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ABSTRACT

Antibodies comprise the most versatile class of binding molecules, with numerous
applications in biomedicine. Therapeutic antibody development requires designing
novel and diverse sequences with improved properties, while maintaining the struc-
tural consistency. Computational design of antibodies involves unusual challenges
relative to designing other classes of proteins, as antibodies comprise multiple
long, variable, and unstructured loops at the complementarity-determining region
(CDR) that determine the antigen binding affinity and specificity of an antibody.
Recently, deep language models and graph neural networks have shown impressive
success in antibody sequence generation. Since only a limited number of antibody
structures are known, training a model using this limited data can lead to degraded
performance, particularly lacking diversity in the generated samples. To address
such issues, we leverage the method of Model Reprogramming (MR) here, which
focuses on repurposing pretrained machine learning models for target domain
tasks with scarce data, where it may be difficult to train a high-performing model
from scratch. Prior works in MR have primarily focused on classification-based
tasks. We extend the capabilities of reprogramming beyond classification tasks, and
towards a more complex problem of antibody sequence generation. Specifically,
we introduce Reprogramming for Protein Sequence Infilling, a framework in which
pretrained natural language models are repurposed for protein sequence infilling
via reprogramming, to infill protein sequence templates as a method of novel
protein generation. For variable CDR sequence design, we formulate the task as
text infilling that uses the constant region of an antibody as the sequence template.
Results on antibody design benchmarks show that our reprogrammed model on
low resourced antibody sequence dataset provides highly diverse CDR sequences,
up to more than a two-fold increase of diversity over the baselines, without losing
structural integrity and naturalness. The performance benefit of the reprogrammed
model learning only from antibody sequences is more evident for longer CDR
design or for multiple loop infilling at once, compared to existing graph-based
models that require additional structural information. The generated sequences also
demonstrate enhanced antigen binding specificity or virus neutralization ability.

1 INTRODUCTION

Antibodies have emerged as essential therapeutic agents in the treatment of cancer and various
other autoimmune, infectious and metabolic diseases. Since 1985, approximately 100 monoclonal
antibodies (mAbs) have been designated as drugs by FDA (Jin et al. [2022). Compared to small
molecule drugs, the advantage of using antibody proteins as therapeutics is their high specificity
resulting in less adverse effects. A key challenge in antibody design is tailoring their binding
specificity, which is mainly influenced by the complementarity determining region (CDR). CDR
plays a crucial role in antigen recognition and binding processes. It is composed of six hypervariable
loops, three formed by each of heavy (H) and light (L) chains. Together, the CDRs shape the antigen
binding site of the antibody.

Five of the six loops usually adopt well-characterized canonical conformations. In contrast, the
CDR-H3 loop shows substantial variability in sequence and structure, and hence cannot be described
by a canonical structure model. Even when compared to other protein loop structures, the CDR-H3
clearly stands out with its significantly higher structural diversity.
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Figure 1: Overview of the proposed Protein Sequence Infilling using Model Reprogramming . Given
a heavy chain of an antibody, the goal is to design three Complementarity-Determining Regions
(CDR-H1, CDR-H2, CDR-H3), shown in green, blue and red colors, using information from the
rest of the protein. The infilling problem is formulated similar to the masked-language modeling
task, where the missing amino acids are marked with a token (MASK) and the model generates tokens
to infill them. We emphasize that our system is a sequence-only method, and while the structure
information might be available (bottom of the figure, showing Y-shaped antibody structure with
CDRs), our method does not rely on it in the generation process. It makes the model computationally
efficient while still achieving high sequence recovery and diversity rates as compared to the current
baselines. Reprogrammed language BERT model (ReprogBert) is our proposed infilling model,
where the English language BERT remains unchanged and frozen (source domain), and we introduce
additional amino acid embeddings (target domain) together with the linear matrices (6 € R!V:/* Vsl
and vy € RIVsI*IVely to project from one domain to another. During CDR infilling training, only the
projection matrices and protein embeddings are fine-tuned, the language model remains unmodified.
The bottom diagram shows the schematic view of the reprogramming: fy : zy — x4 is transforming
input protein sequence (target domain (T)) into input word sequence (source domain (S)) and
9~y : Ys — y; reverses the mapping. Thus, for a masked protein sequence x; we get predicted
CDR-infilled antibody y; = f- (M (fe(x+))), where M is the pretrained language model.

There is a high demand and need for efficient in-silico methods for designing CDRs with improved
specificity and other desired properties, to reduce the cost and time associate with wet lab production
and testing of antibody candidates. Generative machine learning has emerged as an attractive and
viable path for this purpose. For example, for a more general task of protein design, creating new
protein sequences that fold to a desired 3D structure and/or exhibit a specific function, many deep
generative models have been adapted and expanded (Ingraham et al., 2019; [Cao et al., 2021}, [Karimi
et all, 2020} [Syrlybaeva & Strauch| [2022; [Lee & Kim| 2022} [Anand & Achim) [2022). However,
compared to other protein design challenges, CDR design (Akbar et al.,[2022b; |[Eguchi et al.,
[Shin et al, 2021}, [Adolf-Bryfogle et al., 2018}, [Fu & Sun} 2022} Kong et al.,[2022; [Luo et al., [2022),
especially CDR-H3 design, comes with additional complexities, such as out-of-distribution generation
to accommodate functional novelty. Additionally, in antibody design, sequence similarity may not
reflect binding behavior. For example, in HER2 binding antibodies, two very similar sequences
(Levenshtein distance < 2) had opposing binding behavior (Mason et al.,[2021)). Furthermore, it is
often desirable to explore new antigen binding modes, when designing antibodies for a target of
interest. Such out-of-distribution sample generation remains challenging, particularly in a template-
constrained generation scenario.

