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ABSTRACT

Beyond perception, reasoning is crucial in remote sensing, enabling advanced in-
terpretation, inference, and decision-making. Recent advances in large language
models (LLMs) have given rise to tool-augmented agents that enhance reasoning
by leveraging external tools for complex analytical tasks. However, existing re-
search on these agents in remote sensing largely focuses on perception-oriented
tasks, with cognitive geospatial reasoning remaining underexplored. In this
work, we systematically evaluate the geospatial reasoning capabilities of LLM-
powered tool-augmented agents. To this end, we introduce GeoHOP, a bench-
mark for hierarchical geospatial reasoning. GeoHOP comprises 417 scenario-
driven, hierarchy-aware tasks—such as hazard vulnerability assessment, urban
heat island analysis, and forest fragmentation dynamics—spanning optical, Syn-
thetic Aperture Radar (SAR), and infrared (IR) imagery. GeoHOP advances evalu-
ation beyond monitoring-based recognition to cognitive-level geospatial analysis.
Building upon GeoHOP, we propose GeoPlanner, an agent powered by LLMs
that organizes 5 toolkits into functional hierarchies and executes fault-tolerant rea-
soning pipelines. GeoPlanner enables structured abstraction, robust recovery from
tool failures, and stable long-horizon planning. Extensive experiments across di-
verse geospatial reasoning tasks demonstrate that GeoPlanner excels in hierarchi-
cal reasoning, cross-modal transfer, and error handling.

1 INTRODUCTION

Large language models (LLMs), empowered by generative pretraining and instruction tuning, have
substantially advanced zero-shot task completion across diverse applications (Yang et al., 2024;
Zhou et al., 2024). Building on this progress, LLM-driven agents can decompose goals into sub-
tasks and orchestrate external tools, enabling robust multi-step workflows (Zhao et al., 2024; Li,
2025). However, as tasks demand increasingly granular understanding—particularly in remote sens-
ing (RS) scenarios—these general-domain agents encounter substantial limitations. Their perfor-
mance degradation stems from RS-specific challenges, including heterogeneity across modalities
(optical, Synthetic Aperture Radar (SAR), infrared) and extensive variation in object size, scale, and
orientation across diverse landscapes worldwide.

To address these challenges, researchers have begun adapting LLMs to RS through tool-augmented
agents. Examples include Remote Sensing ChatGPT(Guo et al., 2024), RS-Agent(Xu et al., 2024),
GeoLLM-Engine(Singh et al., 2024), Change-Agent(Liu et al., 2024a), Tree-GPT(Du et al., 2023).
While effective for perception-oriented tasks like classification, localization, counting, and visual
question answering, these approaches remain confined to visual perception. They fall short of ad-
dressing the cognitively demanding reasoning needed in realistic geospatial applications.

Beyond perception, reasoning is crucial for informed decision-making and advanced scene inter-
pretation in Earth observation. For instance, geospatial reasoning enables identifying buildings in
proximity to water bodies for flood-risk screening (Oubennaceur et al., 2019), quantifying the pro-
portion of cropland adjacent to water sources for irrigation assessment (Fu et al., 2022), or detecting
barren patches that are fully enclosed by forest to identify internal clearings requiring ecological
stabilization (Hansen et al., 2009). These scenarios underscore the need for reasoning capabilities
that extend beyond perception, requiring models to reason over complex spatial relationships and
execute multi-step analytical workflows.
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Despite recent efforts, systematic evaluation of geospatial reasoning in LLM-driven agents remains
limited. For instance, ThinkGeo(Shabbir et al., 2025) introduces a benchmark for geospatial reason-
ing, but its scope is confined to optical imagery, leaving multi-modal reasoning underexplored. To
bridge this gap, we introduce GeoHOP, a benchmark explicitly designed for cognitive-level geospa-
tial reasoning across multiple modalities. GeoHOP consists of 417 scenario-driven, hierarchy-aware
tasks spanning multiple modalities—including optical, SAR, and infrared imagery—and encom-
passing complex planning scenarios such as hazard risk estimation, urban heat island analysis, and
ecosystem fragmentation detection. This benchmark enables rigorous evaluation across perception,
geospatial reasoning, and advanced decision-making.

Building on GeoHOP, we further propose GeoPlanner, an LLM-driven agent that organizes an-
alytic tools into functional hierarchies and executes fault-tolerant reasoning pipelines. GeoPlanner
facilitates structured abstraction, dynamic workflow tracking, and robust recovery from intermediate
failures, enabling cognitive reasoning in complex geospatial tasks.

