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Abstract

This paper introduces Mol2Lang-VLM, an
enhanced method for refining generative
pre-trained language models for molecule
captioning using multimodal features to
achieve more accurate caption generation. Our
approach leverages the encoder and decoder
blocks of the Transformer-based architecture
by introducing third sub-layers into both.
Specifically, we insert sub-layers in the
encoder to fuse features from SELFIES strings
and molecular images, while the decoder
fuses features from SMILES strings and their
corresponding descriptions. Moreover, cross
multi-head attention is employed instead of
common multi-head attention to enable the
decoder to attend to the encoder’s output,
thereby integrating the encoded contextual
information for better and more accurate
caption generation. Performance evaluation on
the CheBI-20 and L+M-24 benchmark datasets
demonstrates Mol2Lang-VLM’s superiority,
achieving higher accuracy and quality in cap-
tion generation compared to existing methods.
Our code and pre-processed data are available
at https://github.com/nhattruongpham/mol-
lang-bridge/tree/mol2lang/.

1 Introduction

In the field of cheminformatics, molecule caption-
ing plays a crucial role in helping researchers by au-
tomatically generating captions for molecular struc-
tures. The accuracy and quality of these captions
are vital as they directly impact the understanding
of chemical information and scientific discoveries.
Traditional techniques primarily rely on unimodal
data, often focusing only on textual representations
like SMILES (Simplified Molecular Input Line En-
try System) (Weininger, 1988) strings or SELFIES
(Self-referencing Embedded Strings) (Krenn et al.,
2020) strings. Although these methods have shown
satisfactory results, their dependence on a single
modality limits the richness and accuracy of the

generated captions.
The rise of multimodal data, which uses infor-

mation from different sources, presents an opportu-
nity for significant advancements in molecule cap-
tioning. Multimodal approaches integrate various
forms of molecule, enabling a more comprehensive
understanding of molecular characteristics. How-
ever, effectively utilizing multimodal data in gener-
ative models is challenging and requires advanced
techniques to integrate and improve the models
effectively.

In this paper, we introduce an enhanced method-
ology, named Mol2Lang-VLM, to improve gen-
erative models in molecule captioning by utiliz-
ing multimodal features. Our approach integrates
SELFIES strings and high-level features from
molecular images in the encoder, while incorpo-
rating SMILES features and corresponding descrip-
tions in the decoder. This multimodal integration
allows the model to have a deeper understanding
of chemical structures within the generative model,
which is further refined during the decoder stage.

2 Related Work

2.1 Unimodal Language Models

MolT5 (Edwards et al., 2022) involves translat-
ing molecular structures into natural language us-
ing a text-to-text transfer transformer (T5) (Raffel
et al., 2020) model. This model leverages the ro-
bust linguistic capabilities of T5 to understand and
generate descriptions of molecular structures accu-
rately. BioT5 (Pei et al., 2023) extends the capa-
bilities of T5 to integrate chemical knowledge and
natural language associations into biological con-
texts. BioT5 employs SELFIES for representing
small molecules, as it offers considerable advan-
tages over SMILES. Specifically, SELFIES ensures
a more reliable and error-resistant molecular repre-
sentation, thereby avoiding the problem of invalid
structures that frequently occur with SMILES. This
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model improves the cross-modal understanding be-
tween biological texts and chemical data. While
MolT5 and BioT5 are encoder-decoder language
models, MolXPT (Liu et al., 2023) utilizes a gen-
erative pre-trained Transformer (GPT) (Radford
and Narasimhan, 2018) which is a decoder-only
language model by introducing a generative pre-
training approach by wrapping molecular struc-
tures within descriptive texts. MolXPT leverages
both text and SMILES sequences for molecular
modeling. It wraps SMILES sequences with text,
allowing them to influence each other. Specifically,
it detects molecule names in text sequences and
replaces them with corresponding SMILES rep-
resentations. ChemBERTa (Chithrananda et al.,
2020) is an encoder-only language model that uti-
lizes the RoBERTa (Liu et al., 2019) model that
focuses on molecular representation learning and
property prediction.

SwinOCSR (Xu et al., 2022) uses Swin Trans-
former (Liu et al., 2021) architecture for end-to-end
optical chemical structure recognition of molecular
images. This model can effectively recognize and
describe chemical structures from images, provid-
ing a significant improvement in the accuracy of
vision-language tasks in cheminformatics.

While the aforementioned models have made
significant contributions to molecule captioning,
their reliance on unimodal data restricts their po-
tential for advancements. By not harnessing the
power of multimodal data, these models encounter
limitations in terms of information richness, com-
pleteness, contextual understanding, generalization,
and interpretability.

