
LORC: Low-Rank Compression for LLMs KV Cache
with a Progressive Compression Strategy

Anonymous Author(s)
Affiliation
Address
email

Abstract

The Key-Value (KV) cache is a crucial component in serving transformer-based1

autoregressive large language models (LLMs), enabling faster inference by stor-2

ing previously computed KV vectors. However, its memory consumption scales3

linearly with sequence length and batch size, posing a significant bottleneck in4

LLM deployment. Existing approaches to mitigate this issue include: (1) efficient5

attention variants integrated in upcycling stages, which requires extensive parame-6

ter tuning thus unsuitable to pre-trained LLMs; (2) KV cache compression at test7

time, primarily through token eviction policies, which often overlook inter-layer8

dependencies and can be task-specific.9

This paper introduces an orthogonal approach to KV cache compression. We10

propose a low-rank approximation of KV weight matrices, allowing for plug-11

in integration with existing transformer-based LLMs without model retraining.12

To effectively compress KV cache at the weight level, we adjust for layerwise13

sensitivity and propose a progressive compression strategy, guided by the condition14

numbers of KV weight matrices. Our method is designed to function without model15

tuning in upcycling stages or task-specific profiling in test stages. Experiments with16

8B to 70B LLaMA models across various tasks show that our approach significantly17

reduces the GPU memory footprint while maintaining performance.18

1 Introduction19

Autoregressive large language models (LLMs) such as GPT (Achiam et al., 2023), PaLM (Chowdhery20

et al., 2023), and LLaMA (Touvron et al., 2023), built upon transformer architectures (Vaswani21

et al., 2017), have shown remarkable capabilities across a wide range of tasks. However, the22

attention mechanism underpinning those models poses significant challenges to the efficiency of23

their deployment, particularly the management of the Key-Value (KV) cache. The KV cache is24

originally designed to accelerate the generation process by storing intermediate attention vectors,25

thus avoiding recomputation of shared prefixes for each autoregressively generated token. Despite26

reducing computational overhead, the KV cache significantly increases memory footprints, as its size27

scales linearly with both sequence length and batch size.28

To address the overhead of the original attention mechanism, one prominent line of work aims to29

design more efficient attention variants, such as multi-query attention (MQA) (Shazeer, 2019) and30

group-query attention (GQA) (Ainslie et al., 2023), which inherently reduce the corresponding KV31

cache. Nevertheless, those techniques typically require upcycling existing vanilla models. Without32

proper training, their direct application often results in degraded performance (Ribar et al., 2023;33

Ainslie et al., 2023; Liu et al., 2024b), making them unsuitable for deployment in resource-constrained34

environments. Recently, Liu et al. (2024a) design a multi-head latent attention (MLA) for efficient35

inference, utilizing low-rank key-value union compression to reduce KV cache. However, similar to36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Figure 1: LORC compresses KV-cache by decomposing the KV weight matrices in attention heads.
The progressive compression strategy retains more dimension for KV weights in shallow layers and
compresses the KV weights in deep layers more aggressively.

MQA and GQA, MLA is also integrated during the model’s training cycle, thus not directly applicable37

to pre-trained LLMs.38

In contrast, another line of work focuses on KV cache compression at test time, primarily achieved39

by dropping tokens while leaving the backbone model intact. Several works design the token eviction40

policy based on accumulated attention scores(Sheng et al., 2023; Zhang et al., 2024b; Liu et al.,41

2024b), or heuristics such as special tokens or and relative distance between tokens (Ge et al., 2023).42

However, these methods ignore the inter-layer dependency and the resulting eviction policy can be43

task-specific.44

In this paper, we propose to compress KV cache from an orthogonal perspective, i.e., the KV weight45

matrices. As the KV weight matrices are typically characterized by low-rank properties, we perform46

a low-rank approximation to reduce their dimension and thus compress the resulting KV cache.47

Recognizing that compressed KV caches inevitably introduce information loss to subsequent layers,48

and that sensitivity to input changes varies across layers, we introduce a progressive compression49

strategy. This approach is grounded in the calculation of cumulative condition numbers for KV weight50

matrices across different layers, reflecting their sensitivity and guiding our compression strategy. In51

this way, we determine layer-specific compression dimensions that effectively balance compression52

with the preservation of critical information.53

Our method is designed for straightforward implementation, requiring neither model profiling nor54

detailed inspection of the attention structure. It can be directly applied to pre-trained LLMs by55

extracting weight matrices and leveraging their inherent properties to swiftly determine optimal56

layer-wise compression. This approach offers a practical and efficient solution for enhancing LLM57

performance in memory-constrained deployment scenarios, without the need for model retraining or58

complex eviction strategy composition.59

We evaluate our method on 8B, 13B, and 70B LLaMA models that built upon multi-query attention60

or group-query attention. Experiments across tasks such as commonsense reasoning, reading compre-61

hension, text summarization, and mathematical reasoning, demonstrate that our approach can reduce62

substantial GPU memory footprint while maintaining minimal impact on performance.63

2 Method64

We structure this section as follows. In Section 2.1, we detail the process of compressing the KV65

cache for a single layer using Singular Value Decomposition (SVD) of the weight matrix. Section 2.266

introduces our progressive compression strategy, which determines adaptive compression dimensions67

for each layer. Figure 1 presents an overview of our method, illustrating the low-rank approximation68

of the weight matrix and the progressive compression strategy across layers. Because of the space69

limit, we put related works and preliminaries to Appendix A and B. We also cover consideration of70

handling various attention mechanisms in Appendix C , and address implementation details specific71

to the rotary position embedding in Appendix D.72

2.1 KV Cache Compression via Low-rank Approximation of Weight Matrices73

Unlike previous approaches that focus on token-level eviction strategies or require model retraining,74

we propose a novel method that operates at the weight matrix level in the attention mechanism. This75

