
EFFICIENT LLM INFERENCE USING
DYNAMIC INPUT PRUNING AND CACHE-AWARE MASKING

Marco Federici* 1 Davide Belli* 1 Mart van Baalen 1 Amir Jalalirad 1 Andrii Skliar 1 Bence Major 1

Markus Nagel 1 Paul Whatmough 1

ABSTRACT
While mobile devices provide ever more compute power, improvements in DRAM bandwidth are much slower.
This is unfortunate for large language model (LLM) token generation, which is heavily memory-bound. Previous
work has proposed to leverage natural dynamic activation sparsity in ReLU-activated LLMs to reduce effective
DRAM bandwidth per token. However, more recent LLMs use SwiGLU instead of ReLU, which results in little
inherent sparsity. While SwiGLU activations can be pruned based on magnitude, the resulting sparsity patterns
are difficult to predict, rendering previous approaches ineffective. To circumvent this issue, our work introduces
Dynamic Input Pruning (DIP): a predictor-free dynamic sparsification approach, which preserves accuracy with
minimal fine-tuning. DIP can further use lightweight LoRA adapters to regain some performance lost during
sparsification. Lastly, we describe a novel cache-aware masking strategy, which considers the cache state and
activation magnitude to further increase cache hit rate, improving LLM token rate on mobile devices. DIP
outperforms other methods in terms of accuracy, memory and throughput trade-offs across simulated hardware
settings. On Phi-3-Medium, DIP achieves a 46% reduction in memory and 40% increase in throughput with
< 0.1 loss in perplexity when compared to streaming the dense model from Flash. The open source code
for HW simulator, methods, and experiments in this paper is available at https://github.com/Qualcomm-AI-
research/dynamic-sparsity.

1 INTRODUCTION

Specialized neural processing unit (NPU) accelerators for
AI have become standard in recent smartphone SoCs. These
processors enable efficient neural network inference on-
device, opening the way for powerful on-device AI appli-
cations. However, as shown in Figure 2, memory size has
not improved at the same pace as processing power (Jhang
et al., 2021; Kwon et al., 2023; Gholami et al., 2024). This
memory bottleneck is especially evident for LLMs, which
grew to billions and trillions of parameters, and for which
all weights must be accessed to generate each individual
output token.

For instance, a model with 14B parameters like Phi-3-
*Equal contribution 1Qualcomm AI Research. Qualcomm AI

Research is an initiative of Qualcomm Technologies, Inc. Corre-
spondence to: Marco Federici <mfederic@qti.qualcomm.com>,
Davide Belli <dbelli@qti.qualcomm.com>, Mart van
Baalen <mart@qti.qualcomm.com>, Markus Nagel
<markusn@qti.qualcomm.com>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

Snapdragon branded products are products of Qualcomm
Technologies, Inc. and/or its subsidiaries.

Figure 1. Overview of Cache-Aware Dynamic Input Pruning for a
vector-matrix multiplication. The Cache-Aware masking compo-
nent (DIP-CA) outputs a column sparsity mask based on current
input activations and weights currently cached in DRAM. The
subset of required weights are retrieved from DRAM cache, if
available, or loaded from Flash in case of cache misses.

Medium quantized at INT4 precision occupies approxi-
mately 7GB, which approaches the average smartphone to-
tal DRAM capacity (Counterpoint, 2021; Grossi & Lorenz,
2024).

But, in fact, the OS and active applications already occupy
a significant portion of the total DRAM capacity, typically
leaving a few GBs free for an on-device LLM.

https://github.com/Qualcomm-AI-research/dynamic-sparsity
https://github.com/Qualcomm-AI-research/dynamic-sparsity

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Figure 2. Comparing the largest LLMs by year of release (Zhao
et al., 2023) against NPU and DRAM trends in recent iPhone de-
vices2. An exponential fit highlights the linear increase in DRAM
size opposed to the exponential increases in NPU processing power
and model sizes.

To relax the DRAM capacity pressure, it has been previ-
ously proposed to load a model directly from flash, instead
of first copying it in DRAM (Alizadeh et al., 2023; Xue
et al., 2024). By leveraging dynamic sparsity and intro-
ducing DRAM caching the latency overhead of loading a
model from flash can be mitigated significantly. Dynamic
sparsity (Mirzadeh et al., 2023; Lee et al., 2024; Akhauri
et al., 2024) exploits the fact that all operations during to-
ken generation are matrix-vector multiplications, and the
fact that in LLMs with ReLU activations, vectors contain
many zero elements. For elements in the activation vec-
tors that are zero, we can skip loading the corresponding
columns in the following layer. If sparsity predictors such
as those introduced in DejaVu (Liu et al., 2023) are used to
predict which elements in the activation vectors will be zero,
the weights that generate zero-valued activation elements
can also be ignored in the preceding layer. Additionally,
a DRAM cache is used to cache active parameters from
previous tokens. When a DRAM cache is used, parameters
only need to be loaded from flash in case of a cache miss,
i.e., when an active parameter is not already in cache from
previous tokens. These approaches allow even Mixtral8x7B
to run on mobile devices at reasonable token generation
rates (Xue et al., 2024).

Prior approaches rely on predictors that can anticipate the
natural dynamic activation sparsity. As we will show in
more detail in Section 3, SwiGLU MLP used in most mod-
ern LLMs (Jiang et al., 2023; Bai et al., 2023; Abdin et al.,
2024; Dubey et al., 2024) have little to no natural activation
sparsity. While these activations can still be pruned based
on magnitude, it turns out to be much harder to predict
which activations should be pruned in SwiGLU LLMs than

2Data collected from Wikipedia (2024a). Values are averaged
in case of multiple model releases per year.

in ReLU LLMs (see Figure 6). This issue is circumvented in
previous works (Mirzadeh et al., 2023; Song et al., 2024a;b)
by replacing SiLU activations with ReLU activations, and
fine-tuning the LLM to adapt to the architecture change.
However, this fine-tuning step is expensive, often requiring
billions of tokens of fine-tuning data to achieve reasonable
accuracy. In this work we introduce Dynamic Input Pruning
as a predictor-free alternative to dynamic sparsity that does
not rely on expensive re-training. We also show that small
LoRA adapters (Hu et al., 2021) can be used to mitigate the
performance loss due to dynamic pruning.