Most of the prior works compromise on the sequence and structural diversity in generated CDRs
for high amino acid recovery and low root mean square deviation (RMSD) from ground truth
structure. Moreover, the sequence-based models typically involve LLM training from scratch on NGS
repertoire (Olsen et al.}[2022)), or GNN training on a small sample of antibody sequence-structure
pairs (Jin et al.,|2021)). The GNN-based models also come with a cost associated with inference, e.g.,
iterative design of nodes and edges in a graph via autoregressive decoding.
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To address these challenges, we propose an alternative sequence-only framework (see Fig. [I] for an
overview), that is reprogramming existing out-of-domain English language BERT model (Devlin
et al., 2018) toward the protein infilling task, given the rest of the sequence as a template. We term this
model ReprogBert. Additionally, for our sequence-based infilling task we also consider in-domain
specialized protein model ProtBert (Elnaggar et al.l |2020) as well as the English language BERT
(EnglishBert), whose out-of-domain language token embeddings are replaced with in-domain amino
acid embeddings (see Fig. [5]in Appendix for details). We compare all of our proposed infilling
methods with physics-based and graph-based generative models on a list of tasks ranging from
template constrained CDR design to CDR sequences with predicted SARS-COV-2 neutralization
ability. We show that while ReprogBert enjoys comparable high structural consistency, and lower
sequence perplexity, when matched against the baselines, it shows high amino acid CDR recovery
while providing additional benefit regarding generating highly diverse CDR sequences. These results
suggest the potential of ReprogBert toward on-demand generation of the out-of-distribution sequences
in the learning from limited data scenario. The other proposed baseline systems, EnglishBert and
ProtBert, achieve high CDR sequence recovery rates with consistent structural integrity, although
having a modest sequence diversity performance.

In summary, in this work we: (i) propose ReprogBert, a system for protein sequence infilling using
model reprogramming for the task of antibody CDR design, (ii) show promising performance results
as compared to many baselines (including our own proposed ProtBert and EnglishBert baseline
infilling methods) and over multiple benchmarks, where our ReprogBert model upholds structural
integrity and sequence recovery, while achieving valuable high diversity of the generated sequences.
Moreover, the generated CDR sequences frequently have the lowest perplexity, reflecting their
well-formed composition and naturalness. ReprogBert further shows its promise in harder CDR
design tasks, can handle multiple CDR infilling at once, and does not need structure template
information, and (iii) observe high data-efficiency of the reprogrammed model, having only a few
training parameters, it can be efficiently trained in the data-scarce domains, such as antibody design,
while still leveraging information from large out-of-domain language pretraining.

2 REPROGRAMMING FOR PROTEIN SEQUENCE INFILLING

The field of model reprogramming (MR) has focused on repurposing pretrained machine learning
(ML) models for varied ML tasks in different domains. It was firstly proposed in an adversarial
setting of stealthy resource alternation in (Elsayed et al.,[2018)) and later extended to cross-domain
resource-efficient transfer learning (Chenl 2022; Neekhara et al.,|2022). MR achieves state-of-the-art
performance in many tasks, especially in data-limited classification settings, including reprogramming
general images for bio-medical measurements (Tsai et al.| [2020), human voice for time-series (Yang
et al.| 2021), and sentence sentiment for protein property (Vinod et al.|[2020), to name a few. While
current MR techniques focus on classification tasks, in our work we seek to extend MR capabilities
into generative tasks through reprogramming large pretrained language models for protein sequence
infilling. To the best of our knowledge, this work is the first study for such an endeavor.

Given a protein sequence, we propose novel CDR loop design as a form of a template-infilling. The
template is provided by the amino acid sequence of the constant region of the antibody, as those are
conserved and less likely to change, while the sequences corresponding to CDR can vary and change
the structure of the antigen binding interface, resulting into modified antigen affinity and specificity.
It should be mentioned though the infilling here is performed to design CDRs of antibodies, the
framework can be leveraged to infill any protein sequences.

Figure [I] presents an overview of our proposed framework, ReprogBert, the reprogrammed language
model for protein sequence infilling. Specifically, we use the pretrained English BERT model (Devlin
et al., [2018) (in our experiments, it is the base-bert-uncased from HuggingFace) and reprogram it
for infilling the CDR part of the antibodies.