Our main contributions are summarized as follows:

• We present GeoHOP, the first benchmark for geospatial reasoning, comprising 417 tasks across
optical, SAR, and infrared modalities.

• We propose GeoPlanner, an agentic framework that enables cognitive reasoning with hierarchical
planning, robust error handling, and support for multi-modal RS scenarios.

• We establish new baselines by comprehensively evaluating state-of-the-art LLMs on GeoHOP,
revealing both their strengths and limitations in cognitively demanding geospatial reasoning.

2 RELATED WORK

The extension of LLMs to RS has attracted growing interest, giving rise to a range of approaches en-
compassing interactive assistants, domain-specific frameworks, modular toolchains, and foundation-
model paradigms. Early works primarily target specialized tasks: for example, TreeGPT (Du et al.,
2023) addresses forestry applications via individual tree segmentation and ecological parameter ex-
traction, while Change-Agent (Liu et al., 2024a) supports change detection and captioning, enabling
interactive interpretation of changed regions.

Recent efforts aim to create more general-purpose RS agents. Remote Sensing ChatGPT (Guo et al.,
2024) integrates ChatGPT (Brown et al., 2020) with pretrained RS networks to handle a range of
perception-oriented tasks. RS-Agent (Xu et al., 2024) expands the task spectrum via scalable tool
integration, handling workflows that require specialized domain expertise. In parallel, GeoLLM-
Engine (Singh et al., 2024) leverages fully operational APIs with dynamic map and web interfaces
to execute geospatial tasks, while UnivEARTH (Kao et al., 2025) curates domain-grounded QA
tasks from NASA Earth Observatory articles to evaluate the ability of LLMs to generate executable
Earth Engine code.

Despite these advances, existing frameworks often lack planning transparency and fine-grained step-
level reasoning. To date, ThinkGeo (Shabbir et al., 2025) is the only work that introduces step-wise
evaluation protocols for perception, planning, and geospatial reasoning. However, its coverage is
restricted to optical imagery, with no support for additional modalities such as SAR and limited
handling of specialized geospatial operations.

3 GEOHOP DATASET

We propose GeoHOP, a benchmark designed to assess the geospatial reasoning capabilities of tool-
augmented agents powered by LLMs. GeoHOP integrates diverse imagery from optical, SAR,
and infrared modalities with expert-curated knowledge and tool-augmented query pipelines, yield-
ing 417 high-quality instances. Each instance couples real-world imagery with structured, multi-
step reasoning challenges that require both low-level perception (e.g., segmentation, detection) and
high-level decision-making (e.g., urban planning, disaster assessment). Unlike prior remote sens-
ing benchmarks that focus narrowly on perception (e.g., classification or detection), GeoHOP em-
phasizes end-to-end reasoning, from perception through spatial analysis to actionable conclusions,
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Planning Procedure Tools Implementation Procedure

Plan 1:
Tools Sequence:

BUFFER->Segmentation

Plan 2:

Thoughts: I need to try to get 
perception results. 

Tools Sequence:
Detection->BUFFER->Area Measurement

     Reasoning Query Answer

Detection found 6 relevant objects, and 6 
m buffers around car clusters produced 4 
zones totaling 586.87 m². Overlap analysis 
showed that all tree canopy polygons (2/2) 
intersect these buffers,  According to the 
Land Cover Classification System , this 
full intersection indicates reduced heat 
exposure compared to unshaded segments.

4 harbors.  6 objects were detected; 2 
bridge footprints overlapped the riparian 
buffer (≈66.7%), within an AOI of ~5,898 
m² (density ≈1.70/ha). According to the 
Ramsar Wetland Convention，buffer 
encroachment indicates a clear risk of 
hydrological disruption .

The detector identified 3 small infrared 
targets in the full frame. None of these 
candidates fell within the lower-half area 
of interest (AOI area ≈ 2,949.12 m²),  
hectare. In line with  infrared search-
and-rescue protocols, the absence of 
localized IR hotspots in this AOI indicates 
no isolated risk signals.

Plan 1:
Tools Sequence:

BUFFER->Detection

Plan 2:

Thoughts: SAR do not provide GSD 
Value in query

Tools Sequence:
SARDetection->Object_count_aoi

Count：4

Plan 1:
Tools Sequence:

count_aoi->Detection

Plan 2:

Thoughts: no validation values in 
count_aoi tool

Tools Sequence:
IRDetection->Object_count_aoi

Evaluate  roads ide  shade 
adequacy by measuring the 
share of tree-covered area 
intersecting 6 m proximity 
zones around identified car 
clusters along the central 
corridor, discussing likely 
heat exposure for parked 
users (GSD = 0.05 m/px)

How many detected harbors 
encroach on the r ipa r ia n 
spatial proximity adjacent to 
bridge in this SAR scene?

