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Abstract

Cardiac magnetic resonance (CMR) imaging is widely used
to characterize cardiac morphology and function. To acceler-
ate CMR imaging, various methods have been proposed to re-
cover high-quality spatiotemporal CMR images from highly
undersampled k-t space data. However, current CMR recon-
struction techniques either fail to achieve satisfactory im-
age quality or are restricted by the scarcity of ground truth
data, leading to limited applicability in clinical scenarios.
In this work, we proposed MoCo-INR, a new unsupervised
method that integrates implicit neural representations (INR)
with the conventional motion-compensated (MoCo) frame-
work. Using the explicit motion modeling and the contin-
uous prior of INRs, our MoCo-INR can produce accurate
cardiac motion decomposition and high-quality CMR recon-
struction. Moreover, we present a new INR network architec-
ture tailored to the CMR problem, which can greatly stabilize
model optimization. Experiments on retrospective (i.e., sim-
ulated) datasets demonstrate the superiority of MoCo-INR
over state-of-the-art methods, achieving fast convergence and
fine-detailed reconstructions at ultra-high acceleration fac-
tors (e.g., 20x in VISTA sampling). In addition, evaluations
on prospective (i.e., real-acquired) free-breathing CMR scans
highlight its clinical practicality for real-time imaging. Sev-
eral ablation studies also confirm the effectiveness of critical
components of MoCo-INR.

Code — https://github.com/MeijiTian/MoCo-INR

1 Introduction

Magnetic resonance (MR) imaging offers unparalleled soft
tissue contrast and, as a non-invasive modality, serves as a
versatile tool for evaluating cardiac function (Pennell 2010).
However, the long acquisition time makes it difficult to cap-
ture cardiac motion accurately. Scanning undersampled k-
space data for each short temporal frame is an effective strat-
egy to accelerate cardiac MR (CMR) acquisition. Neverthe-
less, reconstructing artifact-free, dynamic MR images from
undersampled k-t space (i.e., spatiotemporal) data poses a
challenging ill-posed problem due to the violation of the
Nyquist—-Shannon sampling theorem (Nyquist 1928).
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Many studies have proposed exploiting the inherent spa-
tial and temporal correlations in the image sequences to
alleviate the ill-posedness of the CMR problem (Oscanoa
et al. 2023). A classical strategy is to incorporate a low-rank
prior into the compressed sensing (CS) framework (Lingala
et al. 2011; Zhao et al. 2011; Otazo, Candes, and Sodickson
2015), where the dynamic image sequence is decomposed
into low-rank and sparse components. The integration of the
low-rank prior effectively utilizes the spatiotemporal redun-
dancy of dynamic images, thus enhancing CMR results.

In contrast, motion-compensated (MoCo) methods (Pan
et al. 2022, 2024; Morales et al. 2019) explicitly decouple
frame-specific deformations from a single canonical image,
allowing all temporal frames to share a common canonical
spatial representation. Thus, this decoupled modeling can
achieve better CMR reconstructions for highly undersam-
pled acquisitions. However, most existing MoCo approaches
rely on fully sampled cine CMR data for supervised training.
Although effective, cine CMR acquisition requires breath-
holding, which increases acquisition cost and restricts the
practicality and generalizability of these methods in real-
time free-breathing scenarios.

As an unsupervised learning paradigm, implicit neural
representation (INR) has shown great promise in dynamic
medical reconstruction (Reed et al. 2021; Huang et al. 2023;
Kunz, Ruschke, and Heckel 2024; Catalan et al. 2025;
Feng et al. 2025), where the image sequences are formu-
lated as a continuous function of spatial-temporal coordi-
nates. Thanks to the learning basis of neural networks to-
wards low-frequency signals (Xu et al. 2019; Rahaman et al.
2019), INR implicitly captures the spatiotemporal redun-
dancy of dynamic images, which produces improved recon-
structions. However, when applied to extremely ill-posed
inverse problems, the continuous prior of INR is often in-
sufficient and requires additional regularization priors, such
as image-domain prior (Kazerouni et al. 2024; Tian et al.
2025), low-rank models (Feng et al. 2025), denoisers (Isk-
ender et al. 2025), or generative priors (Du et al. 2024), to
enhance reconstruction quality and stability.