The number of tokens in the original language task (i.e., source domain) is denoted by V; (in
our experiments |V;| = 30522 word tokens). The language sentence can then be represented as
ys = {wq, wa, ..., wy), where w; is the word token. The number of tokens in the task of interest (i.e.,
target domain) is denoted by V; (in our experiments |V;| = 30 protein tokens: 20 amino acid tokens
and 10 auxiliary tokens). The protein sentence can then be represented as z; = (a1, as,...,an),
where a; is an amino acid token.
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Figure 2: Evaluation process and the computed metrics. For each masked antibody input sequence we
generate 100 predicted samples. Amino acid recovery (AAR) is computed for the specific sequence
region (e.g., CDR-H3), measuring the fraction of exact matches between ground truth and the sampled
sequences. Diversity (DIV) uses only the generated samples to compute the complement of the
average recovery for all pairwise comparisons in the set (the higher the number, the more dissimilar is
each sample to all the others). Perplexity (PPL-ProGen) is computed as the average of all the sampled
sequences (masking only the region of interest), using off-the-shelf autoregressive Transformer protein
model ProGen (Nijkamp et al.,[2022), which reflects “naturalness” of the designed sequences. The
sample with the minimum perplexity (red box with an arrow) is then used for 3D structure prediction
using AlphaFold (Jumper et al.| 2021) or IgFold (Ruffolo et al.| 2022) models and compared with
ground truth to compute template modeling (TM) score (Zhang & Skolnick} 2004) and the root mean
squared deviation (RMSD) from the input structure.

We define two mappings (see bottom plot in Fig. [I)) fo : z; — x,, transforming input protein
sequence into input word sequence and g, : ys — ¥y, reversing the transformation by mapping output
word sequence into protein one. Following the approach in (Elsayed et al.,|2018 Tsai1 et al.| 2020
Vinod et al.l [2020) we constrain these mappings to be linear transformations between the source
and target domains. In other words, these mappings are represented as: x; = x:0 and y; = ys7,
where the linear projection matrices # € R!V:/*IVsl and 4 € RIV:I*IV:l are the parameters of the
transformations. During training, all model parameters are fixed and only 6 and y are optimized.
Specifically, we update 6 and ~ with respect to minimizing Ly 7 (yt, y; ), the loss between the
estimated infilled protein sequence y;, = f., (M (fo(x;))), given the CDR-masked anitbody z; and
the ground truth sequence y; .

3 EXPERIMENTS

In this section we present evaluation results of our proposed methods on template constrained CDR
design using Structural Antibody Database (SabDab) (Dunbar et al.| 2013) and Rosetta Antibody
Design (RabD) (Jin et al., 2021}, as well as SARS-CoV2 (CoV-AbDab dataset (Raybould et al.|
2021))) neutralization using the model’s generated antibodies. In what follows, we first discuss the
evaluation metrics, followed by the introduction of the baseline models and the presentation of the
results on three datasets.

3.1 EVALUATION METRICS

For each input protein sequence in our experiments we generated 100 samples using our infill models.
To measure the quality of these samples, we then compute the following evaluation metrics (see
Fig.[2|for an illustration). Amino acid recovery (AAR) is computed for the specific sequence region
of interest (e.g., CDR-H3), measuring the percent of the exact matches between ground truth and
the sampled sequences. The range is 0-100, and the higher the AAR, the more accurate the recovery.
Diversity (DIV), on the other hand, uses only the sampled proteins to compute the complement of
the average recovery of all pairwise comparisons in the set. Here the range is 0-100 and the higher
the number, the more dissimilar are samples among themselves. While in general it holds true that
the recovery and diversity are inversely correlated, i.e., higher recovery rate leads to lower diversity,
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and vice versa, CDR design calls for generative models that achieve at least above 30% recovery
(Weitzner et al., 2015), while at the same time are able to maintain high sequence diversity.

For perplexity (the model’s predicted probabilities for every residue in a given sequence) we use
off-the-shelf autoregressive Transformer protein model ProGen (Nijkamp et al.,[2022) to compute
PPL-ProGen as the average of 100 samples (masking only the region of interest). Specifically, we
used ProGen2-small (151M parameters), which has been pretrained on the mixture of Uniref90
(Suzek et al., [2015) and BFD30 (Steinegger & Soding, 2018) datasets. For perplexity, the lower
values mean the better performance, indicating stronger “naturalness” of generated CDRs. The
sampled protein sequence with the minimum perplexity is then used for 3D structure prediction
using protein folding model (e.g., AlphaFold (Jumper et al., 2021} or IgFold (Ruffolo et al.l 2022)).
The full predicted and ground truth structures are then compared to compute template modeling
(TM) score (Zhang & Skolnick, 2004) (range 0-100, higher the better) and the root mean squared
deviation (RMSD) (lower the better), focusing only on the CDR part. The suffix AF in the metric
names represents AlphaFold, while IF means IgFold.

3.2 BASELINE MODELS

We included the following baseline methods to compare against our BERT-based infilling models.
LSTM from (Saka et al.,|2021) and (Akbar et al.l2022a)), which, similar to ours, is a sequence-only
model, however of smaller capacity, having a single attention layer between the input and output
layers. AR-GNN - autoregressive graph neural network (Jin et al., 2021}, which is a sequence and
structure-based model, at each step first it predicts the amino acid, followed by the edge generation
between the current and all the past residues. RefineGNN (Jin et al.l 2021) is a model that designs
protein sequence and 3D structure of CDR together as graphs. At each step the method predicts
residues autoregressively and simultaneously refines the predicted global structure, which in turn
helps in subsequent residue prediction. To improve computational efficiency, they employ coarse-
grained modeling by clustering every predefined number of context residues in a block, thus reducing
the size of the computational graph.

