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ABSTRACT

While great success has been achieved in building generalizable language mod-
els, three fundamental issues hinder GNN-based graph foundation models: the
scarcity of labeled data, different levels of downstream tasks, and the conceptual
gaps between domains. In depth, though the labels of real graphs are associated
with semantic information, most graph learning frameworks ignore it by turning
semantic labels into numerical labels. In this work, to address these issues, we
present a new paradigm that leverages the text modality to align downstream tasks
and data with any pre-trained GNN given only a few semantically labeled samples.
Our paradigm embeds the graphs directly in the same space as the LLM by learning
both graph prompts and text prompts simultaneously. To accomplish this, we
improve state-of-the-art graph prompt method based on our theoretical findings.
Then, we propose the first multi-modal prompt learning approach for exploiting
the knowledge in pre-trained models. Notably, in our paradigm, the pre-trained
GNN and the LLM are kept frozen, so the number of learnable parameters is much
smaller than fine-tuning any pre-trained model. Through extensive experiments on
real-world datasets, we demonstrate the superior performance of our paradigm in
few-shot, multi-task-level, and cross-domain settings. Moreover, we build the first
zero-shot classification prototype that can generalize GNNs to unseen classes. The
code is provided in the supplementary materials.

1 INTRODUCTION

Foundation Models [4] learn generalizable representations from large-scale data and can be adapted
to a wide range of downstream tasks. Although foundation models have shown remarkable capability
and been thriving in NLP [14, 7, 112, 80], computer vision [2, 15, 65, 66, 44, 84], and time-series
analysis [83, 110, 49], graph-related foundation models still remain in a very nascent stage. This is
due to the significant difference of non-euclidean graph data from other data types. First, compared
with language or vision data, graph data is very scarce [50, 10, 59] for foundation models. Second,
the task space of graph data could be on node-level [86], edge-level [71], and graph-level [67]. Third,
in general, language tokens and visual objects retain the same conceptual meaning across different
distributions, but the same graph structure may have distinct interpretations in different domains,
depending on how graphs were constructed from real scenarios. Thus, even if we have a pre-trained
model, adapting it to various downstream tasks is not trivial.

Recently, some works [98, 8, 3, 82] reformulate the graphs into natural language descriptions and
the graph tasks into natural language prompts, then query LLMs to generate the answer. However,
since the LLMs are not directly trained from structured graph data [52], it is uncertain how LLMs
could correctly solve those tasks without hallucinating [1, 31, 95, 105]. Nevertheless, graph neural
networks (GNNs) are well-studied architectures for learning graph data [90, 17, 106], with theoret-
ically provable expressiveness [94, 69, 61], better interpretability [13, 34, 74] and experimentally
outstanding performance [89, 40]. Therefore, GNNs are expected to leverage their inherent advances
for structure learning and inference on graphs in the era of big data and foundation models.

However, though tremendous efforts have been devoted to pre-train GNNs through self-supervision
[92, 29, 54], a key problem in building a GNN-backboned graph foundation model is that GNNs do
not capture semantics, given that current GNNs are optimized according to numerical labels. In other
words, GNNs do not really understand what a label represents in the real world, even though the
graphs are constructed from real scenarios. To solve the issue of predetermined numerical categories,
CLIP [65] leverages natural language supervision by jointly training an image encoder and a text
encoder in the same embedding space to predict the correct image-text pairs at scale. The excellent
generalization ability of pre-trained V-L models [65, 33, 47] comes from the alignment between
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the vision and language representations. Notably, some works have explored prompt learning for
better alignment and obtained improvement in vision prediction [114, 41]. The idea of alignment
with text modality has also been applied in video [93, 6], 3D images [103, 25, 26], speech [70] and
audio [23, 85] areas. As for graphs, so far such CLIP pipelines have only be applied in the molecular
domain [58, 56, 72, 51], where the paired graph-text data are relatively sufficient for pre-training
to align representations. But for other domains, such text-labeled graph data are rarely available,
which means we have to rely more on self-supervised GNN pre-training to build graph foundation
models. With this assumption, it is necessary to study how to make the pre-trained GNN aware of the
semantics of downstream graph representations, which motivates the following question:

How to adapt pre-trained GNNs to the semantic embedding space given limited downstream data?

This paper aims to answer this question based on the following observations: (1) Semantic text
embedding spaces do not necessarily result from joint pre-training. In fact, the embedding spaces of
encoder LLMs are inherently semantic and high-quality, as LLMs are trained on massive text data
and demonstrate strong reasoning performance. (2) When the downstream data are limited, prompt
learning [48, 28, 102, 45] provides a better option than fine-tuning as much fewer parameters not only
makes the optimization more efficient but also requires less resource than computing the gradient
of a large model. Inspired by these two observations, we propose a prompting-based paradigm
with an LLM that, while keeping the parameters of both GNN and LLM frozen, aligns the GNN
representations in the LLM’s semantic embedding space.

Notably, when attempting to adapt the representation from one modality to another, solely prompting
a single modality could be sub-optimal, as it limits the adjustment to downstream tasks in the other
modality [41]. To this end, we propose Multi-modal Prompt Learning for Graph Neural Networks
(Morpher). Given a pre-trained GNN and few-shot semantically labeled graph data, we introduce a
pre-trained LLM. Then, to leverage its high-quality semantic embedding space, Morpher connects and
aligns the graph embeddings to it through prompting on both modalities with a cross-modal projector.
Nonetheless, designing such a paradigm is more challenging than vision-language models. First, we
lack jointly pre-trained encoders for the two modalities; instead, we only have two encoders whose
embedding dimension is possibly different, pre-trained independently in each modality. Second,
determining how to prompt the graph modality is non-trivial and remains a trending research topic.
Third, the downstream data for GNN usually have much fewer labeled classes than V-L models, so in
the few-shot setting, the available downstream data is extremely limited. Our contributions towards
tackling these challenges are summarized as follows:

• Theoretically, we analyze that, in many cases, state-of-the-art graph prompt [76] is unable to learn
good representations of the downstream data. We show that the optimization of the graph prompt
is restricted by design. From the theoretical findings, we further improve state-of-the-art graph
prompt according to the attention mechanism to prevent failure in optimization.

• To connect and adapt the pre-trained GNN with LLM, we propose Morpher, a graph-text multi-
modal prompt learning paradigm. To the best of our knowledge, this is the first approach to align
the representations of GNN and LLM without fine-tuning any of their parameters.

• Experimentally, we demonstrate the effectiveness of our improved graph prompt and Morpher on
real-world datasets under few-shot, multi-task, and cross-domain settings.

2 BACKGROUND

We use calligraphic letters (e.g., A) for sets, and specifically G for graphs. We use bold capital letters
for matrices (e.g., A). For matrix indices, we use A(i, j) to denote the entry in the ith row and the
jth column. Additionally, A(i, :) returns the ith row in A.