With the achievements of INR combined with MoCo
scheme in 4D scene reconstruction (Pumarola et al. 2021;
Park et al. 2021), several studies have extended this frame-
work to 4D CT (Zhang et al. 2023) and time-resolved MRI



reconstruction (Shao et al. 2024, 2025; Chen et al. 2025).
These approaches effectively capture respiratory motion,
which is relatively simpler than cardiac motion, but of-
ten struggle to represent high-frequency details. Due to the
high-frequency and fine detail of cardiac motion, adopt-
ing INR to achieve accurate cardiac motion decomposi-
tion from undersampled data is non-trivial. Meanwhile,
INR is known for slow optimization, limiting its clini-
cal practicality. Hash-grid encoding (Miiller et al. 2022)
has been proposed to accelerate convergence and enhance
high-frequency representation. However, its inherent dis-
crete feature representation compromises the continuity of
INR, leading to inconsistencies in continuous space and un-
stable optimization in dynamic reconstruction.

In this work, we propose MoCo-INR, a novel unsuper-
vised CMR reconstruction method. Our key idea is to in-
troduce unsupervised INRs into the MoCo framework, en-
abling accurate cardiac motion decomposition and the re-
covery of high-frequency image details. Conceptually, we
explicitly decompose dynamic CMR sequences into time-
varying deformations and a shared canonical image, both
modeled as continuous functions parameterized by two INR
networks. Benefiting from the continuous priors of INRs
and the explicit motion decomposition, we effectively solve
the highly ill-posed CMR inverse problem in an unsuper-
vised manner. Moreover, we present a new INR network ar-
chitecture tailored to the CMR problem, which consists of
a coarse-to-fine hash encoding strategy and a CNN-based
decoder. Compared to existing INR architectures, our pro-
posed design achieves more stable optimization and pro-
duces CMR images with fine anatomical details.

We evaluate the proposed MoCo-INR on both retro-
spective cine CMR reconstruction under various acquisi-
tion schemes and prospective free-breathing CMR recon-
struction. The results demonstrate that MoCo-INR outper-
forms state-of-the-art (SOTA) unsupervised methods, deliv-
ering both faster convergence and higher-fidelity reconstruc-
tions, particularly under ultra-high acceleration factors (20 x
for Cartesian and 69x for non-Cartesian). In addition, ex-
tensive ablation studies validate the effectiveness the several
key components of our MoCo-INR.

The main contributions as summarized as follows:

* We introduce the INR to the MoCo framework, enabling
accurate cardiac motion decomposition and fine-detailed
reconstruction in an unsupervised manner.

* We propose a novel INR network architecture tailored
to the CMR problem, which can greatly stabilize model
optimization.

¢ We perform extensive experiments confirming the supe-
riority of our unsupervised MoCo-INR in fast conver-
gence and robustness with various CMR acquisitions.

2 Related Work
2.1 Motion-Compensated Approaches for CMR

To leverage motion information, motion-compensated
(MoCo) methods are introduced into CMR reconstruction
to further improve performance. MoCo methods (Batchelor

et al. 2005; Qi et al. 2021; Hammernik et al. 2021; Munoz
et al. 2022; Zou et al. 2022; Pan et al. 2024) explicitly de-
compose dynamic images into a canonical (or template) im-
age and a sequence of canonical-to-observation displace-
ment vector fields (DVFs), which can effectively exploit
the spatio-temporal redundancies. The reconstruction task is
reformulated as two sub-problems: motion estimation and
canonical image reconstruction, which are typically solved
iteratively or within a joint optimization framework. Thus,
accurate estimation of cardiac motion is crucial to both the
canonical image quality and the final reconstruction per-
formance. With the emergence of deep learning (DL), su-
pervised MoCo methods (Qi et al. 2021; Hammernik et al.
2021; Pan et al. 2024) have gained importance in motion
estimation due to their promising performance. However,
these methods often suffer from performance degradation
when the acquisition settings change (e.g., different sam-
pling patterns and accelerator factors) deviate from the train-
ing data. Moreover, the long acquisition time of MRI makes
it difficult to obtain high-quality ground-truth labels. These
issues pose substantial obstacles to the practical application
of supervised methods in clinical settings. Current unsuper-
vised MoCo methods have mainly focused on respiratory
motion (Munoz et al. 2022; Zou et al. 2022) but have rarely
explored cardiac motion (Kettelkamp et al. 2023), which is
more complex and requires higher temporal resolution.