The high natural sparsity rates of ReLU LLMs (up to 90%)
have two implications: 1) for each token, only a few ac-
tive parameters need to be loaded from Flash, and 2) active
parameters from multiple previous tokens can be cached,
leading to higher cache hit rate and, as a result, reduced flash
access. SwiGLU LLMs, however, can be pruned dynami-
cally only up to approximately 50% before model accuracy
is significantly impacted (see Section 3). Hence, to reach
reasonable token generation rates at lower sparsity levels,
we introduce a cache-aware variant of dynamic input prun-
ing, which we visualize in Figure 1. This variant takes into
account the current state of the cache when deciding which
parameters to use. By biasing the parameter selection to-
wards the ones that are already in cache, we can increase
cache-hit rate and hence LLM throughput, while minimally
affecting model accuracy.

The main contributions in this paper are three-fold:

1. We analyze the limitation of methods like DejaVu (Liu
et al., 2023) and “LLM in a Flash” (Alizadeh et al.,
2023) in modeling activation sparsity for modern non-
ReLU LLMs, demonstrating the impracticality of train-
ing predictors for SwiGLU-based models (Section 3).

2. We propose a predictor-free method to dynamically
prune MLP layers which outperforms previous static
and dynamic pruning methods on the latest LLMs
across various sparsity levels. Additionally, we show
that a lightweight LoRA component can further reduce
the accuracy lost with sparsification. (Section 4).

3. We implement a cache-aware masking strategy which
modifies the sparsity mask by prioritizing cached
weights, achieving better trade-offs between model
accuracy and latency at different DRAM constraints
and hardware settings (Section 5).

2 BACKGROUND AND RELATED WORK

This section first reviews quantization and static sparsity,
two alternative approaches to reduce model size, and later
discusses prior works employing dynamic sparsity.

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Mistral-7B Turbosparse-Mistral

Figure 3. GLU Activation Magnitude distribution for Layer 31
Mistral-7B (left), and the corresponding re-trained ReLU-fied Tur-
bosparse Mistral (right).

Global
Threshold

Per-Layer
Threshold

Per-Token
Threshold (topK)

Figure 4. Layer activation density for different GLU threshold-
ing strategies at 50% MLP target density on a Mistral-7B model.
Darker shaded region indicate the standard deviation, while lighter
shading covers minimum and maximum values. Setting a threshold
for each layer or each token result in similar perplexity. The dense
model perplexity is 5.249.

Static Pruning and Quantization Pruning and quanti-
zation techniques have been extensively explored to min-
imize the memory footprint of neural networks (Kuzmin
et al., 2023). Unstructured pruning typically involves re-
moving individual weight parameters, whereas structured
pruning eliminates entire weight structures (van der Oud-
eraa et al., 2023; Frantar & Alistarh, 2023; Sun et al., 2023).
Alternative approximation strategies involve low bit-width
quantization (Nagel et al., 2021; Frantar et al., 2022; van
Baalen et al., 2024; Huang et al., 2024) and low-rank repre-
sentations (Zhang & Papyan, 2024). All prior techniques,
however, tend to degrade performance, which can be par-
tially mitigated through model fine-tuning. This fine-tuning
process necessitates a representative dataset and significant
computational resources, and it is therefore prohibitive for
certain applications. Another downside of static pruning is
its limited flexibility, as the set of retained weights is fixed
for all activations, while the optimal set of weights may vary
across different tokens.

Dynamic Sparsity Recent work proposed dynamic spar-
sity methods (Mirzadeh et al., 2023; Liu et al., 2023; Lee
et al., 2024; Akhauri et al., 2024) to select active weights
based on the current inputs, and thus overcoming part of the
limitations in static methods.

Recent approaches (Mirzadeh et al., 2023; Alizadeh et al.,
2023; Song et al., 2024b) aim to reduce the number of MLP
parameters loaded at inference time by exploiting the sparse
activation pattern of the intermediate ReLU activations. Liu
et al. (2023) (DejaVu) further showed that, in LLM with
ReLU activations such as OPT (Zhang et al., 2022) and
Llama v1 (Roumeliotis et al., 2023), even small predictors
can accurately determine active units with moderate train-
ing and memory overhead. Whenever the predictions are
correct, the DejaVu approach does not introduce any approx-
imation error since only rows and column corresponding to
zero entries are removed.

Other recent work extended the approach from DejaVu aim-
ing to reduce system latency and memory overhead. Akhauri
et al. (2024) replaced the individual predictors with a single,
global predictor to determine the active units. Alizadeh et al.
(2023) added an LFU cache on the MLP parameters and
introduced weight bundling to reduce memory overhead.
Song et al. (2023) proposed identifying most active neurons
offline and pre-loading them on GPU for faster access, while
loading the remaining neurons on-demand based on predic-
tor outputs. Xue et al. (2024) builds an engine to optimize
LLM inference given certain input hardware specifications.
Interestingly, this work shows that neuron pre-loading is not
necessary to achieve high system throughput.

Most dynamic sparsity approaches inherently rely on
the sparse activation pattern induced by the ReLU non-
linearity, however, the vast majority of recent LLM archi-
tectures3(Jiang et al., 2023; Abdin et al., 2024; Dubey et al.,
2024) use non-linearities that do not naturally induce many
hard zeros (cf. Figure 3). While ReLU-fication, the process
of replacing the original network activations with ReLU acti-
vations, has shown promising results (Mirzadeh et al., 2023;
Song et al., 2024b), though on the other hand it requires
a computationally demanding retraining procedure which
may fail to replicate the original performance (SparseLLM,
2023; Lee et al., 2024).

For this reason, in the following sections we investigate the
effectiveness of dynamic sparsity strategies when applied
directly to modern LLMs.

3 DYNAMIC SPARSITY ON MODERN LLMS

Modern LLMs consist of alternating sequences of attention
and MLP blocks. In most cases, the majority of network
weights resides in the latter component. This became even
more pronounced with the introduction of Group Query
Attention (Roumeliotis et al., 2023), reducing the number of
parameters in attention layers. MLP architectures in recent
LLMs (Jiang et al., 2023; Abdin et al., 2024; Dubey et al.,

3All the open-source LLMs benchmarked in Wang et al. (2024)
use SwiGLU non-linearities.

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

(a) GLU pruning (b) Gate pruning (c) Predictive GLU pruning (d) Input pruning (ours)

Figure 5. Diagrams describing the sparsity schemes for GLU pruning, Gate pruning, Predictive pruning and Input pruning. Activations
with larger magnitude are visualized in darker colors, while dark blue indicates weights used for computation for the current input.

2024) frequently consist of a Gated non-Linear Unit (GLU)
layer, which maps the activations into high-dimensional
feature space followed by a linear down projection:

MLP(x) = W dGLU(x) (1)
GLU(x) = W ux� �(W gx) (2)

in which W u, W g, W d will be referenced as up, gate,
and down weight matrices, respectively. The non-linearity
� often consists of a SiLU function (Dauphin et al., 2017;
Elfwing et al., 2018; Naveed et al., 2023).