Graph Neural Networks. We use G = (A,X) to denote a graph with node set V and edge set E ,
where A ∈ R|V|×|V| is the adjacency matrix and X ∈ R|V|×d is the node feature matrix. A(u, v) = 1
if there is an edge connecting u and v; otherwise A(u, v) = 0. A Graph Neural Network fgϕ(·) with
hidden dimension dg encodes G into the embedding space: fgϕ(G) ∈ R|V|×dg , which could preserve
both feature and structure information of G. The extracted embeddings fgϕ(G) can be used for various
downstream tasks such as classification. Nowadays, a popular paradigm to train GNNs is to first
pre-train GNNs via self-supervised learning [29] and then fine-tune on the downstream tasks.
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Few-shot Prompt Learning. Prompt learning adds learnable tokens to the downstream data and
provides a powerful alternative to fine-tuning when the labeled downstream data is scarce. Prompt
learning for encoders was first used in NLP. Let f tϕ(·) denote the LLM encoder with embedding
dimension dt. For a series of input tokens {xk}Kk=1, the LLM encoder embeds it as a matrix
Xt = f tϕ({xk}Kk=1) ∈ RK×dt , then aggregates the representation to a vector aggre(Xt) ∈ R1×dt

for downstream tasks. Prompt learning initializes a tunable matrix Pt
θ ∈ Rnt×dt , where nt denotes

the number of text prompt tokens. Then, this tunable matrix is concatenated with the input tokens’
embeddings to form a single matrix [Pt

θ;Xt]dim=0 ∈ R(K+nt)×dt , and the aggregated vector for
downstream tasks becomes aggre([Pt

θ;Xt]dim=0). In practice, we can train the model to minimize
the loss function for downstream tasks, with only the prompt parameters Pt

θ being updated.

Now we are ready to introduce the problem setup for this work. Given a pre-trained GNN fgϕ(·)
with embedding dimension dg and a pre-train LLM encoder f tϕ(·) with embedding dimension dt.
Without loss of generality, we assume the downstream task is graph-level classification, as we will
show that the other types of GNN tasks can be reformulated as graph classification. For L-shot graph
classification, we are given limited text-labeled pairs {(Gi, tc)}Li=1 for each class c. Assuming T is
the set of all text labels tc, we are provided a set of test graphs {Gj}Ltest

j=1 . Using the pre-trained GNN
and LLM, we want to correctly predict the text label tj ∈ T for each test graph Gj .

3 REVISITING AND IMPROVING PROMPT AS GRAPHS

Unlike prompting text data (which can be easily achieved by appending learnable text tokens to
the original text sequence) and prompting image data (which pads a learnable image area above
the original image), prompting graph data presents a significant challenge due to the non-euclidean
nature of graphs. The recent pioneering work [76] designs the graph prompt still as a graph, then
inserts it into the original graph by computing the inner-connections within the prompt graph and
the cross-connections between the prompt graph and the original graph. An advantage of prompting
at the graph level is that the downstream tasks of GNN can be reformulated into graph-level tasks.
For the node classification task, we can induce the γ-ego-graph of each node by extracting the
subgraph within a pre-defined distance γ. Then, we treat the node label as the induced ego-graph
label. Similarly, for the edge classification task, we can extract a subgraph for each edge by extending
the node pair to their γ distance neighborhood, and use the edge label as the induced graph label. By
inducing subgraphs, we can reformulate node-level and edge-level downstream tasks to graph-level.

Current Graph Prompt Design. To prompt a graph G, each prompt token is a new node. Let ng
denote the number of prompt tokens and P = {pi}

ng

i=1 denote the set of prompt tokens. The graph
prompt is formulated by a tunable matrix Pg

θ ∈ Rng×d, where d is the node feature dimension of
graph G. In other words, each row vector Pg

θ(i, :) is the feature of the prompt token pi. Then, the
mechanism to prompt a graph G = (A,X) with n nodes and d feature dimension is as follows [76].

• Compute inner-connections to construct the prompt graph Gp = (Ap,Xp). For the feature matrix,
we directly set Xp = Pg

θ . For two prompt tokens pi and pj , the prompt graph will have an edge
between them if and only if the dot product of their features is larger than a threshold. In other
words, Ap(i, j) = 1 ⇐⇒ σ(Pg

θ(i, :)P
g
θ(j, :)

⊤) > δinner, where σ(·) is the sigmoid function.
• Compute cross-connections to insert the prompt graph Gp into the original input graph G. Similarly,

for xi ∈ G and pj ∈ Gp, there is an edge between them if and only if σ(X(i, :)Pg
θ(j, :)

⊤) > δcross.
• Construct the prompted graph (i.e., manipulated graph) Gm = (Am,Xm).The overall adjacency

matrix Am ∈ R(n+ng)×(n+ng) is constructed from the original adjacency matrix A, the inner
edges Ap and the cross edges. The overall node feature matrix is concatenated from the prompt
token features and the original input node features: Xm = [Pg

θ ;X]dim=0 ∈ R(n+ng)×d.

Here, we identify an issue associated with the current design. Since not all the GNN backbones
can take edge weights [21], the cross-connections in a manipulated graph are discrete1, thresholded
by δcross. However, the input node features of most real-world datasets are sparse, resulting from
the construction process [97, 60, 18]. As shown in Table 6, ||X(i, :)||1 is typically 1. As the
initialization of each token feature Pg

θ(i, :) is close to 0⃗ , for any node i and token pj , the dot products

1In official implementation of [76], adjacency matrices are discrete: either 0 or 1 for each entry.
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Figure 1: Illustration of connections in current problematic graph prompt design (left), transformer architecture
(middle), and our improved graph prompt design (right). The cross-connections between input and prompt
should be consistent with the input connections in scale.

X(i, :)Pg
θ(j, :)

⊤ is close to 0 , and the sigmoid value is very close to 0.5. As a result, if we want
the graph prompt to work reasonably, we have to set δcross < 0.5. However, in this case, the cross-
connections will be dense, i.e., almost every node in the original graph is connected with every node
token in the prompt graph. For two different graphs G1 and G2 in the same task, the prompt graph Gp

is identical. Since the GNNs work by aggregating the node features, their embeddings fgϕ(G1) and
fgϕ(G2) are approximately the same because the features in the prompt graph overwhelm the features
in the original graphs due to the dense cross-connections. Then, according to the following lemma,
even if G1 and G2 have different labels, the task head classifier cannot be trained to distinguish them2.
Lemma 3.1. For any classifier c(·), if the identical feature x has label distribution p(·), then the
optimal classification for cross-entropy loss is Pr(c(x) = y) = p(y). From this, if two graphs have
similar embedding but different labels, GNN training may not converge. (Proof in Appendix A)

Improved Graph Prompt Design. The issue of the current graph prompt is rooted in the imbalance
of original connections in the input graph and cross-connections between input and prompt, as shown
in Figure 1 (left). Since the text prompt works well in NLP, we look into the standard transformer
architecture [81], where the token features are aggregated through the attention mechanism:

H̃ = Attnθa
(H) := H+

1

N

M∑
m=1

(VmH)× σ
(
(QmH)⊤(KmH)

)
∈ RD×N (1)

where H ∈ RD×N is the input sequence and θa = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D denotes the
parameters with M heads. N is number of tokens and D is embedding dimension. We also visualize
such attention mechanism in Figure 1 (middle). After we prepend a sequence of text prompt tokens
{pti}, the features of the text prompt tokens will be densely aggregated to the features of the original
text tokens. In other words, the “cross-connection” between the text prompt sequence and the input
sequence is dense. However, such a dense connection does not cause the prompt feature to overwhelm
the input, because the features in the input sequence are also aggregated in a dense manner. Inspired
by this, the number of cross-attention between input and prompt should approximate the number of
input connections. Since the connection of a graph dataset is often sparse, we should also constrain
the cross-connections between the prompt graph and the input graph to be sparse as well.