2

approach leverages the inherent low-rank properties of these matrices (as shown in Appendix G),76

allowing for significant compression without the need for complex token selection algorithms or77

time-consuming model fine-tuning. By applying a low-rank approximation to the weight matrices,78

we effectively reduce the dimensionality of the KV cache while preserving the essential information79

flow through the network.80

Key Matrix Compression: Figure 1 presents how we implement SVD on the key weight matrices.81

Specifically, for the i-th head in the MHA attention, we decompose its key matrix W i
k ∈ RD×d to:82

SVD(W i
k)D×d = UD×dc

Σdc×dc
V T
dc×d = UD×dc

(ΣV T)dc×d. (1)

For MHA, there are h attention heads, then the decomposition becomes:83

SVD(WH
k)D×hd = UD×dc(ΣV

T)dc×hd = UD×dc

[
(A1)dc×d (A2)dc×d · · · (Ah)dc×d

]
,

(2)
where (Ai)d×dc is the i-th block in the matrix (ΣV T)hd×dc .84

Now we have decomposed the key matrix W i
k to the multiplication of UD×dc

and (Ai)dc×d. We will85

multiply X with (ΣV)hd×dc
as the compressed key, which is stored in the KV cache. For UD×dc

,86

we incorporate it to the query calculation by updating the original query matrix W i
q ∈ RD×d to87

W i
q′ = (W i

q)D×d(A
i)d×dc

, (3)

then the updated query matrix W i
q′ ∈ RD×dc . By compressing the key matrix using SVD, we88

effectively reduce the size of key cache from h× d to dc, where dc is smaller than hd, reducing the89

memory footprint while keeping the essential information intact.90

Value Matrix Compression: The decomposition for the value matrix follows a similar structure.91

The only difference lies in that we integrate its left singular vectors to the output matrix. Specifically,92

the value matrix is decomposed as:93

SVD(WH
v)D×hd = UD×dc(ΣV

T)dc×hd = UD×dc

[
(B1)dc×d (B2)dc×d · · · (Bh)dc×d

]
(4)

where (Bi)dc×d is the i-th block in the matrix (ΣV T)dc×hd. Different from the above operation of94

key, here we incorporate UD×dc
to the output matrix, and keep the (ΣV T)dc×hd for KV cache.95

Consider the output matrix Wo ∈ RD×D, we update it by96

Wo′ = (U⊤)dc×D(Wo)D×D, (5)

then the updated query matrix Wo′ ∈ Rdc×D.97

Compression Ratio: The compression strategy effectively reduces the dimensions from N × d× h98

for both keys and values to N × dc, ensuring data integrity and minimizing overhead. This results in99

a layer compression ratio ρ = dc

h×d , which quantifies the extent of the reduction.100

2.2 Progressive Compression Strategy101

Having established low-rank approximation for compressing weight matrices, we now address102

its dynamic application across network layers to optimize performance and memory usage. This103

approach is necessary due to the varying sensitivity of different layers to information loss, which104

significantly affects overall model efficacy and efficiency.105

To tackle this challenge, we propose a progressive compression strategy for the KV cache using106

low-rank approximation of KV weight matrices. Our intuition is that compressed shallow layers107

could lead to cascading errors that propagate and amplify through the network. Therefore, we analyze108

the condition numbers of KV weight matrices for each layer to determine layer-wise compression109

dimensions. This approach accounts for each layer’s sensitivity to perturbations from previously110

compressed layers, ensuring output variations remain within acceptable ranges. The progressive111

nature of our strategy allows for more conservative compression in earlier layers, minimizing the risk112

of error accumulation throughout the network. By carefully balancing compression across layers, we113

maintain model integrity while achieving significant memory savings.114

3

Condition Number and Sensitivity Analysis To ensure that the change in the output bl = Alxl115

remain within a specified range when the input xl changes due to compression in previous layers, we116

need to consider the sensitivity of the output to such changes. Given a weight matrix Al, its condition117

number plays a crucial role in determining the allowable change in xl. The condition number κ(Al)118

is defined as:119

κ(Al) = |Al|2 · |A−1
l |2 =

σmax(Al)

σmin(Al)
, (6)

where σmax(Al) and σmin(Al) are the largest and smallest singular values of Al, respectively. To120

keep the relative change in the output bl within a tolerance ϵ, we utilize the standard definition of the121

condition number to relate it to the allowable relative change in the input xl:122

|∆bl|2
|bl|2

≤ κ(Al) ·
|∆xl|2
|xl|2

≤ ϵ. (7)

Solving for the allowable relative change in xl, we obtain: |∆xl|2
|xl|2 ≤ ϵ

κ(Al)
. This inequality indicates123

that the acceptable change in the input xl is inversely proportional to the condition number κ(Al)124

of the layer’s weight matrix. Layers with higher condition numbers are more sensitive to input125

perturbations, requiring smaller changes in xl to maintain the output within the desired range. Given126

the multi-layer structure of transformers, it’s essential to consider not just the condition number of a127

single layer but the cumulative effect of condition numbers from all preceding layers. This cumulative128

measure gives a more holistic view of how perturbations might propagate and amplify as data passes129

through successive layers.130

Cumulative Condition Number: To effectively manage this across the network, we calculate the131

cumulative condition number as a estimated layerwise sensitivity and then derive the compression132

dimension. For a model with L layers, we calculate the cumulative condition number for each layer l133

by multiplying the condition numbers of the subsequent layers:134

κ̃l =

L∏
i=l

κ(W i
k) · κ(W i

v). (8)