We define as follows the sparse version of an MLP:

]MLP(x) = fW d
⇣
fW ux� �(fW gx)

⌘
, (3)

where the tilde indicates that the original weight matrices
are replaced with a sparse version, which may result in an
approximation error.

As discussed in Section 2, SwiGLU MLPs exhibit no natural
activation sparsity, and existing methods to circumvent this
are expensive and time-consuming. In the remainder of this
section we will first show that non-sparse activations can
still be pruned based on magnitude. We then discuss how
this can be used to dynamically prune weights. Lastly, we
demonstrate that predictor-based approaches such as those
introduced by DejaVu (Liu et al., 2023) and its derivatives
fail for dynamic, magnitude-based sparsity.

3.1 Magnitude-based Dynamic Pruning

Since the number of hard zeros in SwiGLU architectures
is negligible, to enable higher sparsity we first relax the
condition of removing only zeros, and instead prune values
that are smaller than a predetermined threshold t.

In Figure 4, we compare the effect of three GLU thresh-
olding strategies on Mistral-7B layer activations in terms
of WikiText-2 perplexity: a global threshold, i.e., a fixed
threshold t is used to prune the activations in all layers;
a per layer threshold, i.e. a fixed threshold which is set
independently per layer based on the CDF of activations
over a small calibration set, but shared over different tokens;
and a per-token threshold, which is based on the CDF of

the current activations of each layer dynamically. Note that
the latter corresponds to simply keeping the top-K largest
magnitude values for each token. In all cases the thresholds
are chosen to ensure 50% of activations are kept on average.

We find that a global threshold performs poorly compared
to a per-layer or per-token threshold. This is due to the fact
that activation magnitude varies considerably per layer and
thus a fixed threshold results in too aggressive pruning for
initial layers. Lastly, we find that the per-token pruning
strategy performs comparably to the per-layer strategy, but
with the additional benefit of pruning a constant number of
activations for each token. For this reason, we only consider
top-K pruning in the remainder of this paper.

3.2 Strategies for Dynamic Sparsity

We now consider several dynamic weight sparsification
schemes that exploit dynamic magnitude-based activation
pruning. Figure 5a-c shows the different schemes for GLU
LLMs described in the remainder of this section.

GLU pruning (Figure 5a) When values of GLU(x) are
pruned, the corresponding columns of W d can also be
pruned as they will be multiplied with a zero:

fW d
:,i =

(
0 if i /2 topK (|GLU(x)|)
W d

:,i o.w.
. (4)

Note that, instead of top-K pruning, other thresholding meth-
ods (such as those presented in Section 3.1) can be used
instead.

This strategy can sparsify only one of the three large MLP
matrices, reaching at most 33% MLP sparsity.

Gate pruning (Figure 5b) Assuming that most of the
small entries are determined by the non-linearity �, one
could first perform a dense matrix multiplication to deter-
mine �(W gx), then sparsify both W u and W d based on
the small (partial) activations:

fW u
:,i, fW d

i ,=

(
0,0 if i /2 topK (|�(W gx)|)
W u

:,i,W
d
i o.w.

. (5)

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Similarly, we can define Up Pruning as the equivalent strat-
egy in which the activations W ux are used to prune W g

and W d, respectively. In contrast to GLU pruning, Gate
(and Up) pruning can prune up to 66% of the MLP weights.
However, this pruning strategy may be sub-optimal since
the network parameters are pruned based on partial GLU
activations.

Predictive GLU pruning (Figure 5c) The same predic-
tive pruning strategy introduced by DejaVu can be extended
to GLU LLMs by training a small predictor to identify low-
magnitude GLU activations:

fW u
:,i,fW

g
:,i,

fW d
i =

(
0,0,0 if i /2 topK(pred(x))

W u
:,i,W

g
:,i,W

d
i o.w.

. (6)

Here pred(x) indicates the logits of a predictor trained to
identify the smallest activations using cross-entropy loss.

Predictive GLU pruning methods can sparsify all MLP
weight matrices, potentially resulting in higher sparsity lev-
els at the same model accuracy. However, as we will show
next, it is extremely challenging to train predictors for GLU
pruning.

3.3 The challenge of predicting GLU activations

As demonstrated in Figure 6 (blue line), GLU pruning with
topK thresholding allows us to prune large portions of acti-
vations with a minor impact on downstream performance.
On SwiGLU networks, such as Mistral-7B, it is possible to
prune up to 50% of the activations before observing a 1%
decrease in MMLU performance. However, the correspond-
ing ReLU-fied network, TurboSparse-Mistral, is much more
sparsifiable, and GLU pruning can reach more than 90%
activation sparsity before observing the same performance
deterioration. This showcases that SwiGLU activations are
inherently more sensitive to pruning.

Without any predictive mechanism, the effectiveness of
GLU pruning is further hindered by the fact that only one of
three MLP matrices is sparse (Figure 5a). We therefore stud-
ied the effect of predictive GLU pruning, which employs
predictors trained with cross-entropy loss to identify small
GLU activations. Consistently with Liu et al. (2023), after
training we prune the GLU activations corresponding to the
smallest outputs of the predictor pred(x) on a per-token
basis. The results are visualized in Figure 6 (orange line),
which compares the effectiveness of predictive pruning on
SwiGLU and ReLU-fied counterparts for the same set of
predictors and training procedure.

MMLU accuracy at 50% activation sparsity drops by almost
10% on Mistral-7B, while the performance drop is negligi-
ble on the ReLU-fied counterpart. The wider gap between
GLU pruning and GLU predictive pruning hints that predict-

MMLU (5-shots)

Figure 6. Comparison of the effectiveness of GLU sparsification
methods on Mistral-7B (left) and its ReLU-fied counterpart (right).
The predictor training procedure, architecture, and training data is
equivalent across the two LLMs.

ing activation magnitude is a much harder task in SwiGLU
networks. We hypothesize that this phenomenon is due to
the interplay of various aspects. First, since SwiGLU acti-
vations are less sparse, predictor mistakes are more likely
to prune relevant activations. Secondly, the activation pat-
tern in GLU MLPs is less predictable than the one in the
ReLU-fied counterparts. We conjecture that this is because
predicting ReLU zeros is essentially sign prediction for a
linear projection, a relatively easy task, whereas predicting
magnitude is a more challenging task due to the interplay
between the gating components.

Due to the inherent limitations of GLU pruning and the chal-
lenges of predicting complex SwiGLU activation patterns
with small predictors, we consider a simple alternative ap-
proach that aims to sparsify all three MLP matrices without
requiring any additional predictor architecture.

