-trained linear neural network. Due to the hidden nodes natu-
rally play the role of neurons, we directly adopt the ‘Aggregation’ to identify various communities.
We determine the ideal number of communities for the three hidden layers of the network as 14, 15,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

!!

!"

!#

!$!%!&

!'!(!)

!*

!#! !## !#(!#)

!!

!"

!#

!$

!%

!&!'

!(!)

!*
(b) Perturbation-statistical analysis results

(a) Accuracy drop after closing corresponding community

layer 1 layer 2 layer 3

D
ig
its

Communities

D
ig
its

Communities

D
ig
its

Communities

Figure 1: (a) Accuracy drop after closing corresponding community. (b) Perturbation-statistical
analysis. Note: to clearly show the attention of each community, we do not normalize the colorbar.

and 10 based on Q value. To clarify the specific impact of each community on output accuracy, we
use differential output analysis. Specifically, we shut down all neurons in the community at once and
record the decrease in accuracy, as shown in Fig. 1 (a). We also use perturbation-statistical analysis
to visualize the sensitivity of each community to input, as shown in Fig. 1 (b).

Community function analysis and finding key communities: According to Fig. 1 (a), we ob-
serve c6 in the first layer is crucial for identifying digit 3. When it is removed (without re-training),
the accuracy decreases by 32.57%, and the impacts on digit 1 and 2 are significant, with accuracy
decreases by 5.37% and 5.72%. This indicates c6 may be responsible for extracting certain shared
geometric features, such as curves and angles. c1 in the second layer is crucial for recognizing digit
0, with an accuracy decrease of 15.92%. c1 captures global closed shapes such as circles. From 1
(b), it can be seen that c1 in second layer is more sensitive to the edges of such structures.

In terms of specificity analysis, in the second layer, we see that c6 has a significant impact on
identifying digit 1, 2 and 3 (with a decrease of 2.73%, 3.00%, and 5.35%). This indicates c6 can
capture the vertical or diagonal features of these digits. The c2 of the second layer has a significant
impact on digit 7 and 8, with a decrease of 3.89% and 1.03%. This may indicate c2 has a high
sensitivity to the combined shape of vertical lines and curves. The c10 in the first layer has the great-
est impact on digit 5 with an accuracy decrease of 7.6%, and the impact on digit 6 is second, with
an accuracy decrease of 5.53%. The accuracy of digit 8 has decreased by 3.39%, and the accuracy
of the digit 3 has decreased by 2.77%. This indicates that c10 may have captured common specific
features of the digit 5, 6, 8 and 3, such as the curve in the lower right area. From the perturbation-
statistical analysis in Fig. Fig. 1 (b), it can be seen that c10 in the first layer is more sensitive to the
curve in the lower right region. In the second layer, c6 has a significant impact on the digit 1, 2, and
3. After closing the community, the accuracy decreases by 2.73%, 3.00%, and 5.35%. This indicates
that c6 captures the common feature of digit 1, 2, and 3, which is the vertical line segment (digit 1 is
entirely composed of vertical lines, the top and bottom of digit 2 are usually connected by a vertical
line, and the upper and lower arcs of digit 3 visually form an implicit connection through the vertical
symmetry in the middle). From the perturbation statistical analysis in Fig. 1 (b), it can be seen that
c6 is more sensitive to vertical line segments. In terms of redundancy analysis, for digit 5, the impact
of c10 and c7 in the first layer is significant (decreased by 6.50% and 5.16%). This may indicate
these two communities capture the curve or combination features from different perspectives, and
there may be redundant feature extraction to improve the network’s fault tolerance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1.2 INNERSIGHTNET IN CONVOLUTIONAL LAYER

Overview: During investigating the InnerSightNet within convolutional neural networks LeCun
et al. (1989), we select the task of cat and dog classification. We design a network architecture that
consists of three convolutional layers (consisting of 32, 64, and 128 kernels). This is followed by
three linear layers for binary classification. The AFHQ dataset Choi et al. (2020) has been chosen.
Specifically, the train-set consists of 5,153 images of cats and 4,739 images of dogs, while the test-
set includes 500 images from each category. Through the InnerSightNet, we perform community
detection on the well-trained convolutional layer. Based on the Q-value, we determine that the most
ideal number of communities for the three convolutional layers in a convolutional layer is 3, 3,
and 4. We visualize the sensitivity of each community to input data using perturbation-statistical
analysis, as shown in Fig. 2 (a). According to the perturbation-statistical analysis, c1 and c2 in
the first convolutional layer, c1 and c2 in the second convolutional layer, c0, c2, and c3 in the third
convolutional layer are defined as key communities for this task, as shown in Fig. 2 (b).

26 3 3

47 14 3

37 82 6 4

!! !" !#

!! !" !#

!! !" !# !$

!! !" !#

!! !" !#

!! !" !# !$
(a) Perturbation-statistical analysis results (b) Key communities

Numbers refer to the number of
neurons in the community.

Figure 2: (a) Perturbation-statistical analysis results. (b) Key
communities. The green communities representing key neurons
and gray representing non-key neurons. Numbers refer to the
number of neurons in the community.

Table 1: Acc after closing
corresponding community.

layer 1 Acc (%)
c0 c1 c2 c3√

◦ 98.5√
◦ 98.1√
◦ 97.9√ √
◦ 95.8

layer 2 Acc (%)√
◦ 98.7√
◦ 94.2√
◦ 98.1√ √
◦ 69.9

layer 3 Acc (%)√
96.9√
97.5√

98.8(+)√
97.7√ √ √
55.5

Community function analysis and finding key communities: To further investigate the role of
these key communities, we close each community one by one (i.e., setting the convolutional kernel
output of the corresponding index within the community to 0), and record the impact on the accuracy.
The results are shown in Table 1. If all the communities are in an open state, the accuracy is 98.7%.
In Table 1, the ‘

√
’ indicates that the community is closed, and the ‘◦’ indicates that there is no c3

community in the first and second convolutional layers.