How many small targets are 
detected within the lower 
ha lf  of the IR scene to 
assess  g round-corr idor 
activity concentration during 
wide-area surveillance?

H o w  m a n y  b u i l d i n g s  a r e 
located within 50 m of water 
bodies ,  to assess setback 
compliance near the pond-
adjacent development? (GSD = 
0.3 m/px)

Plan 1:
Tools Sequence:

count_aoi -> buffer->detection

Thoughts: No Valide Geometrics 

Tools Sequence:
Detection->BUFFER->Count_aoi

Detection found 6 relevant objects, and 6 m 
buffers around car clusters produced 4 zones 
totaling 586.87 m². Overlap analysis showed 
that all tree canopy polygons (2/2) intersect 
these buffers,  yielding 100%  coverage. 
Accord ing  to  i nternat iona l  land-cover 
standards, this full intersection indicates 
reduced heat exposure compared to unshaded 
segments.

Detection identified 24,278.27 m² of barren land 
within the 50 m riparian buffer. Overlap analysis 
confirmed that barren polygons encroach into this 
buffer, yielding a total affected area of 24,278.27 
m². According to the Global Forest Resources 
Assessment guidelines, this degree of encroachment 
indicates elevated sediment inflow risk .

No forest patches were found to be fully enclosed by 
barren land (containment_percentage = 0.0%). While 
those with >90% non-forest enclosure are treated as 
isolated. According to the  Habitat Connectivity 
Standard, since no patch met these thresholds, 
fragmentation exists but not as total isolation.

What is the total area of 
barren that lies within 50 
m of water, to prioritize 
e r o s i o n  c o n t r o l  n e a r 
waterways? (GSD = 0.3 
m/px)

Plan 1:

Thoughts: No Valid Perception results 

Tools Sequence:
Segmentation->buffer->Aremeasurement

Are forest patches fully 
enclosed by barren land 
t o  e v a l u a t e  h a b i t a t 
isolation in a fragmented 
landscape? (GSD = 0.3 
m/px)

Plan 1:

Thoughts: Tools(True)

Dialogue:Display Results

Plan 2:

Plan 2:

Tools Sequence:
   Segmentation->containment

Tools Sequence:
Segmentation->area measurent->buffer

Figure 1: Representative samples from the GeoHOP benchmark.

thereby providing a rigorous testbed for agents. Figure 1 illustrates three representative samples
from the GeoHOP benchmark.

3.1 GEOSPATIAL REASONING SCENARIOS

A central challenge in RS is bridging the gap between low-level perceptual outputs and the high-
level intelligence required for real-world decision-making. To address this, we adopt a structured
taxonomy of geospatial reasoning tasks, systematically organized into seven primary domains (see
Table 1).

3.2 DATA CONSTRUCTION PIPELINE

We construct GeoHOP with a two-stage pipeline (see Figure 2) that combines diverse source im-
agery, knowledge-augmented scenario generation, and multi-pass expert adjudication to produce
417 validated instances. The source datasets used in this pipeline are summarized in Table 2.

Stage 1: Knowledge-augmented scenario generation. We obtain a stratified sample of source
imagery (by modality and scene type) and apply explicit hardness controls to select cases that require
multi-tool reasoning and compositional spatial relations (e.g., proximity, containment, topology).
Candidate queries and tool-chains are generated with ChatGPT-5 via in-context learning: prompts
are modality-specific and seeded with expert-authored exemplars.

To ground generation in domain knowledge, we inject a compact knowledge corpus into prompts.
The corpus covers four guidance categories: (i) urban greening and heat-mitigation frameworks
(Twohig-Bennett & Jones, 2018; Bowler et al., 2010; Aram et al., 2019; Norton et al., 2015; Rigolon,
2016); (ii) international land-cover standards (Di Gregorio & Jansen, 1998; Mosca et al., 2020); (iii)
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Domain Tasks
Urban Planning Urban morphology analysis; impervious surface quantification;

green space accessibility; canopy coverage analysis
Disaster Assessment Ecosystem connectivity (forest fragmentation); vegetative buffer

delineation; land stability risk mapping
Environmental Monitoring Land-use composition (agricultural intensity); agro-forestry in-

terface mapping; ecological mosaic detection
Transportation Analysis Infrastructure–ecosystem conflict detection; corridor impact as-

sessment
Aviation Monitoring Restricted airspace monitoring; multi-target intrusion detection;

security violation flagging
Maritime Monitoring Maritime anomaly detection; small-target tracking; search-and-

rescue prioritization
Industrial Sites Critical infrastructure localization; proximity-based risk assess-

ment; diameter/area measurement; spatial relation mapping

Table 1: Domain–Task Matrix of GeoHOP, showing 7 primary domains and their associated reason-
ing tasks.