2.2 Multimodal Language Models
GIT-Mol (Liu et al., 2024) introduces a multimodal
large language model that integrates graph, im-
age, and text data to enhance molecular science
applications. This model leverages the strengths
of different data modalities to provide comprehen-
sive and accurate molecular descriptions. Besides
that, MoMu (Su et al., 2022) associates molecu-
lar graphs with natural language, providing a so-
phisticated multimodal foundation model. This
model enhances the interpretability and accuracy of
molecular captions by integrating graph representa-
tions of molecules with their textual descriptions.

While the use of multimodal data is feasible, the
aforementioned models face certain issues. These
models necessitate significant computational re-
sources and large dataset training. Additionally,

scaling up multimodal models can pose challenges.

3 Methodology

3.1 Generative Language Model

We use the T5 (Raffel et al., 2020) architecture as
our generative language model. The process begins
with the tokenization of the SELFIES string, re-
sulting in token embeddings Xt ∈ RLenc×dt . Here,
Lenc represents the length of the encoder input,
while dt denotes the dimensionality of the feature
vectors. The encoder comprises a sequence of N
encoding layers, with each layer consisting of a
Multi-head Self-Attention (MSA) (Vaswani et al.,
2017) mechanism (Eq. 1) and a Feed-Forward Net-
work (FFN) (Eq. 2). Following each sub-layer,
there is a residual connection that precedes layer
normalization (LN). Unlike the original Trans-
former (Vaswani et al., 2017), T5 incorporates rela-
tive position embeddings (Shaw et al., 2018), which
are added to the respective logits during the com-
putation of attention weights and shared across all
layers in the model.

Zenc′
l = LN(MSA(Zenc

l−1) + Zenc
l−1) (1)

Zenc
l = LN(FFN(Zenc′

l ) + Zenc′
l ) (2)

In parallel with the encoder, the decoder similarly
consists of N layers. It exhibits three distinctive
aspects compared to the encoder: First, target se-
quences, which are molecular captions, are tok-
enized into embeddings Yt ∈ RLdec×dt , where Ldec
is the length of the target sequence. They are
shifted right by one token to ensure that the ground-
truth token is used as the input to predict the next to-
ken. Second, a Masked Multi-head Self-Attention
(MMSA) (Vaswani et al., 2017) is utilized to ensure
auto-regressive generation, maintaining a strict left-
to-right processing order (Eq. 3). Third, a Cross
Multi-head Attention (CMA) (Vaswani et al., 2017)
layer is employed, which enables the decoder to
attend to the encoder’s output, thereby integrating
the encoded contextual information (Eq. 4). Analo-
gous to the encoder, the decoder includes a FFN in
each layer (Eq. 5).

Zdec′
l = LN(MMSA(Zdec

l−1) + Zdec
l−1) (3)

Zdec′′
l = LN(CMA(Zdec′

l , Zenc
N , Zenc

N ) + Zdec′
l )

(4)
Zdec
l = LN(FFN(Zdec′′

l ) + Zdec′′
l ) (5)



Figure 1: Overview of Mol2Lang-VLM’s architecture. The green areas represent the two inserted sub-layers used to
fuse the features. The T5 architecture uses relative position embeddings, which are integrated into the Multi-head
Attention mechanism and, therefore, are not shown in the figure. Additionally, Cross Multi-head Attention is
employed in the decoder instead of Multi-head Attention.

3.2 Vision- and Text-Guided Fusion
Inspired by VG-GPLMs (Yu et al., 2021), we in-
tegrate a third sub-layer into both the encoder and
decoder of the language model. In the encoder, we
insert text-vision fusion at the end of the encoder
to learn the cross-modality between the SELFIES
string and the molecular image. In the decoder, we
replace the last FFN with text-text fusion to capture
the relationship between the corresponding caption
and the SMILES string. In both fusion processes,
we utilize the CMA mechanism to learn the correla-
tion between the two sets of features. The overview
of the architecture is exhibited in Figure 1.

In the fusion process of the encoder, the embed-
dings of SELFIES, denoted as Zenc

t , are linearly
projected to the query Qenc (Eq. 6), while the em-
beddings of the image, denoted as Zenc

v , are linearly
projected to the key Kenc (Eq. 7) and the value
V enc (Eq. 8). These projections are performed be-
fore feeding them to the CMA mechanism, which
generates the output Oenc (Eq. 9).

Qenc = Zenc
t W enc

q (6)

Kenc = Zenc
v W enc

k (7)

V enc = Zenc
v W enc

v (8)

Oenc = CMA(Qenc,Kenc, V enc) (9)

The fusion process of the decoder occurs after the
CMA between the decoder’s embeddings and the

output embeddings of the encoder, resulting in Zdec
t .