According to table 1, in the first convolutional layer, the c0 community contains relatively less
information, which has little impact on the accuracy. In contrast, the c1 and c2 communities contain
more information. When both the c1 and c2 communities are closed simultaneously, the accuracy
decreases significantly, indicating that the information in the c1 and c2 communities has a certain
degree of complementarity in recognition. The same logic also applies to the 2-nd layer. In the 3-rd
layer, the c1 community contains less recognition feature information compared to others, while the
information in the c0, c2, and c3 communities together form a complementary recognition feature.

In addition, we observed that when c1 in the third layer is closed, the accuracy is actually improved.
Based on the perturbation statistical analysis results, as shown in 2 (a), we can confirm that c1 mainly
contains features unrelated to the recognition task (which we define as ‘noise’). Similarly, from 2
(a), we can identify that the c0 in the first layer and the c0 in the second layer are both ‘noise’. During
the training process of the model, the convolutional layers inevitably fit some noisy data. Closing
these neurons during the testing phase reduces overfitting and enhances robustness. This processing
makes the model more accurate in capturing core features to improve the generalization ability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

layer 1 layer 2 layer 3

layer 1 𝒄𝟎 𝒄𝟏 𝒄𝟐

layer 2 𝒄𝟎 𝒄𝟏 𝒄𝟐

layer 3 𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒄𝟑

Prediction
error samples

c0 cat c0 dog c1 cat c1 dog c2 cat c2 dog-0.1

0.0

0.1

0.2

0.3

0.4
layer 1

!!: 0.278
!": 0.015
!#: 0.161

c0 cat c0 dog c1 cat c1 dog c2 cat c2 dog-0.05

0.00

0.05

0.10

0.15
layer 2

!!: 0.065
!": 0.496
!#: 0.003

c0 cat c0 dog c1 cat c1 dog c2 cat c2 dog c3 cat c3 dog0.00

0.05

0.10

layer 3

!!: 0.021
!": 0.036
!#: 0.013
!$: 0.044

…
(a)

(b)

(c)

layer 1

layer 2

layer 3

Figure 3: (a) The representation distribution in the linear layers. (b) The representation distribution
in the convolutional layers. (c) The distribution of community activation levels in convolutional lay-
ers and the analysis of the error prediction sample.

From Fig. 2 (a), it can be seen that the convolution kernels located within the key community mainly
focus on the key feature areas for cat and dog classification, while those in non-key communities
focus on the non recognition feature areas or have insufficient attention to the recognition features.
We attempt to close the non-key communities of the three convolutional layers (c0 in the first layer,
c0 in the second layer, and c1 in the third layer). The result shows that although the accuracy of
cat and dog classification decreased to 93.6% (a decrease of 5.1%), we achieve a high recognition
accuracy with only 70 neurons. Compared with 224 neurons using the entire convolutional layers,
the number of neurons used decreased by 68.75%, providing a new perspective for network pruning.

4.2 VISUALIZING THE REPRESENTATIONS OF NEURONS WITHIN THE COMMUNITY

To more intuitively reveal the inherent consistency of neuron representations within the same com-
munity, we visualize the representations of neurons. We traverse the test-set and calculate the av-
erage representation of each neuron as a benchmark. We fed the samples from test-set one by one
and record the output values of each neuron. For neurons within a specific community, we use the
output value corresponding to their index as their representation. For neurons that do not belong to
the community, we use the average as their representation. We collect representation data of specific
community neurons and record the community index to which these representations belong. We use
T-SNE to reduce the dimensionality of these representations, as shown in Fig. 3 (a) and (b).

From Fig. 3(a), neurons within the same community cluster due to similar functions and response
patterns, reflecting shared feature preferences formed during training. Fig. 3(b) highlights com-
plementarity and differences in key communities. In the first convolutional layer, c1 and c2 share
similarities in feature distribution, explaining their minor individual impact on accuracy but a sig-
nificant drop when both are closed. Their distinct feature differences, marked in red boxes, justify
their assignment to separate communities.

4.3 COMMUNITY ACTIVATION LEVEL AND ANALYSIS OF ERROR PREDICTION SAMPLES

To accurately evaluate the activity level of neurons within the community, we adopt the following
statistical measurement. We define ‘community activation level’: it refers to the average level of
activation values of all neurons within the community. We record the activation outputs of each
community in each convolutional layer when the input image is a cat. Similarly, we also record the
situation when the input image is a dog. We quantitatively describe the distribution of community
activation levels using violin plots, as shown in Fig. 3 (c). In cat and dog recognition task, we focus

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

on those error prediction samples and analyze the community activation levels, aiming to explore
the reasons behind classification errors. In Fig. 3 (c), we present some prediction errors. Taking the
first image as a case, we demonstrate the activation level of each community in convolutional layer
when the misclassified sample is fed. The activation values in the first layer suggest that the image
tends to activate patterns associated with dogs, which is consistent with observations in the second
layer. However, in the third layer, the community activation level of c1 is closer to the distribution
of cat, while in c0, c2, and c3 are again biased towards dogs. Importantly, c0, c2, and c3 in the third
layer are the key communities responsible for key identification, while c1 is the non-key community.

4.4 COMPARE TO OTHER METHODS

Searching for Noise Neuron Communities: In Table 2, we demonstrate that turning off noisy neu-
rons in the last layer can improve performance. This is because the noise neuron community focuses
more on non-task features, and deleting these neurons makes the networks pay more attention to fea-
tures. To demonstrate the effectiveness of InnerSightNet in searching for noisy neuron communities,
we compare InnerSightNet with Filan et al. (2021), Hod et al. (2021), and Liu et al. (2023) to search
for noisy neurons in the last layer and test the improvement in final accuracy. Filan et al. investigate
the concept of ‘clusterability’, focusing on dividing neurons into groups with strong internal con-
nectivity and weak external connectivity. Hod et al. focus on quantifying the local specialization of
neural networks, where clusters of neurons are linked to comprehensible sub-tasks. Liu et al. pro-
pose Brain-Inspired Modular Training, which enhances network modularity and interpretability by
embedding neurons in a geometric space, penalizing connection lengths during training. We choose
MNIST and AFHQ as datasets, and select linear and convolutional layers to be tested, respectively.