4 DYNAMIC INPUT PRUNING

In this section we introduce the Dynamic Input Pruning
(DIP) strategy, which addresses the limitations of existing
MLP dynamic pruning strategies on SwiGLU networks. The
DIP method, visualized in Figure 5d, hinges on removing
small activations in both the input of each MLP block and
the intermediate GLU block using per-token topK thresh-
olding, and thus requires no separate predictors. DIP is
defined as:

fW u
:,i, fW

g
:,i =

(
0,0 if i /2 topK (|x|)
W u

:,i,W
g
:,i o.w.

(7)

fW d
:,i =

(
0 if i /2 topK

⇣
|]GLU(x)|

⌘

W d
:,i o.w.

. (8)

]GLU(x) corresponds to the GLU activations obtained using
fW u and fW g instead of W u and W g. Note that we can
use different levels of sparsity for the up, gate and down
layers. The optimal proportion of active units is empirically

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Figure 7. Diagram for the Cache-aware Dynamic Input Pruning
method applied to an individual linear layer. DIP-CA uses cache
state and input activations to output a sparsity mask. Flash reads are
performed to load necessary weights missing from cache (marked
in red), and unused weights are evicted if the DRAM is full. The
sparse weight matrix is then used to process the current activations.

determined as a function of the overall target MLP sparsity
(see Appendix B.1 for details).

When compared to Predictive GLU pruning, Dynamic Input
Pruning trades off the error caused by the predictor for
approximation error introduced by the use of an approximate
gating layer.

Light-weight LoRA fine-tuning To compensate for the
approximation error caused by the subsequent pruning of
multiple MLP activations, similarly to contemporary litera-
ture (Ma et al., 2023; Sun et al., 2023; Lee et al., 2024), we
add fine-tuned LoRA adapters to the sparsified up, gate and
down MLP matrices. To ensure that the LoRA adapters do
not lead to any additional overhead, each adapter is applied
before column selection:

W:,i|{z}
original column

! (W +AB):,i| {z }
LoRA adapted column

, (9)

in which A and B refer to low-rank learnable matrices.
This allows us to fuse the adapters to the original matrices
after fine-tuning to avoid any memory overhead.

5 IMPROVED CACHING IN DYNAMIC
SPARSITY

An effective dynamic sparsity method is not enough to guar-
antee good LLM inference latency on a memory-constrained
device. The number of Flash reads, which bottlenecks the
overall throughput, largely depends on the cache eviction
policy employed to dynamically load and unload weights in
DRAM during inference. In this section we discuss exist-
ing cache eviction policies and present a novel cache-aware
masking strategy for dynamic sparsity. Our approach allows
us to reach better accuracy-latency trade-offs with respect
to solely regulating the sparsity level.

5.1 Cache eviction policies

A cache management system can be employed to optimize
the decision of which parameters to evict, when the cache
is full and we want to allocate new weights. Commonly
used cache eviction policies include Least Recently Used
(LRU) and Least Frequently Used (LFU). In LRU, the item
that was last used farthest in the past is evicted. In LFU, a
counter is kept (for the current session or across sessions) to
track usage frequency and evict the most rarely used item.

An optimal cache eviction policy can be implemented if
future DRAM reads were known in advance. Belady (1966)
describes a greedy oracle algorithm to maximize the cache
hit-rate over a known, fixed sequence of memory reads.
Based on this optimal algorithm, previous work (Lykouris
& Vassilvitskii, 2021; Liu et al., 2022; Sadek & Elias, 2024)
explores methods to use estimators (Jain & Lin, 2016; Shah
et al., 2022) or learnable ML models based on cache history
to predict the future cache usage. While these methods
outperforms simpler caching eviction policies, they require
an additional training step, and their performance is upper-
bounded by the optimal Belady caching algorithm.

Caching methods for dynamic sparsity have also been em-
ployed, with the eviction policy used to determine which
parameters should be kept in DRAM to increase the cache
hit rate and therefore minimize latency. For example, Song
et al. (2023) use a static cache by preloading the most active
neurons, Alizadeh et al. (2023) introduce an LRU eviction
policy to prune unused weights, and Xue et al. (2024) pro-
pose neuron bundling over multiple weight matrices.

5.2 Cache-aware neuron sparsity

Differently from other caching applications, the current
choice of sparsity mask is not a hard constraint. We argue
that suboptimal masks can be preferred to increase the sys-
tem throughput while sacrificing some model accuracy. We
thus propose a cache-aware sparsification method to strike
a better trade-off between accuracy and latency. This is
implemented as a re-weighting mechanism before selecting
active neurons, which introduces a penalty multiplier term
on the neurons activation magnitude:

s(t) =

��x(t)
�� �c(t�1) + �(1� c(t�1))

�
��x(t)

��
1

, (10)

where x(t) refers to the current input activations, c(t�1) is
a binary mask representing which neurons are currently
loaded in cache, and � is a hyper-parameter to penalize
the selection of non-cached neurons. The resulting scores
s(t) are used instead of the original magnitude for dynamic
pruning as discussed in Section 4. The normalization term in
the denominator ensures that the re-weighting mechanisms
is not sensitive to changes in the dynamic range of the

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Algorithm 1 Dynamic Input Pruning with Cache-Aware
re-weighting for a single linear layer.
function DIP-CA

�
x(t), c(t�1),W, �, k

�
:

s(t) =

��x(t)
�� �c(t�1) + �(1� c(t�1))

�
��x(t)

��
1

. Eq.10

m(t) = topK
�
s(t), k

�

c(t) = cache update
�
c(t�1),m(t)

�

fW (t) = W �m(t)

return fW (t), c(t)

activations over different tokens.

Our implementation choice is motivated by the observation
that for each layer and token, few neurons fire very strongly,
while activations for most neurons are orders of magnitude
lower (see Figure 10, left), and have less impact on the layer
outputs. The penalty term is thus set high enough to allow re-
ranking of the activations in the intermediate regime, but low
enough to not impact the strongest activations even if not in
cache. We empirically find that a simple LFU eviction policy
with cache-aware masking results in better latency-accuracy
trade-offs even compared against the oracle algorithm from
Belady (1966) without re-weighting (see Section 6.4).

We name DIP-CA the Cache-Aware variant of Dynamic
Input Pruning, and show it outperforms DIP in terms of
throughput at all perplexity levels. Figure 7 visualizes the
DIP-CA procedure, which is described in detail in Algo-
rithm 1 for a single linear layer.