LLMSampling Source Imagery
Explicit Hardness Control

      Stage1:knowledge-Augmented Scenario Generation 

Spatial-Reasoning

Stage2:Expert adjudication and refinement

Modality-Specific
 Prompts

Expert-Authored 
Exemplars

Domain Knowledge

Tool-Sequence Coherence Holistic refinement

…

Semantic Integrity

  

Output

Figure 2: Pipeline for constructing the GeoHOP benchmark.

Name Annotation Type Resolution Modality
LoveDA (Wang et al., 2021) Masks 0.3 m/px Optical
ISPRS Potsdam (Song & Kim, 2020) Masks 0.05 m/px Optical
OGSOD (Li et al., 2025) Bounding boxes & Scene label 1–3 m/px SAR
DMIST (Chen et al., 2024) Masks & Bounding boxes - IR

Table 2: Datasets used as image sources in the GeoHOP benchmark.

aviation and maritime search-and-rescue doctrine for IR small-target tasks (Kim et al., 2020); and
(iv) industrial safety rules for separation and proximity of hazardous assets (Ricci et al., 2021; Kuk-
fisz et al., 2022). These anchors force the ChatGPT-5 to produce quantitative thresholds (distances,
areas, class compositions) consistent with established frameworks. We also enforce operator legality
checks (including ground distance sampling (GSD)-aware units) to prevent invalid tool sequences.

Stage 2: Expert adjudication and refinement. All generated candidates undergo a hierarchical,
three-pass review by a panel of eight remote-sensing experts. Reviewers apply an auditable rubric
that scores (1) semantic integrity — whether the query is meaningful and relevant; (2) tool-sequence
coherence — whether the proposed tool-chain and parameters are logically consistent and GSD-
aware; and (3) holistic refinement — correction of ambiguous phrasing, geometry errors, or minor
inconsistencies. Every edit is recorded in a curation interface to preserve an audit trail.

4
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Item All Optical SAR IR
Total queries 417 252 119 42
Total tool calls 1255 811 358 86
2/3/4-tools use 67/275/74 22/157/74 2/118/0 43/0/0
Maximum question length 283 279 193 283
Minimum question length 97 101 97 130
Average question length 138 136 129 176

Table 3: Statistics of GeoHOP across modalities (Optical, SAR, and IR).

Semantic Retrieval

Toolkits

Execution-time Selection
Error-aware ReplanningAbstract Plan Generation Verifiable Answer Synthesis

……

According to the semantic score 
mapping table, we employ three 
t o o l s  a c r o s s  t h e  t h r e e 
moda l i t ies ,  name ly  Opt ica l 
segmentation → spatial buffer 
→ spatial overlap analysis, to 
systemat ica l ly  answer  th is 
question.

Query/Image

Filtered to the 3 most relevant tools 
based on query contents.
Perception: Optical segmentation,
Spatial_Relations: buffer,
Spatial_Relations: overlap,
 Ready for semantic Mapping.

100%. At 0.3 m GSD, two water 
polygons and one barren polygon 
were detected; a 30 m barren 
b u f f e r  ( ≈94 ,372  m² )  f u l l y 
enclosed the water area. According 
t o  i n t e r n at i o n a l  l an d  c o v e r 
standards ,  30–50 m r i par i an 
buffers shou ld be preserved 
around water bodies; their absence 
here classifies the area as a High 
So i l  Eros i o n  R i sk  Zone ,  w i th 
heightened sedimentation and 
water-quality risks.

Scenario setting

T h e  p l a n n e d  t o o l - c h a i n 
executed outputs  without 
requ ir ing subst i tut ion or 
replanning.

What percentage of water area 
l ies  w ith in  30 m  of  barren 
zones, to target erosion control 
near exposed surfaces? (GSD = 
0.3 m/px)

Geospatial Reasoning Query

 Query Image

Figure 3: End-to-end workflow of the GeoPlanner Agent.