Nonetheless, “sparse” is a wide concept to implement: if the cross-connections are too dense, the
prompt graph will dominate the input graph; but if the cross-attention is too sparse, the prompt
graph will be limited to manipulating the input graph. We deem that a balance could be achieved
by approximately equalizing the number of cross-connections with that of connections in the input
graph, i.e., ne. Therefore, we set the number of cross-connections to at most ne by connecting each
node in the input graph with at most

⌊
ne

a

⌋
prompt tokens. Then, we can safely use a small δcross and

cosine similarity X(i,:)·Pg
θ(j,:)

⊤

∥X(i,:)∥2∥Pg
θ(j,:)∥2

instead of σ(X(i, :)Pg
θ(j, :)

⊤) to calculate the cross-connections.
We demonstrate that our improved graph prompt works better in the later experiments.

4 MULTI-MODAL PROMPT LEARNING FOR GNNS

To adapt the GNN embeddings to the LLM’s semantic embedding space and leverage the additional
supervision provided by the text associated with graph labels, we explore the potential of multi-modal

2In fact, when executing the official implementation of [76] on Cora, the training loss does not decrease.
Similar problems have been observed by another work [108].
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Figure 2: Similar to CLIP backbone, Morpher adapts the graph representations to semantic space through
multi-modal prompt learning, even if the GNN and LLM are not jointly trained and are kept frozen.

prompt learning for both graphs and language. This approach is motivated by the intuition that only
prompting on the graph data may limit the flexibility to adjust the LLM representation space. The
overall paradigm of Morpher is illustrated in Figure 2. Given the data {(Gi, ti)}L×C

i=1 , we aim to align
graph embedding readout(fgϕ(Gi)) with readout(f tϕ(Tokenize(ti))). Yet one direct issue is that,
readout(fgϕ(Gi)) ∈ R1×dg and readout(f tϕ(Tokenize(ti))) ∈ R1×dt may have distinct dimensions.
To address this issue, we adopt a cross-modal projector that learns to map the graph embedding
space to the text embedding space. For an input dg-dimensional vector h, the projector maps it to a
dt-dimensional vector h̃:

h̃ = Projθ(h) := tanh(Wh+ b) ∈ R1×dt (2)

As discussed in Sections 2 and 3, we introduce the text prompt Pt
θ ∈ Rnt×dt with nt text prompt

tokens and the graph prompt Pg
θ ∈ Rng×d with ng graph prompt tokens. Let ψg(·,Pg

θ) be the graph
prompting function, e.g., given any graph G, the manipulated graph Gm = ψg(G,Pg

θ).

Let ωt(·,Pt
θ) be the prompted text embedding given input text t. For the text prompt methods we

choose, the prompted embedding is

ωt(t,P
t
θ) = [Pt

θ; f
t
ϕ(Tokenize(t))]dim=0 ∈ R(len(Tokenize(t))+nt)×dt (3)

Let ωg(·,Pg
θ) be the prompted graph embedding given input graph G, then we have:

ωg(G,Pg
θ) = fgϕ(Gm) = fgϕ(ψg(G,Pg

θ)) ∈ R(n+ng)×dg (4)

For the whole prompted text and the whole prompted graph, we apply readout (e.g., mean-pooling,
max-pooling, etc.) to get their embedding:

et = readout(ωt(t,P
t
θ)) ∈ R1×dt , eG = readout(ωg(G,Pg

θ)) ∈ R1×dg (5)

For the given data {(Gi, ti)}Li=1, we compute the normalized embedding of prompted Gi and project
it to the text embedding space through the projector:

zGnorm
i =

eGi
||eGi ||2

=
readout(ωg(Gi,P

g
θ))

||readout(ωg(Gi,P
g
θ))||2

, zGi = Projθ(z
Gnorm
i ) (6)

For the text embeddings, since for limited data the set T = {ti}Ci=1 may contain texts that are
semantically close as discussed in Appendix B.2, we extract a subspace in the text embedding space
by normalizing the embedding as follows. We further normalize the text embeddings to the unit
sphere, as standard practice in NLP.

µt =
1

L

L∑
i=1

readout(ωt(ti,P
t
θ)), etnorm,i = readout(ωt(ti,P

t
θ))− µt (7)

zti =
etnorm,i

||etnorm,i||2
=

readout(ωt(ti,P
t
θ))− µt

||readout(ωt(ti,Pt
θ))− µt||2

(8)

Finally, we use the in-batch similarity-based contrastive loss to train text prompts, graph prompts,
and the projector as shown below, to adapt the pre-trained GNN representations to LLM.

LG→T = − 1

B

B∑
i=1

log
exp(zGi · zti/τ)∑B
j=1 exp(z

G
i · ztj/τ)

(9)
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Table 1: Few-shot graph classification performance (%). IMP (%): the average improvement (absolute
value) compared to the best result among all the baseline methods.

Training
schemes GNN pretraining

MUTAG ENZYMES PROTEINS MSRC_21C
Acc F1 Acc F1 Acc F1 Acc F1

Supervised
N/A + GCN 66.00 66.67 16.67 8.68 65.89 60.77 38.85 35.32
N/A + GAT 66.00 65.69 16.45 4.65 64.75 64.08 41.14 39.86
N/A + GT 66.66 66.26 15.62 4.22 62.81 57.12 38.28 41.62

Pre-train
+

Fine-tune

GraphCL+GCN 70.00 70.23 17.91 11.82 65.89 61.23 40.00 43.89
GraphCL+GAT 70.00 69.73 17.91 10.46 65.16 63.92 44.57 45.74
GraphCL+GT 68.00 67.81 17.70 8.99 63.28 56.41 41.71 43.73

SimGRACE+GCN 66.67 67.27 17.29 8.78 66.82 64.70 40.57 43.84
SimGRACE+GAT 70.67 69.10 16.87 7.18 65.42 63.65 42.85 42.37
SimGRACE+GT 69.33 69.77 16.24 6.08 65.98 62.31 39.42 40.78