6 EVALUATION

6.1 Experimental setup

A three-way trade-off in KPIs We observe how meth-
ods for efficient LLM inference must be evaluated based
on three different metrics: 1) model accuracy, 2) memory
footprint and 3) inference throughput. Depending on the tar-
get application, a different trade-off between these metrics
can be considered optimal. To simplify the experimental
analysis, we evaluate at most two metrics at a time, while ig-
noring or fixing the remaining ones. We first compare model
performance at a fixed sparsity rate, that is at the same con-
straint in terms of memory footprint. The model accuracy is
reported in terms of token perplexity or 5-shot accuracy on
downstream tasks. We then evaluate the throughput achiev-
able at different operating points in terms of both memory
footprint and loss in model accuracy. We include in Ap-
pendix ablations on hardware specifications to show how
different methods perform in various use-cases.

HW Simulator In order to accelerate the evaluation pro-
cedure, we implement a software tool to simulate the data
transfers between Flash, DRAM and processing units, and
then compute the latency incurred in these processes. We
also implement simulators for different cache eviction poli-
cies on DRAM. This allows us to efficiently estimate the
impact of different dynamic sparsity solutions on system la-
tency, without having to implement or modify a full system
on-device. As inference in the token generation scenario
is bound by DRAM and Flash accesses (Jhang et al., 2021;
Kwon et al., 2023; Gholami et al., 2024), we do not simu-
late NPU inference times, which can be largely parallelized
or are negligible when compared to the more expensive
memory operations. In Appendix A we include a detailed
description of the simulator, including motivation for the
selected parameters.

Unless otherwise stated, results throughout the paper are
based on simulations for Apple A18 with DRAM I/O speed
of 60 GB/s, and Flash read speed of 1 GB/s. We also conduct
an ablation study on different choices for DRAM size and
Flash read speed. Results are reported in Appendix D.

Methods and Models We evaluate the proposed approach
against the Gate Pruning, Up Pruning, and GLU Pruning
methods presented in Section 2. We further consider CATS
(Lee et al., 2024) and DejaVu (Liu et al., 2023): two recent
dynamic sparsity solutions. Following the original approach,
each predictor consist of a neural network of 1000 hidden
units, which is trained for at most 20 epochs on activations
collected from a calibration set using cross entropy loss.
For SwiGLU LLMs, the binary targets are generated by
selecting the 10% largest activations for each token. We
further compare Dynamic Input Pruning with unstructured
and semi-structured (2:4, 4:8) SparseGPT pruning (Frantar
& Alistarh, 2023) and quantization methods GPTQ (Frantar
et al., 2022) and GPTVQ (van Baalen et al., 2024).

In DIP, we empirically calibrate the proportion of active
units for a target MLP sparsity as described in Appendix B.1.
For DIP-CA, we tune the cache-aware re-weighting hyper-
parameter on WikiText-2 validation set and fix it to � = 0.2
for all experiments. We include an ablation showing the
impact of changes in �. Following previous work (Hu et al.,
2021; Lee et al., 2024), we train LoRA adapters with rank 32
for a total of 1000 iterations using a knowledge distillation
loss to match the original (dense) model logits. The training
procedure is consistent for DIP and CATS models. The
adapters are applied to all the up, down and gate matrices
for DIP, while only up and down are adapted for CATS.

We evaluate each method on four recent SwiGLU LLMs
with different dimensionalities: Phi-3-Medium and Phi-3-
Mini (Abdin et al., 2024), Llama 3 8B (Dubey et al., 2024),
Mistral 7B (Jiang et al., 2023).

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Table 1. Experimental results for dynamic sparsity methods at 50% MLP sparsity. ⇤The MLP density estimation ignores the overhead
introduced by the predictors or additional data-structures. GLU pruning is not included since at most 33% sparsity can be achieved.

WikiText-2 (Perplexity #) MMLU (5-shot accuracy ")

Phi3Med Phi3Mini Llama8B Mistral7B Phi3Med Phi3Mini Llama8B Mistral7B

Dense 4.29 6.01 6.14 5.25 78.14 70.62 65.30 62.68
GLU Pruning (oracle) 4.45 6.10 6.30 5.29 77.98 70.24 64.77 62.09

SparseGPT (unstructured)⇤ 5.67 7.44 7.71 5.81 73.97 62.15 57.72 58.16
SparseGPT (2:4)⇤ 6.87 9.84 10.05 7.31 68.07 53.39 43.69 51.15
SparseGPT (4:8)⇤ 6.33 8.43 8.64 6.41 70.34 57.98 50.78 54.64

Gate Pruning 11.28 14.83 29.26 96.37 66.08 47.90 27.23 40.39
Up Pruning 7.41 10.94 13.93 7.13 70.68 56.82 46.34 50.09
DejaVu⇤ 6.15 8.76 9.43 6.24 68.99 54.86 49.02 54.34
CATS 8.34 10.83 28.24 60.48 71.08 55.64 27.34 38.96
CATS+LoRA 5.54 7.44 16.53 9.18 72.23 60.16 30.52 44.84
DIP 5.52 7.04 7.38 5.61 75.54 66.51 60.38 59.66
DIP+LoRA 5.01 6.79 7.26 5.57 75.89 66.57 60.94 59.58

Figure 8. Pareto-curves for WikiText-2 perplexity (left) and 5-shot
MMLU accuracy (right) vs MLP density on Phi-3-Medium. The
density estimation ignores overhead in DejaVu and SparseGPT.

Datasets We use the SlimPajama (Soboleva et al., 2023)
dataset as calibration datasets to train predictors and fine-
tune LoRA adapters. We evaluate all methods on token per-
plexity for language modeling on WikiText-2 test set with
sequence length 2048, and on 5-shot accuracy for down-
stream tasks on the MMLU benchmark (Hendrycks et al.,
2020) using the LM Evaluation Harness (Gao et al., 2024).

6.2 Results

Memory footprint We firstly compare DIP against re-
cent static and dynamic pruning methods. In Figure 8 we
show the trade-off between model performance and MLP
density obtained at varying sparsity levels. Note that cer-
tain methods require additional parameters to achieve the
sparsification, but we do not account for this in the visual-
izations, as the resulting overhead depends on the bit-width
choice for quantization. DejaVu (Liu et al., 2023) requires
sparsity predictors which amount up to 15% of the number
of parameters for the dense MLP. For SparseGPT (Frantar

& Alistarh, 2023) unstructured and structured pruning, at
least 1 extra bit of information for each weight is needed to
indicate whether the weight is pruned (Kuzmin et al., 2024).
The memory overhead in this case would be 6.25% and 25%
for 16-bit and 4-bit quantized models, respectively. We ob-
serve how DIP outperforms both static and dynamic pruning
methods at all sparsity levels, even excluding this overhead.
Noticeably, we can run Phi-3-Medium in 70% of its full
memory footprint, at the cost of only 0.20 perplexity and
0.01% accuracy with respect to the dense model. In com-
parison, CATS (Lee et al., 2024) incurs in a 0.50 increase
in perplexity and 0.88% decrease in accuracy, while for
DejaVu (Liu et al., 2023) that is 1.03 higher perplexity and
4.34% lower accuracy. We include in Appendix C additional
results for Phi-3-Mini, Llama-v3-8B, and Mistral-7B.

