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Take a piece of paper and
 lay it over the screwdriver.

Put the ball into the upper drawer.
Place the bottle atop the
wallet with its cap end
oriented towards right.
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Place the knife to the
right of the can with its

blade pointing leftwards.

Place the hammer at the
center with its handle

pointing towards the clock.

Place the box between
the pot and hammer, with

its label upside-down.
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Put the tape measure
in the middle and in
an upright position.

Place the capybara on top of the paper labeled “6DOR”,
with the capybara facing towards the red bowl.

The handle of the hammer
is oriented towards left.

Turn the bowl
upside down.

The label of the
can is facing left.

Position the ladle 
behind the wrench and 

in a parallel way.

···

Place the mug on top of the green paper, 
so that its handle is pointing frontwards.

···

···

···

···

Place the can
onto the plate.

Place the apple
to the right

of the spoon.

Place the bottle between
the hammer and the

screwdriver.
1028 tasks in total

360 tasks in total

1059 tasks in total

Fig. 1: Open6DOR Benchmark and Real-world Experiments. We introduce a challenging and comprehensive benchmark for Open-
instruction 6-DoF object rearrangement tasks, termed Open6DOR. Following this, we propose a zero-shot and robust method, Open6DOR-
GPT, which proves effective in demanding simulation environments and real-world scenarios.

Abstract— The integration of large-scale Vision-Language
Models (VLMs) with embodied AI can greatly enhance the
generalizability and the capacity to follow open instructions for
robots. However, existing studies on object rearrangement are
not up to full consideration of the 6-DoF requirements, let alone
establishing a comprehensive benchmark. In this paper, we
propel the pioneer construction of the benchmark and approach
for table-top Open-instruction 6-DoF Object Rearrangement
(Open6DOR). Specifically, we collect a synthetic dataset of
200+ objects and carefully design 2400+ Open6DOR tasks.
These tasks are divided into the Position-track, Rotation-track,
and 6-DoF-track for evaluating different embodied agents in
predicting the positions and rotations of target objects. Besides,
we also propose a VLM-based approach for Open6DOR, named
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Open6DOR-GPT, which empowers GPT-4V with 3D-awareness
and simulation-assistance while exploiting its strengths in gen-
eralizability and instruction-following for this task. We compare
the existing embodied agents with our Open6DOR-GPT on the
proposed Open6DOR benchmark and find that Open6DOR-
GPT achieves the state-of-the-art performance. We further
show the impressive performance of Open6DOR-GPT in
diverse real-world experiments. Our constructed benchmark
will be released upon paper acceptance.

I. INTRODUCTION

Large-scale multimodal models [9, 25] pre-trained on web-
scale data have revolutionized numerous fields beyond what
was previously imaginable, enabling open-vocabulary text
understanding and 2D visual perception. The pursuit to
bring general intelligence into the robotic realm and 3D
physical world stands at an exciting yet nascent stage, calling
for stronger capabilities in 3D-aware perception, robotic



interaction and complex reasoning.
The advent of embodied large-scale models, exemplified

by the RT series [2, 3, 7, 15] and VoxPoser [17], has demon-
strated considerable progress in mobile or fixed-station pick-
and-place operations. While these models are capable of re-
arranging the object positions following human instructions,
they fall short of satisfying full 6-DoF object placement
instructions that involve specified 3D rotations. This limi-
tation renders them incompetent at many practical robotic
applications, where both object position and orientation are
essential. For instance, in our daily life we desire a water
bottle to be placed upright, while on the shelves in retail
stores, goods should face the same direction. Moreover,
previous works [3, 15, 17] are often evaluated on their own
robots in their own scenes with self-reported performance
and nonstandard evaluation metrics. The absence of a stan-
dard evaluation protocal condone cherry-picking, obstruct
comparative assessment, and thus, hinder the iterative en-
hancement of effective approaches.