AIO
[76]

GraphCL+GCN 64.67 39.27 17.50 4.97 61.35 44.93 3.59 10.09
GraphCL+GAT 64.67 39.27 17.50 4.97 59.21 37.19 14.37 3.11
GraphCL+GT 73.33 72.06 18.33 9.09 40.79 28.97 17.96 8.30

SimGRACE+GCN 64.67 39.27 16.04 4.61 67.42 60.87 34.73 18.16
SimGRACE+GAT 64.67 39.27 16.04 4.61 59.21 37.19 7.78 1.79
SimGRACE+GT 36.00 27.26 17.50 8.15 50.56 49.34 32.34 15.13

GPF-plus
[19]

GraphCL+GCN 68.67 67.27 16.88 15.48 64.75 61.45 47.42 29.02
GraphCL+GAT 68.67 62.84 16.45 13.23 65.89 60.07 47.42 26.28
GraphCL+GT 69.33 67.87 18.12 15.56 59.66 37.37 41.71 21.35

SimGRACE+GCN 65.33 39.52 18.96 15.83 65.16 58.80 45.71 23.32
SimGRACE+GAT 69.33 66.72 18.54 12.58 63.28 53.50 42.85 21.40
SimGRACE+GT 70.00 67.31 17.91 14.69 64.83 52.97 34.13 20.13

Gprompt
[55]

GraphCL+GCN 73.33 66.93 17.91 8.44 61.01 60.01 1.80 0.21
GraphCL+GAT 64.67 62.63 17.08 14.18 50.56 50.55 1.80 0.22
GraphCL+GT 70.67 70.02 17.91 9.64 63.28 58.65 1.80 0.21

SimGRACE+GCN 65.33 39.52 17.29 14.48 52.70 52.68 1.80 0.21
SimGRACE+GAT 67.33 65.88 16.25 11.31 59.10 58.72 1.80 0.21
SimGRACE+GT 73.33 67.84 16.87 13.54 64.75 62.37 1.80 0.223

Improved
AIO (Ours)

GraphCL+GCN 77.33 77.74 18.13 11.98 65.89 65.97 42.85 45.91
GraphCL+GAT 74.67 75.51 18.33 11.26 65.76 66.05 46.85 51.39
GraphCL+GT 74.67 74.67 19.16 9.04 68.12 68.18 42.85 43.54

SimGRACE+GCN 68.00 69.01 17.91 9.02 66.82 66.40 44.57 49.24
SimGRACE+GAT 77.33 77.20 18.75 9.39 66.91 65.49 45.14 42.31
SimGRACE+GT 71.33 72.06 18.95 11.25 68.59 68.84 40.57 42.82

Morpher
(Ours)

GraphCL+GCN 78.67 78.09 20.41 15.20 67.47 66.40 45.14 49.62
GraphCL+GAT 79.33 79.15 23.12 18.01 70.89 70.30 50.85 54.48
GraphCL+GT 76.00 76.51 19.58 13.28 73.53 72.48 45.71 48.41

SimGRACE+GCN 69.33 70.27 19.79 14.94 67.10 66.15 45.71 51.24
SimGRACE+GAT 78.00 77.65 20.21 16.27 68.12 67.26 45.71 51.13
SimGRACE+GT 74.00 74.84 19.16 14.29 71.76 71.75 44.00 48.16

IMP of ImprovedAIO 2.00 ↑ 5.01 ↑ 0.52 ↑ 4.41 ↓ 2.01 ↑ 4.37 ↑ 0.28 ↓ 2.50 ↑

IMP of Morpher 4.00 ↑ 6.73 ↑ 2.36 ↑ 0.60 ↑ 4.81 ↑ 6.61 ↑ 2.66 ↑ 7.14 ↑

5 EXPERIMENTS

We evaluate our Morpher and the improved graph prompt through extensive experiments. In particular,
we show that, compared to state-of-the-art baseline methods, they both more effectively adapt pre-
trained GNNs to the specific downstream classification task, and introducing the text modality brings
Morpher additional advantages over others. We use RoBERTa [53] as the LLM encoder for Morpher
in the main experiments. We also validate the performance of Morpher with ELECTRA [12] and
DistilBERT [68] in section 5.6 and Appendix C.3.

Datasets. We use real-world graph datasets from PyTorch Geometric [21], including one molecular
dataset MUTAG [60]; two bioinformatic datasets ENZYMES and PROTEINS [5]; one computer
vision dataset MSRC_21C [63]; three citation network datasets Cora, CiteSeer and PubMed [97]. We
use real-world class names as text labels. More details are summarized in Appendix B.
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Pre-trained algorithms and GNN backbones. To pretrain GNNs for evaluation, we adopt GraphCL
[99] and SimGRACE [91] to pre-train three widely used GNN backbones: GCN [43], GAT [100]
and GraphTransformer (GT) [42]. Additionally, in Appendix C.4, we verify the effectiveness of our
methods on GNNs pre-trained using GraphMAE [27] and MVGRL [24], two other representative
GNN self-supervised learning algorithms. For each dataset, to pre-train GNNs, we leverage self-
supervised learning methods on all the graphs without any label information.

Baselines and metrics. We compare our methods with the following baselines: (1) training a GNN
from scratch supervised by few-shot data (“supervised”); (2) fine-tuning a task head together with
pre-trained GNN (“fine-tune”). We allow GNNs to be tunable for “supervised” and “fine-tune”;
(3) state-of-the-art graph prompting algorithms: All-in-one (“AIO”) [76], which is the only graph
prompting algorithm that supports multiple tasks in node-level, edge-level and graph-level to the best
of our knowledge; GPF-plus [19] which prompt on graph features and Gprompt [55] which is based
on subgraph similarity. We use accuracy and weighted F1 as classification performance metrics.

5.1 FEW-SHOT LEARNING

We investigate the ability of our improved graph prompt (“ImprovedAIO”) and Multimodal prompt
(“Morpher”) to adapt frozen pre-trained GNNs using few-shot data. We focus on graph-level
classification here and will further investigate the few-shot learning ability at other task levels in
Section 5.2. Our few-shot learning setting is more challenging than existing works [76, 75] as we only
allow no more than 10 labeled training and validation samples for each class. The results are shown
in Table 1, where we report the average performance of 5 runs and calculate the absolute average
improvement of our methods. From the results, given the same pre-trained GNN, our ImprovedAIO
outperforms all the existing baseline methods except for ENZYMES F1 and MSRC_21C accuracy.
Yet the performance of our ImprovedAIO on ENZYMES F1 and MSRC_21C accuracy is clearly
better than those of the original AIO. Our Morpher can achieve an absolute accuracy improvement
of 0.60% to 7.14% over the baselines across all datasets. Supervised by very limited labeled data,
training a GNN from scratch is sub-optimal. Passing a GNN pre-trained on the dataset and fine-
tuning it with a task head achieves sub-optimal but better results as the pre-trained GNN learns
generalizable representations over the dataset through self-supervised learning. To mitigate the gap
between the pre-training task and downstream tasks, AIO [76] proposes to learn graph prompts for
downstream data. However, as we discussed in Section 3, when the node features are sparse vectors,
the optimization would fail. Using the official implementation of AIO, we observe that the loss value
tends to fluctuate, and the performance of AIO is usually even worse than supervised training. By
restricting the cross-connections, our ImprovedAIO becomes more stable and constantly outperforms
the fine-tuning baseline. Compared to the aforementioned methods, Morpher demonstrated superior
performance due to its capability to adapt both graph and language representation spaces dynamically.