3.3 BENCHMARK STATISTICS

GeoHOP contains 417 queries across optical, SAR, and IR modalities. In total, 12 tools are invoked
1,255 times, with most queries requiring multi-tool composition. Query lengths range from short
factual questions to complex compositional ones, demonstrating both diversity and reasoning depth.
Detailed statistics are reported in Table 3.

Each reasoning task in GeoHOP is instantiated as a distinct scene context type, characterized by
three components: (i) a SPATIAL TRIGGER (quantitative thresholds or topological relations), (ii) an
EXPERT INTERPRETATION (domain-grounded semantics), and (iii) a VERIFIABLE TOOL-CHAIN.
This hierarchical design bridges perception and cognition, offering structured priors and explicit
multi-step pathways while ensuring interpretability and verifiability. By covering both canonical
and high-complexity reasoning scenarios, GeoHOP provides rigorous testbeds for evaluating di-
verse agentic capabilities, including fine-grained spatial understanding, multi-step tool composition,
quantitative analysis, and context-aware risk assessment.

4 THE GEOPLANNER AGENT

We propose GeoPlanner, an agent tailored for cognitively demanding geospatial reasoning in RS.
GeoPlanner’s LLM controller orchestrates an end-to-end workflow (see Figure 3): (i) semantic re-
trieval of a task-relevant toolset from a hierarchical, typed tool library; (ii) abstract, modality-aware
plan generation over the retrieved tools; (iii) execution-time operator selection and parameterization
with error-aware adaptation (within-toolkit substitution and prefix-preserving replanning); and (iv)
verifiable answer synthesis strictly from structured tool outputs.

GeoPlanner extends the toolkit paradigm (Liu et al., 2024b) and agent framework (Fallahpour et al.,
2025) to geospatial analysis by replacing flat tool sets with a multi-level, domain-specific hierarchy
that incorporates typed I/O and geospatial constraints, thereby enabling reliable, modality-aware rea-
soning across optical, SAR, and IR data. GeoPlanner is explicitly designed to meet four RS-specific
requirements: (1) modality awareness enforced in both retrieval and composition; (2) hierarchical

5
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abstraction with typed operators plus spatial unit checks and legality constraints; (3) fault tolerance
via within-toolkit substitution and prefix-preserving replanning with structured error context; and
(4) verifiable grounding, validating spatial outputs (e.g., geometry validity), computing all quanti-
tative results with tools, and having the LLM synthesize interpretable, context-aware analyses by
integrating validated tool I/O with pre-encoded scenario knowledge.

4.1 SEMANTIC RETRIEVAL OVER A HIERARCHICAL, TYPED TOOL LIBRARY

We organize all tools into a multi-level hierarchy H with five top-level toolkits: (1) Perception (Op-
tical segmentation, Optical detection, Optical classification), (2) Spatial-Relations (buffer, overlap,
containment), (3) Spatial-Statistics (distance calculation, area measurement, object counting), (4)
SAR Tools (SAR detection, SAR classification), and (5) IR Tools (IR detection). Each operator
advertises (i) typed I/O (e.g., vector geometries, rasters, masks, bounding boxes), (ii) spatial unit
requirements, and (iii) legality constraints, and is annotated with modality tags.

Given a natural-language query Q, a semantic retriever R aligns Q with textual tool descriptors in
H using sentence-transformer embeddings (Reimers & Gurevych, 2019) to induce a candidate set:

Ccandidate = R(Q,H).

This step reduces the planning search space, enforces modality consistency, and prevents invalid
compositions at the outset.

Integration of external expert models. GeoPlanner grounds high-level plans in verifiable
computations by integrating state-of-the-art open-source models into the hierarchy: Remote-
SAM (Yao et al., 2025) (Perception), a unified optical segmentation/detection/classification model
trained on 297 categories with fine-grained attributes; SARATR-X (Li et al., 2025; 2024) (SAR
Tools), a foundation model for SAR detection/classification pretrained on 180K samples; and
DMIST/LASNet (Chen et al., 2024) (IR Tools) for infrared detection. Together with Spatial-
Relations and Spatial-Statistics operators, these expert tools form GeoPlanner’s operational back-
bone, ensuring reproducibility and scalability.

4.2 ABSTRACT PLAN GENERATION OVER THE RETRIEVED TOOLSET

Conditioned on desc(Ccandidate), the planner ρθ (few-shot prompted with task-decomposition instruc-
tions and a constrained action schema) produces a multi-step abstract plan

P ∼ ρθ(Q, desc(Ccandidate)) .