In this paper, we target the task of Open-instruction 6-
DOF Object Rearrangement, referred to as Open6DOR,
which requires embodied agents to move the target objects
according to open instructions that specify its 6-DoF pose.
Open6DOR represents a fundamental skill for robotic ma-
nipulation tasks, presenting significant challenges in integrat-
ing instruction comprehension, 3D visual perception, and
motion planning capabilities. Specifically, we promote the
envelope of Open6DOR from two perspectives:

1) Benchmark Construction: We construct a standard-
ized benchmark, namely Open6DOR Benchmark, which
comprises 2447 tasks designed with 200 objects across
diverse categories in simulation environments. For compre-
hensive evaluation, we divide the Open6DOR benchmark
into the position track, rotation track, and 6-DoF track, each
providing manually configured tasks along with comprehen-
sive and quantitative 3D annotations. These tracks enable
independent or combined translational, rotational, and overall
performance assessments.

2) VLM-based Approach: We propose a VLM-based
approach for Open6DOR tasks. Due to the challenges of
Open6DOR analyzed before, all prior works, such as Vox-
Poser [17] and Dream2Real [20], fail to fulfill Open6DOR’s
6-DoF requirements adequately. Most of them [17] determine
the final positions of target objects while neglecting the
rotation dimension. Among these efforts, Dream2Real [20]
has the potential to consider position and rotation dimensions
in a coupled way by utilizing a VLM to directly select the
instruction-aligned result from all rendered images of the
imagined rearranged scenes. This leads to almost intolerable
time costs resulted from numerous renderings and VLM
inferences, as well as unsatisfactory results due to the VLM’s
limited 3D perception, which renders it an incompetent critic.
In contrast, we propose Open6DOR-GPT, which explicitly
integrates 3D information from the initial scene to GPT-
4V with equipped auxiliary modules and decomposes the
translational and rotational determinations. In this way, we
augment GPT-4V with 3D understanding capabilities and

improve efficiency by reducing the determination space with
decoupled modeling and simulation-assistance. Open6DOR-
GPT achieves state-of-the-art performance in both bench-
mark evaluation and real-world experiments.

II. RELATED WORK

A. Object Rearrangement Methods

Object rearrangement [1] requires an embodied agent to
manipulate objects to the desired pose based on specific
instructions. Early works [11, 12] address this challenge
by using task-and-motion-planning (TAMP) which relies
on pre-defined action primitives and close-to-perfect scene
knowledge for trajectory sampling. TAMP methods are
computationally inefficient and unscalable for complicated
scenarios. To enhance generalizability and efficiency, recent
research has shifted towards Learning-based approaches [10,
14, 24, 28, 33]. These methods are trained on simulators,
predicting either high-level planning [10, 24, 28] or low-level
actions [14, 33]. Despite exhibiting satisfactory performance
in simulators, they suffer from a severe sim-to-real gap [24].
Recent advanced methods leverage the open-world under-
standing capabilities of large language models (LLM) [6]
or vision language models (VLM) [21, 26] for real-world
deployment. A part of these approaches [16, 20] construct
carefully designed prompts to describe the environments, and
query off-the-shelf LLMs or VLMs for placement guidance
before execution. Other methods [31] train large language
models from self-collected data and directly output low-level
actions. Departing from existing works that predominantly
focus on location, our method also emphasizes rotation,
leading to a 6-DoF rearrangement method.

B. Object Rearrangement Benchmarks

Benchmarking object rearrangement is extremely chal-
lenging and requires extensive annotation of ground truth
placement. Existing object pick-and-place benchmarks [10,
32, 34] leverage pre-built environments such as Repilca-
CAD [27] or hand-crafted scenes, and high-quality object
reconstructions [4]. Besides, these benchmarks contain anno-
tations about the initial position and target position of each
object, which are leveraged for evaluating correct placement.
Aside from the simulator benchmarks, there are real-world
benchmarks [23] which directly evaluate baselines in real-
world robots. However, even though these benchmarks can
directly assess real-world performance, they fail to accurately
replicate the testing environments for all baselines and are
not permanently available due to hardware limitations. Dif-
ferent from existing works, we propose a 6-DoF object rear-
rangement benchmark that comprehensively evaluates 6-DoF
placement, providing both position and rotation annotations.