In this fusion process, Zdec
t are linearly projected

to the query Qdec (Eq. 10), while the embeddings
of SMILES, denoted as Zdec

s , are also projected to
the key Kdec (Eq. 11) and the value V dec (Eq. 12).
Subsequently, CMA is applied to generate Odec

(Eq. 13). The features of SMILES help enhance
the overall effectiveness of the features, enabling
more effective generation of the desired output.

Qdec = Zdec
t W dec

q (10)

Kdec = Zdec
s W dec

k (11)

V dec = Zdec
s W dec

v (12)

Odec = CMA(Qdec,Kdec, V dec) (13)

At each fusion, the output is concatenated with the
initial embeddings to produce Zenc′

t and Zdec′
t (Eq.

14 and 15).

Zenc′
t = (Zenc

t ⊕Oenc)W enc
c (14)

Zdec′
t = (Zdec

t ⊕Odec)W dec
c (15)

Finally, forget gates, denoted as F enc and F dec, are
applied to filter out noisy and redundant informa-
tion introduced during the interactions (Eq. 16 and
17), then point-wise multiplication is applied on
Oenc and Odec to produce Oenc′ and Odec′ (Eq. 18).

F enc = σ((Zenc
t ⊕Oenc)W enc

f ) (16)



F dec = σ((Zdec
t ⊕Odec)W dec

f ) (17)

Oenc′ = F enc ⊗Oenc, Odec′ = F dec ⊗Odec (18)

4 Implementation Details

4.1 Architectures

We employ BioT5 (Pei et al., 2023) as our genera-
tive language model, which uses the T5-base ver-
sion. The model consists of 252 million parameters
and has a configuration that includes an embedding
dimensionality of 768. It is composed of 12 layers
in both the encoder and decoder. The input tokens
and output tokens are limited to a maximum length
of 512.

To extract visual features from molecular im-
ages, we utilize the encoder of SwinOCSR (Xu
et al., 2022) which employs the Swin Transformer
(Liu et al., 2021) architecture, uses Swin-L version.
The encoder has a total of 194 million parameters.
By inputting images with the size of 224 × 224,
the encoder generates feature embeddings with a
length of 49 and a hidden dimensionality of 1536.

To extract features from SMILES representa-
tions, we use ChemBERTa (Chithrananda et al.,
2020), which is built upon the RoBERTa-base ar-
chitecture with a total of 44 million parameters.
The input tokens for ChemBERTa are also limited
to a length of 512.

To compute the cross-modality attention in text-
vision fusion of the encoder, as well as text-text
fusion of the decoder, all features are linearly pro-
jected to a gated dimensionality of 256. The text-
vision fusion is then integrated at the last two layers
of the encoder (the 11th and 12th layers). Con-
currently, text-text fusion is incorporated into the
initial two layers of the decoder (the 1st and 2nd
layers).

4.2 Datasets

L+M-24: The L+M-24 dataset, first introduced
from Language + Molecules Workshop @ ACL
2024 (Edwards et al., 2024), is designed to high-
light three key benefits of natural language in
molecule design: compositionality, functionality,
and abstraction. It contains over 160, 560 molecule-
description pairs, which are divided into 80%/20%
for train/validation splits.

CheBI-20: The CheBI-20 dataset is widely used
in molecular description tasks. It was first in-
troduced in the Text2Mol (Edwards et al., 2021).
This dataset contains 33, 010 molecule-description

pairs, which are split into 80%/10%/10% for
train/validation/test sets.

Since the aforementioned datasets currently lack
SELFIES strings and molecular images, we em-
ploy selfies 1 and RDKit 2 package to generate this
additional data. We use the prompting template of
the molecule captioning task from BioT5 (Pei et al.,
2023) to fine-tune the model.

4.3 Configurations

Training: During the training process, we utilize
a batch size of 64. To optimize the model, we
employ the AdamW (Loshchilov and Hutter, 2019)
optimizer. The learning rate scheduler follows a
cosine annealing strategy, with a base learning rate
of 3e− 5. The warming-up steps for the learning
rate scheduler are set to 1 epoch to gradually adjust
the learning rate.

Inference: To ensure a fair comparison when
evaluating the model, we employ greedy decod-
ing for generating molecular captions by setting
the number of beam search to 1, with the decoder
starting token as <pad>, and the end of sentence
token as </s>. Furthermore, post-processing is
also applied to skip all special tokens.