5.2 MORPHER SUPPORTS MULTIPLE-LEVEL TASKS

Table 2: Node-level, edge-level performance.

Dataset Cora CiteSeer

Tasks Methods Acc F1 Acc F1

Node
Level

Supervised 52.83 47.73 63.91 64.82
Fine-tune 56.37 55.04 64.87 66.42
AIO [76] 14.69 7.10 18.93 6.92

ImprovedAIO 58.46 55.10 66.44 66.53
Morpher 61.26 62.36 68.20 68.56

Edge
Level

Supervised 51.78 50.62 52.14 50.81
Fine-tune 52.50 51.00 52.50 51.12
AIO [76] 50.00 33.33 50.00 33.33

ImprovedAIO 54.64 54.57 53.92 53.55
Morpher 55.71 55.05 55.35 55.05

Inherited from AIO, our ImprovedAIO and Morpher
also support adaptation to downstream tasks at node-
level and edge-level, because they can be reformu-
lated into graph-level tasks as discussed in Section
3. We demonstrate the performance of node classifi-
cation and link prediction on Cora and CiteSeer. For
node classification, we reformulate it to graph classifi-
cation by inducing an ego-graph with 10 to 30 nodes
centered at the node to classify. Each ego-graph has
the same label as the center node. For edge classifica-
tion, we randomly sample 200 edges from the graph,
then create 200 negative samples by replacing one
node in each edge. We label each graph according to
whether it is a positive or negative sample.

We use GraphCL+GCN to pre-train the GNN and report the mean performance in Table 2. The results
are consistent with graph-level performance, where ImprovedAIO and Morpher outperform existing
methods, with Morpher achieving slightly better performance than ImprovedAIO. Additionally, the
training of the original AIO fails on both datasets due to the sparse node feature vectors.

5.3 DOMAIN TRANSFER
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Figure 3: Results of novel class generalization (left); t-SNE embedding plots on CiteSeer, MSRC_21C (right).
Train accuracy with train classes only is the accuracy of predicting the training graphs from the two training
classes. Train accuracy with new test classes is the accuracy of predicting the training graphs from all three
classes. Test Accuracy of zero-shot class is the accuracy of predicting the testing graphs from all three classes.

Table 3: Domain Transfer Performance.

Target Domain MUTAG PubMed

Target Task graph-level node-level

Source Methods Acc F1 Acc F1

ENZYMES
(graph-level)

Fine-tune 68.00 55.04 47.57 36.07
ImprovedAIO 70.67 64.07 50.28 50.51

Morpher 72.67 73.29 54.42 53.96

CiteSeer
(node-level)

Fine-tune 71.33 62.19 48.71 40.66
ImprovedAIO 74.00 73.76 52.57 51.29

Morpher 76.67 77.04 58.29 57.54

A key problem of the graph foundation model is whether
we can adapt the pre-trained models to other data do-
mains. Here, we explore the potential of using Morpher
for such adaptation. We pre-train GNNs on ENZYMES
or CiteSeer datasets, then test the classification perfor-
mance on MUTAG and PubMed and report the results in
Table 3. We unify the pre-train feature dimension with
the downstream feature dimension by padding zeros or
SVD reduction. From the results, Morpher demonstrates
the best transferability, followed by ImprovedAIO. Also,
compared to the results on MUTAG in Table 1, all three methods have worse performances, because
the GNNs are pre-trained on other datasets instead of MUTAG.

5.4 ZERO-SHOT CLASSIFICATION PROTOTYPE

An advantage of adapting pre-trained GNNs to the semantic embedding space is that GNNs might
be empowered to “reasoning”. Here, we conduct a novel experiment that generalizes GNN to an
unseen class. Since no real-world data is available for this setting, we synthetically create three
datasets, ZERO-Cora, ZERO-CiteSeer, and ZERO-PubMed, all from real-world connections. We
aim to simulate a citation network with two research areas and an interdisciplinary research area
in between. For each citation network, we randomly sample 120 nodes and induce their 2-hop
ego-graphs, then replace the node features in 10 ego-graphs with [1, 0] and another 10 ego-graphs
with [0, 1] to construct 20 training graph samples. For the remaining ego-graphs, we uniformly
randomly replace the node features with [1, 0] and [0, 1] to construct 100 testing graph samples. We
assign text labels of the first research area (e.g., “biology”) to the [1, 0] training graphs, the second
research area (e.g., “informatics”) to the [0, 1] training graphs, and the interdisciplinary area (e.g.,
“bioinformatics”) to the testing graphs. Intuitively, the nodes with feature [1, 0] are papers in the first
area, and other nodes with feature [0, 1] are in the second area, which makes the datasets rational.

For each dataset, using GraphCL+GCN, we pre-train GNNs on all graphs. Then, we train Morpher
on the training graphs, only knowing the text labels of the two training classes. Since we do not
have validation data in zero-shot learning, we report the results of each epoch in Figure 3 (left). We
observe that, while Morpher quickly adapts the GNN to downstream training data, the CLIP-like
framework can predict the graphs in the novel class with good accuracy (red curve). Moreover, the
training samples can be classified correctly from training and novel classes. Before the training
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Figure 4: Efficiency comparison (left), parameter study (middle) and ablation study (right).

overfits, there is a period when Morpher can distinguish all the graphs from the training and novel
classes with high accuracy.

Such zero-shot novel-class generalization ability validates Morpher’s alignment between graph
embeddings and text embeddings. When Morpher is trained on two classes of graphs with text
labels of biology and informatics, a graph-in-the-middle will be classified as text-in-the-middle:
bioinformatics, even if “bioinformatics” is an unseen label. The correspondence of in-the-middle
graphs and texts shows the benefit and novelty of Morpher. To the best of our knowledge, this is the
first zero-shot classification prototype that generalizes GNN to unseen classes.

5.5 EFFICIENCY AND EMBEDDING ANALYSIS

Without fine-tuning the GNN or LLM, the prompt-based methods have better parameter efficiency. As
shown in Figure 4 (left), our ImprovedAIO and Morpher require similar numbers of parameters with
AIO [76], which is 0.032% to 0.46% compared to either tune the LLM (RoBERTa) or GNN (GCN).
Due to such parameter efficiency, our methods learn better graph representations given few-shot
data. We visualize the graph embeddings of CiteSeer and MSRC_21C in Figure 3 and calculate the
silhouette score, a metric for cluster quality (↑) ranged in [−1, 1]. It turns out that our multimodal
prompting leads to better adaptation.