C. Vision-Language Models for Open-instruction 6-DoF
Tasks

Large models trained on internet-scale data have demon-
strated great potential in high-level planning [?, 13, 17]. The
recent advent of VLMs further bridges the gap between
visual perception and textual interpretation, empowering



embodied agents with semantic understanding of scenes and
instructions [19] to perform 6-DoF tasks. Some of the prior
works [17] leverage VLMs to compose 3D value maps, plan-
ning robot trajectories that comply with the given instruction;
while other methods such as Dream2Real [20] employ VLMs
as evaluators, generating goal states in the form of images
for VLM to assess. However, both approaches fail to con-
sider complex tasks that strictly specify the rotation of an
object. Moreover, Dream2Real suffers from excessive time-
consumption and VLM’s inaccurate judgment. In contrast,
our method addresses the rotation and position aspect of
the 6-DoF problem in a decoupled way, enhancing VLM’s
decision-making capabilities while expediting the inference
process.

III. OPEN6DOR BENCHMARK

A. Task Formulation and Benchmark Overview

Open6DOR task formulation. Open-instruction object re-
arrangement refers to the process wherein an embodied
agent repositions objects within a scene from an initial state,
following specific instructions. In particular, a 6-DoF object
rearrangement task focuses on repositioning objects in a 6-
DoF space, including both orientational and translational
movement. For a long-horizon rearrangement problem, we
decompose the process into several independent pick-and-
place tasks, during which objects are repositioned one at
a time. We define each of these tasks as an Open6DOR
task, in which a single target object is moved from its initial
pose to a goal pose based on an open-vocabulary instruction.
The input comprises a single-view RGB-D image of the
initial scene captured by a camera fixed on the robotic arm,
denoted as Irgbd, along with an arbitrary task instruction Ĩ ,
which describes the desired goal pose of an object in the
scene. Based on these, the model is required to output the
quantitative goal position Pgoal and goal rotation Rgoal of the
target object.
Open6DOR benchmark. The Open6DOR Benchmark is
specifically designed for table-top Open6DOR tasks within
a simulation environment. Our dataset encompasses 200+
high-quality objects, forming diverse scenes and totaling
2400+ diverse tasks, with statistics shown in Tab. I. All tasks
are carefully configured and accompanied by detailed annota-
tions. To ensure comprehensive evaluation, we provide three
specialized tracks of benchmark: the Rotation-track Bench-
mark Br, the Position-track benchmark Bp, and the 6-DoF-
track Benchmark B6DOR. Br encompasses tasks achievable
through a singular rotational movement at a fixed point—for
example, "place the cup upside down". Bp concentrates on
tasks requiring the repositioning of an object, like "put the
cup between A and B", without specific regard to the object’s
orientation. Meanwhile, B6DOR integrates both rotation and
position requirements, involving tasks such as "place the
mug in front of A with its handle pointing towards the left".
Constructing the benchmark was a challenging and laborious
task. The process involved four stages: a) data collection and
processing, b) instruction design, c) task formulation, and d)
pose annotation . It took the team over a month to complete

the preliminary version, and we anticipate further investment
to expand and refine the Open6DOR Benchmark.

B. Position-track Benchmark

Data composition and annotation. The Position-track
benchmark includes 1028 tasks, each set in a table-top scene
that contains several objects. Our synthetic object dataset
Os comprises 200+ items, covering a range of 70+ distinct
categories. Originally derived from YCB [5] and Objaverse-
XL [8], the objects are carefully filtered so as to ensure our
selections are physically intact and semantically reasonable
to be placed on a table. We normalize the scale of all the
objects and use a uniform format of mesh representation.
The objects are then classified into different categories for
the convenience of future analysis.

For scene configuration, we randomly select 2-6 objects
from Os and position them on the table with random initial
poses. We then generate an RGB-D image for each of the
scenes and filter out low-quality ones (e.g. scenes that include
unreasonably placed or heavily occluded objects), resulting
in a single-view RGB-D image dataset Vp. For position
instructions Ip, we design three levels that evaluate the
understanding of: basic directions (Level 0) such as Left,
Right, Top, Behind, Front; object relations (Level 1) such
as Between, Center; and customized commands (Level 2)
like Put A into B. The task instructions adhere to a uniform
format, such as ’place A in front of B’, where A and B
are subsequently specified based on the context of individual
scenes. Additionally, we annotate a position range for each
task according to the given instruction.
Evaluation metrics. We assess the predicted goal postion
Pgoal according to the annotated position range. A position
that falls into that range is considered as correct, otherwise
wrong. For instance, in the Left task category, we verify
whether the predicted position is to the left of the reference
object (indicated by a smaller y-axis coordinate).