Table 2: The results of searching for noise neuron commu-
nities.

MNIST AFHQ
Filan et al. 92.58%±0.062% 98.56%±0.135%
Hod et al. 92.61%±0.014% 98.60%±0.107%
Liu et al. 92.63%±0.020% 98.68%±0.075%

InnerSightNet 92.69%±0.008% 98.78%±0.033%

Table 3: The results of network
pruning based on key neurons.

num Acc
Filan et al. 105 94.2%
Hod et al. 81 93.5%
Liu et al. 75 93.4%

InnerSightNet 70 93.6%

Network Pruning Based on Core Neuron Community: To verify the superiority of InnerSightNet
in locating key neurons, we choose the convolutional layers trained on AFHQ as the network to be
tested. Meanwhile, using Filan et al. (2021), Hod et al. (2021), and Liu et al. (2023) as baseline
methods to search for the key neurons in the neural network. From Table 3, it can be seen that
InnerSightNet has significant advantages in the search of key neurons. Although the accuracy of the
Filan et al. (2021) method is 0.6% higher than that of InnerSightNet, it uses 15.625% more neurons
than InnerSightNet. Overall, InnerSightNet performs better in searching for key neurons. This is
mainly due to the fact that InnerSightNet considers the connection strength and probability between
different neurons and layers, rather than focuses not only on a single layer or individual neuron.
InnerSightNet is not only suitable for network pruning, but can also be applied to other fields.

5 CONCLUSION AND FUTURE WORK

In this work, we use the inherent characteristics of neurons in learnable units to partition neurons
into communities. InnerSightNet adaptively searches for the best number of communities and dis-
plays the sensitive areas of concern to the community based on roles and functionalities analysis.
We analyze the inference process of neural networks from the community perspective, avoiding
the limitations of only analyzing single layers or individual neurons. Many future works follow.
According to our algorithm, community-based analysis methods can be potentially applied to the
analysis of other tasks, such as analyzing the flow of abstract concepts during image generation
from generative networks, dynamic problems during network training, etc. Our future work also is
based on community analysis to improve our understanding in deep neural networks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. Advances in neural information processing systems, 31, 2018.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
Identifying and controlling important neurons in neural machine translation. arXiv preprint
arXiv:1811.01157, 2018a.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541–6549, 2017.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum, William T Freeman,
and Antonio Torralba. Gan dissection: Visualizing and understanding generative adversarial net-
works. arXiv preprint arXiv:1811.10597, 2018b.

Punam Bedi and Chhavi Sharma. Community detection in social networks. Wiley interdisciplinary
reviews: Data mining and knowledge discovery, 6(3):115–135, 2016.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Sebastian Bordt and Ulrike von Luxburg. From shapley values to generalized additive models and
back. In International Conference on Artificial Intelligence and Statistics, pp. 709–745. PMLR,
2023.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: deep learning for interpretable image recognition. Advances in neural information
processing systems, 32, 2019.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

KR1442 Chowdhary and KR Chowdhary. Natural language processing. Fundamentals of artificial
intelligence, pp. 603–649, 2020.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modular? in-
specting functional modularity through differentiable weight masks. In Int. Conf. on Learning
Representations (ICLR), Virtual only, May 2021.

Faisal R Elali and Leena N Rachid. Ai-generated research paper fabrication and plagiarism in the
scientific community. Patterns, 4(3), 2023.

Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell. Cluster-
ability in neural networks. arXiv preprint arXiv:2103.03386, 2021.

Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by
filters in deep neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8730–8738, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Goodley, Haval Balata, Alberto Alonso, Christopher Brockelsby, Matthew Conroy, Nicola
Cooper-Moss, Christopher Craig, Matthew Evison, Kath Hewitt, Coral Higgins, et al. Invitation
strategies and participation in a community-based lung cancer screening programme located in
areas of high socioeconomic deprivation. thorax, 79(1):58–67, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Shlomi Hod, Daniel Filan, Stephen Casper, Andrew Critch, and Stuart Russell. Quantifying local
specialization in deep neural networks. arXiv preprint arXiv:2110.08058, 2021.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Richard D Lange, David S Rolnick, and Konrad P Kording. Clustering units in neural networks:
upstream vs downstream information. arXiv preprint arXiv:2203.11815, 2022.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Shudong Li, Laiyuan Jiang, Xiaobo Wu, Weihong Han, Dawei Zhao, and Zhen Wang. A weighted
network community detection algorithm based on deep learning. Applied Mathematics and Com-
putation, 401:126012, 2021.

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular training for
mechanistic interpretability. Entropy, 26(1):41, 2023.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

Ggaliwango Marvin, Daudi Jjingo, Joyce Nakatumba-Nabende, and Md Golam Rabiul Alam. Local
interpretable model-agnostic explanations for online maternal healthcare. In 2023 2nd Interna-
tional Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN),
pp. 1–6. IEEE, 2023.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577–8582, 2006.

Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels. Scalable community detec-
tion with the louvain algorithm. In 2015 IEEE international parallel and distributed processing
symposium, pp. 28–37. IEEE, 2015.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Nicolò Ruggeri, Martina Contisciani, Federico Battiston, and Caterina De Bacco. Community de-
tection in large hypergraphs. Science Advances, 9(28):eadg9159, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Di Jin, et al. A comprehensive survey on community detection with deep learning. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

Jianyong Sun, Wei Zheng, Qingfu Zhang, and Zongben Xu. Graph neural network encoding for
community detection in attribute networks. IEEE Transactions on Cybernetics, 52(8):7791–7804,
2021.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1–12, 2019.