5.6 HYPERPARAMETER AND ABLATION STUDY

We conduct the hyperparameter study by choosing and testing various numbers of graph prompt tokens
for both ImprovedAIO and Morpher. The results are shown in Figure 4 (middle), from which we can
observe that both methods are generally stable, and Morpher constantly outperforms ImprovedAIO
under different choices. To verify the necessity of each component in our design, we compare
Morpher and ImprovedAIO with multiple variants, respectively, and report the result in Figure 4
(right). We observe that removing any component would result in a performance drop. Additionally,
our comparison of Morpher with ImprovedAIO throughout the experiments demonstrates that our
multimodal design would lead to improvement over the uni-modal prompting of GNNs.

Table 4: Effectiveness (F1 score) of Morpher
with ELECTRA [12] as the text encoder.

GNN pretraining MUTAG ENZYMES PROTEINS MSRC_21C

GraphCL + GCN 78.17 15.79 65.66 47.19
GraphCL + GAT 75.75 11.37 65.66 49.01
GraphCL + GT 77.04 14.68 72.70 44.09

SimGRACE + GCN 70.99 12.41 67.77 48.44
SimGRACE + GAT 77.51 13.31 67.78 49.43
SimGRACE + GT 73.55 15.76 70.28 44.50

In the main experiments, we use RoBERTa as Mor-
pher’s text encoder. We also conduct experiments
to verify the effectiveness of our proposed Mor-
pher with ELECTRA [12] and DistilBERT [68] as
the text encoder. Due to space limitation, we only
show the F1 score of using ELECTRA in Figure 5,
and more detailed experiment data can be found in
Appendix C.3. In general, using ELECTRA and
DistilBERT results in similar performance com-
pared to using RoBERTa, showing the robustness of Morpher with respect to the language encoder.

As for the robustness with respect to the pre-trained GNNs, in the main experiments, we adopt two
pre-train methods, GraphCL and SimGRACE to pre-train three different GNN architectures: GCN,
GAT and GT. We further conduct experiments using GNNs pre-trained from GraphMAE [27] and
MVGRL [24]. Due to the space limitation, we report the results and discuss in Appendix C.4.

5.7 MORPHER ON MOLECURENET

In this section, we demonstrate that, though not specifically designed for any downstream applications,
the Morpher framework has the potential to be used in various downstream tasks, such as AI4Science
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tasks. As for a case study, We use bace (inhibitors of human beta-secretase), tox21 (toxicology in
the 21st century) and hiv (inhibit HIV replication) from MolecureNet [88]. These three datasets
have 1513, 7831, and 41127 graphs to classify, respectively. In these datasets, each graph label is
associated with a text description. The tasks on bace and hiv are bio-activity prediction and the task
on tox21 is toxicity prediction. To adopt Morpher, we use GraphCL to pre-train the GAT model and
initialize the text prompts and text labels using those from GIMLET [107].

Table 5: AUC-ROC (↑) on MolecureNet (bace, tox21, hiv). Morpher-K denotes K shots.

Dataset KVPLM MoMu Galactica-1.3B GIMLET-64M-50-shots GAT-1M-supervised Morpher-10 Morpher-20 Morpher-50

bace 0.5126 0.6656 0.5648 0.729 0.697 0.6231 0.6513 0.6858
tox21 0.4917 0.5757 0.4946 0.652 0.754 0.6769 0.7275 0.7459

hiv 0.6120 0.5026 0.3385 0.721 0.729 0.5742 0.7034 0.7283

KVPLM [101], MoMu [72], Galactica-1.3B [79] are zero-shot predictors for the three tasks; GIMLET-
64M-50-shots is the GIMLET [107] model fine-tuned on 50 additional training samples3; GAT-1M-
fully-supervised uses all the training data to train a GAT. Our Morpher-k-shots uses only k training
samples. From the results, first, using only 10 training samples, Morpher can outperform the zero-shot
baselines KVPLM, MoMu, and Galactica-1.3B. Second, using only 50 shots, Morpher can achieve
similar performance with the fully supervised GAT. Third, using the same amount of few-shot data
(50 shots), Morpher-50 outperforms GIMLET-64M-50-shots on tox21 and hiv, the two largest datasets
among the three. This means our graph-text multi-modal prompt learning, with much fewer learnable
parameters (∼ 50K), is more sample-efficient than fine-tuning language model encoder.

6 RELATED WORK

GNN Pre-training. Recently, a surge of graph pre-training strategies have emerged to address the
issue of label scarcity in graph representation learning [29, 57, 75, 46, 39, 113]. The main idea of pre-
trained graph models is to capture general graph information across different tasks and transfer this
knowledge to the target task using techniques such as contrastive predictive coding [42, 20, 64, 91],
context prediction [62, 30], prompt tuning [75, 19], and mutual information maximization [62, 73, 35].
For instance, [29] proposes to learn transferable structural information from three levels of graph
topology, including node-level, subgraph-level, and graph-level. Different from these approaches, this
paper aims to build up foundational GNNs by leveraging multi-modal prompt learning techniques.

Graph Prompt Learning. Prompting is now mainstream for adapting NLP tasks, and recent studies
exploring prompt learning for GNNs mark a thriving research area [77, 87]. It is a promising way to
adapt GNNs to downstream tasks through token-level [19, 78, 9, 75, 116] or graph-level [76, 32, 22]
prompting. Among all the existing methods, All-in-one (AIO) [76] is the only algorithm to learn
tunable graph prompts for node-level, edge-level or graph-level downstream tasks given few-shot
labeled data (Table 8). Based on our improved AIO, we present a pioneer study to explore learning
prompts in multiple modalities simultaneously while keeping the pre-trained models frozen.

LLM on Graphs. Inspired by the advances of large language models in NLP [111], researchers have
begun to explore their potential for graph-related tasks [36]. Current approaches can be divided into
two main categories. The first category employs LLMs as pre-trained feature extractors to enhance
GNNs [16, 11, 115]. For example, GLEM [109] proposes to input the language representation as
initial features for the GNN and train them iteratively. The second category focuses on integrating
graph structures directly into LLM architectures [96, 104, 38]. A notable example is Patton [37],
which pre-trains a joint architecture on text-attributed graphs. Despite these advancements, none of
them have explored the collaboration between LLMs and GNNs under graph prompt learning.

7 CONCLUSION

In this work, we introduce Morpher, the first multimodal prompt learning paradigm that can semanti-
cally adapt pre-trained GNNs to downstream tasks with the help of LLM, while keeping both the
pre-trained models frozen. To build Morpher, we first analyze the limitations of the state-of-the-art
graph prompting technique and propose an improved version. Through extensive experiments, we
demonstrate that our improved AIO can achieve outperformance, and our Morpher has further im-
provements in few-shot, multi-level task, or domain transfer settings. Additionally, using Morpher,
we build the first GNN zero-shot classifier prototype that can be generalized to novel testing classes.