C. Rotation-track Benchmark

Data composition and annotation. The Rotation-track
Benchmark consists of 360 diverse tasks, each set in a scene
containing a single object. We use the same object dataset Os

as the Position-track Benchmark. For the single-view RGB-D
input Irgbd, we provide a dataset Vr, which comprises RGB-
D images of all the objects in Os. For the instruction input Ĩ ,
we construct a dataset of 70+ rotation-specified instructions,
denoted as Ir. For each object category in Os, we label
it with 1-5 instructions in Ir based on its features. The
instructions are categorized into 3 levels that progressively
increase in difficulty. Level 0 includes basic instructions that
are related to the geometric shape of the object, such as
"upright" and "upside down". Level 1 generally requires a
higher understanding of direction and orientation, such as
"handle to the left". Level 2 contains harder instructions
concerning semantics and textual information of the object,
such as "label forth" and "characters right side up".
Evaluation metrics. Due to the diversity and complexity
of human commands in our instruction set Ir, it is difficult
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Fig. 2: Method Overview. Open6DOR-GPT takes the RGB-D image and instruction as input and outputs the corresponding robot motion
trajectory. Firstly, the preprocessing module extracts the object names and masks. Then, two modules simultaneously predict the position
and rotation of the target object in a decoupled way. Finally, the planning module generates a trajectory for execution.

Track Position-track Rotation-track 6DoF-track

Level Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 -

Task Catog. Left Right Top Behind Front Between Center Customized Geometric Directional Semantic -

Task Stat. 152 185 177 143 66 149 156 10 147 106 107 1059

Benchmark Stat. 1028 360 1059

TABLE I: Statistics of Open6DOR Benchmark. The entire benchmark comprises three independent tracks, each featuring diverse tasks
with careful annotations. The tasks are divided into different levels based on instruction categories, with statistics demonstrated above.

to design a uniform metric to judge alignment between
the numerical representation of the rotation and the initial
instruction. To address this problem, we manually annotate
each task with a rotation range that complies with the
instructions. Rotation results that fall into this range are
considered as correct, otherwise wrong.

D. 6-DoF-track Benchmark

Data composition and annotation. The 6-DoF-Track
Benchmark comprises 1059 tasks, providing a comprehen-
sive evaluation that jointly assesses the rotation and position
performance of an Open6DOR task. The formulation of the
RGB-D scene image Irgbd aligns with that of the Position-
track. For instruction Ĩ , we combine instructions from Ip
and Ir, forming instructions that specify both the position
and rotation of an object. Each instruction is paired with an
RGB-D scene image as the task input, and we exclude the
incompatible pairs to ensure that the tasks are well-defined
and performable.

Evaluation metrics. We evaluate the quality of a 6-DoF pose
from two perspectives: rotation and position. Specifically, we
manually annotate the desired rotation and position of the
target object based on the instruction. We consider a task
successful only when it satisfies both criteria.

IV. OPEN6DOR-GPT

A. Method Overview

As shown in Fig. 2, we enhance GPT-4V [25]’s capabilities
to address the challenges of the Open6DOR task in a
decomposed way. Initially, the Task Preprocessing Module
deciphers Ĩ based on the Irgbd and feeds the resulting images
to the Position Module and Rotation Module respectively.
Within the two modules, we empower GPT-4V with 3D
awareness and simulation assistance, thereby effectively out-
putting the predicted goal position Pgoal and rotation Rgoal.
Finally, the Simulation-assisted Planning Module identifies
a suitable grasping pose and plans out an optimal action
trajectory to accomplish the task. We will first introduce each
module of our proposed system in paragraph B-E to explain
how an Open6DOR task is accomplished. We then elaborate
on how the system tackles long-horizon tasks with multiple
rounds of operations.

B. Task Preprocessing Module

With the single-view RGB-D Image Irgbd and the task
instruction Ĩ as input, this module leverages GPT-4V to
interpret the instruction and identifies object namestOname

i u,
which in turn triggers GroundedSAM [18] to generate a set
of labeled masks. Based on the masked Image Imask, the
RGB image of the target object Iobject is extracted. These
images are used in subsequent modules.
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Fig. 3: Simulation-assisted Rotation Module. Firstly, a textured mesh is reconstructed from the single-view image of the target object.
Then, we employ large-scale sampling to obtain multiple rotation samples. This sample set is then narrowed down through a simulation-
assisted filtering process to derive several stable pose categories. Finally, we generate rendered images of the pose candidates, from which
GPT-4V selects the optimal goal rotation.