In Table 1 we report more extensive numerical results on
four modern LLMs. We consider 50% MLP sparsity for
each method, and report the perplexity on WikiText-2 as
well as the 5-shot accuracy on the MMLU benchmark. Re-
sults for different operating points can be found in Table 3
and Table 4 provided in Appendix C, which also includes
evaluations on a broader range of tasks.

Static pruning methods (Frantar & Alistarh, 2023), partic-
ularly in the semi-structured setup, show a clear gap in
accuracy with respect to the dense model. Gate Pruning and
Up Pruning are simple baselines introduced in Section 3.
Pruning activations based on the output of the gate activa-
tions �(W gx) (Gate Pruning) severely affects performance
on LLama-v3-8B and Mistral-7B. Noticeably, pruning gate
layers based on the output of the up component W ux (Up
Pruning) instead gives better performance across all tested
architectures. Still, both approaches are far from the ideal
results achievable with an oracle for GLU Pruning. This ora-
cle shows that, with perfect predictions, model performance

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Table 2. Comparison of throughput for dynamic sparsity methods.
We report the highest throughput achieved at a 0.2 and 0.5 increase
in perplexity on WikiText-2 over the dense model. The available
DRAM capacity is set to fit approximately 50% of each dense
model. All models are 4-bit quantized.

Phi3Med Phi3Mini Llama8B Mistral7B

Model size 7.4 GB 2.4 GB 4.3 GB 3.9 GB
DRAM size 4.0 GB 1.5 GB 2.5 GB 2.0 GB

Throughput [tok/s] (")

Dense 0.29 1.15 0.57 0.54
Throughput [tok/s] @ + 0.2 PPL (")

GLU Pruning 0.41 1.59 0.78 0.80
Up Pruning 0.43 1.69 0.76 1.03
CATS 0.40 1.54 0.73 0.69
DIP 0.43 1.69 0.73 0.98
DIP-CA 0.45 1.77 0.78 1.08

Throughput [tok/s] @ + 0.5 PPL (")

GLU Pruning 0.45 1.63 0.84 0.87
Up Pruning 0.52 1.98 0.87 1.32
CATS 0.47 1.84 0.83 0.77
DIP 0.50 1.98 0.82 1.23
DIP-CA 0.56 2.09 0.89 1.39

would be marginally worse than the dense baseline.

CATS (Lee et al., 2024) is an instance of per-layer thresh-
old pruning on the gate activations. Comparably with Gate
Pruning, the method struggles with the Llama-v3-8B and
Mistral-7B models. We expect that modifying the CATS
approach to use up layer activation might improve its effec-
tiveness. Introducing LoRA adapters over CATS is neces-
sary to boost performance. In contrast, our proposed DIP
method without adapters outperforms CATS+LoRA as well
as previous baselines on all models and evaluation scenar-
ios. DIP+LoRA further improves overall results, with more
pronounced benefits on perplexity scores.

Model throughput In Table 2 we investigate what
throughput can be achieved with different sparsity meth-
ods and models. For this analysis, all models are quantized
to INT4 using GPTQ (Frantar et al., 2022), and all methods
rely on an LFU cache allocated as explained in Section 6.1.
We consider a use-case where approximately half of the
dense model can fit in DRAM and include the selected
DRAM sizes compared against the model sizes in the first
part of the table. To numerically evaluate the trade-off be-
tween model accuracy and efficiency, we report the highest
throughput achieved by each method under fixed operating
points in perplexity loss. We first notice that GLU Prun-
ing underperforms Up Pruning, as GLU Pruning needs to
load the full gate and up layers to compute GLU activations,
which do not fit entirely in DRAM. CATS (Lee et al., 2024)
falls short from the previous methods, possibly because of

Figure 9. Comparison against quantization and pruning, integra-
tion of DIP with 4 bit BQ and 3 bit VQ models on Phi-3-Medium.

the sub-optimality of Gate Pruning described in Table 1. By
itself, DIP reaches similar or marginally worse throughput
than Up Pruning. Finally, we assess the benefits of applying
Cache-Aware masking to DIP. For all models and perplexity
operating points, DIP-CA outperforms previous methods.
Noticeably, DIP-CA enables running Phi-3-Medium with
46% lower DRAM footprint and 40%, 55% and 93% faster
throughput at a perplexity loss of 0.1, 0.2 and 0.5, respec-
tively. Similar improvements are observed for Phi-3-Mini,
LLama-v3-8B and Mistral-7B.

6.3 Comparison and compatibility with quantization
and static pruning

Quantization is an alternative approach to improve model
efficiency. We compare DIP with Blockwise Quantization
(BQ) (Frantar et al., 2022) and Vector Quantization (VQ)
(van Baalen et al., 2024) at 2, 3 and 4 bits, as well as static
pruning with SparseGPT (Frantar & Alistarh, 2023). Note
that in these results we do account for 1 bit of overhead
per weight introduced by the pruning mask. In Figure 9
we report results on the comparison and combination of
DIP with quantization. DIP applied to 4 bit BQ models
compares favorably against both pruning and quantization
approaches, reaching 15% lower perplexity than SparseGPT
given 4GB of available DRAM. At higher quantization lev-
els, BQ4+DIP outperforms more aggressive BQ quantiza-
tion, which suggests that increased dynamic sparsity is pre-
ferred over decreasing quantization bit-width. VQ3+DIP
improves over BQ4+DIP at higher sparsity, similarly out-
performing 2-bit VQ, and showing that DIP can be consid-
ered as complementary to quantization methods to enhance
model efficiency.

6.4 Cache eviction policies

Cache-aware masking By analyzing the distribution of
GLU activations in Phi-3-Medium (see Figure 10, left), we
observe that a small percentage of activations are orders
of magnitude larger than the rest, and will have a bigger

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Figure 10. (Left) Distribution of normalized GLU activations for
Phi-3-Medium layers. (Right) Effects of changing the DIP-CA �
hyper-parameter on throughput at different levels of perplexity.

impact in determining the layer output. On the other hand,
activations between the 30th and 80th percentiles are within
one order of magnitude, which means they will have a rela-
tively similar contribution to the linear layer output. DIP-CA
exploits this behavior by re-weighting the scores for acti-
vations depending on whether they are currently available
in cache. This effectively re-orders the activation scores
before the TopK selection. In Figure 10 (right), we show the
effect of changing the � hyper-parameter in DIP-CA. For all
perplexity levels, � ranges between 0.1 and 0.3 result in op-
timal throughput. We include an example by comparing two
models achieving the same throughput. The DIP instance
with � = 1 (in blue) has a perplexity of 5.14, while the DIP-
CA counterpart with � = 0.2 reaches lower perplexity of
5.0. Since the activation distributions are comparable across
layers (with first and last layers having slightly longer tails),
we use a fixed value of � for all layers.