3the performance of GIMLET and other baselines are directly from the GIMLET paper [107].
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To ensure reproducibility of this work, We provide the experiment code in the supplementary materials,
which can be executed on a medium-powerful machine. We provide well-written README and
configuration files in order to reproduce our results. We also discuss the experiment environment in
detail in Appendix C.1. We use benchmark datasets that are available to the public. The experiment
environments, including the details of the machine we used, are discussed in Appendix C.2. We
explicitly stated the amount of memory and time needed for execution.
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A PROOF OF THEOREM 3.1

Proof. The cross-entropy loss between the true distribution p(·) and the predicted distribution q(·) is
given by:

CE(p, q) = −
∑
y

p(y) log q(y)

where q(y) = Pr(c(x) = y).

To find the optimal classification, we minimize the cross-entropy loss subject to the constraint∑
y q(y) = 1. We define the Lagrangian as:

L(q, λ) = −
∑
y

p(y) log q(y) + λ

(∑
y

q(y)− 1

)

For any y ∈ Y , take the derivative of L with respect to q(y) and λ and set them to zero, we get:

∂L
∂q(y)

= −p(y)
q(y)

+ λ = 0

∂L
∂λ

=
∑
y

q(y)− 1 = 0

Solving these equations, we find:

q(y) =
p(y)

λ∑
y

q(y) =
∑
y

p(y)

λ
=

1

λ

∑
y

p(y) = 1

Therefore, λ = 1 and q(y) = p(y).

Thus, the optimal classification is Pr(c(x) = y) = p(y).

B DATASET DETAILS

B.1 DATASET STATISTICS

Table 6 summarizes the statistics of the public real-world datasets, which we used in the few-shot
experiments. For our synthetic datasets in the zero-shot prototype, we summarize their statistics in
Table 7. As discussed in Section 5.4, the connections of our synthetic datasets are real, and we only
replace the node feature by [1, 0] and [0, 1]. The code to download the public data and the code to
create synthetic data are provided in the supplementary materials.

B.2 TEXT LABELS

When created, real-world graph datasets are usually coupled with textual meanings, but a common
practice is to convert the textual meanings into numbers to create labels, which weakens the super-
vision of the graph data. For each real-world dataset, we convert the numerical labels back to text
labels and feed into Morpher Language encoder through “[learnable text prompt] + [text label]”. The
mapping from the numbers to text labels for each dataset are provided as follows:
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Table 6: Dataset statistics

Dataset task level # graphs average # nodes average # edges # feature dimension # classes # shots per class feature characteristic

MUTAG graph 188 17.9 39.6 7 2 10 one-hot, sparse

ENZYMES graph 600 32.6 124.3 3 6 10 one-hot, sparse

PROTEINS graph 1113 39.1 145.6 3 2 10 one-hot, sparse

MSRC_21C graph 209 40.28 96.60 22 17 1 one-hot, sparse

Cora node, edge 1 2708 10556 1433 7 2 (node), 20 (edge) sum 1, sparse

CiteSeer node, edge 1 3327 9104 3703 6 2 (node), 20 (edge) sum 1, sparse

PubMed node 1 19,717 88648 500 3 10 TF-IDF value, dense

Table 7: Synthetic Zero-shot Class Generalization Dataset statistics

Dataset # graphs average # nodes average # edges #feature dimension # classes # shots per class

ZERO-Cora 120 8.41 10.38 2 2 10

ZERO-CiteSeer 120 10.03 21.31 2 2 10

ZERO-PubMed 120 20.33 41.75 2 2 10

MUTAG. MUTAG is a dataset of nitroaromatic compounds, aiming to predict their mutagenicity
on Salmonella typhimurium. Therefore, the mapping from numerical labels to text labels is: {0:
non-mutagenic on Salmonella typhimurium, 1: mutagenic on Salmonella typhimurium}.

ENZYMES. ENZYMES aims to predict which subcategory each enzyme belongs to. The sub-
categories are: 0: oxidoreductases, 1: transferases, 2: hydrolases, 3: lyases, 4: isomerases, 5:
ligases.

PROTEINS. PROTEINS is a dataset comprising proteins classified as either enzymes or non-
enzymes. Therefore, the mapping is: 0: ’enzyme’, 1: ’non-enzyme’.

MSRC_21C. Each graph in MSRC is constructed according to an image. The graph label is the
image label. MSRC_21C contains 20 classes in MSRC, and “C” here means “Challenging” as the
graphs(images) that are easy to classify has been filtered. The mapping from the numerical labels to
text labels is: {0: building, 1: grass, 2: tree, 3: cow, 4: sheep, 5: sky, 6: airplane, 7: water, 8: face, 9:
car, 10: bicycle, 11: flower, 12: sign, 13: bird, 14: book, 15: chair, 16: road}.

Cora. Cora is a citation network of papers in seven research areas. Each paper is labeled according
to its corresponding research area. The mapping from the numerical labels to text labels is: {0: case
based, 1: genetic algorithms, 2: neural networks, 3: probabilistic methods, 4: reinforcement learning,
5: rule learning, 6: theory}.

CiteSeer. CiteSeer is a citation network of papers, each labeled according to one of six research
areas. The mapping from the numerical labels to text labels is: {0: Agents, 1: AI, 2: DB, 3: IR, 4:
ML, 5: HCI}. We note that using abbreviations of the research area is not an issue because these
abbreviations frequently appear, and the LLM tends to tokenize each of them as one token.

PubMed. PubMed is a collection of scientific publications from the PubMed database related to
diabetes, classified into one of three categories. The mapping from the numerical labels to text labels
is: {0: Diabetes Mellitus Experimental, 1: Diabetes Mellitus Type 1, 2: Diabetes Mellitus Type 2}.

Edge-level tasks. Cora, CiteSeer and PubMed can also be used as link prediction datasets. For link
prediction, the mapping from the numerical labels to text labels is: {0: not connected, 1: connected}.

Synthetic Zero-shot Class Generalization Datasets. For ZERO-Cora, we synthetic three classes
of ego-graph in a citation network. The first and second classes, respectively, have text labels
"machine learning" and "theory", and the third (novel) class to generalize is "machine learning
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Table 8: Comparison of graph prompts.