This cumulative condition number κ̃l reflects the total amplification of input perturbations from layer135

l to the output layer.136

Compression Dimension: Based on the cumulative condition number, we then adjust the compression137

dimensions for each layer to balance the fidelity and compression rate. More sensitive layers (those138

with higher cumulative condition numbers) will have less aggressive compression to preserve critical139

information, whereas layers with lower sensitivity can be compressed more substantially without140

significantly affecting the overall network performance. We compute the compressed dimension dl141

for each layer by scaling κ̃l using the following function:142

dl = dmax ×
[
1−

(
maxi∈[1:L] log(κ̃i)− log(κ̃l)

maxi∈[1:L] log(κ̃i)−mini∈[1:L] log(κ̃i)

)
×

(
1− dmin

dmax

)]
, (9)

where dmax is the maximum allowable compressed dimension, and dmin is the minimum one.143

The logarithmic scale mitigates the effect of large variations in the cumulative condition numbers,144

providing a more balanced sensitivity metric across layers. This equation ensures that layers with145

higher sensitivity (larger κ̃l) retain more dimensions (larger dl), while less sensitive layers can be146

compressed more aggressively.147

3 Experiment148

3.1 Models149

We conduct experiments using two attention mechanisms, Multi-Head Attention (MHA) (Vaswani150

et al., 2017) and Graph Query Attention (GQA) (Ainslie et al., 2023), across three models: LLaMA-151

2-13B, LLaMA-3-Instruct-8B, and LLaMA-3-Instruct-70B. The LLaMA-2 family incorporates the152

MHA mechanism, while the LLaMA-3 family is based on the GQA framework. We list the model153

specifications in Table 3. Note that for the models based on MHA, the number of KV heads is equal154

to the number of attention heads, so the weight matrices of KV are square matrices. The models based155

4

on GQA use an intermediate number of key-value heads to group the query heads, with an adjustment156

on the shape of KV weight matrices. Due to space limit, we introduce datasets and implementation157

details in Appendix F.158

3.2 Main Results159

55 70 85 100
KV Cache Budget (%)

76

78

80

82

Ac
cu

ra
cy

 (%
)

8B on BoolQ

55 70 85 100
KV Cache Budget (%)

8

9

10

11

12

13

Ro
ug

e-
LS

um

8B on XSum

55 70 85 100
KV Cache Budget (%)

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy

 (%
)

8B on OpenBook QA

55 70 85 100
KV Cache Budget (%)

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

8B on GSM8K
Baseline Progressive Compression

55 70 85 100
KV Cache Budget (%)

35

40

45

50

Ac
cu

ra
cy

 (%
)

13B on BoolQ

55 70 85 100
KV Cache Budget (%)

8.5

9.0

9.5

10.0

10.5

11.0

Ro
ug

e-
LS

um

13B on XSum

55 70 85 100
KV Cache Budget (%)

87

88

89

90

91

92

93

Ac
cu

ra
cy

 (%
)

70B on OpenBook QA

55 70 85 100
KV Cache Budget (%)

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

70B on GSM8K

Figure 2: Performance of KV cache compression on LLaMA models. LORC compresses the KV
weights with a progressive strategy, while the baselines compress each layer with the same ratio. The
horizontal dashed line indicates the performance with a full-cache model.

Figure 2 presents our main results on four datasets with different KV cache budgets. Compared to160

the full-cache model, LORC achieves on-par performance with a significant compression ratio, and161

the performance degradation is still nearly negligible with a 60% compression ratio on most datasets.162

When slightly compressed, LORC could even enhance model performance in some cases. Note that163

our method requires no model training or model profiling, the only efforts are SVD on weight matrices164

which requires minimal computational cost compared to the LLM inference. Such plug-and-play165

merits make our method easily integrable in resource-constrained environments, enabling efficient166

model deployment with limited KV cache budgets.167

In Figure 2, one interesting observation is that in some cases the model with a compressed KV cache168

leads to better performance. Particularly, on the GSM8K dataset, performing KV cache compression169

leads to more than 10% performance improvement. This phenomenon aligns with findings reported170

in the literature (Ge et al., 2023). Also, similar effects have been documented in the context of171

improving reasoning by applying low-rank decomposition on the MLP layers (Sharma et al., 2023).172

We believe this phenomenon demonstrates the feasibility of conducting task-specific profiling for173

better performance, or adapting our proposed method in model finetuning.174

3.3 Single Layer Profiling175

0 5 10 15 20 25 30
Layer ID

60

65

70

75
78

Ac
cu

ra
cy

Performance w/ Single Layer Compression

dim = 256
dim = 384
dim = 512
Mean
Full KV Cache

Figure 3: Single layer profiling results with
LLaMA-3-Instruct-8B on OpenBook QA.