Hadrien Van Lierde, Tommy WS Chow, and Guanrong Chen. Scalable spectral clustering for over-
lapping community detection in large-scale networks. IEEE Transactions on Knowledge and Data
Engineering, 32(4):754–767, 2019.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Modular representation of layered neural
networks. Neural Networks, 97:62–73, 2018.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. Baylime: Bayesian
local interpretable model-agnostic explanations. In Uncertainty in artificial intelligence, pp. 887–
896. PMLR, 2021.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

A APPENDIX

A.1 APPENDIX ABSTRACT

In this work, InnerSightNet can be divided into three primary phases: Initially, it executes a process
of ‘neuronization’, transforming learnable units into a structured network of neurons. Subsequently,
these neurons are clustered into distinct communities according to representation attributes. The
final stage involves the examination of these communities’ roles and functionalities to make sure
the best community partitioning. In additional, we use differential output analysis and perturbation-
statistical method to unpick the neural tapestry of decision-making. In the appendix, we elaborate
on the theoretical background (A.2) and supplement the detailed derivation process of the formulas
(A.3) cited in the main text. In addition, we also provide specific details of the algorithm implemen-
tation (A.4), methods of roles and functionalities analysis in InnerSightNet (A.5), attach extensive
experimental results (A.6) and limitations (A.7).

A.2 THEORETICAL BACKGROUND

In analyzing complex data structures, especially those containing unobserved or implicit variables,
probability models demonstrate their powerful ability to effectively reveal the hidden structures
behind the data. This type of model introduces probability distribution to describe the process of data
generation, which can not only handle inherent uncertainty properly, but also use statistical methods
to accurately estimate model parameters. The core advantage of probability models lies in their
ability to use parameterization to characterize the interdependence between variables. Especially in
classification or clustering problems, the Expectation Maximization (EM) algorithm is often used
to infer the parameters of these probability models. This algorithm optimizes parameter estimation
through an iterative process to adapt to the statistical characteristics of observed data.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Theorem: EM parameter estimation for probabilistic models: Given a set of observation data
Ad−1,d, Id−1,d,Ad,d+1 and Id,d+1 (To facility a cleaner description, we useA, I ,A

′
, and I

′
install.),

we consider a probability model that takes into account the parameters {πc, τAi,k, τ Ii,k, τA
′

k,j , τ
I
′

k,j}
describe the process of result generation. The goal of the model is to maximize the likelihood
function of the observed data, which typically involves marginalization of implicit variables. In this
context, we can describe the estimation method of model parameters through the following theorem:

Let πc represents the prior probability of class c, {τAi,k, τ Ii,k, τA
′

k,j , τ
I
′

k,j}|k=c represent the condi-
tional probability of a given class c, respectively. For each observation k and class c, define
qk,c, where is the posterior probability that observation k belongs to class c. The parameters

{πc, τAi,k, τ Ii,k, τA
′

k,j , τ
I
′

k,j} can be iteratively estimated through the following expectation maximiza-
tion steps:

(Step E) Estimate the posterior probability based on the current parameters:

qk,c = pk,c/
∑
s pk,c, (14)

where pk,c is shown as Eq. 15, ϕ is equal to c or s.

pk,ϕ =πc · [
∏
i(τ

A
i,ϕ)Ai,ϕ(1− τAi,ϕ)1−Ai,k(τ Ii,ϕ)Ii,k(1− τ Ii,ϕ)1−Ii,k]·

[
∏
j(τ

A
′

ϕ,j)
A

′
ϕ,j (1− τA

′

ϕ,j)
1−A

′
i,k(τ I

′

i,ϕ)I
′
k,j (1− τ I

′

iϕ,j)
1−I

′
i,k]

(15)

(Step M) Update the model parameters to maximize the likelihood function of the observed data:

πc =

∑
k qk,c
ld

, τA =

∑
k Ai,kqk,c∑
k qk,c

, τ I =

∑
k Ii,kqk,c∑
k qk,c

τA
′

=

∑
k A

′

k,jqk,c∑
k qk,c

, τ I
′

=

∑
k I

′

k,jqk,c∑
k qk,c

(16)

By adopting this theorem, we explain how to use the expectation maximization algorithm to esti-
mate the parameters of a probability model under known observation data conditions. This method
provides the mathematical foundation for revealing the hidden category structure in the data.

When applying this theorem for parameter estimation, we initially determine the probability of
each data belonging to different classes through Step E, that is, implementing ‘soft clustering’.
Subsequently, in Step M, we adjust the model parameters to enhance the overall likelihood of these
probability distributions. Through repeated iterations, the algorithm will eventually converge and
obtain the optimal estimate of parameters, thereby revealing the implicit structure within the data.

A.3 PROOF OF SECTION 2.2

The description of Eq. 2 to Eq. 8 in main text is the basis of the InnerSightNet: aggregation. Here,
we provide the detailed derivation process for Eq. 2 to Eq. 8.

According to Bayesian theorem:

Pr(A, I,A
′
, I

′
, g|π, τA, τ I , τA

′

, τ I
′

) =Pr(A, I,A
′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

)·

Pr(g|π, τA, τ I , τA
′

, τ I
′

)
(17)

Based on the connection matrix and joint probability, we can calculate the two factors in Eq. 17
separately. For factor Pr(A, I,A

′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

), where {τAi,k, τ Ii,k, τA
′

k,j , τ
I
′

k,j} is used as
the condition, calculate the probability distribution of Pr(A, I,A

′
, I

′
, g, π):

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Pr(A, I,A
′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

) =∏
k{
∏
i(τ

A
i,gk

)Ai,k(1− τAi,gk)1−Ai,k(τ Ii,gk)Ii,k(1− τ Ii,gk)1−Ii,k}∏
k{
∏
j(τ

A
′

gk,j
)A

′
k,j (1− τA

′

gk,j
)1−A

′
k,j (τ I

′

gk,j
)I

′
i,k(1− τ I

′

gk,j
)1−I

′
k,j}

(18)