5 Results and Discussion

Table 1 presents the performance comparison of
Mol2Lang-VLM with all baseline models, such
as MolT5-Small, MolT5-Base, MolT5-Large, and
BioT5 on the L+M-24 dataset. We used several
performance evaluation metrics to evaluate these
models, including BLEU-2, BLEU-4, ROUGE-1,
ROUGE-2, ROUGE-L, and METEOR. Notably,
Mol2Lang-VLM outperforms all three baseline
models in almost all metrics, with BLEU-2, BLEU-
4, ROUGE-1, ROUGE-2, ROUGE-L, and ME-
TEOR values of 77.7, 56.3, 78.6, 59.1, 56.5, and
74.1, respectively. Although Mol2Lang-VLM
achieves a lower METEOR of 0.2 compared to
MolT5-Large, its number of parameters is approx-
imately 1.5 times lower than MolT5-Large, indi-
cating that the model can learn more efficiently.
Compared to BioT5, Mol2Lang-VLM achieves
better performance in terms of BLEU-2, BLEU-
4, ROUGE-1, and METEOR, with slightly lower
scores in ROUGE-2 and ROUGE-L, demonstrating
that it generally outperforms BioT5.

We also evaluate our proposed method, along

1https://github.com/aspuru-guzik-group/selfies
2https://github.com/rdkit/rdkit
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Model #Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
MolT5-Small 77M 70.9 51.2 74.5 55.8 54.4 70.1
MolT5-Base 248M 73.8 53.5 75.0 55.9 53.9 71.8
MolT5-Large 783M 76.9 55.6 77.7 58.0 55.7 74.3
BioT5 252M 74.6 54.1 78.5 59.3 56.9 72.7
Ours 496M 77.7 56.3 78.6 59.1 56.5 74.1

Table 1: Molecule captioning results on the validation split of L+M-24 dataset (Best, Second Best). The baseline
results are derived from Language + Molecules Workshop @ ACL 2024 (Edwards et al., 2024). The Text2Mol
metric is excluded from the table because Text2Mol is trained on a different distribution of data compared to the
L+M-24 dataset.

Model #Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
MolT5-Small 77M 51.9 43.6 62.0 46.9 56.3 55.1 54.0
MolT5-Base 248M 54.0 45.7 63.4 48.5 57.8 56.9 54.7
MolT5-Large 783M 59.4 50.8 65.4 51.0 59.4 61.4 58.2
BioT5 252M 63.5 55.6 69.2 55.9 63.3 65.6 60.3
Ours 496M 61.2 52.7 67.4 53.2 61.4 63.3 59.8

Table 2: Molecule captioning results on the test split of CheBI-20 dataset (Best, Second Best). The baseline results
are derived from MolT5 (Edwards et al., 2022) and BioT5 (Pei et al., 2023).

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Our model w/o forget gate 75.7 54.7 78.7 59.0 56.7 73.0
Our model w/ forget gate 77.7 56.3 78.6 59.1 56.5 74.1

Table 3: Molecule captioning results on the validation split of the L+M-24 dataset to compare between the model
with and without a forget gate (Best, Second Best).

with all three baseline models and BioT5, on the
CheBI-20 dataset. Table 2 displays the perfor-
mance comparison in terms of BLEU-2, BLEU-
4, ROUGE-1, ROUGE-2, ROUGE-L, METEOR,
and Text2Mol metrics. Interestingly, Mol2Lang-
VLM achieves the second-best performance in all
metrics, while BioT5 excels on this dataset. This
might be acceptable because, in some cases, the
fused information may not provide significant addi-
tional context or may even introduce noise, making
it challenging for the model to effectively utilize
the fused embeddings.

Moreover, we conduct an ablation analysis to
evaluate Mol2Lang-VLM with and without em-
ploying the forget gate. Table 3 compares the
performance of these two strategies. Mol2Lang-
VLM with the forget gate outperforms the version
without it across most metrics, including BLEU-2,
BLEU-4, ROUGE-2, and METEOR. The presence
of the forget gate mechanism contributes to en-
hanced caption quality in terms of accuracy and
relevance, showcasing the effectiveness of incorpo-
rating this mechanism in the model architecture for
improved captioning outcomes.

6 Conclusion

This paper introduced Mol2Lang-VLM, a vision-
and text-guided generative pre-trained language
model designed to enhance molecule captioning
performance through multimodal fusion. Our
proposed approach achieved comparative results
in terms of BLEU, ROUGE, METEOR, and
Text2Mol metrics, demonstrating its effectiveness
in generating accurate and meaningful captions for
molecular structures. The findings highlight the po-
tential of Mol2Lang-VLM in advancing molecule
captioning tasks. Future research can explore alter-
native fusion methods, fine-tuning strategies, and
the generalization of the model to other tasks. Ad-
ditionally, integrating Mol2Lang-VLM with down-
stream applications and enhancing interpretability
can further enhance its practical utility in the field
of cheminformatics.
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