To investigate the impact of compression at differ-176

ent layers, we conduct experiments on single-layer177

compression as shown in Fig. 3. We use LLaMA-178

3-Instruct-8B on OpenBook QA for this experi-179

ment. The original dimension of the KV head is180

1024, and we select compression dimensions from181

[256, 384, 512] to compress each single layer while182

keeping all other layers untouched.183

Figure 3 shows clear layer-specific variability, indi-184

cating that some layers are more susceptible to compression than others, particularly in the shallow185

layers. It is observed that the deep layers (i.e., layers 15–31 of the 32-layer LLaMA-3-Instruct 8B186

5

model), despite the reduction in dimensions, maintain performance closely approaching the full KV187

Cache baseline. This suggests that these layers can sustain robust performance even when subjected188

to significant parameter reduction. This finding supports our progressive compression strategy for189

optimizing model efficiency without significantly compromising the model’s effectiveness.190

3.4 Curse of Shallow Layers191

Table 1: Performance comparison between our method and compression on different layers on
OpenBookQA. For our progressive compression strategy, we report the performance at the 60%
overall compression ratio. For layer-0 compression and shallow blocks compression, we use a 50%
layer compression ratio within the chosen strategy. Hence, the overall compression ratio is 98.44%
for the layer-0 compression, and 93.75% for the shallow blocks compression.

Model Baseline Ours Layer 0 Shallow Blocks (1/8)

LLaMA-2-13b 76.6 77.4 (↑ 0.8) 77.2 (↑ 0.6) 74.8 (↓ 1.8)
LLaMA-3-Instruct-8b 78.0 77.4 (↓ 0.6) 67.2 (↓ 10.8) 61.4 (↓ 16.6)

LLaMA-3-Instruct-70b 91.2 91.2 (↑ 0.0) 84.2 (↓ 7.0) 23.2 (↓ 68.0)

To validate the intuition of the progressive compression strategy that the noise caused by shallow192

compressed layers will be amplified more after propagation, we compare it to compressing the first193

layer and the shallow blocks (i.e., the first 1/8 layers in a model) on 3 LLaMA models.194

Table 1 shows how the compressed shallow layers impact the model performance, taking the baseline195

full-cache model and our method as reference. The results indicate that compressing only the first196

layer can lead to a performance decline, with reductions ranging from minimal to moderate. For197

instance, the LLaMA-3-70B gives a 7.0% decrease, while the LLaMA-3-Instruct-8b shows a more198

substantial drop of 10.8%. When compressing the shallow blocks, the impact is more pronounced,199

highlighting a significant sensitivity to shallow layer compression. These findings underscore the200

importance of careful layer selection in compression strategies and validate the effectiveness of our201

progressive compression method, as the choice of layer to compress can have a substantial impact on202

model performance, particularly in larger or more complex models.203

3.5 Memory Footprint Reduction Analysis204

Table 2: Summary of Model Sizes, KV cache usage and performance drop. Experiments were
conducted with a batch size of 64 and a sequence length of 2048 for all models.

Model KV Cache Average Performance Drop

Full dim dim_c Ours Compression Ratio

LLaMA-2-13B 50G 5120 2048 27.5G 55% 0.47%
LLaMA-3-8B 8G 1024 512 4.8G 60% 0.92%

LLaMA-3-70B 20G 1024 512 11G 55% 0.22%

We report the memory footprint reduction in Table 2. By controlling the performance drop averaged205

on the four tasks less than 1%, we can achieve a considerable compression ratio of 55%-60%. For206

the LLaMA-3 models in which the GQA has already been employed to save the KV cache, we207

further achieve a significant compression ratio. Note that we have excluded the GSM8k results for208

the performance drop calculation for a fair comparison.209

4 Conclusions210

In conclusion, we proposed LORC, a novel approach to KV cache compression that capitalizes211

on the inherent low-rank properties of weight matrices. Our method employs a progressive layer-212

wise compression strategy, implementing a post-hoc low-rank approximation to circumvent the213

complexities and limitations associated with token-level eviction strategies and model retraining.214

This universally applicable solution preserves model integrity and performance across diverse tasks,215

attention mechanisms, and model scales. Our comprehensive experimental results demonstrate that216

LORC significantly reduces GPU memory requirements while minimally impacting performance.217

This approach offers a robust and efficient solution to the challenge of KV cache compression, paving218

the way for more resource-efficient deployment of large language models.219

6

References220

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,221

J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.222

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F., and Sanghai, S. Gqa: Train-223

ing generalized multi-query transformer models from multi-head checkpoints. arXiv preprint224

arXiv:2305.13245, 2023.225

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,226

H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. Journal227

of Machine Learning Research, 24(240):1–113, 2023.228

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins, M., and Toutanova, K. Boolq: Exploring229

the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044, 2019.230

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,231

Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint232

arXiv:2110.14168, 2021.233

de Jong, M., Zemlyanskiy, Y., Ainslie, J., FitzGerald, N., Sanghai, S., Sha, F., and Cohen, W.234

Fido: Fusion-in-decoder optimized for stronger performance and faster inference. arXiv preprint235

arXiv:2212.08153, 2022.236

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao, J. Model tells you what to discard: Adaptive237

kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.238

Guan, Y., Li, Z., Leng, J., Lin, Z., and Guo, M. Transkimmer: Transformer learns to layer-wise skim.239

arXiv preprint arXiv:2205.07324, 2022.240

Holmes, C., Tanaka, M., Wyatt, M., Awan, A. A., Rasley, J., Rajbhandari, S., Aminabadi, R. Y., Qin,241

H., Bakhtiari, A., Kurilenko, L., et al. Deepspeed-fastgen: High-throughput text generation for242

llms via mii and deepspeed-inference. arXiv preprint arXiv:2401.08671, 2024.243

Izacard, G. and Grave, E. Leveraging passage retrieval with generative models for open domain244

question answering. arXiv preprint arXiv:2007.01282, 2020.245

Lin, C.-Y. ROUGE: A package for automatic evaluation of summaries. In Text Summarization246

Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.247

URL https://www.aclweb.org/anthology/W04-1013.248

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C., Dengr, C., Ruan, C., Dai, D., Guo, D.,249

et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv250

preprint arXiv:2405.04434, 2024a.251

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyrillidis, A., and Shrivastava, A. Scissorhands:252

Exploiting the persistence of importance hypothesis for llm kv cache compression at test time.253

Advances in Neural Information Processing Systems, 36, 2024b.254

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a suit of armor conduct electricity? a new255

dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.256

Mu, J., Li, X., and Goodman, N. Learning to compress prompts with gist tokens. Advances in Neural257

Information Processing Systems, 36, 2024.258

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the details, just the summary! topic-aware259

convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745, 2018.260

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Heek, J., Xiao, K., Agrawal, S., and261

Dean, J. Efficiently scaling transformer inference. Proceedings of Machine Learning and Systems,262

5, 2023.263

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C., Luschi, C., and Orr, D. Sparq attention:264

Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.265

7

https://www.aclweb.org/anthology/W04-1013

Sharma, P., Ash, J. T., and Misra, D. The truth is in there: Improving reasoning in language models266

with layer-selective rank reduction. ArXiv, abs/2312.13558, 2023.267

Shazeer, N. Fast transformer decoding: One write-head is all you need. arXiv preprint268

arXiv:1911.02150, 2019.269

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen, B., Liang, P., Ré, C., Stoica, I., and270

Zhang, C. Flexgen: High-throughput generative inference of large language models with a single271

gpu. In International Conference on Machine Learning, pp. 31094–31116. PMLR, 2023.272

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Roformer: Enhanced transformer with rotary273

position embedding. Neurocomputing, 568:127063, 2024.274

Sun, T., Liu, X., Zhu, W., Geng, Z., Wu, L., He, Y., Ni, Y., Xie, G., Huang, X., and Qiu, X. A simple275

hash-based early exiting approach for language understanding and generation. arXiv preprint276

arXiv:2203.01670, 2022.277

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,278

Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv279

preprint arXiv:2307.09288, 2023.280

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and281

Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,282

2017.283

Yu, H., Yang, Z., Li, S., Li, Y., and Wu, J. Effectively compress kv heads for llm. arXiv preprint284

arXiv:2406.07056, 2024.285

Zhang, Y., Gao, B., Liu, T., Lu, K., Xiong, W., Dong, Y., Chang, B., Hu, J., Xiao, W., et al.286

Pyramidkv: Dynamic kv cache compression based on pyramidal information funneling. arXiv287

preprint arXiv:2406.02069, 2024a.288

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R., Song, Z., Tian, Y., Ré, C., Barrett,289

C., et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models.290

Advances in Neural Information Processing Systems, 36, 2024b.291

Zhou, W., Xu, C., Ge, T., McAuley, J., Xu, K., and Wei, F. Bert loses patience: Fast and robust292

inference with early exit. Advances in Neural Information Processing Systems, 33:18330–18341,293

2020.294

8

A Related Works295

A.1 Attention Mechanism296

Attention mechanisms in Transformer models have evolved to enhance efficiency and effectiveness297

(Vaswani et al., 2017). Multi-Query Attention (MQA) (Shazeer, 2019) reduces memory requirements298

during decoding, while Grouped-Query Attention (GQA) (Ainslie et al., 2023) balances efficiency299

and performance by sharing key and value heads among query groups. Recently, Liu et al. (2024a)300

introduced Multi-head Latent Attention (MLA), using low-rank key-value union compression to301

optimize inference. However, these approaches are typically integrated during model training, limiting302

their applicability to pre-trained LLMs. Parallel research efforts have targeted inference efficiency303

improvements. For example, Pope et al. (2023) developed multi-dimensional partitioning techniques,304

and de Jong et al. (2022) optimized the Fusion-in-Decoder (FiD) approach (Izacard & Grave, 2020)305

for more efficient inference. Holmes et al. (2024) introduces SplitFuse which leverages dynamic306

prompt and generation decomposition and unification to further improve continuous batching and307

system throughput. In this paper, we contribute to this line of research by improving inference308

efficiency through the compression of KV cache. Our approach leverages the low-rank property of309

the attention weight matrices, offering a plug-and-play method to reduce the memory footprint of310

LLMs during inference without requiring model retraining.311

A.2 KV Cache Compression312

As Large Language Models (LLMs) continue to grow in size and complexity, efficient management313

of their memory usage during inference has become a critical challenge. Early efforts to compress314

token hidden states (Guan et al., 2022; Sun et al., 2022; Zhou et al., 2020) are limited to non-315

autoregressive models and require retraining, thus motivating research into pruning tokens in the316

KV cache of auto-regressive LLMs. For instance, Mu et al. (2024) learns to compress prompts into317

a few special tokens to reduce memory pressure during caching, but this token prediction requires318

model retraining and could be an expensive overhead during inference. Several methods design token319

eviction policies based on accumulated attention scores (Sheng et al., 2023; Zhang et al., 2024b; Liu320

et al., 2024b), or heuristics such as special tokens and relative distance between tokens (Ge et al.,321