CDR Train  Validation Test Average CDR length Average CDR diversity

CDR-H1 4050 359 326 8.1 60.8
CDR-H2 3876 483 376 79 68.2
CDR-H3 3896 403 437 14.5 76.9

Table 1: Statistics of the Structural Antibody Database (SabDab) for the training, validation and test
splits across the three CDRs. We also show the average number of amino acids per CDR and average
CDR diversity (length-normalized) across proteins. As can be seen CDR-H3 is the longest and most
diverse and therefore represents the most challenging prediction task.

SabDab CDR-H1
PPL PPL-ProGen RMSD RMSD-AF RMSD-IF TM-AF TM-IF AAR AAR>30% DIV
LSTM 6.79

AR-GNN 6.47 - 2.97 - - - - - - -

Refine-GNN  6.09 3.5 1.18 442 1.78 84.0 93.6 61.2 yes 47.3
ProtBert - 3.5 - 4.16 1.68 84.4 93.8 64.7 yes 4.6
EnglishBert - 3.7 - 422 1.67 84.1 93.8 63.6 yes 5.8
ReprogBert - 33 - 4.31 1.73 84.0 93.7 56.0 yes 29.1

Table 2: Evaluation results on the SabDab dataset for CDR-HI1 in the heavy chain. Dark grey cell
denote best results, while light grey are the second best. ReprogBert generates sequences with lowest
perplexity, second best diversity and high enough AAR and structural consistency. RefineGNN
yields the best diversity. ProtBert and EnglishBert, both lack in the CDR sequence. RMSD-AF and
RMSD-IF, the structural consistency metric based on the AlphaFold and IgFold predicted structures,
respectively, shows similar performance across all the methods (same for TM scores). However,
AlphaFold-based values show more structure inconsistencies as compared to IgFold. This is likely
due to IgFold being specifically trained on the antibody domain, while AlphaFold is a more general
framework, thus introducing certain errors in the structure estimation.
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SabDab CDR-H2
PPL PPL-ProGen RMSD RMSD-AF RMSD-IF TM-AF TM-IF AAR AAR>30% DIV

LSTM 7.21 - - - - - - - - -
AR-GNN 6.86 - 2.27 - - - - - - -
Refine-GNN  6.58 34 0.87 3.05 1.40 85.7 939 489 yes 38.7
ProtBert - 3.6 - 3.10 1.32 85.6 939 | 595 yes 5.5
EnglishBert - 4.0 - 3.07 1.32 85.6 93.9 59.1 yes 7.7
ReprogBert - 39 - 3.02 1.40 85.8 93.8 53.0 yes 37.9

Table 3: Evaluation results on the SabDab dataset for CDR-H2 in the heavy chain. As compared
to Table 2] all of our proposed infill methods now outperform RefineGNN in terms of AAR metric,
while reprogBert also provides second best diversity.

SabDab CDR-H3
PPL PPL-ProGen RMSD RMSD-AF RMSD-IF TM-AF TM-IF AAR AAR>30% DIV

LSTM 9.20 - - - - - - - - -
AR-GNN 9.44 - 3.63 - - - - - - -
Refine-GNN  8.38 72 2.50 5.62 3.43 85.0 94.0 28.2 no 25.7
ProtBert - 6.8 - 5.40 3.39 85.2 94.0 | 415 yes 14.5
EnglishBert - 5.9 - 5.53 3.26 84.9 94.0 35.6 yes 59.8
ReprogBert - 54 - 5.54 3.44 85.1 94.0 32.6 yes 67.4

Table 4: Evaluation results on the SabDab dataset for CDR-H3. As compared to CDR-HI1 ( Fig.
and CDR-H2 (Fig. [3), longer CDR-H3 design is more challenging, which shows a drop in AAR
across all the methods. ReprogBert clearly outperforms RefineGNN on this hard task, as evident
from lower PPL, better AAR, and better diversity.

3.3 EXPERIMENTS ON THE STRUCTURAL ANTIBODY DATABASE (SABDAB)

SabDab (Dunbar et al., [2013)) is a dataset containing antibody sequences and the corresponding
3D structure information, annotated with several properties like gene details, heavy and light chain
pairings, CDR location, etc. For this experiment, we used the dataset curated by (Jin et al.| [2021))
and the statistics are shown in Table[I] The evaluation results are shown in Tables 2} [3] and 4] We
note that the values for PPL and RMSD metrics for LSTM, AR-GNN and Refine-GNN are from the
published results (Jin et al.l|2021). Comparing across the three experiments, we can see that CDR-H1,
CDR-H2 and CDR-H3 estimations are progressively harder problems, which is reflected in the drop
of AAR across all the methods. Among the proposed infill methods, ProtBert achieves the highest
AAR across all experiments. We also can see that ReprogBert has a good recovery accuracy and at
the same time generates very diverse CDR sequences. We emphasize that this performance is without
the access to the available 3D structure information. RefineGNN, on the other hand, using both
sequence and structure constraints, overall preforms competitively, generating CDR sequences that
are accurate and diverse. Nevertheless, the advantage of ReprogBert is more prominent for longer
CDR-H3, which is the hardest design task of all three, where ReprogBert evidently outperforms
RefineGNN in term of perplexity, AAR, and diversity, while maintaining structural integrity. Finally,
in Fig. [5| we show the results of all three CDRs infilling at once. Our BERT-based models are not
architecturally limited to a single CDR generation, therefore can infill multiple regions at once with
similar high recovery, structural consistency, and diversity scores.