C. 3D-aware Position Module

Taking the masked RGB-D image Imask and task in-
struction Ĩ as input, the 3D-aware Position Module Mp

determines and outputs the goal position that complies with
the requirements.

To incorporate three-dimensional (3D) data into GPT-4V’s
understanding, our approach utilizes back-projection based
on Imask to generate a 3D masked point cloud, symbolized
as PC3d

i . This computation includes determining the centroid
Center3di and bounding box Bbox3di of the point cloud
associated with the queried object.

PC3d
i “ BackProjpIrgbdpMask2di qq (1)

Center3di ,Bbox3di “ MeanpPC3d
i q,MaxpPC3d

i q´MinpPC3d
i q

These spatial attributes are then integrated back into the
prompt for GPT-4V, facilitating the model to accurately
ascertain the goal position for the target object Pgoal.

D. Simulation-assisted Rotation Module

With the single-view RGB image of the target object
Iobject and the task instruction Ĩ as input, the rotation module
would output the goal rotation Rgoal for the object. We first
reconstruct the target object from Iobject using One-2-3-
45++ [22], and outputs a textured mesh, denoted as M . The
reconstruction process is followed by four phases: (1) large-
scale sampling (2) simulation-assisted filtering (3) rotation
categorization (4) GPT-4V selection.
Large-scale sampling. In Phase 1, we randomly sample a
total amount of N rotations tR0

i u
N

i“0 as initial inputs for
subsequent phases. We set N “ 3600 and use Uniform
Sampling in SO(3) space (Special Orthogonal Group in 3D
space) to ensure the diversity of our samples.
Simulation-assisted filtering. Now that we have a large pool
of rotation candidates tR0

i u, the goal of Phase 2 is to filter
out the unreasonable candidates and narrow down the sample

pool efficiently. To accomplish this task, we first examine
the stability of the rotation candidates by incorporating a
physics simulator through which all the unstable poses are
excluded. To be specific, each R0

i is applied to a replica
of M , denoted by Mi, as its initial rotation in the simulator,
amounting to N actors tM0

i u
N

i“0 in total. Then, all the actors
are dropped from a low height, landing on the ground with
diverse ending poses. We record the relative rotation from the
original mesh M to the ending pose of Mi as Rt

i . By now,
we have narrowed down the originally random and irregular
distribution of tR0

i u
N

i“0 to a more condensed space tRt
iu

N
i“0

of geometrically stable rotations. By simulating the dropping
process within 10 seconds, we avoid the time-consuming
inferences of vision language models while accurately ex-
tracting stable poses of M .
Rotation categorization. From Phase 2, we’ve obtained
a set of rotations tRt

iu
N
i“0 that guarantee the stability of

the object. However, these rotations are unevenly cluttered
around several distinct centers, each representing a stable
pose. In order to categorize these rotations and extract a
representative for each stable pose, we propose a criterion
by which we judge whether two rotations Ra and Rb could
be classified into the same category. In brief, we regard Ra

and Rb as identical if they meet any one of the following two
criteria: (1) the relative rotation from Ra to Rb is small in
magnitude (2) Ra and Rb represents symmetrical poses that
are transferrable via a rotation along the z-axis(perpendicular
to the table surface). We define a threshold for each of these
criteria and calculate whether Ra and Rb could be considered
as identical. Through this method, we classify the rotations
into several clusters and represent each category with a single
rotation, which largely reduces the total number of rotation
candidates for the task. Therefore, we successfully narrow
down tRt

iu
N
i“0 to a small set: tRjuni“0, in which each rotation

represents a distinct stable pose.
GPT-4V selection. During the last phase of our rotation



engine, we feed the filtered set of rotations tRjuni“0 in the
form of the 2D image along with the original instruction
to GPT-4V and let it select a candidate as the goal rotation
Rgoal. To transform tRju into a modal that VLM could easily
understand, we apply each Rj to M and render the image
of the object loaded on a table accordingly. The images are
then arranged together into a collage, with an index mark
on the upper left of each grid. Empirically, we found that
this strategic approach of numbering and segmenting the
images boosts the performance of GPT-4V in selecting the
right answer. To further enhance our method, we employ a
two-stage strategy that resamples a set of rotation candidates
based on the rotation GPT-4V has selected in Stage 1. After
this second round of adjustment, the goal rotation Rgoal is
determined and outputted.