Each step binds to an operator family in Ccandidate, declares expected I/O types and units, and de-
fers parameterization (e.g., buffer distances, class labels, thresholds) to execution. This yields a
modality-aware blueprint that preserves semantic validity while retaining flexibility for data-driven
parameter selection.

4.3 EXECUTION-TIME SELECTION & ERROR-AWARE REPLANNING

During execution, the controller instantiates each abstract step by selecting a concrete operator t,
binding arguments, and validating explicit success signals (e.g., non-empty geometries/masks and
numeric stability). Failures are treated as informative signals and handled via two strategies:

(1) Within-toolkit substitution. GeoPlanner first selects a functionally similar alternative t′ inside
the same toolkit to preserve the abstract workflow P with minimal disruption (e.g., switching from
overlap to containment within Spatial-Relations).

(2) Prefix-preserving replanning (error-aware). If local substitution fails, the validated prefix of
P is retained, while a structured error context E (failed operator, arguments, logs, and validated
intermediates) is injected into retrieval. A refreshed set C(Q,E) supports regeneration of the failing
suffix. A step succeeds if any candidate succeeds (

⋃
t∈C(Q,E) succt); total failure occurs only when

all fail (
⋂

t∈C(Q,E) failt). Retries are capped to bound cost, yielding a budget-conscious controller
that preserves progress under adverse conditions.

6
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4.4 VERIFIABLE ANSWER SYNTHESIS

GeoPlanner synthesizes the final answer strictly from validated tool outputs: (i) all numeric val-
ues (counts, areas, distances, proportions) are computed by operators with explicit spatial units; (ii)
aggregations include provenance (modality, operator names) and spatial unit conversions when nec-
essary; and (iii) the LLM only provides natural-language contextualization. This separation reduces
hallucination risk and improves transparency and reproducibility.

5 EXPERIMENT

To evaluate the reasoning and tool-use capabilities of GeoPlanner under real-world RS scenarios,
we conduct comprehensive evaluations on the GeoHOP benchmark. As the controller in Geo-
Planner is powered by LLMs, we evaluate a diverse set of frontier and open-source models: GPT-
3.5 (Ouyang et al., 2022), GPT-4-1106-Preview (Achiam et al., 2023), GPT-4o (Hurst et al., 2024),
Claude-4 (Anthropic, 2024), Gemini-2.5-flash (Team et al., 2023), DeepSeek-V3 (Bi et al., 2024),
and Qwen2.5 (72B and 32B Instruct) (Team, 2024). All experiments are conducted on an NVIDIA
A5000 GPU within the OpenCompass evaluation platform.

5.1 EVALUATION STRATEGY

We follow the ReAct-style (Yao et al., 2023) evaluation protocol, which includes both step-by-
step and end-to-end modes. These protocols define how tool-augmented reasoning is assessed, and
our evaluation criteria remain fully consistent with ReAct, ensuring comparability across different
agents. In our framework, GeoPlanner orchestrates the workflow of tool invocations, which comple-
ments rather than contradicts the ReAct protocol by providing structured execution while adhering
to its evaluation standards.

Unlike GTA (Wang et al., 2024), which computes final answer accuracy (AnsAcc) through deter-
ministic string matching, we argue this approach is insufficient for GeoHOP’s complex reasoning
scenarios. String matching is brittle to minor lexical variations and may misclassify semantically
correct but differently phrased predictions. This issue is particularly problematic in GeoPlanner,
where final answers synthesize information from query semantics, tool inputs/outputs, and scenario
knowledge rather than matching a single canonical string.

Additionally, argument consistency (ArgAcc) in GeoHOP fundamentally relates to the agent’s abil-
ity to correctly propagate arguments across multi-step tool chains. Pure string-level comparison
cannot adequately capture semantic equivalence between valid arguments (e.g., polygon references,
buffered geometries, or object lists).

To address these limitations, we adopt LLM-as-a-judge for both AnsAcc and ArgAcc evaluation.
For each query, we construct curated evaluation prompts and employ GPT-4o-mini as an automatic
judge to assess whether predicted results and arguments are semantically consistent with ground
truth. This approach provides a more reliable and context-aware measure of success in GeoHOP,
aligning evaluation with the hierarchical, multi-fact reasoning required by real-world geospatial
tasks while maintaining compatibility with the GTA evaluation framework.