Since our BERT-based infill models do not estimate protein structure, we use AlphaFold (Jumper|
et al.,[2021)) and IgFold (Ruffolo et al.l 2022) to estimate 3D structure from the generated sequence
and compute TM and RMSD scores with respect to groundtruth native structure. We can see from the
Tables 2] 3] ] and [5] that all the methods have similar structural consistency results (TM and RMSD-
AF). However, these values are consistently higher when compared to RMSD for “natively” predicted
structure (AR-GNN and Refine-GNN), which is likely due to the estimation errors introduced by the
AlphaFold or IgFold algorithm. Since RefineGNN focuses on recovering both groundtruth sequence
and structure, it does so by sacrificing exploration of the broader sequence space accessible to a given
structure (Tian & Best,[2017)), which is not the case for ReprogBert.

To further qualitatively illustrate the effect of recovery and diversity on the sampled sequences,
we show in Fig. [3| AlphaFold-generated 3D structures of the protein sequences generated by the
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Figure 3: AlphaFold-estimated 3D structures of the proteins generated by the ReprogBert model on
SabDab dataset. Each plot shows 30 generated samples for a specific PDB ID, where the CDR-H3
part of the input has been masked and the model then generates CDR-H3 sequence. The ground truth
and the generated CDR are shown on the bottom part of each figure using solid and faded colors,
respectively. As can be seen, CDR-H3 part shows high structural diversity, confirming the same
findings as in Table[d] i.e., that ReprogBert achieves high recovery rate while maintaining the highest
sequence diversity.
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Figure 4: Visualization of the sequence recovery and diversity metrics for generated CDR-H3 (PDB
ID 7e7y) across different models. The top row colored in red shows the ground truth CDR-H3
sequence, while the following 20 rows show the same for the generated CDR-H3s. The green cell
with the star symbol represents the same amino acid as in the ground truth, while the white/blue

cell shows new and different generated residues. The darker shade of the blue cell represents the
frequency of the amino acid in that column.
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ReprogBert model. High structural diversity of the CDR-H3 is clearly visible by the coverage of
the CDR-H3 ensemble (ground-truth shown using opaque while generated shown as transparent) .
Fig. @] presents a visualization of sequence similarity (in green)/diversity (in white to blue) across
models. For example, for ProtBert the third column has a residue D in all the rows (high frequency),
thus having the darkest shade, while for ReprogBert the last column has only two generated Y’s (low
frequency), thus colored in the light shade of blue. Therefore, the method with the high recovery
and high diversity rates will have many green and light blue cells. Comparing with Table 4] we
indeed see that ReprogBert has highest diversity represented by the largest number of light blue cells,
at the same time ProtBert has most green cells (highest AAR), but also many dark blue cells (low
diversity). It can also be seen that RefineGNN has lower diversity and lower recovery, as compared
to ReprogBert. Further, the 2D kernel density plot as a function of isoelectric point (pH when net
charge is 0) and length of CDR-H3 shown in Figure[§]in Appendix implies ReprogBert maintains
highest physicochemical similarity to the natural CDRs.

3.4 ANTIGEN-SPECIFIC ANTIBODY DESIGN

The goal here is to design a CDR such that it binds a given antigen, given the antibody sequence
template. For this experiment, we used the dataset curated by 2021), statistics of which is
shown in Table [6] In particular it consists of all the SabDab [f] for training, excluding sequences in the
same cluster as test antibodies, which were proposed by (Adolf-Bryfogle et al.,[2018). In addition to
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SabDab CDR-H1,2,3
PPL-ProGen RMSD-AF RMSD-IF TM-AF TM-IF AAR AAR>30 DIV

ProtBert 4.9 4.8 2.62 85.0 94.3 57.3 yes 8.2
EnglishBert 5.2 4.83 2.62 85.0 94.2 56.3 yes 8.3
ReprogBert 3.9 4.95 2.73 84.8 94.0 42.4 yes 57.4

Table 5: Evaluation results on the three heavy chain CDR loops generated at once using the SabDab
dataset. This is the most challenging task compared to designing one CDR at a time. However,
since our BERT-based models are not architecturally limited to a single CDR generation, they can
infill multiple protein regions at once with similar high recovery scores, as opposed to AR-GNN
and RefineGNN. Moreover, the reprogrammed model showed the lowest perplexity, good structural
consistency, and the highest sequence variability among the three proposed methods.