E. Simulation-assisted Planning Module

Utilizing the predicted goal position Pgoal and goal ro-
tation Rgoal, the planning module formulates an effective
execution strategy with simulation assistance. Firstly, the
Grasp Detection Model, GSNet [30], takes the refined point
cloud PCrefined as input and generates a series of scored
grasping pose candidates tpGj , sjqu. From tGju, GPT-4V
selects valid grasping poses that rest on the target object by
leveraging the object bounding box Bbox3d derived from the
3D-aware Position, resulting in a ranked set of tG̃ju.

tpGj , sjqu “ GSNetpPCrefinedq (2)

tG̃ju “ SortedsptpGjquBbox3dq (3)

Next, we use cuRobo [29] as the motion planner, which
enumerates tG̃ju within the simulator based on their score
rankings tsju, and identifies a trajectory that optimizes
both grasping and placement, denoted as T . Finally, the
robot employs its control system to accomplish execution
according to T .

F. Long-horizon Open6DOR Execution

With the framework outlined in previous sections, our
system is capable of managing individual Open6DOR tasks.
For long-horizon rearrangement tasks, we first employ GPT-
4V to evaluate whether multiple Open6DOR steps are
required. If the task necessitates multiple steps, GPT-4V
leverages high-level planning to divide the instruction Ĩ
into several discrete execution steps tĨiu. Subsequently, for
each individual step Ii, we apply the previously described
methodology to carry out the task. Upon the completion of
each Open6DOR sequence, the overall task is considered
complete. This approach ensures a systematic and efficient
handling of complex rearrangement tasks, breaking them
down into manageable steps that are executed with precision.

V. EXPERIMENTS

A. Results on Position-track Benchmark

We evaluate the performance of our position module and
several baselines on the Position-track Benchmark. As shown
in Table II, both Dream2Real and GPT-4V demonstrate

Success Rate (%) Level 0 Level 1 Level 2 Overall

GPT-4V [25] 45.1 40.3 50.0 44.5
Dream2Real* [20] 19.9 32.6 - 23.5

VoxPoser* [17] 23.6 19.4 0.0 19.6
VoxPoser(VLM)* [17] 27.1 27.9 0.0 23.9

Open6DOR-GPT 83.7 62.7 80.0 78.0
TABLE II: Results on Position-track Benchmark. We compared
our approach against several benchmarks for positioning proposals.
This includes: (1) GPT-4V [25], utilizing pixel input to predict
object placement and employing depth for 3D location. (2) A
tailored Dream2Real [20] baseline for our task. (3,4) VoxPoser
[17] original and adapted versions, aligning with our goals. Our
tests include GPT-4V’s Large Language Model (LLM) and Vision-
Language Model (VLM) setups, with an asterisk denoting ground-
truth data usage as reference baselines.

incompetence at precise position determination. VoxPoser
[17], another baseline, yields unsatisfactory performance due
to reliance on Large Language Models (LLM) without visual
inputs. But even when adapted to a VLM-assisted version
and incorporating image data, VoxPoser(VLM)* fails to
gain significant improvements. Comparatively, our approach
markedly surpasses all these baselines by over 30 percent,
demonstrating superior and consistent performance on the
Position-track Benchmark.

B. Results on Rotation-track Benchmark
Our Rotation Module comprises four phases aimed at en-

hancing GPT-4V [25] through a simulation-assisted sample-
and-filter mechanism. To evaluate the effectiveness of each
phase, we conduct ablation studies using the Rotation-track
of Open6DOR Benchmark, with results detailed in Table III.
We compare our approach with Dream2Real [20], replacing
their CLIP Model with GPT-4V to ensure fairness. As shown
in the first row of the table, directly querying GPT-4V yields
an unsatisfactory success rate. Substituting our module with
Dream2Real’s method also leads to a noticeable performance
decline. However, upon incorporating the Simulation-assisted
Filtering Phase, we observe a noticeable performance in-
crease as GPT-4V is able to choose from a confined set of
rotation candidates. Further enhancements are achieved by
integrating a 2-stage VLM Selection method. Notably, the
combined module outperforms Dream2Real* by 12 percent.