For factor Pr(g|π, τA, τ I , τA
′

, τ I
′

), where {π, τAi,k, τ Ii,k, τA
′

k,j , τ
I
′

k,j} is used as the condition, calcu-
late the probability distribution of Pr(g)

Pr(g|π, τA, τ I , τA
′

, τ I
′

) =
∏
kπgk (19)

Due to the fact that the probability distribution of Pr(A, I,A
′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

) is in the
form of continuous multiplication, it is very friendly for logarithmic calculations. Therefore, the
logarithmic likelihood function of the probability distribution is:

L =
1

ld
lnPr(A, I,A

′
, I

′
, g|π, τA, τ I , τA

′

, τ I
′

) =

1

ld
ln{Pr(A, I,A

′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

) ·Pr(g|π, τA, τ I , τA
′

, τ I
′

)}

=
1

ld
ln{Pr(A, I,A

′
, I

′
, g, π|τA, τ I , τA

′

, τ I
′

)}+
1

ld
ln{Pr(g|π, τA, τ I , τA

′

, τ I
′

)}

=
1

ld
ln
∏
k{
∏
i(τ

A
i,gk

)Ai,k(1− τAi,gk)1−Ai,k(τ Ii,gk)Ii,k(1− τ Ii,gk)1−Ii,k}∏
k{
∏
j(τ

A
′

gk,j
)A

′
k,j (1− τA

′

gk,j
)1−A

′
k,j (τ I

′

gk,j
)I

′
i,k(1− τ I

′

gk,j
)1−I

′
k,j}+

1

ld
ln{

∏
kπgk}

=
1

ld
ln
∑
k

∑
i{Ai,k ln τAi,gk + (1−Ai,k) ln(1− τAi,gk) + Ii,k ln τ Ii,gk + (1− Ii,k)

ln(1− τ Ii,gk)}+
∑
j{A

′

k,j ln τA
′

gk,j
+ (1−A

′

k,j) ln(1− τA
′

gk,j
) + I

′

i,k ln τ I
′

gk,j
+

(1− I
′

k,j) ln(1− τ I
′

gk,j
)}+ ln{πgk}}

(20)

where ld is the member of the neurons in d-th layer. Since the variable g is unknown in Eq. 20, we
calculate the expected value of the likelihood function on the implicit variable set g = {gk}.

Lg =
∑
gPr(g|π,A, I,A

′
, I

′
, τA, τ I , τA

′

, τ I
′

) · L (21)

Substitute Eq. 20 into Eq. 21, we can get,

Lg =
1

ld

∑
k,cqk,c{lnπc +

∑
i(Ai,k ln τAi,k + (1−Ai,k) ln(1− τAi,k)) +

∑
i(Ii,k ln τ Ii,k+

(1− Ii,k) ln(1− τ Ii,k)) +
∑
j(Ak,j ln τA

′

k,j + (1−A
′

k,j) ln(1− τA
′

k,j)) +
∑
j(Ik,j ln τ I

′

k,j

+ (1− I
′

k,j) ln(1− τ I
′

k,j))}
(22)

qk,c represents the probability of that the k-th neuron is assigned to c-th community. According to
Bayesian formula, we can conclude that qk,c is represented as Eq. 23.

qk,c =
Pr(A, I,A

′
, I

′
, gk = c|π, τA, τ I , τA

′

, τ I
′

)

Pr(A, I,A′ , I ′ |π, τA, τ I , τA′
, τ I

′
)

(23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For the numerator of qk,c,

Pr(A, I,A
′
, I

′
, gk = c|π, τA, τ I , τA

′

, τ I
′

)

= {
∑
g1

∑
g2

...
∑
gk

}|gk=cPr(A, I,A
′
, I

′
, g|π, τA, τ I , τA

′

, τ I
′

)⇒ donate as factor B

i.e., Pr(A, I,A
′
, I

′
, gk = c|π, τA, τ I , τA

′

, τ I
′

) = factor B|gk=c × factor B|gk 6=c

(24)

where,

(i) factor B|gk=c =πc ·
∏
i

(τAi,c)
Ai,c(1− τAi,c)1−Ai,c(τ Ii,c)

Ii,c(1− τ Ii,c)1−Ii,c ·

∏
j(τ

A
′

c,j)A
′
c,j (1− τA

′

c,j)1−A
′
c,j (τ I

′

c,j)
I
′
i,c(1− τ I

′

c,j)
1−I

′
c,j

(ii) factor B|gk 6=c =
∏
gk 6=c

∑
s

πs ·
∏
i

(τAi,s)
Ai,s(1− τAi,s)1−Ai,s(τ Ii,s)

Ii,s(1− τ Ii,s)1−Ii,s ·

∏
j(τ

A
′

s,j)
A

′
s,j (1− τA

′

s,j)
1−A

′
s,j (τ I

′

s,j)
I
′
i,s(1− τ I

′

s,j)
1−I

′
s,j

(25)

For the denominator of qk,c,

Pr(A, I,A
′
, I

′
|π, τA, τ I , τA

′

, τ I
′

) = {
∑
g1

...
∑
gk

}Pr(A, I,A
′
, I

′
, g|π, τA, τ I , τA

′

, τ I
′

)

=
∏
k

∑
s

πs ·
∏
i

(τAi,s)
Ai,s(1− τAi,s)1−Ai,s(τ Ii,s)

Ii,s(1− τ Ii,s)1−Ii,s ·

∏
j(τ

A
′

s,j)
A

′
s,j (1− τA

′

s,j)
1−A

′
s,j (τ I

′

s,j)
I
′
i,s(1− τ I

′

s,j)
1−I

′
s,j

(26)

Therefore, we can get qk,c as follow,

qk,c =
pk,c∑
s pk,c

(27)

where pk,c is shown as Eq. 28, ϕ is equal to c or s.

pk,ϕ =πc · [
∏
i(τ

A
i,ϕ)Ai,ϕ(1− τAi,ϕ)1−Ai,k(τ Ii,ϕ)Ii,k(1− τ Ii,ϕ)1−Ii,k]·

[
∏
j(τ

A
′

ϕ,j)
A

′
ϕ,j (1− τA

′

ϕ,j)
1−A

′
i,k(τ I

′

i,ϕ)I
′
k,j (1− τ I

′

iϕ,j)
1−I

′
i,k]

(28)

Currently, we have the likelihood function Lg and the constraint
∑
c πc = 1. For this type of

optimization problem with multiple variables and constraints, it can be transformed into a problem
with a set of equations and can be solved through the Lagrange multiplier method. We define a new
function h as h = mathbfLg − α

∑
c πc, where α is a constant, and for function h, the best value

exists if the following conditions are met.