Comparison with cache eviction policy We compare in
Figure 11 different caching policies to handle allocation
and eviction of weights in DRAM. Without DRAM caching,
inference inference throughput is severly degraded, as the
MLP weights need to be loaded from Flash for each token.
LFU and LRU policies regulate the eviction of parameters
once the DRAM cache is full, by considering how often or
recently a neuron in the cache has been used. Results are
very similar, with LFU being marginally better. We then ob-
serve how even the oracle Belady cache eviction policy does
not yield much improvement over practical policies. The
throughput for all caching eviction policies overlap under
5.25 perplexity, corresponding to the sparsity level under
which the parameter size for the active neurons becomes
larger than the DRAM size allocated for caching. In this
case, the cache will always contain current neurons, or part
of them. In contrast, DIP-CA with a simple LFU policies
largely outperforms DIP with all cache eviction policies,
even including the optimal Belady algorithm. The improve-
ment also holds at lower sparsity regimes, where part of the
active neurons are directly loaded to the processing unit, as
there is no remaining space to allocate them in cache.

Figure 11. Comparison between cache eviction policies and cache-
aware masking. LFU with DIP-CA outperforms all policies includ-
ing Belady’s oracle throughput at a given perplexity threshold.

7 CONCLUSION

This paper addresses the challenge of efficient LLM in-
ference on DRAM constrained mobile devices. Existing
dynamic sparsity approaches are not effective for modern
LLMs which use SwiGLU instead of ReLU, and hence do
not exhibit natural sparsity. Instead, we introduce a novel
dynamic input pruning (DIP) solution which removes the
need for predictors and requires only minimal fine-tuning.
DIP can be further aided by a lightweight LoRA adapter to
recover part of the accuracy lost during sparsification. Fi-
nally, we introduced a cache-ware variant (DIP-CA), which
significantly enhances model throughput and reduces mem-
ory footprint. Specifically, we achieved a 46% reduction
in memory usage and a 40% increase in throughput with
respect to dense Phi-3-Medium, with a minimal impact on
perplexity. Underscoring these results, we show extensive
comparisons against pruning and quantization baselines,
as well as ablation studies considering different hardware
specifications.

Future work will focus on further refining our sparsity tech-
niques and exploring their applicability to a broader range
of models and hardware configurations, including on-device
simulation of model performance.

REFERENCES

Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,
A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Akhauri, Y., AbouElhamayed, A. F., Dotzel, J., Zhang, Z.,
Rush, A. M., Huda, S., and Abdelfattah, M. S. Shad-
owllm: Predictor-based contextual sparsity for large lan-
guage models. arXiv preprint arXiv:2406.16635, 2024.

Alizadeh, K., Mirzadeh, I., Belenko, D., Khatamifard, K.,
Cho, M., Del Mundo, C. C., Rastegari, M., and Fara-
jtabar, M. Llm in a flash: Efficient large language

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

model inference with limited memory. arXiv preprint
arXiv:2312.11514, 2023.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Belady, L. A. A study of replacement algorithms for a
virtual-storage computer. IBM Systems journal, 5(2):
78–101, 1966.

Counterpoint. Smartphones beat dram drum to meet
performance demand, 2021. URL https://
www.counterpointresearch.com/insights/
smartphones-dram-trends-2019-2020.

Danielson, S. How much ram should a phone have,
2023. URL https://robots.net/tech/how-
much-ram-should-a-phone-have.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning, pp. 933–
941. PMLR, 2017.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural networks, 107:3–11,
2018.

Federici, M., Belli, D., van Baalen, M., Jalalirad, A.,
Skliar, A., Major, B., Nagel, M., and Whatmough,
P. Code artifact for efficient llm inference us-
ing dynamic input pruning and cache-aware masking,
March 2025. URL https://doi.org/10.5281/
zenodo.15088634.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323–
10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,

07 2024. URL https://zenodo.org/records/
12608602.

Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M. W.,
and Keutzer, K. Ai and memory wall. IEEE Micro, 2024.

Grossi, T. and Lorenz, J. Smartphone memory:
Gen ai upgrades to drive spike in dram demand,
2024. URL https://www.yolegroup.com/
technology-outlook/smartphone-memory-
gen-ai-upgrades-to-drive-spike-in-
dram-demand.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, W., Liu, Y., Qin, H., Li, Y., Zhang, S., Liu,
X., Magno, M., and Qi, X. Billm: Pushing the limit
of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

Jain, A. and Lin, C. Back to the future: Leveraging be-
lady’s algorithm for improved cache replacement. ACM
SIGARCH Computer Architecture News, 44(3):78–89,
2016.

Jhang, C.-J., Xue, C.-X., Hung, J.-M., Chang, F.-C., and
Chang, M.-F. Challenges and trends of sram-based
computing-in-memory for ai edge devices. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 68:
1773–1786, 2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kuzmin, A., Nagel, M., Van Baalen, M., Behboodi, A., and
Blankevoort, T. Pruning vs quantization: Which is better?
Advances in neural information processing systems, 36:
62414–62427, 2023.

Kuzmin, A., Nagel, M., Van Baalen, M., Behboodi, A., and
Blankevoort, T. Pruning vs quantization: which is better?
Advances in neural information processing systems, 36,
2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving

https://www.counterpointresearch.com/insights/smartphones-dram-trends-2019-2020
https://www.counterpointresearch.com/insights/smartphones-dram-trends-2019-2020
https://www.counterpointresearch.com/insights/smartphones-dram-trends-2019-2020
https://robots.net/tech/how-much-ram-should-a-phone-have
https://robots.net/tech/how-much-ram-should-a-phone-have
https://doi.org/10.5281/zenodo.15088634
https://doi.org/10.5281/zenodo.15088634
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://www.yolegroup.com/technology-outlook/smartphone-memory-gen-ai-upgrades-to-drive-spike-in-dram-demand
https://www.yolegroup.com/technology-outlook/smartphone-memory-gen-ai-upgrades-to-drive-spike-in-dram-demand
https://www.yolegroup.com/technology-outlook/smartphone-memory-gen-ai-upgrades-to-drive-spike-in-dram-demand
https://www.yolegroup.com/technology-outlook/smartphone-memory-gen-ai-upgrades-to-drive-spike-in-dram-demand

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Labaran, A. Apple nvme vs ufs 4.0 storage, 2023.
URL https://www.allroundreview.com/
practical-differences-between-the-
apple-nvme-vs-ufs-40-storage.