5.2 MAIN RESULTS

We conduct experiments on the GeoHOP benchmark to comprehensively evaluate reasoning and
tool-use abilities in real RS tasks. Unlike prior efforts relying on synthetic prompts or shallow tool
interactions, GeoHOP introduces multimodal, scenario-driven tasks that compel agents to invoke
multiple toolkits spanning perception, spatial analysis, SAR, and IR. These tasks are grounded in
satellite and aerial imagery, requiring models to exhibit hierarchical reasoning and quantitative
precision during multi-step execution, enabling systematic evaluation of cognitive-level geospatial
reasoning.

Table 4 reports step-by-step (Inst., Tool., Arg., Summ.) and end-to-end (Ans.) performance on Geo-
HOP. Figure 4 presents example answers generated by different models for a single query. GPT-4o
attains the highest end-to-end accuracy and leads in instruction understanding, tool selection, and
summary accuracy. Claude 4 is a close second and achieves the strongest argument consistency,

7
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Model Step-by-Step Metrics End-to-End Metrics
Inst. Tool. Arg. Summ. Ans.

GPT-4o 89.52 52.32 6.52 14.78 15.65
Claude 4 71.42 41.49 7.61 14.39 15.11
GPT-4-1106 Preview 57.33 34.35 4.38 7.19 7.91
Gemini-2.5-flash 24.10 13.60 1.60 4.30 4.80
DeepSeek-V3 18.60 10.90 0.70 3.60 3.80
Qwen2.5-72B-Instruct 19.10 12.30 2.40 3.60 3.60
Qwen2.5-32B-Instruct 17.40 10.30 1.60 2.60 2.90
GPT-3.5 9.90 2.00 0.30 2.60 2.90

Table 4: Evaluation results across models in GeoPlanner on the GeoHOP benchmark. Models are
sorted by end-to-end performance (Ans.: final answer accuracy). The table reports step-by-step ex-
ecution metrics (Inst.: instruction understanding, Tool.: tool selection, Arg.: argument consistency,
Summ.: summary accuracy) and the final answer accuracy.

15 cars were detected within the 7 m tree canopy buffer (0.05 m/px, 0.7 threshold), with ~140 m² per canopy segment. Current shade coverage is 21%, 
below the recommended 40–60%, indicating a need for additional tree planting.

 15. cars.Detected 15 cars and multiple tree canopies, and applied a 7 m buffer to the canopies at 0.05 m/px resolution. Spatial overlay analysis showed that 
the actual number of vehicles within the buffer was 0 (0.0 vehicles/ha), indicating almost no overlap between vehicle positions and shaded areas.

8 Cars.At a spatial resolution of 0.05 m/px, object detection was performed to identify vehicles and tree canopy structures. The detected canopy polygons 
were subsequently buffered by 7.0 meters to approximate effective roadside shading zones.suggesting that the availability of shaded parking spaces along 
the road is limited. This pattern is typical in high-density urban environments with scarce green spaces

4o

Claude
4

GPT-4-
1106

Gemini-
2.5

Deepse
ek-V3

Qwen2.5-
72B-

Instruct

Qwen2.5-
32B-

Instruct

3.5

7 trees. Using spatial analysis at 0.05 m/px resolution, detection and buffer operations were applied with a 7 m distance, followed by object_count_aoi 
analysis. The final output reported 7 tree canopies instead of cars, indicating a task deviation where the model focused on counting trees rather than 
vehicles within the buffer.

Detected cars and trees at 0.05 m/px resolution with a confidence threshold of 0.6. Counted a total of 15 vehicles from the detection results.

7 trees. At 0.05 m/px resolution, the model performed detection and applied a 7 m buffer, followed by object_count_aoi analysis. However, the final result 
reported 7 tree canopies rather than cars, showing a task mismatch where the model counted trees instead of identifying vehicles within the buffer zone.

Zero.Using spatial tools at 0.05 m/px resolution,  first invoked distance_calculation and produced multiple point-to-point distances (4.9–49.2 m) unrelated to 
the query. It then attempted object_count_aoi, which returned zero values,

15 cars. Detection at 0.05 m/px resolution with a 0.7 confidence threshold found 15 vehicles within the 7 m canopy buffer, covering about 140 m² per 
canopy segment. The measured shade coverage of 21% is below the 40–60% target

Answers:At 0.05 m/px, 8 cars were found within a 7 m tree canopy buffer (≈2,454.67 m²), indicating localized roadside shade availability. These 
results align with urban forestry objectives to reduce heat exposure in transportation corridors and highlight the need for infill planting where 
coverage is discontinuous.