C. Results on 6-DoF Benchmark

We evaluate our entire pipeline using the 6DoF-track
of Open6DOR Benchmark. The evaluation of rotational,
positional, and joint performance are presented in Table IV.
For baseline methods, we found a limited number of works
addressing the 6DoF problem and chose to compare with
Dream2Real [20]. However, the original Dream2Real method
is excessively time-consuming, requiring over 10 minutes
per task for completion. To fully assess Dream2Real on the
6DoF-track Benchmark (containing 1k+ tasks), we skip the
scene-scanning and reconstruction section of their method,
using ground-truth mesh and image instead. Despite the
disadvantage of the mesh quality on our side(our method



Put the capybara into the metal mug.

Place the green ball at the center of the objects and to the right of the toy.

Put the baseball into the frying pan.

Rotate the bottle so that the bottom end is oriented towards right.

Place the mug on the top of the green paper, so that its handle is pointing frontwards.

Take a piece of paper and lay it over the screwdriver.

Place the bottle onto the bowl so that it stands upright.

Place the capybara on top of the paper labeled “6DOR”, with the capybara facing frontwards.

Fig. 4: Real-world Experiments. We ground Open6DOR-GPT in real-world settings and conduct various tasks as well as long-horizon
highlighting its exceptional zero-shot generalization capability across challenging tasks.

Success Rate(%) Level 0 Level 1 Level 2 Overall

GPT-4V [25] 9.1 6.9 11.7 9.2
Dream2Real* [20] 37.3 27.6 26.2 31.1

S-F + GPT-4V 49.0 32.7 28.1 38.0
Open6DOR-GPT 50.3 36.4 41.8 43.7

(S-F + 2-Stage 4V)

TABLE III: Results on Rotation-track Benchmark. Quantitative
comparison with a refined version of Dream2Real [20] method
(replacing CLIP Model with GPT-4V), and ablation studies of dif-
ferent phases in the Rotation Module. "S-F" stands for "Sampling-
Filtering". The first three rows ablate Phase1-4, Phase3-4, and
Stage2 in Phase 4, respectively.

Success Rate (%) Rotation Position Overall Time Cost

Dream2Real [20] - - - ą700s
Dream2Real* [20] 18.7 26.2 13.5 358.3s
Open6DOR-GPT 52.1 78.0 40.6 156.3 s

TABLE IV: Results on 6-DoF-track Benchmark. We compare
our method with an optimized version of Dream2Real [20] on the
6DoF Benchmark (denoted as Dream2Real*). The three columns
depict the quality of the goal pose in terms of rotation, position,
and overall performance.

reconstructs a mesh from the original image), Open6DOR-
GPT significantly outperforms Dream2Real* by about 30
percent. Our approach also demonstrates better efficiency
compared to baseline approaches.

D. Real-world Experiments

In our real-world experiments, we leverage a Franka Panda
arm with a parallel gripper and mount a Realsense D415
camera to its end for image capturing. To comprehensively
demonstrate the performance of our approach, we design
tasks of varying difficulty levels: (1) place objects to the
target position (2) place objects to the target rotation (3)
place objects to the target position and rotation. We employ
diverse objects with different geometries, textures, and ma-
terials, including transparent and specular ones. As shown
in Fig. 4, our zero-shot method is able to tackle challenging
Open6DOR scenarios and demonstrates strong potential in
long-horizon tasks.

VI. CONCLUSION

In this paper, we pioneer the establishment of the
Open6DOR benchmark and VLM-based approach, address-
ing the need for a comprehensive evaluation and a foregoing
method exploration in open-instruction 6-DoF object rear-
rangement. Our synthetic benchmark, comprising over 200
objects and 2400 tasks, offers a standardized framework for
evaluating the capabilities of embodied agents in simulation
environments. Additionally, our Open6DOR-GPT approach
achieves state-of-the-art performance, augmenting GPT-4V
with 3D awareness and simulation assistance. As for the
current limitations, while Open6DOR-GPT significantly
improves position and rotation handling, it does not achieve
real-time performance, and rotation understanding remains
suboptimal. Future enhancements to our benchmark are
anticipated, especially real-world extensions.
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