2.2 INR for Dynamic MRI Reconstruction

Recently, many INR-based dynamic MRI reconstruction
methods (Huang et al. 2023; Catalan et al. 2025; Feng et al.
2025) have been proposed, formulating dynamic MRI im-
age sequences as spatial-temporal functions represented in
either the image domain or in k-space. While INR effec-
tively exploits spatial-temporal correlations to constrain the
reconstruction, existing methods are known for their slow
convergence, often requiring hours to reconstruct a single
slice (Kunz, Ruschke, and Heckel 2024), particularly when
modeling high-frequency features. The current SOTA ap-
proach (Feng et al. 2025) adopts hash-grid encoding to ac-
celerate convergence but still relies on additional low-rank
and sparsity constraints to ensure consistent reconstruction
quality. However, explicit motion-compensated representa-
tions remain unexplored in improving the robustness and ef-
ficiency of INR-based optimization in real-time cardiac MRI
reconstruction.

3 Preliminaries
3.1 Forward Model of Dynamic CMR

The forward physical model of dynamic CMR acquisition
can be expressed as:

Yio = MTScxy + g, (1

where x; € C" is the image at any timestemp ¢ = 1,...,T
and S. € CV*N represents the ¢ coil sensitivity map. T is
the Fourier transform operator, M; € RM>¥ js the binary
diagonal undersampling matrix, n; . € CM is the system
noise assuming Gaussian distribution, and y, . € CM is the
acquired k-space measurement.
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Figure 1: Overview of the proposed MoCo-INR framework. Given any spatial coordinate p = (z,y) in the physical space
and temporal coordinate ¢, our deformation network predicts the corresponding time-varying displacement vector field (DVF).
Adding this displacement to the spatial coordinate in physical space yields the associated location in the canonical space. Then,
the canonical network maps these warped coordinates to the dynamic image x,. Finally, the two networks are jointly optimized
by minimizing the data-consistency loss (Eq. 8) and DVF regularization loss (Eq. 8).

3.2 Motion-Compensated Representation

To fully exploit the spatiotemporal redundancy in the im-
age sequence {x;}7_; and alleviate the ill-posedness of the
CMR inverse problem, motion-compensated (MoCo) repre-
sentation decouples each frame x; into a shared canonical
image .., and a corresponding displacement vector field
(DVF) u,. Formally, this can be expressed as:

Ly = W(wcanm ut); 2)

where WV denotes the image warping operator. The DVF de-
fines, for each voxel of the frame x;, the offset (Ax, Ay);
between the canonical space and its physical location.
Conventional MoCo approaches for dynamic MRI rep-
resent the canonical image .y, as a discrete matrix. The
warping operator is then used with the DVFs {u;}. ; to
interpolate this matrix and generate the image sequence
{z,}]_,. Although effective, discrete interpolation may lose
high-frequency details and thus limits reconstruction quality.

4 Proposed Method

Our goal is to reconstruct artifact-free CMR images with
high spatiotemporal resolution from highly undersampled
k-t space data in an unsupervised way. To this end, we pro-
pose MoCo-INR, a new unsupervised CMR method that first
integrates INR into the MoCo framework. Thanks to the
continuous representation enabled by INR, MoCo-INR can
achieve accurate estimation of cardiac motion and image re-
constructions with preserved high-frequency details.

4.1 Continuous Representations of DVFs and
Canonical Image

To accurately recover both DVFs {u;}_; and the shared
canonical image Zano, We leverage INR to formulate them
in a continuous form, instead of discrete matrices as in tradi-
tional MoCo-based methods. Specifically, the DVFs are de-
fined as a single continuous function f of spatial-temporal
coordinate, as below:

f: (1) eR® = uy(p) =

where (p, t) denotes any spatial-temporal coordinate in the
physical space, and wu;(p) is the displacement vector to

(Az,Ay) €R?,  (3)

map p into the canonical space. While the complex-valued
canonical image .o is formulated as a continuous function
g of spatial coordinate, as below:

g: i’eRZ'_)mcam(i))—a( ) +jb(p) € C, 4)

where p represents any coordinate in a 2D canonical space,
and Tcano (P) is the corresponding complex-valued intensity.

MoCo-INR uses a DVF network F¢ and a canonical net-
work Gy to approximate the two functions, respectively.
Technically, Fg takes spatial-temporal coordinates as input
and outputs the DVF estimations (i.e., us(p) = Fa(p,t)),
while Gy takes spatial coordinates as input and predicts
the real and imaginary parts of the canonical image (i.e.,
[a(p),b(P)] = Gw(P)). Benefiting from the learning bias
toward low-frequency continuous signals (Xu et al. 2019;
Rahaman et al. 2019), the continuous functions f and g can
be well approximated, enabling high-quality reconstructions
of both the DVFs and canonical image.