GeoHOP:

GSD:(0.05 m/px）

Figure 4: Comparative Evaluation of LLMs on Spatial Reasoning Tasks.

but lags GPT-4o on Inst./Tool. GPT-4-1106 Preview forms a mid-tier baseline. Gemini-2.5-flash
and DeepSeek-V3 trail further, while Qwen2.5-72B/32B-Instruct and GPT-3.5 exhibit poor in-
struction adherence and fragile tool formatting. Across models, argument consistency is the dom-
inant bottleneck, and weaker tool selection strongly correlates with degraded end-to-end accuracy.
Even for top models, absolute scores remain modest, underscoring the difficulty of robust geospatial
reasoning and faithful summary generation on GeoHOP. As shown in Figure 4, the figure presents
the comparative evaluation of multiple LLMs on the GeoHOP benchmark. GPT-4o performed the
best among the evaluated models, yet the results highlight that even state-of-the-art models like
GPT-4o are not fully “intelligent” when compared with the ground truth. For example, they often
lack higher-level reasoning such as “These results align with urban forestry objectives to reduce
heat exposure in transportation corridors”, which is explicitly included in the ground truth.

5.3 TASK ANALYSIS

Across models, we observe clear differences in task completion and execution dynamics (Figures 5
and 6). In Figure 5, API-based models—notably GPT-4o and GPT-4-1106 Preview—complete
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the largest number of tasks with comparatively few failures, whereas open-source models such as
Qwen2.5-32B/72B and DeepSeek-V3 accumulate substantially more failures. Figure 6(a) shows
that Gemini-2.5-Flash and DeepSeek-Chat tend to use longer reasoning chains (≈ 3.81 steps/task),
Claude-Sonnet-4 is also relatively long (≈ 3.46), GPT-4o is moderate (≈ 3.24), while GPT-3.5
is shortest (≈ 1.92), often at the expense of task success. Importantly, tool reliability alone is not
sufficient: Figure 6(b) indicates Claude 4 attains the highest tool-call success rate (> 97%) yet lags
behind GPT-4o in overall task success, suggesting that stable local execution must be paired with
effective global planning, argument selection, and summarization. Overall, GPT-4o offers the best
balance of chain length, tool reliability, and task-level success across diverse scenarios.

Figure 5: Task-level success and failure distribution across models. The plot reports, for each evalu-
ated model, the number of tasks completed successfully versus failed attempts. Open-source models
exhibit higher failure counts compared to API-based models, while GPT-4o family shows the high-
est success rates.

(a) (b)

Figure 6: Comparison of (a) average reasoning steps required per task across models and (b) tool-
execution success vs. failure distributions across the same models.

6 CONCLUSION

In this work, we presented GeoHOP, the first benchmark explicitly designed for cognitive-level
geospatial reasoning across optical, SAR, and IR modalities. GeoHOP comprises 417 hierarchy-
aware, scenario-driven tasks that extend beyond perception to demand structured, multi-step reason-
ing. To address these challenges, we introduced GeoPlanner, an LLM-powered agent that organizes
analytic tools into functional hierarchies, supports modality-aware planning, and ensures robust er-
ror recovery during execution. Extensive experiments on GeoHOP demonstrate that frontier models
such as the GPT-4 family currently achieve the strongest performance. Simultaneously, our bench-
mark reveals significant potential for improvement in argument accuracy, summary generation, and
multimodal toolkit integration. These findings indicate that while progress has been made, substan-
tial headroom remains for advancing reasoning, planning, and execution capabilities in real-world
remote sensing scenarios. By providing both a high-fidelity benchmark and a fault-tolerant agentic
framework, our work establishes a rigorous foundation for evaluating and advancing multimodal
reasoning in RS.
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USE OF LLMS

In this work, we employed large language models (LLMs) to assist with language refinement and to
enhance the overall coherence of the manuscript. Specifically, LLMs were used to polish sentence-
level grammar and improve the logical flow between sections. In addition, we utilized LLMs to
generate a set of scalable vector graphics (SVGs), which served as schematic figures to illustrate
the conceptual framework of our study. These applications were limited to stylistic editing and
visualization support; all research design, data analysis, and substantive conclusions were conducted
and validated independently by the authors.

ETHICS STATEMENT

This work uses only publicly available remote sensing datasets that do not contain personal or
sensitive information. All experiments were conducted in compliance with relevant data usage li-
censes. We acknowledge potential risks of misuse of geospatial AI technologies, such as unautho-
rized surveillance or environmental misinterpretation, and emphasize that our methods are intended
solely for scientific and societal applications, including environmental monitoring and sustainable
development. No human subjects were involved in this study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the complete framework code of the Spatial
Reasoning Agent, including tool integration, planning modules, and evaluation scripts.
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