2023). However, these approaches often overlook inter-layer dependencies, potentially resulting in322

task-specific eviction policies that may not generalize well across different applications. In contrast323

to token-dropping methods, our study takes a different tack. We focus on compressing the KV cache324

from the perspective of weight matrix dimension reduction. Importantly, our progressive compression325

strategy carefully addresses the issue of error propagation across compressed layers, a consideration326

often ignored in previous methods.327

A few studies have explored customized cache budgets across different layers in the context of token328

dropping, yet no definitive consensus has been reached on the most effective strategies. Zhang329

et al. (2024a) suggest increasing compression intensity in higher layers based on the assumption that330

these layers contain less critical information. Conversely, Liu et al. (2024b) argue that significant331

tokens exhibit greater variability at higher layers, thus larger caches are required to reduce cache332

misses. While these approaches demonstrate understanding of layer-specific requirements, they333

depend heavily on task-specific attention patterns. Our approach diverges fundamentally by adopting334

an orthogonal perspective to compression, focusing on weight matrix dimension reduction rather than335

token eviction. This approach enables us to establish error propagation bounds across the network and336

to guide our progressive compression strategy effectively. It eliminates the need to analyze attention337

patterns for eviction policy design, simplifying implementation and enhancing general applicability338

across different LLMs.339

Concurrently, Liu et al. (2024a) and Yu et al. (2024) modify attention mechanisms to manage KV340

caches more efficiently during inference. While these methods align with our philosophy of altering341

attention dynamics, they require either pretraining adjustments or extensive model finetuning to342

accommodate the modified attention schemas, limiting their practicality in deployed systems. In343

contrast, our method requires no such training or fine-tuning, offering a plug-and-play solution that344

seamlessly integrates with pre-trained models to deliver efficient compression without compromising345

the model’s integrity or performance.346

9

B Preliminary: Attention Mechanism and KV Cache347

Transformer-based language models use self-attention to weigh the importance of different tokens,348

thus allowing for the model to focus on different parts of the input sequence. Given an input349

X ∈ RN×D, where N is the sequence length and D is the dimensionality of each token’s embedding,350

we compute the Query (Q), Key (K), and Value (V) matrices by multiplying X with their respective351

weight matrices: Q = XWq,K = XWk, V = XWv .352

Then the attention mechanism is as follows:353

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V. (10)

Multi-head attention allows the model to jointly attend to information from different representation354

subspaces at different positions355

MultiHead(Q,K, V) = Concat(head1, . . . , headh)Wo, (11)

where356

headi = Attention(XW i
q , XW i

k, XW i
v). (12)

Here, W i
q , W i

k, and W i
v are the weight matrices for the i-th attention head, and Wo is the weight357

matrix for the output linear transformation.358

In autoregressive transformers, the computation of attention scales quadratically (i.e., O(N2)) with359

the sequence length N , as every token in the sequence computes interactions with every other token.360

Such scaling is impractical for very large inputs or real-time applications, where speed and efficiency361

are crucial.362

To address this computational bottleneck, KV caches store the results of previous computations of363

the Key/Value matrices. When processing subsequent tokens, the model can retrieve Keys and Values364

from the cache rather than recomputing them, thereby reducing the number of operations to a linear365

scale with respect to the sequence length. This method trades off increased memory usage for a366

reduction in computational overhead. The size of KV cache per layer is defined as below:367

Ck,v = b×N × n× d, (13)

where b is the batch size, N is the max sequence length in the batch, n is the number of K/V head368

and d is the head dimension. As seen above, the memory footprint cost of caching can be substantial369

because the KV cache scales linearly with both sequence length and batch size. This drives the need370

of compression methods to reduce KV cache for LLM deployment in resource-constrained scenarios.371

C Multi-head Attention and Group-query Attention372

The above derivation in Section 2.1 holds for standard MHA, where the model dimension D equals373

to the multiplication of number of head and head dimension h × d. For GQA, the number of KV374

heads is reduced as shown in Table 3. To adapt such implementation, we can still follow the above375

procedure for cache compression. After fetching the Key/Value from cache, we just need to repeat376

them according to the number of the total attention heads.377

D Adjusted Position Embedding378

Su et al. (2024) propose a rotary position embedding (RoPE) and it has been used in most recent379

LLMs. Applying RoPE to self-attention gives380

qTmkn = (Rd
Θ,mWqxm)T (Rd

Θ,nWkxn) = xTWT
q Rd

Θ,n−mWkxn, (14)

where Θ is a pre-defined rotary matrix, m and n denotes the token position. The Rd
Θ,n−m can be381

decomposed as (Rd
Θ,m)TRd

Θ,n to rotate the query and key, respectively. In the original KV cache382

stores rotated key, thus we need to adjust this position embedding pipeline to ensure the compressed383

keys are compatible with the rotary operation. Specifically, we only keep X(ΣV)⊤D×dc
in cache, and384

incorporate the other components into the calculation of the query to streamline the process.385

10

E Error Bounds for KV Cache Compression386

In this section, we derive error bounds for our KV cache compression method, considering both387

individual layer errors and their propagation through a deep network. These theoretical results388

provide insights into how compression affects the network’s performance and guide the selection of389

compression levels to balance efficiency and accuracy.390

E.1 Single Layer Error Bound391

Theorem 1 Let W ∈ Rm×n be a weight matrix (either key or value), and let Wk ∈ Rm×n be its392

rank-k approximation obtained via truncated singular value decomposition (SVD). For any input393

vector x ∈ Rn, the error introduced by the approximation is bounded by:394

∥Wx−Wkx∥2 ≤ σk+1∥x∥2, (15)

where σk+1 is the (k + 1)-th singular value of W .395

Proof.396

Let W = UΣV ⊤ be the full SVD of W , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices,397

and Σ = diag(σ1, . . . , σn) with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.398

The rank-k approximation Wk is given by:399

Wk = UkΣkV
⊤
k ,

where Uk, Σk, and Vk are truncated versions of U , Σ, and V , respectively, keeping only the first k400

singular values and corresponding vectors.401

We have:402

∥Wx−Wkx∥2 = ∥(W −Wk)x∥2
= ∥U(Σ− Σk)V

⊤x∥2
= ∥(Σ− Σk)V

⊤x∥2, since U is orthogonal

= ∥ diag(0, . . . , 0, σk+1, . . . , σn)V
⊤x∥2

≤ σk+1∥V ⊤x∥2
= σk+1∥x∥2, since V is orthogonal.