4.2 Model Optimization

Fig. 1 shows the workflow of MoCo-INR, where we jointly
optimize the DVF Fg and the canonical network Gy .

Prediction of CMR Image. Given the acquired k-space
data y, at any timestemp ¢t = 1,...,T, we first feed the
spatial-temporal coordinate (p,t), defined in the physical
space, into the network Fg to predict the corresponding
DVF w,;(p). This DVF is then used to transform the spatial
coordinate from the physical space to the canonical space.
Formally, this process can be expressed as:

P=p+uip), with u(p)=Fs(p,t). (5

Then, the canonical network Gy takes the warped coor-
dinates p as input and estimates the corresponding dynamic
image as follows:

@ (p) = Gu (P)- (©)

Differentiable Forward Model. According to the for-
ward acquisition of dynamic CMR (Eq. 1), we generate the
k-space data estimations ¢, from the predicted CMR image
x;, which is defined as follows:

A: Yy = M, TS &, (N



where the operators M, T, and S, depend on the CMR
acquisition protocols and are known. More importantly, the
forward model A is differentiable, allowing the use of gradi-
ent descent-based backpropagation algorithms (e.g., Adam)
for network optimization.

Loss Function. Finally, the DVF network Fg and the
canonical network Gy are jointly optimized by minimizing
the following loss function £ as below:

L=y — yt||1 + Lpvr,
———

Loc ®

with  Love = [Juel|, + [[Vae|[, + [[ V2]
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where Lpc represents the data consistency term that mini-
mizes the distance between the acquired and estimated k-
space data. Lpyr is a sparsity and smoothness regularization
term that enforces plausible DVF estimations and further
stabilizes the joint network optimization. Its effectiveness is
explored in the following experiments.

CMR Image Reconstruction. After model optimization,
the high-quality CMR sequence {z}}]_; can be directly
reconstructed by feeding all spatial-temporal coordinates
(p,t) into the well-trained MoCo-INR model.

4.3 INR Network Designed for CMR Problem

Traditional INR networks often consist of a coordinate en-
coding module, such as Hash encoding (Miiller et al. 2022),
and an MLP decoder. These encoding modules can greatly
enhance the network’s ability to capture high-frequency sig-
nals, improving detail recovery. However, applying existing
INR networks in CMR often yields unsatisfactory perfor-
mance due to the problem’s ill-posedness and strong non-
linearity. To address this, we propose a novel coarse-to-fine
hash encoding and a CNN-based decoder to achieve reliable
DVF estimation and detailed image reconstruction.

Coarse-to-Fine Hash Encoding. Hash encoding (Miiller
et al. 2022) is a cutting-edge encoding strategy. It maps
low-dimensional coordinates p into high-dimensional fea-
tures ¥(p) = 71 (P) © -~ ®7,(p) & -+ Dy (p) € R,
where each v,(p) € R" denotes an F'-dimensional feature
at the [-th resolution level. The low-resolution features (e.g.,
7, ) capture low-frequency global structures, while the high-
resolution ones (e.g., v;,) model high-frequency local de-
tails. A recent study on MRI reconstruction (Wu et al. 2025)
demonstrated that the global structures are more crucial for
rigid motion correction. Inspired by this observation, we
propose a novel coarse-to-fine scheme for the CMR prob-
lem. As shown in Fig. 2, the optimization starts by learning
the low-frequency features to capture global motion. Then,
the higher-frequency features are progressively optimized to
refine fine-scale motion details. This coarse-to-fine hash en-
coding can enhance reliable DVF estimations, thus enabling
improved CMR reconstructions.

CNN-based Decoder. Existing INR networks typically
use an MLP as decoder to transform the encoded features
into target signals. Although effective, the voxel-wise map-
ping of MLP-based decoders struggles to capture the spatial

Hash Grid Feature . —> Data flow
H’;" Gradient flow

—H- g ¥(p) VL
p /.c Hm(v) /
(L=3F=2) 3

%1 frozen; & :learning

Figure 2: Illustration of the proposed coarse-to-fine hash
encoding strategy. Given any input coordinate p, the low-
frequency feature (i.e., 7y;) is learned first and then frozen.
As the optimization proceeds, higher-frequency features
(i.e., 75 and =y3) are progressively optimized.

continuity of images (Mihajlovic et al. 2024). Moreover, the
powerful fitting capability introduced by the encoding may
further lead to overfitting to undersampled data, resulting in
high-frequency artifacts. To address these issues, we intro-
duce a three-layer convolutional neural network (CNN) to
replace the conventional MLP decoder. Owing to the induc-
tive bias of CNNs toward local structures, the continuous
functions f and g, which represent the DVFs and the canon-
ical image, can be better approximated, thereby improving
the quality of reconstructed CMR images.