CDR Train Validation Test Average CDR length
CDR-H3 8646 98 58 14.5

Table 6: Statistics of the Rosetta Antibody Design (RabD) dataset for CDR-H3.

the earlier defined baselines, for this experiment, similar to (Jin et al.| [2021]), we compared against a
physics-based baseline, RabD (Adolf-Bryfogle et al.| [2018]), which first grafts a CDR from an internal
database into the groundtruth antibody structure, followed by iterations of amino acid substitutions
and energy minimization. The results are shown in Table[/| The values for PPL, RMSD, and AAR
metrics for RabD, LSTM, AR-GNN and Refine-GNN baselines are from the published results in
(Jin et al.| [2021)). Our proposed BERT-based infill methods outperform all the baselines in both the
accuracy of the reconstruction as well as the diversity of generation. ProtBert achieves the highest
AAR score, while the ReprogBert has the best diversity rate with AAR comparable to RefineGNN.

RabD CDR-H3

PPL PPL-ProGen RMSD RMSD-AF RMSD-IF TM-AF TM-IF AAR AAR>30 DIV
RabD 9.20 - - - - - - 28.53 no -
LSTM 9.20 - - - - - - 22.53 no -
AR-GNN 9.44 - 3.63 - - - - 23.86 no -
Refine-GNN  8.38 4.7 2.50 5.06 2.52 82.9 96.0 354 yes 31.1
ProtBert - 7.7 - 5.42 2.35 82.3 96.2 53.1 yes 11.6
EnglishBert - 7.8 - 5.34 2.19 82.4 96.3 54.9 yes 10.1
ReprogBert - 5.1 - 4.72 247 83.0 96.1 36.3 yes 62.1

Table 7: Evaluation results on the RabD dataset for CDR-H3. Our infilling models outperform
RefineGNN, with ProtBert achieving the highest AAR score, while the ReprogBert has the best
diversity rate with AAR comparable to RefineGNN. As before, ProtBert and EnglishBert show better
recovery performance but suffer from less diverse generation.

3.5 CORONAVIRUS ANTIBODY DATABASE (COV-ABDAB)

CDR Train Validation Test Average CDR length
CDR-H3 2282 291 291 15.7

Table 8: Statistic of Coronavirus Antibody Database (CoV-AbDab) dataset for CDR-H3.

CoV-AbDab (Raybould et al.,|2021) is a public database documenting all published and patented
antibodies and nanobodies able to bind to coronaviruses, including SARS-CoV2 and SARS-CoV1.
We used the dataset curated by (Jin et al., 2021) from CoV-AbDab, whose statistics is shown in Table
The evaluation results are shown in Table[9} where only the sequence-based metrics are presented
since the ground truth structure information is unavailable for this task. The results are presented for
the case of training only on CoV-AbDab and the case of training on both CoV-AbDab and SabDab
datasets, showing overall similar trend, with ProtBert being the most accurate in AAR evaluation,
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while ReprotBert achieving the highest diversity while maintaining good sequence recovery and low
perplexity.

Training on CoV-AbDab |  Training on CoV-AbDab + SabDab
PPL-ProGen AAR AAR>30 DIV | PPL-ProGen AAR AAR>30 DIV
ProtBert 6.0 50.7 yes 13.6 7.8 49.6 yes 10.7
EnglishBert 6.3 49.3 yes 9.5 8.2 49.2 yes 11.0
ReprogBert 5.7 39.3 yes 60.2 4.9 37.7 yes 64.1

Table 9: Evaluation results on the CoV-AbDab dataset for generated CDR-H3. Since no ground truth
structure is available for this dataset, the other structure consistency metrics are not computed.

The second step of our evaluation is to measure the ability of the generated antibodies to neutralize
SARS-CoV2 virus, for which we follow the setup of (Jin et al., 2021). Specifically, we employ the
neutralization classifier, composed of SRU encoder (Lei, 2021), pooling and feed-forward network,
as provided in (Jin, |2022)), together with the iterative target augmentation (ITA) framework (Yang
et al.,[2020). The goal is to additionally fine-tune the infilling models to generate CDRs resulting
into better neutralizing antibodies, as measured by the classifier. Table[I0| presents the results. Note
that the performance values for the neutralization classifier, LSTM, AR-GNN and Refine-GNN
are from the published results in (Jin et al.l 2021}, for which they pretrained these models on
SabDab dataset followed by the training on CoV-AbDab. As can be seen from the table, under both
training scenarios, our ReprogBert infilling method gets the largest improvement over the original
neutralization classifier, achieving 75.6 % and 76.7 % neutralization scores, respectively.

Neutralization Score
Model CoV-AbDab CoV-AbDab + SabDab

Original - 69.3
LSTM - 72.0
AR-GNN - 70.4
Refine-GNN - 75.2
ProtBert 72.7 74.7
EnglishBert 70.5 71.0
ReprogBert 75.6 76.7

Table 10: Neutralization of SARS-CoV-2 virus as predicted by the pre-trained SARS-CoV-1 / SARS-
CoV-2 classifier. The neutralization score is defined as the predicted probability of a given antibody
to neutralize the SARS-CoV-2 virus, as measured by the neutralization classifier.