□403

E.2 Error Propagation Bound404

Theorem 2 Consider an L-layer network where each layer i applies a linear transformation Wi405

followed by a nonlinearity ϕ with Lipschitz constant Lϕ. Let W̃i be the compressed version of Wi406

obtained via truncated SVD with rank ki. The error at the output of the network is bounded by:407

∥xL − x̃L∥2 ≤
L∑

i=1

σ
(i)
ki+1L

L−i
ϕ

L∏
j=i+1

∥Wj∥2

 , (16)

where xL and x̃L are the outputs of the original and compressed networks, respectively; σ(i)
ki+1 is the408

(ki + 1)-th singular value of Wi; ∥Wj∥2 denotes the spectral norm of Wj; and Lϕ is the Lipschitz409

constant of the activation function ϕ.410

Proof.411

11

Let xi and x̃i denote the outputs of the i-th layer in the original and compressed networks, respectively.412

We prove by induction:413

Base Case (i = 1).414

Using Theorem 1 and the Lipschitz property of ϕ:415

∥x1 − x̃1∥2 = ∥ϕ(W1x0)− ϕ(W̃1x0)∥2
≤ Lϕ∥W1x0 − W̃1x0∥2
≤ Lϕσ

(1)
k1+1∥x0∥2.

Inductive Step.416

Assume the inductive bound holds for layer i− 1. For layer i:417

∥xi − x̃i∥2 = ∥ϕ(Wixi−1)− ϕ(W̃ix̃i−1)∥2
≤ Lϕ∥Wixi−1 − W̃ix̃i−1∥2

≤ Lϕ

(
∥Wi(xi−1 − x̃i−1)∥2 + ∥(Wi − W̃i)x̃i−1∥2

)
≤ Lϕ

(
∥Wi∥2∥xi−1 − x̃i−1∥2 + σ

(i)
ki+1∥x̃i−1∥2

)
.

We can bound ∥x̃i−1∥2 using the triangle inequality:418

∥x̃i−1∥2 ≤ ∥xi−1∥2 + ∥xi−1 − x̃i−1∥2.

Assuming that ∥xi−1∥2 is bounded (which is reasonable in practice due to normalization techniques),419

and applying the inductive hypothesis, we can express ∥xi − x̃i∥2 in terms of the accumulated errors420

up to layer i.421

By recursively applying this inequality and summing over all layers, we obtain the bound stated in422

Theorem 2.423

□424

E.2.1 Adjustment for Non-1-Lipschitz Activation Functions425

For activation functions where Lϕ > 1, such as SwiGLU and GELU used in LLaMA models, the426

error bound adjusts to account for the increased potential for error amplification.427

Modified Error Bound:428

∥xL − x̃L∥2 ≤
L∑

i=1

σ
(i)
ki+1L

L−i
ϕ

L∏
j=i+1

∥Wj∥2

 . (17)

Explanation:429

In this adjusted bound, LL−i
ϕ reflects the cumulative effect of the activation functions’ Lipschitz430

constant over the remaining layers of the network. A larger Lϕ implies that errors can grow more431

significantly as they propagate, highlighting the importance of carefully choosing compression levels432

in networks with such activation functions.433

E.3 Bound on Performance Degradation434

Corollary 2.1 Let f(x) be the output of the original network and f̃(x) be the output of the com-435

pressed network for input x. Assume the loss function L is LL-Lipschitz in its first argument. The436

performance degradation is bounded by:437

12

|L(f(x), y)− L(f̃(x), y)| ≤ LL∥xL − x̃L∥2 ≤ LL

L∑
i=1

σ
(i)
ki+1L

L−i
ϕ

L∏
j=i+1

∥Wj∥2

 , (18)

where y is the true label.438

Proof.439

Since L is LL-Lipschitz in its first argument:440

|L(f(x), y)− L(f̃(x), y)| ≤ LL∥f(x)− ˜f(x)∥2 = LL∥xL − x̃L∥2.

Substituting the bound from Theorem 2, we obtain:441

|L(f(x), y)− L(˜f(x), y)| ≤ LL

L∑
i=1

σ
(i)
ki+1L

L−i
ϕ

L∏
j=i+1

∥Wj∥2

 .