5πch = 0,5τA
i,c
h = 0,5τI

i,c
h = 0,5

τA
′

c,j

h = 0,5
τI

′
c,j

h = 0 (29)

where {τAi,c, τ Ii,c, τA
′

c,j , τ
I
′

c,j} are the Lagrange multipliers.

For5πc
h = 0, we can get,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

5πc (Lg − α
∑
c πc) = 0

⇒5πc
Lg = α

⇒5πc

1

ld

∑
k,cqk,c{lnπc +

∑
i(Ai,k ln τAi,k + (1−Ai,k) ln(1− τAi,k)) +

∑
i(Ii,k ln τ Ii,k+

(1− Ii,k) ln(1− τ Ii,k)) +
∑
j(Ak,j ln τA

′

k,j + (1−A
′

k,j) ln(1− τA
′

k,j)) +
∑
j(Ik,j ln τ I

′

k,j

+ (1− I
′

k,j) ln(1− τ I
′

k,j))} = α

⇒ 1

ld

∑
kqk,c ·

1

πc
= α⇒ πc =

1

ld · α
∑
kqk,c =

1

ld

∑
kqk,c (s.t., α = 1)

(30)

For5τA
i,c
h = 0, we can get,

5τA
i,c

(Lg − α
∑
c πc) = 0

⇒5τA
i,c
Lg = 0

⇒5τA
i,c

1

ld

∑
k,cqk,c{lnπc +

∑
i(Ai,k ln τAi,k + (1−Ai,k) ln(1− τAi,k)) +

∑
i(Ii,k ln τ Ii,k+

(1− Ii,k) ln(1− τ Ii,k)) +
∑
j(Ak,j ln τA

′

k,j + (1−A
′

k,j) ln(1− τA
′

k,j)) +
∑
j(Ik,j ln τ I

′

k,j

+ (1− I
′

k,j) ln(1− τ I
′

k,j))} = 0

⇒
∑
kqk,c

∑
i

(
Ai,c
τAi,c
− 1−Ai,c

1− τAi,c
) = 0

⇒
∑
kqk,c

∑
i

Ai,c − τAi,c
τAi,c · (1− τAi,c)

= 0⇒ τAi,c =

∑
k Ai,kqk,c∑
k qk,c

(31)

For5τI
i,c
h = 0, we can get,

5τI
i,c

(Lg − α
∑
c πc) = 0

⇒5τI
i,c
Lg = 0

⇒5τI
i,c

1

ld

∑
k,cqk,c{lnπc +

∑
i(Ai,k ln τAi,k + (1−Ai,k) ln(1− τAi,k)) +

∑
i(Ii,k ln τ Ii,k+

(1− Ii,k) ln(1− τ Ii,k)) +
∑
j(Ak,j ln τA

′

k,j + (1−A
′

k,j) ln(1− τA
′

k,j)) +
∑
j(Ik,j ln τ I

′

k,j

+ (1− I
′

k,j) ln(1− τ I
′

k,j))} = 0

⇒
∑
kqk,c

∑
i

(
Ii,c
τ Ii,c
− 1− Ii,c

1− τ Ii,c
) = 0

⇒
∑
kqk,c

∑
i

Ii,c − τ Ii,c
τ Ii,c · (1− τ Ii,c)

= 0⇒ τ Ii,c =

∑
k Ii,kqk,c∑
k qk,c

(32)

For5
τA

′
i,c

h = 0, we can get,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

5
τA

′
i,c

(Lg − α
∑
c πc) = 0

⇒5
τA

′
i,c

Lg = 0

⇒5
τA

′
i,c

1

ld

∑
k,cqk,c{lnπc +

∑
i(Ai,k ln τAi,k + (1−Ai,k) ln(1− τAi,k)) +

∑
i(Ii,k ln τ Ii,k+

(1− Ii,k) ln(1− τ Ii,k)) +
∑
j(Ak,j ln τA

′

k,j + (1−A
′

k,j) ln(1− τA
′

k,j)) +
∑
j(Ik,j ln τ I

′

k,j

+ (1− I
′

k,j) ln(1− τ I
′

k,j))} = 0

⇒
∑
kqk,c

∑
j

(
A

′

c,j

τA
′

c,j

−
1−A′

c,j

1− τA
′

c,j

) = 0

⇒
∑
kqk,c

∑
j

A
′

c,j − τA
′

i,c

τA
′

i,c · (1− τA
′

c,j)
= 0⇒ τA

′

c,j =

∑
k A

′

i,kqk,c∑
k qk,c

(33)

For5
τI

′
i,c

h = 0, we can get,

5
τI

′
i,c

(Lg − α
∑
c πc) = 0

⇒5
τI

′
i,c

Lg = 0

⇒5
τI

′
i,c

1

ld

∑
k,cqk,c{lnπc +

∑
i(Ai,k ln τAi,k + (1−Ai,k) ln(1− τAi,k)) +

∑
i(Ii,k ln τ Ii,k+

(1− Ii,k) ln(1− τ Ii,k)) +
∑
j(Ak,j ln τA

′

k,j + (1−A
′

k,j) ln(1− τA
′

k,j)) +
∑
j(Ik,j ln τ I

′

k,j

+ (1− I
′

k,j) ln(1− τ I
′

k,j))} = 0

⇒
∑
kqk,c

∑
j

(
A

′

c,j

τA
′

c,j

−
1−A′

c,j

1− τA
′

c,j

) = 0

⇒
∑
kqk,c

∑
j

I
′

c,j − τ I
′

c,j

τ I
′

c,j · (1− τ I
′

c,j)
= 0⇒ τ I

′

c,j =

∑
k I

′

i,kqk,c∑
k qk,c

(34)