4 CONCLUSION

In this work we introduced Reprogramming for Protein Sequence Infilling, ReprogBert, a framework
leveraging pretrained language models for protein sequence infilling. Specifically, we formulated
variable CDR loop design as a template-infilling, where the template is provided by the constant
region of the antibody. Results show promising performance, when compared to existing sequence
and graph-based deep generative baselines over multiple benchmarks, where our ReprogBert model
upholds structural integrity, sequence recovery, and naturalness, while achieving high novelty and
diversity of the generated sequences. The improvement is more obvious for the longer CDR-H3.
ReProgBert can handle multiple CDR infilling at once with losing performance. Generated antibodies
also show antigen specificity and improved virus neutralization. Finally, it is worth emphasizing
the high data-efficiency of the reprogrammed model, which results from having only a few training
parameters (consisting of two linear projection matrices) that can be efficiently trained in the data-
scarce domains, such as antibody design, while still leveraging information from large out-of-domain
language pretraining. This advantage allows the sequence-based reprogrammed model to perform
competitively or better with respect to other BERT-based models or baselines that learn from both
sequences and structures.
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A RELATED WORK ON PROTEIN DESIGN

Protein design involves the design of new protein sequences that fold to a desired 3D structure and/or
exhibit a specific function. Computational techniques for designing novel and diverse proteins are an
active area of research. Physics based methods that rely on energy minimization have been proposed
for designing general proteins (Leaver-Fay et al.l2011;Huang et al., 2011)), as well as specifically
for antibodies (Pantazes & Maranas| 2010; [Li et al., 2014} |Adolf-Bryfogle et al.,|2018)), but these are
computationally expensive. Recently, generative deep learning techniques like Generative Adversarial
Networks (Goodfellow et al.,[2020), Variational Autoencoders (Kingma & Welling}, [2013)), Graph
Neural Networks (Scarselli et al.| 2008 |(Gilmer et al.|[2017), autoregressive language models (LSTM
and Transformer based) (Vaswani et al., 2017), and diffusion based models (Ho et al.,|2020) have
been used for protein and antibody design (Wang et al., 2018;|Akbar et al., |2022bj |Amimeur et al.,
2020; |[Eguchi et al., 2020; |Shin et al., 2021} Kong et al.| [2022; |[Fu & Sun, 2022} Syrlybaeva & Strauch,
2022; Lee & Kim| [2022} |Anand & Achiml [2022). Some representative works are discussed below.
(Ingraham et al.,|2019) and (Cao et al., 2021) proposed a graph and a multimodal transformer based
model, respectively, for designing proteins conditioned on the backbone structure/fold. (Karimi et al.|
2020), developed a guided conditional Wasserstein Generative Adversarial Networks (gcWGAN)
for fold based protein design. Another method that uses GANs to generate a distance matrix
representation of proteins from which 3D coordinates can be recovered was proposed by (Anand
& Huang), |2018)). Variational autoencoder based methods have also been proposed for conditional
generation of protein sequences (Greener et al., 2018; |Das et al.,[2021)) and for direct generation of
3D coordinates of immunoglobulin proteins (Eguchi et al.,[2020)).

Several of the above-mentioned architectures have been extended to the specific problem of antibody
design, which is considered challenging due to focus on designing long, variable, and unstructured
CDRs. (Melnyk et al.l 2021)) provides benchmarking of several deep generative models on antibody
design. Recently, (Jin et al.l [2021) proposed an iterative refinement graph neural network for
jointly designing the sequence and 3D structure of the CDR regions of antibodies for improving its
properties. A deep generative model that jointly models sequences and structures of CDRs based
on diffusion processes and equivariant neural networks has been proposed in (Luo et al.}2022). A
geometry-constrained energy-based model has been suggested by (Fu & Sun, [2022).

Other approaches for protein design include modeling it as a constraint satisfaction problem (Strokach
et al., 2020), equivariant 3D translation (Kong et al., |2022) and by using combinatorial bayesian
optimization (Khan et al.| [2022)).

B OVERVIEW OF PROPOSED BASELINE MODELS

Figure [5|shows diagrams of the proposed baseline BERT-based infilling models: ProtBert, a special-
ized model that has been pretrained on millions of protein sequences and EnglishBert, the traditional
English language model, where we replaced word embeddings with new learnable amino acid em-
beddings. Similar as our main proposed method, ReprogBert, these two models are sequence-only
methods and they use maskings to infill the regions of interest.
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Figure 5: Baseline methods proposed for protein sequence infilling. Given an input antibody sequence,
where part of the amino acids is missing (e.g., CDR-H3), the goal is to infill them using information
from the rest of the protein. The infilling problem is formulated similar to the masked-language
modeling task, where the missing amino acids are marked with a token (MASK) and the model
generates amino acids token to infill them. These are sequence-only methods and do not rely on
any structure information during generation process. The top diagram shows ProtBert, the BERT
model that has been pretrained on the protein sequences and therefore can be applied to the protein
infilling task as is (the entire model is still fine-tuned on the downstream infilling task). The bottom
diagram shows traditional English language BERT model (EnglishBert), whose incompatible word
embeddings (Vs x h, Vs is the number of language tokens, h - latent model dimension) are swapped
with the trainable amino acid embeddings (V; x h, V; is the number of amino acid tokens). The full
model is then fine-tuned on the infilling dataset.

C MODEL ARCHITECTURE AND TRAINING

In Table[IT] we present the architectural details of our BERT-based models for the protein sequence
infilling, while Table [I2]shows the settings used for model training.