5 Experimental Settings
5.1 Retrospective Reconstruction Study

Dataset. We used the fully sampled cardiac cine dataset
from the public OCMR dataset (Chen et al. 2020). All scans
were acquired using prospective ECG gating and breath-
holding. For this study, we selected 11 slices, including five
long-axis (LAX) views and six short-axis (SAX) views, ac-
quired on a 1.5T clinical MRI scanner (Magnetom Aera,
Siemens Healthineers).

Simulation Process. The original data were cropped into
a square shape and resized to a size of 208 x 208. To evaluate
reconstruction performance under different sampling strate-
gies, we simulated both Cartesian and non-Cartesian under-
sampling. Cartesian: we adopted VISTA pattern with two
accerelation factor (AF) of 12 and 20. Non-Cartesian: we
adopted golden-angle (GA) radial pattern combined with the
NUFFT operator (Fessler and Sutton 2003), using 8 and 3
spokes per frame, corresponding to AF of 26 and 69.3.

5.2 Prospective Reconstruction Study

We used prospectively acquired real-time CMR data from
the public OCMR dataset (Chen et al. 2020), under free-
breathing conditions with VISTA sampling mask and the
acceleration factor of AF=9. Ten slices of SAX view were
selected for the study, each with an in-plane resolution of
2.08 x 2.08mm? and a slice thickness of 8mm. Each slice
comprises 65 temporal frames, corresponding to a temporal
resolution of 38.4 ms (=26 Hz).

5.3 Methods in Comparison & Metrics

Methods in Comparison. We compare our method with
five representative unsupervised methods: (1) Compressed-
sensing (CS) based: /;-Wavelet (Lustig, Donoho, and Pauly
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Figure 3: Qualitative results of retrospective reconstructions obtained with the compared methods. The figure displays the
reconstructed image, its profile line over time (the y-¢ plane), and the corresponding error map. The selected y-axis is indicated
by a white dashed line, and zoom-in boxes highlight regions of interest at the end-diastole (ED) and end-systole (ES) phases.

The upper part shows results for SAX slice acquired using a VISTA sampling pattern with an acceleration factor of AF=20.

The bottom part shows results for LAX slice acquired using a golden-angle radial sampling pattern with 3 spokes.

Sampling AF Metric {1-Wavelet TDDIP ST-INR ST-INR (L&S) MoCo-INR
PSNR 28.00+1.98***  38.054£2.99***  36.3142.62***  41.3542.60***  42.25+2.64

12x SSIM 0.73440.038***  0.943+0.025*** 0.93440.020***  0.972+0.012Y 0.971+0.013

VISTA nRMSE (ROI) 0.450-£0.088*** 0.20640.037*** 0.150=£0.022*** 0.10940.024*** 0.093+0.017
PSNR 23.824+1.69%**  36.58£2.70***  31.24+43.00*** 36.26+2.94***  39.53+2.58

20% SSIM 0.576+0.039***  0.929+0.026*** 0.84340.042*** 0.937+0.021*** 0.957+0.017

nRMSE (ROI) 0.658-0.044*** 0.21740.037*** 0.229+0.030*** 0.158+0.024*** 0.125+0.022

Sampling AF Metric GRASP TDDIP ST-INR ST-INR (L&S) MoCo-INR
PSNR 32.1443.33%*  34.10+£1.97***  30.964+2.04***  38.85+2.86**  40.33+2.48

26.0% SSIM 0.886+0.037***  0.895+0.022*** 0.81240.028***  0.956+0.016* 0.960+0.016

GA nRMSE (ROI) 0.253+0.056*** 0.22740.033*** 0.219+0.040***  0.118+0.014*  0.109+0.012
Radial PSNR 26.24+2.24%*  33.6242.10***  26.58+1.82***  33.9243.13***  37.75+2.53
69.3% SSIM 0.7174+0.038***  0.883+0.028*** 0.68240.039*** 0.910+0.034**  0.940+0.024

nRMSE (ROI) 0.422+0.118*** 0.23840.034*** (.338+0.084***  0.196+0.040*  0.165+0.022

The best and second performances are highlighted in bold and underline. Statistical significant differences compared with our MoCo-INR
are marked (*** p <0.001; ** p <0.01; * p <0.05; and ¥ p >0.05, not significant).