Method prompt level
level of supported downstream tasks

learnable prompt semantic
node-level edge-level graph-level

GPF-Plus [19] token-level
√

× ×
√

×
Gprompt [55] token-level

√
×

√ √
×

VNT [78] token-level × ×
√ √

×
ULTRA-DP [9] token-level

√
× ×

√
×

GPPT [75] token-level
√

× ×
√

×
SGL-PT [116] token-level

√
× ×

√
×

SAP [22] graph-level
√

×
√ √

×
PRODIGY [32] graph-level

√ √ √
× ×

All-in-one (AIO) [76] graph-level
√ √ √ √

×

ImprovedAIO (ours) graph-level
√ √ √ √

×
Morpher (ours) graph-level

√ √ √ √ √

theory". For ZERO-CiteSeer, we synthetic three classes of ego-graph in a citation network. The first
and second classes, respectively, have text labels "biology" and "informatics", and the third (novel)
class to generalize is "bioinformatics". For ZERO-PubMed, we synthetic three classes of ego-graph
in a citation network in the medical domain. The first and second classes, respectively, have text
labels "cardiology" and "neurology", and the third (novel) class to generalize is "neurocardiology".

C EXPERIMENT DETAILS

C.1 REPRODUCIBILITY

Code. The code for the experiments is provided in the supplementary material with a well-written
README file. We also provide the commands and instructions to run the code. The datasets used
will be automatically downloaded when the code is executed.

Environment. We run all our experiments on a Windows 11 machine with a 13th Gen Intel(R)
Core(TM) i9-13900H CPU, 64GB RAM, and an NVIDIA RTX A4500 GPU. We have also tested the
code on a Linux machine with NVIDIA TITAN RTX GPU. All the code of our algorithms is written
in Python. The Python version in our environment is 3.9.18. In order to run our code, one has to
install some other common libraries, including PyTorch, PyTorch Geometric, pandas, numpy, scipy,
etc. Please refer to our README in the code directory for downloading instructions.

We have optimized our code and tested that the space cost of the CPU memory is less than 16 GB,
and the space cost of the graphics card is less than 6 GB. The execution time to run an experiment
is less than 20 minutes on our machine.

C.2 IMPLEMENTATION DETAILS

We provide the configuration files for the experiments to reproduce the results. We initialize the
graph prompt using kaiming_initialization, and we initialize the text prompts through real token
embeddings. We have tested multiple initializations, and they would not affect the overall results.
Specifically, we initialize the text prompt for each dataset as follows.

MUTAG: “a graph with property”; ENZYMES: “this enzyme is”; PROTEINS: “this protein is”;
MSRC_21C: “an image of”; Cora: “a paper of”; CiteSeer: “a paper of”; PubMed: “a paper of”; Edge
tasks: “central nodes are”.

In our few-shot setting, we split the labeled data into training samples and validation samples at
approximately 1:1. For all the parameters, we used the Adam optimizer, whose learning rate and
weight decay are provided in the configuration files.
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C.3 EXPERIMENT WITH ELECTRA AND DISTILBERT

On the LLM pre-training side, RoBERTa is one of the most advanced encoder-only LLMs until now,
and we have demonstrated the effectiveness with RoBERTa serving on the LLM side in the Morpher
paradigm. Additionally, we conducted experiments with ELECTRA [12] and DistilBERT [68]. Using
these two LLMs, Morpher can also achieve comparable performances to RoBERTa. The results are
shown as follows.

Table 9: Few-shot graph classification performance (%) of Morpher with ELECTRA [12] as language
encoder. Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

GraphCL + GCN 78.00 78.17 20.41 15.79 67.38 65.66 43.42 47.19
GraphCL + GAT 76.67 75.75 20.41 11.37 66.26 65.66 44.57 49.01
GraphCL + GT 76.67 77.04 19.16 14.68 73.06 72.70 42.28 44.09

SimGRACE + GCN 70.00 70.99 19.79 12.41 68.96 67.77 45.71 48.44
SimGRACE + GAT 77.33 77.51 18.12 13.31 68.96 67.78 44.00 49.43
SimGRACE + GT 72.67 73.55 18.33 15.76 70.18 70.28 41.14 44.50

Table 10: Few-shot graph classification performance (%) of Morpher with DistilBERT [68] as
language encoder. Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

GraphCL + GCN 78.00 78.61 20.62 10.00 66.44 65.54 43.42 47.98
GraphCL + GAT 77.33 75.64 21.25 15.87 70.59 68.25 45.14 48.82
GraphCL + GT 74.67 75.20 19.58 14.96 70.27 70.55 44.57 47.28

SimGRACE + GCN 69.33 70.36 20.62 18.82 66.91 66.41 45.14 47.77
SimGRACE + GAT 77.33 76.90 18.54 14.44 67.56 65.08 45.71 44.36
SimGRACE + GT 72.67 73.52 17.91 11.06 70.55 70.36 45.14 44.01

In general, using ELECTRA and DistilBERT results in similar performance compared to using
RoBERTa, showing the robustness of Morpher with respect to the language encoder.

C.4 EXPERIMENT WITH GNNS TRAINED USING GRAPHMAE AND MVGRL

In the main pages, we used GraphCL and SimGRACE to show that Morpher achieves better per-
formance given a pre-trained GNN. Additionally, to further verify the robustness of Morpher over
the pre-train method, we conducted experiments on the pre-trained GNNs using GraphMAE [27]
and MVGRL [24]. We use GCN as the GNN backbone and RoBERTa as the LLM encoder, and the
results are reported as follows.

Table 11: Few-shot graph classification performance (%) of Morpher with the GNN pre-trained by
GraphMAE [27]. Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

Pre-train + Fine-tune 71.33 71.41 16.04 12.14 65.86 65.22 39.42 40.20
ImprovedAIO 76.67 76.95 19.58 12.59 66.36 65.30 42.28 46.81

Morpher 78.67 78.67 20.20 16.95 67.38 65.66 45.71 48.49
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Table 12: Few-shot graph classification performance (%) of Morpher with the GNN pre-trained by
MVGRL [24]. Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

Pre-train + Fine-tune 68.67 69.46 16.45 10.16 65.15 64.71 38.85 40.56
ImprovedAIO 74.67 74.00 18.13 15.57 66.54 65.90 42.85 46.66

Morpher 78.00 77.81 18.96 14.97 67.56 66.79 44.57 48.67

Using GraphMAE or MVGRL to pre-train the GNN, the trend of performance is similar to that when
using GraphCL or SimGRACE. Also, ImprovedAIO and Morpher’s performance is similar to that of
pre-trained GNNs from GraphCL or SimGRACE and can still significantly outperform the pre-train +
fine-tune baseline, showing the robustness of Morpher with respect to the pre-training strategy.

D LIMITATIONS

Graph prompt learning assumes the “pre-train + prompt” framework to build graph foundation
models, yet there could be other paths to achieve graph-related foundation models. Also, graph
prompt learning only works on the graph neural network architecture, and might not work for other
architectures that are proposed in the future. Another limitation of this work is the requirement of
language encoder. While RoBERTa is one of the most advanced encoder-only language models
and can be considered an LLM with over 0.1B parameters, more recent LLMs such as Llama or
Mistral cannot be used in Morpher because they are decoder-only LLMs and do not explicitly have
an encoder. Yet it is possible to retrieve the hidden representation before the decoder layer. We leave
this direction as future work.
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