Number of Numberof Hidden = Numberof  Vocab

Model § ) ? N . Pretraining Data Reference
parameters layers layer size heads size
BFD100
(572 GB, 2 bil proteins)
ProtBert 420M 30 1024 16 30 (Devlin et al.||2018)
Uniref100
(150 GB, 216 mil proteins)
30522  English Wikipedia
. (english) (40 GB, 6.5 mil sentences)
EnglishBert / ReprogBert |
(based on HE bert-base smeased)  110M 12 768 12 (Elnaggar et al.|[020}
30 BookCorpus

(protein) (6 GB, 74 mil sentences)

Table 11: Architectural details of the BERT-based model for protein sequence infilling. Note that for
ReprogBert the number of trainable parameters is defined by the two R30522%30 matrices.

Learning rate  Batch size ~ Optimizer
le=® 32 Adam

Table 12: Training details for ProtBert, EnglishBert and ReprogBert. For example, for SabDab
dataset to reach the best performance it took 5 hours for ReprogBert, 6 hours for EnglishBert and 14
hours for ProtBert, which is equivalent to approximately 1800 epochs (134 minibatch iterations per
epoch). Average inference time per protein sequence is 0.02 seconds for ProtBert, and 0.008 seconds
for ReprogBert and EnglishBert (as measured on the test set of SabDab for CDR-H3 infilling). For
reference, the average inference time for RefineGNN is 0.004 seconds, which is comparable to our
ReprogBert.
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D ABLATION ON DATA

In Table [I3]we show an ablation results on the effect of training data size on model performance.

SabDab-H3
Training data fraction PPL-ProGen AAR DIV
1.0 6.8 415 145
0.8 6.7 413 1311
ProtBert 0.6 6.6 409 159
0.4 6.4 40.5 189
0.2 6.6 40.3 184
1.0 59 359 598
0.8 5.9 351 579
EnglishBert 0.6 6.5 342 59.6
04 6.4 336 614
0.2 6.5 33.1 635
1.0 6.0 326 674
0.8 5.9 32.1 67.6
ReprogBert 0.6 6.1 31.6 682
0.4 6.3 30.8  69.5
0.2 6.5 299 70.7

Table 13: Ablation results on the effect of training data size on model performance. The fractions
1.0, 0.8, 0.6, 0.4 and 0.2 representing progressively smaller subsets of the original SabDab training
dataset. It can be seen that as the size of training data drops, the recovery rate also decreases, while
the diversity increases (this is expected as now the generated sequences are less accurate). However,
for ProtBert, the decrease is slower, likely due to this model being pretrained on large protein dataset,
thus retaining its prediction capacity.

E RECOVERY AND DIVERSITY METRICS

Figures [6 and [7] show additional visualizations of the recovery and diversity metrics for CDR-H3
across different methods.
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Figure 6: Visualization of the recovery and diversity metrics for CDR-H3 (PDB ID 2r56) across
different models. The top red line shows the ground truth CDR-H3 sequence, while the next lines
show the generated CDR-H3 by each of the model. The green cell with the star symbol represents
the same amino acid as in the ground truth, while the blue cell shows new and different generated
residues. The shade of the blue cell represents the frequency of the amino acid in that column. We see
that ReprogBert has highest diversity represented by the largest number of light blue cells, at the same
time ProtBert has most green cells (highest AAR), but also many dark blue cells (low diversity). It
can also be seen that RefineGNN has lower diversity and lower recovery, as compared to ReprogBert.
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Figure 7: Visualization of the recovery and diversity metrics for CDR-H3 (PDB ID 5y7z) across
different models. The top red line shows the ground truth CDR-H3 sequence, while the next lines
show the generated CDR-H3 by each of the model. The green cell with the star symbol represents

the same amino acid as in the ground truth, while the blue cell shows new and different generated
residues. The shade of the blue cell represents the frequency of the amino acid in that column. We see

that ReprogBert has highest diversity represented by the largest number of light blue cells, at the same

time ProtBert has most green cells (highest AAR), but also many dark blue cells (low diversity). It

can also be seen that RefineGNN has lower diversity and lower recovery, as compared to ReprogBert.

F PHYSICOCHEMICAL PROPERTY COMPARISON

Finally, in Figure [§| we show 2D kernel density plot as a function of isoelectric point and length of

generated CDR-H3 sequences on the test set of SabDab dataset.
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Figure 8: 2D kernel density plot as a function of isoelectric point, the pH at which a particular
molecule carries no net electrical charge, and length of generated CDR-H3 sequences on the test set
of SabDab dataset. Black dots indicate the ground truth CDR-H3. The top row shows the density
of all the sequences, while the following rows show the density for 10, 6 and 3 samples. It can be
seen that the ground truth density of all the sequnces (top left corner) has one pronounced peak
(for the CDR3 length 13 and pH 5) and another smaller increase of density marked with red arrow.
Comparing this region across other models, we see that ReprogBert has the closes resemblance to
the ground truth, while others place too much weight there. The second row from the top shows
the density for 10 protein sequences, where visual inspection of the region marked with orange
arrow reveals that ReprogBert has closest similarity to the ground truth based on the distribution and
orientation of the highly dense region, while for other methods theshape of this region is tilted and a
second minimum appears.
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