Lee, J.-Y., Lee, D., Zhang, G., Tiwari, M., and Mirhoseini,
A. Cats: Contextually-aware thresholding for sparsity in
large language models. arXiv preprint arXiv:2404.08763,
2024.

Liu, W., Cui, J., Li, T., Liu, J., and Yang, L. T. A space-
efficient fair cache scheme based on machine learning
for nvme ssds. IEEE Transactions on Parallel and Dis-
tributed Systems, 34(1):383–399, 2022.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. Journal of the ACM (JACM), 68
(4):1–25, 2021.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Mirzadeh, I., Alizadeh, K., Mehta, S., Del Mundo, C. C.,
Tuzel, O., Samei, G., Rastegari, M., and Farajtabar,
M. Relu strikes back: Exploiting activation sparsity in
large language models. arXiv preprint arXiv:2310.04564,
2023.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., Van Baalen, M., and Blankevoort, T. A white pa-
per on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S.,
Usman, M., Akhtar, N., Barnes, N., and Mian, A. A
comprehensive overview of large language models. arXiv
preprint arXiv:2307.06435, 2023.

Roumeliotis, K., Tselikas, N., and Nasiopoulos, D. Llama
2: Early adopters’ utilization of meta’s new open-source
pretrained model. preprints2023 2023072 142. Eng.).
DOI, 10, 2023.

Sadek, K. A. A. and Elias, M. Algorithms for caching and
mts with reduced number of predictions. In The Twelfth
International Conference on Learning Representations,
2024.

Shah, I., Jain, A., and Lin, C. Effective mimicry of belady’s
min policy. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp.
558–572. IEEE, 2022.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves,
J. R., Hestness, J., and Dey, N. SlimPajama: A
627B token cleaned and deduplicated version of
RedPajama. https://cerebras.ai/blog/
slimpajama-a-627b-token-cleaned-and-
deduplicated-version-of-redpajama,
June 2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Song, C., Han, X., Zhang, Z., Hu, S., Shi, X., Li, K., Chen,
C., Liu, Z., Li, G., Yang, T., et al. Prosparse: Intro-
ducing and enhancing intrinsic activation sparsity within
large language models. arXiv preprint arXiv:2402.13516,
2024a.

Song, Y., Mi, Z., Xie, H., and Chen, H. Powerinfer: Fast
large language model serving with a consumer-grade gpu.
arXiv preprint arXiv:2312.12456, 2023.

Song, Y., Xie, H., Zhang, Z., Wen, B., Ma, L., Mi, Z.,
and Chen, H. Turbo sparse: Achieving llm sota perfor-
mance with minimal activated parameters. arXiv preprint
arXiv:2406.05955, 2024b.

SparseLLM, M. Sparse language models with relu activa-
tions. https://huggingface.co/SparseLLM/
ReluLLaMA-7B, 2023. Blogpost.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

van Baalen, M., Kuzmin, A., Nagel, M., Couperus, P., Bas-
toul, C., Mahurin, E., Blankevoort, T., and Whatmough,
P. Gptvq: The blessing of dimensionality for llm quanti-
zation. arXiv preprint arXiv:2402.15319, 2024.

van der Ouderaa, T. F., Nagel, M., Van Baalen, M., Asano,
Y. M., and Blankevoort, T. The llm surgeon. arXiv
preprint arXiv:2312.17244, 2023.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S.,
Ren, W., Arulraj, A., He, X., Jiang, Z., et al. Mmlu-pro:
A more robust and challenging multi-task language un-
derstanding benchmark. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024.

Wikipedia. Apple silicon — Wikipedia, the
free encyclopedia, 2024a. URL https:
//en.wikipedia.org/w/index.php?title=
Apple_silicon&oldid=1250932871. [Online;
accessed 14-October-2024].

https://www.allroundreview.com/practical-differences-between-the-apple-nvme-vs-ufs-40-storage
https://www.allroundreview.com/practical-differences-between-the-apple-nvme-vs-ufs-40-storage
https://www.allroundreview.com/practical-differences-between-the-apple-nvme-vs-ufs-40-storage
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/SparseLLM/ReluLLaMA-7B
https://huggingface.co/SparseLLM/ReluLLaMA-7B
https://en.wikipedia.org/w/index.php?title=Apple_silicon&oldid=1250932871
https://en.wikipedia.org/w/index.php?title=Apple_silicon&oldid=1250932871
https://en.wikipedia.org/w/index.php?title=Apple_silicon&oldid=1250932871

Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Wikipedia. List of qualcomm snapdragon systems on chips
— Wikipedia, the free encyclopedia, 2024b. URL https:
//en.wikipedia.org/w/index.php?title=
List_of_Qualcomm_Snapdragon_systems_
on_chips&oldid=1250680585. [Online; accessed
15-October-2024].

Wikipedia. Flash memory — Wikipedia, the free encyclo-
pedia, 2024. URL https://en.wikipedia.org/
w/index.php?title=Flash_memory&oldid=
1251065401. [Online; accessed 31-October-2024].

Xue, Z., Song, Y., Mi, Z., Chen, L., Xia, Y., and Chen, H.
Powerinfer-2: Fast large language model inference on a
smartphone. arXiv preprint arXiv:2406.06282, 2024.

Zhang, S. and Papyan, V. Oats: Outlier-aware pruning
through sparse and low rank decomposition. arXiv
preprint arXiv:2409.13652, 2024.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

https://en.wikipedia.org/w/index.php?title=List_of_Qualcomm_Snapdragon_systems_on_chips&oldid=1250680585
https://en.wikipedia.org/w/index.php?title=List_of_Qualcomm_Snapdragon_systems_on_chips&oldid=1250680585
https://en.wikipedia.org/w/index.php?title=List_of_Qualcomm_Snapdragon_systems_on_chips&oldid=1250680585
https://en.wikipedia.org/w/index.php?title=List_of_Qualcomm_Snapdragon_systems_on_chips&oldid=1250680585
https://en.wikipedia.org/w/index.php?title=Flash_memory&oldid=1251065401
https://en.wikipedia.org/w/index.php?title=Flash_memory&oldid=1251065401
https://en.wikipedia.org/w/index.php?title=Flash_memory&oldid=1251065401