Therefore, we get qk,c, πc, τAi,k, τ Ii,k, τA
′

k,j and τ I
′

k,j as Eq. 35.

qk,c =
pk,c∑
s pk,c

, πc =

∑
k qk,c
ld

, τA =

∑
k Ai,kqk,c∑
k qk,c

τ I =

∑
k Ii,kqk,c∑
k qk,c

, τA
′

=

∑
k A

′

k,jqk,c∑
k qk,c

, τ I
′

=

∑
k I

′

k,jqk,c∑
k qk,c

(35)

A.4 DETAILS OF EM ALGORITHM IN INNERSIGHTNET

In this study, we propose a model based on the EM algorithm aimed at discovering potential commu-
nity structures in the data. The EM algorithm is an iterative algorithm used for parameter estimation
and inference of potential data structures, particularly suitable when the model contains unobserv-
able hidden variables, as described in appendix A.2.

Firstly, we defined the function E Step for the expected step (E step). In step E, based on the
current model parameter estimation, calculate the expected value of the latent variable qk,c. The
logarithmic probability form is used in the calculation to avoid numerical instability when dealing
with extremely small values. Specifically, the model parameters include: {πc, τAi,k, τ Ii,k, τA

′

k,j , τ
I
′

k,j}.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Subsequently, we implemented the function M step for maximizing step (M step). In step M, update
the model parameters based on the expected values of the latent variables obtained in step E, in order
to maximize the logarithmic likelihood function of the observed data.

As is well known, the EM algorithm has instability and is prone to getting stuck in local optima. In
the process of executing the EM algorithm, in order to alleviate the above problems, we have adopted
three main strategies: random initialization, multiple start strategy, and converting multiplication
operations into logarithmic operations. The following will provide a detailed description of the
implementation methods and their purpose and role of these strategies.

(a) Random initialization: Random initialization refers to randomly assigning model parameters
before the EM algorithm starts. This is because the EM algorithm, as a gradient based optimiza-
tion method, relies heavily on the initial values of the parameters to find the final solution. If the
parameters are initialized properly, the algorithm is more likely to converge to the global optimal
solution or a better local optimal solution. On the contrary, improper initialization may lead to slow
convergence speed or suboptimal solutions for the algorithm. Through random initialization, we can
explore the parameter space from multiple different starting points, increasing the chances of finding
better solutions.

(b) Multiple start strategy: Multiple start strategy refers to repeatedly executing the algorithm
multiple times, each time using different random initialization parameters. This strategy is based
on the assumption that by independently starting optimization from different initial points multiple
times, we can select the best local optimal solution from multiple found ones, thereby reducing the
risk of the algorithm falling into poor local optimal solutions. In this study, we set the number of
multiple starts to 100.

(c) Convert multiplication to logarithmic operation: In step E of the EM algorithm, it is necessary
to calculate the product of probabilities, which are often very small. Direct multiplication can lead to
numerical underflow, meaning that the computer cannot represent such small values. To avoid this
situation, we adopt the method of converting multiplication operations to logarithmic operations.
Specifically, by utilizing the properties of logarithmic functions, multiplication can be transformed
into addition: taking the logarithm of the probability, adding it up, and finally converting it back to
the original probability space through exponential transformation. This conversion not only prevents
numerical problems, but also improves the numerical stability of the entire calculation process due
to the more stable addition operation.

A.5 DETAILS OF ROLES AND FUNCTIONALITIES ANALYSIS IN INNERSIGHTNET

In the communities of deep neural networks, their roles and functions are more intuitively reflected
in input and output. InnerSightNet provides quantitative analyses from the input-output perspective.

Differential outcome analysis: In order to quantitatively analyze the impact of communities on
output, we adopt a differential outcome analysis. The differential outcome analysis are statistically
analyzed to determine the changes in the output of the neural network between corresponding com-
munity is not closed and closed after inputting the same data.

Perturbation-statistical analysis: In order to quantitatively analyze the impact of input data on the
community, we adopt a perturbation-statistics analysis. By perturbing the input data and recording
the response changes of the community, this method allows us to calculate the sensitivity of each
community towards changes in input data. We define the sensitivity of the community as Sc =
1
N

∑N
i=1f(Xi, X

′

i), where N is the number of samples in the test set. f is a function that evaluates
the difference in feature representation between the original input Xi and the perturbed input X

′

i .

When starting perturbation analysis, we are not limited to the perturbation of independent pixels, but
extend it to a 5×5-pixel neighbourhood. This operation takes into account the correlation between
adjacent pixels in the image. We define a neighborhood perturbation function Per(Xi, x, y) that
sets the pixels of an image at position (x, y) and its neighborhood to 0, i.e., Per(Xi, x, y) = X

′

i

where X
′

i(u, v) = 0 for (u, v) ∈ N(x, y). To measure the impact of perturbations on the neuronal
community, we calculated the mean squared error (MSE) of feature representations between the
original and perturbed samples. The response of community c to samples pairs (Xi, X

′

i) is:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

f(Xi, X
′

i) = MSEXi

1

M

∑j=1
M (hc(Xi)j − hc(X

′

i)j)
2 (36)

where M is the number of neurons. hc(Xi) and hc(X
′

i) represent the feature representations of
Xi and X

′

i . Then we calculate the root of f(Xi, X
′

i). Perturbation-statistical analysis traverses the
input image. Each pixel represents the overall response of the input data to community c at point
(x, y). We obtain perturbation-statistical analysis results that are consistent with the size of the input
data.