Table 1: Quantitative results (PSNR (dB)/SSIM/nRMSE) of the compared methods under a Cartesian sampling pattern (VISTA)
and a non-Cartesian sampling pattern (GA Radial) under two acceleration factors, respectively.
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Figure 4: Qualitative results of prospective reconstruction
under free-breathing scans.

2007) for Cartesian sampling; GRASP (Feng et al. 2014) for
golden-angle radial sampling; (2) DIP-based: Time-Depend
DIP (TDDIP) (Yoo et al. 2021); (3) INR-based: Feng et al.
(2025) proposed an INR-based dynamic MRI reconstruc-
tion method that incorporates hash encoding with additional
low-rank and sparsity (L&S) constraints; we refer to this ap-
proach as ST-INR (L&S). To evaluate the effectiveness of
these additional constraints, we also include a variant with-
out the (L&S) constraints, denoted simply as ST-INR.

Evaluation Metrics. For the reconstructed CMR images,
we employ peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) as quantitative evaluation met-
rics. To specifically evaluate the accurate reconstruction of
cardiac anatomy and its temporal dynamics, we segment
the cardiac region and compute the normalized root-mean-
square error (NnRMSE) within it. To quantify reconstruction
efficiency, we present the runtime for DL-based methods to
achieve the reported optimal performance.

5.4 Implementation Details

In MoCo-INR, the DVF network Fg adopts hash encoding
set of Nppin = 2,7 = 221, L = 10, F = 4and b = 2,
while the canonical network Gy is set as follows Ny, = 2,
T =22, [ =12, F = 8 and b = 2. Both networks employ
lightweight CNN decoders composed of three convolutional
layers. The first two convolutional layers are followed by
nonlinear activation functions, with 64 filters of size of 3,
and the final convolutional layer outputs without activation.
Due to the space constraint, we introduce the other imple-
mental details of MoCo-INR and baselines in the supple-
mental materials.

6 Results
6.1 Retrospective Reconstruction Results

Table 1 compares the performance of our MoCo-INR with
baselines. Under ultra-high acceleration factors (20x for

Diastole

Systole

i i » )

Deformation Field Canonical Image & DVF Dynamic Recon.

Figure 5: Visualization of the estimated DVFs and canonical
image of MoCo-INR at the diastolic and systolic phases.

Study Sampling TDDIP ST-INR (L&S) MoCo-INR

Retro VISTA 3.2 1.5 1.3
* GA Radial 233 10.9 5.5
Prosp. VISTA 19.3 6.7 34

Table 2: Runtime (in minutes) comparisons for the unsuper-
vised DL-based methods.

Cartesian and 69x for non-Cartesian), MoCo-INR attains
the highest PSNR/SSIM values, with improvements that are
statistically significant (p <0.001). The results highlight
its robustness to severe undersampling and demonstrate its
suitability for challenging reconstruction scenarios. More-
over, MoCo-INR consistently yields the lowest ROl nRMSE
across every sampling pattern and acceleration setting, con-
firming its superior ability to preserve both the dynamic mo-
tion and the anatomical detail of the cardiac region.

Fig. 3 shows the qualitative results of reconstruction. The
{1-Wavelet method fails to recover images at high accel-
eration factors, exhibiting severe blurring and aliasing ar-
tifacts. TDDIP insufficiently captures temporal dynamics.
Particularly, under golden-angle radial sampling, the car-
diac anatomy appears nearly identical between ED and ES
phases. ST-INR introduces numerous artifacts due to its
lack of explicit regularization, while ST-INR (L&S) miti-
gates these artifacts yet still suffers from noticeable noise
and indistinct tissue boundaries. In contrast, the proposed
MoCo-INR exploits shared spatial information across tem-
poral frames within a motion-compensation framework and
employs a CNN decoder that robustly processes hash-grid
features, thereby enabling accurate cardiac motion tracking
and high-fidelity anatomical reconstruction.