□442

This corollary connects the theoretical error bounds to practical performance metrics. It shows that443

the degradation in the loss function due to compression is directly bounded by the cumulative error at444

the network’s output. Since the loss function is LL-Lipschitz, a bounded change in the output leads445

to a bounded change in the loss.446

Table 3: Model Architectures.
Model Attention Layers Heads KV Heads Head Dimension Model Dimension Weight Shape

LLaMA-2-13B MHA 40 40 40 128 5120 5120 × 5120
LLaMA-3-Instruct-8B GQA 32 32 8 128 4096 4096 × 1024

LLaMA-3-Instruct-70B GQA 80 64 8 128 8192 8192 × 1024

F Experiment Settings447

F.1 Dataset448

We follow Touvron et al. (2023) to evaluate our methods on the following tasks: BoolQ (Clark et al.,449

2019) for reading comprehension, XSum (Narayan et al., 2018) for text summarization. Openbook450

QA (Mihaylov et al., 2018) for commonsense reasoning, and GSM8K (Cobbe et al., 2021) for451

mathematical reasoning. We use ROUGE score (Lin, 2004) as the evaluation metric for XSum and452

accuracy for the other tasks. We report 2-shot results for LLaMA-2 models on BoolQ, and 0-shot453

results for other settings.454

F.2 Implementation Details455

In practice, we set thresholds to exclude compression on layers with high cumulative condition456

numbers: 30 for LLaMA-3-Instruct-8B, and 90 for LLaMA-2-13B and LLaMA-3-Instruct-70B. The457

dmax equals to the original head dimension, while dmin varies based on the target compression ratio.458

For baseline methods, we have the same refrained layers while applying the uniform compression459

ratios across compressed layers instead of using a progressive compression strategy.460

G Reconstruction Error of Matrix SVD461

In our approach, we conduct layer-wise weight matrix decomposition and reconstruction. In this462

section, we show that these matrices are low-rank and therefore can be reconstructed with low-463

dimension matrices, resulting in negligible reconstruction error. This suggests that instead of464

designing complex eviction policies at the token level, we can focus on the weight matrix level465

13

0 5 10 15 20 25 30
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Re
co

ns
tru

ct
io

n
Er

ro
r

wkerr | r=0.5 wverr | r=0.5 wkerr | r=0.75 wverr | r=0.75

Figure 4: Layerwise relative reconstruction errors. wkerr and wverr denote the relative difference
between the original key/value matrices and their corresponding low-rank approximations measured
using the Frobinus norm. The compression ratio is computed as r = dc

Nh×dh
, where Nh is the number

of attention heads and dh, dc is the original and compressed hidden dimensions respectively.

to develop a KV cache compression method. This approach eliminates the need to scrutinize attention466

patterns to determine which tokens should be dropped. We present the relative reconstruction error467

in Figure 4, which is computed using the Frobenius norm. For a matrix M , the Frobenius norm is468

defined as:469

∥M∥F =

√√√√ m∑
i=1

n∑
j=1

|mij |2. (19)

The relative reconstruction error ε is calculated as:470

ε =
∥M − M̂∥F

∥M∥F
(20)

where M is the original matrix and M̂ is the reconstructed matrix obtained through truncated SVD.471

This approach enables us to quantify the accuracy of our low-rank approximation for each matrix.472

It is important to note that although Figure 4 demonstrates that reconstruction errors are similar473

across all layers, with shallow layers exhibiting even lower errors, this does not imply that we can474

directly compress shallow layers aggressively or compress all layers uniformly. In fact, compression475

errors propagate and amplify throughout the network as we illustrated in Section 2.2. To this end,476

we propose the progressive compression strategy and it is theoretically and empirically effective in477

minimizing the overall error accumulation.478

H Experiment Details479

For all experiments except those involving the LLaMA-3-70B model, we utilize a single node480

equipped with 4 A100 GPUs. For the LLaMA-3-70B model, we employ a node with 8 V100 GPUs.481

I Implementation Time for SVD482

The calculation of SVD is efficient based on the Numpy library. For LLaMA-3-Instruct-70B, the483

largest model used in our experiments, the all-layer (80 layers in total) SVD takes only 40 seconds.484

J Block Compression485

Figure 5 examines the impact of block-wise compression. Having investigated the effects of single-486

layer and shallow-layer compression, we now extend our exploration to such a more granular approach,487

14

4

6

8

10

12

14

Ro
ug

e-
LS

um
 o

n
XS

um

Block Compression Ratio
0.06
0.25

0.63
0.88

1st Block
2nd Block
3rd Block
4th Block

Figure 5: Block compression on XSum with LLaMA-3-Instruct-70B.

which allows for a targeted analysis of grouped compressed layers within the models. We use the488

80-layer LLaMA-3-Instruct-70B model in this experiment. It is divided into four 20-layer blocks,489

and we implement compression ratios ranging from 0.06 to 0.88 in each block. When compressing490

one block, the other blocks stay untouched. The results reveal that the 4th and 3rd blocks exhibit491

higher resilience to compression, compared to the 1st and 2nd blocks which show more significant492

declines in performance. This suggests that deeper blocks in this model architecture may inherently493

possess higher redundancy or are less critical to the model’s overall performance, indicating potential494

areas for efficiency improvements without substantial loss in output quality.495

15

	Introduction
	Method
	KV Cache Compression via Low-rank Approximation of Weight Matrices
	Progressive Compression Strategy

	Experiment
	Models
	Main Results
	Single Layer Profiling
	Curse of Shallow Layers
	Memory Footprint Reduction Analysis

	Conclusions
	Related Works
	Attention Mechanism
	KV Cache Compression

	Preliminary: Attention Mechanism and KV Cache
	Multi-head Attention and Group-query Attention
	Adjusted Position Embedding
	Error Bounds for KV Cache Compression
	Single Layer Error Bound
	Error Propagation Bound
	Adjustment for Non-1-Lipschitz Activation Functions

	Bound on Performance Degradation

	Experiment Settings
	Dataset
	Implementation Details

	Reconstruction Error of Matrix SVD
	Experiment Details
	Implementation Time for SVD
	Block Compression