We provide a detailed introduction to perturbation-statistical analysis here. Perturbation-statistical
analysis measures which regions of the input data are sensitive to a community in a deep neural
network. The sensitivity of a community to input information is directly related to the flow of infor-
mation and decision-making processes in deep neural networks. We obtain perturbation-statistical
analysis results that are consistent with the size of the input data.

A.6 MORE DETAILS OF SECTION 4.4

To further demonstrate the significance of InnerSightNet, we use the Wilcoxon test to determine the
differences between the results of the methods are statistically significant. The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test used either to test the location of a population
based on a sample of data, or to compare the locations of two populations using two matched sam-
ples, which be applied in statical significance tests. We use MATLAB to perform Wilcoxon rank
sum test.

• Zero hypothesis H0: Two sets of data come from the same distribution, meaning that there
is no significant difference between the two sets of data overall.

• Alternative hypothesisH1: The two sets of data come from different distributions, meaning
there is a significant difference between the two sets of data.

We list the results of wilcoxon rank sum test between InnerSightNet and the baselines in the follow-
ing table.

Table 4: Tthe results of wilcoxon rank sum test between InnerSightNet and the baselines.

baselines p-value (MNIST) Statistic (MNIST) p-value (AFHQ) Statistic (AFHQ)
Filan et al. 0.000212 -3.704051 0.000381 -3.552866
Hod et al. 0.000157 -3.779644 0.004071 -2.872529
Liu et al. 0.001490 -3.174901 0.001498 -3.1749015

where Statistic represents the magnitude and direction of the difference in rank sum between two
samples. The negative statistic indicates that the rank of the first set of data is generally lower than
that of the second set of data. This means that the values of the first set of data are generally smaller
than those of the second set. p-value represents the probability of observing extreme or even more
extreme results under the assumption that the H0 is true. Usually, when the p-value is less than the
significance level (such as 0.05 or 0.01), we reject the H0.

From the above table, it can be seen that the p-values are all less than 0.01. We can reject the
H0 and conclude that the two sets of data are statistically significantly different. The Statistic are
negative values that further indicates the performances of baselines are generally lower than those
of InnerSightNet.

A.7 LIMITATIONS

Although InnerSightNet has demonstrated its unique advantages in partitioning communities based
on the input-output representations of neurons, determining the best number of communities, and
conducting in-depth analysis of information flow and decision-making processes in deep neural
networks, the algorithm still faces two significant limitations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Firstly, the time consumption of algorithms cannot be ignored. The core of InnerSightNet is based
on the EM algorithm, which is an iterative optimization process. Its iterative nature itself means an
increase in time cost. In order to avoid the risk of EM algorithm getting stuck in local optima, we
introduce the multiple start strategy. Although this strategy improves the algorithm’s global search
ability, it further exacerbates the burden of computation time.

The complexity analysis of InnerSightNet reveals the root cause of its time consumption. Inner-
SightNet initialization stage involves setting model parameters and initializing the optimal loga-
rithmic likelihood value, with a constant level of complexity and minimal impact on the overall
performance. However, the main body of the algorithm consists of two layers of loops: the outer
loop is responsible for the algorithm restart mechanism, executing R times; The inner loop is re-
sponsible for iteratively optimizing the model parameters, with a maximum of T iterations executed
per restart. The complexity of these two layers of loops is O(R)and O(T), respectively. In the inner
loop, the algorithm needs to perform probability calculations and parameter updates on each of the
K samples and C clusters, with a complexity of O(KC). Due to these operations being executed in
each iteration, the overall complexity is proportional to the number of iterations T, i.e. O(TKC).
Taking into account the R restarts of the outer loop, the overall complexity of the entire algorithm is
O(RTKC).

In order to reduce time consumption, we adopt multiple strategies. Firstly, we migrate the com-
putation process to the GPU and use Cupy instead of Numpy to improve computational efficiency.
Secondly, we pre calculated the average feature value, average Jacobian matrix, etc., to reduce the
evaluation time for each community partition. Although these measures have to some extent alle-
viated the time pressure, the computation time of InnerSightNet is still relatively long. When the
number of single-layer neurons is 128, the computation time for InnerSightNet in processing linear
and convolutional neural networks is approximately 4 hours and 7 hours, respectively. Therefore,
how to further optimize the algorithm to reduce time consumption becomes the focus of our future
research.

Secondly, the issue of concentration in community partitioning is also worth paying attention to.
When applying InnerSightNet in convolutional neural networks, we find that community partitioning
is too centralized, which is in stark contrast to the situation where linear neural network analysis can
partition more than 10 communities. This phenomenon raises a question: in common sense, cat and
dog images contain more information than handwritten digit, why is there actually less community
division? Our explanation is ‘task-related’. Due to the fact that cat and dog classification is a binary
task, the number of effective neurons for binary classification is indeed less than that for ten class
tasks. In addition, our community partitioning method is based on classification results, which may
lead to a bias towards classification-specific features rather than common features during the parti-
tioning process. Therefore, developing evaluation methods suitable for non-classification networks
to focus community partitioning more on detailed features, such as neurons within a community
specifically responsible for recognizing cat eyes, is our future research direction and one of the ways
to extend InnerSightNet to generative models.

21

	Introduction
	Related Literature
	InnerSightNet
	InnerSightNet: Neuronization
	InnerSightNet: Aggregation
	InnerSightNet: Evaluation

	Experiments & Applications
	InnerSightNet in linear layer and convolutional layer
	InnerSightNet in linear layer
	InnerSightNet in convolutional layer

	Visualizing the representations of neurons within the community
	Community activation level and analysis of error prediction samples
	Compare to other methods

	Conclusion and Future Work
	Appendix
	Appendix abstract
	Theoretical background
	Proof of section 2.2
	Details of EM algorithm in InnerSightNet
	Details of roles and functionalities analysis in InnerSightNet
	More details of section 4.4
	Limitations