6.2 Prospective Reconstruction Results

We further evaluate the proposed MoCo-INR and the com-
pared methods on prospectively undersampled data. The
visual comparison is illustrated in Fig. 4, consistent with
the observations from the retrospective study. TDDIP ex-
hibits over-smoothing in both spatial and temporal dimen-
sions, and the zoom-in views reveal anatomically implausi-
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Figure 6: Performance curves and qualitative results for
VISTA sampling with AF=20 of MoCo-INR with either an
MLP decoder or a CNN decoder.

ble structures. Compared with ST-INR (L&S), the proposed
MoCo-INR yields sharper tissue detail with significantly re-
duced artifacts, as highlighted by the red arrows. Notably,
the intensity profile shows that, although ST-INR (L&S) suf-
fers from spatial noise, it fails to capture temporal detail,
whereas MoCo-INR successfully resolves both large-scale
cardiac motion and subtle intramural deformations.

6.3 Evaluation of DVFs and Canonical Image

Fig. 5 shows the estimated DVFs alongside the canonical
image. The quiver plots (second column) illustrate vector
patterns consistent with myocardial relaxation and chamber
enlargement during diastole, and with myocardial contrac-
tion and ventricular volume reduction during systole. The
learned DVFs are consistent with the known biomechanics
of the cardiac cycle, demonstrating our method accurately
capture cardiac motion.

6.4 Evaluation of Runtime

Fast runtime is essential for clinical applicability. Table 2
reports the runtime on a single NVIDIA RTX 4090 GPU,
showing that the proposed MoCo-INR achieves fast recon-
struction for both retrospective and prospective studies. By
explicitly decomposing deformation and canonical image
content, MoCo-INR enables faster convergence with fewer
optimization steps compared to ST-INR (L&S). This sig-
nificantly reduces the computational cost, particularly for
non-Cartesian sampling where the NUFFT operator is in-
herently slow.

6.5 Ablation Studies

Effectiveness of CNN-Based INR Network. Fig. 6 com-
pares the performance of MoCo-INR using an MLP decoder
versus a CNN decoder. The performance curves show that
the CNN-based decoder consistently outperforms the MLP
decoder and provides a more stable optimization process. In
the reconstructed MR images, the MLP decoder introduces
noticeable high-frequency artifacts, whereas the CNN de-
coder produces smoother and more accurate results, as fur-
ther highlighted in the error maps.

Model PSNR SSIM

w/o Lpvr 34.42£2.73***  0.895+0.031***
w/o Coarse2fine  35.51£2.84***  0.92640.026***
Full 37.75+2.53 0.940+0.024

Table 3: Quantitative comparisons on retrospective study us-
ing MoCo-INR, evaluated without key components under
golden-angle radial sampling with AF=69.3.

Deformation
Field

Canonical Image
& DVF

w/o DVF R. w/o Coarse2fiﬁe MoCo-INR )

Figure 7: Qualitative comparison showing the influence of
DVF regularization and the coarse-to-fine hash-encoding
learning strategy of MoCo-INR on DVF estimation and

canonical image reconstruction.

Influence of DVF Regularization and Coarse2fine Hash
Encoding Learning. Table 3 demonstrates the effective-
ness of DVF regularization and the coarse-to-fine learn-
ing strategy, showing a significant degradation in recon-
struction performance when these components are removed.
Fig. 7 further illustrates their influence. Without DVF regu-
larization, the estimated DVF is largely incorrect. When the
coarse-to-fine learning strategy is not applied, the DVF es-
timation is relatively reasonable but still exhibits abnormal
motion in static regions (highlighted by orange arrows). In
contrast, MoCo-INR with the proposed coarse-to-fine learn-
ing accurately captures plausible cardiac motion.

7 Conclusion & Discussion

This work introduces MoCo-INR, a novel unsupervised
motion-compensated framework for cardiac MR reconstruc-
tion. Experimental results show that MoCo-INR achieves
superior performance under ultra-high acceleration factors
acquisitions and is capable of accurately reconstructing
real-time free-breathing scans. Benefiting from the flexibil-
ity of unsupervised nature and fast convergence, MoCo-INR
is well-suited for a variety of acquisition conditions encoun-
tered in clinical practice. Despite these promising results,
several challenges remain. Future work will focus on ex-
tending MoCo-INR to high-resolution 3D spatial-temporal
reconstructions and addressing limitations of motion com-
pensation when intensity changes occur, such as in dynamic
contrast-enhanced (DCE) MRI.
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