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Abstract

Aspect-Based Sentiment Analysis (ABSA) fo-
cuses on analyzing the sentiment of specific
aspect terms. Despite substantial progress in
this field, most models often exhibit signifi-
cant biases, particularly in recognizing neutral
sentiments, due to the predominance of emo-
tional content in training datasets. To improve
the quality of data and enhance model com-
prehension of aspect term sentiments across
diverse context, we propose the Multifaceted
Data Enhancement (MDE) framework, which
enhances both the breadth and depth of ABSA
datasets. MDE leverages large language mod-
els (LLMs) for data paraphrasing and imple-
ments a Dual Confidence Filtering algorithm to
select high-quality samples, thereby enhancing
data diversity. Furthermore, MDE incorporates
data enhancement strategies for aspect term
clarification and sentiment reasoning. Through
multiple rounds of inquiry with LLMs, MDE
refines the understanding of aspect terms and
strengthens the logical consistency between
data and sentiment labels. We apply MDE to
several ABSA benchmark datasets and fine-
tune various models. Experimental results
demonstrate that MDE effectively mitigates
sentiment recognition bias and outperforms
state-of-the-art baselines .

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task that aims to identify
the sentiment polarity towards specific aspect terms
within a given review (Pontiki et al., 2014). Due
to its broad applicability across diverse real-world
contexts, ABSA is considered a pivotal task within
the field of sentiment analysis.

In recent years, neural network-based solutions
for ABSA have achieved notable success. Recur-
rent neural networks and attention mechanisms
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Figure 1: The phenomenon of low accuracy in recogniz-
ing neutral sentiments.

have been employed to capture term-context re-
lationships (Tang et al., 2016; Wang et al., 2016;
Cheng et al., 2017; Li et al., 2018), while graph
neural networks (GNNSs) have been utilized to ex-
ploit syntactic structures (Huang and Carley, 2019;
Sun et al., 2019; Wang et al., 2020; Zhang et al.,
2022). The advent of pretrained models has further
elevated ABSA performance (Song et al., 2019; Xu
et al., 2019; Li et al., 2021a; Yang and Li, 2024).
More recently, large language models (LLMs),
such as ChatGPT, have demonstrated impressive
zero-shot capabilities in sentiment classification
tasks (Wang et al., 2024b).

Despite these advancements, fine-tuned pre-
trained models exhibit obvious sentiment bias
with a low recognition accuracy for neutral sen-
timent. As shown in the upper part of Fig. 1, fine-
tuning models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), TS5 (Raffel et al., 2020)
and Flan-T5 (Chung et al., 2024) on ABSA datasets
(Pontiki et al., 2014) reveals a significant perfor-
mance drop in neutral sentiment detection. These



models fine-tuned on emotionally rich user reviews
tend to overfit on explicit emotional expressions.
For example, as shown in the lower part of Fig. 1,
the term "fresh" frequently implies a positive sen-
timent in food-related reviews, but "fresh salsa"
refers to a type of salsa without inherent emotional
connotation. Similarly, the phrase structure "in-
clude... and..." is often associated with optional
dishes. These dishes are often described with sub-
jective adjectives in training set, which leads to
incorrect positive classification when this structure
is used to convey factual statements in the test data.

Due to model bias, neutral sentiment aspect
terms in emotionally charged data can lead to in-
accurate predictions when subtle variations occur.
The underlying causes of this issue are two fold: 1)
the limited and low-diverse nature of the training
data, and 2) the model’s inability to accurately cap-
ture the relationship between context and aspect
terms. To address these, we propose a Multifaceted
Data Enhancement (MDE) framework designed to
expand both the breadth and depth of the dataset,
which increases diversity and uncovers nuanced
relationships between aspect terms and sentiment.

To expand the data breadth, LLMs can effort-
lessly generate large amounts of synthetic data.
However, LLMs struggle with aspect term extrac-
tion and neutral sentiment identification (Wang
et al., 2024b; Xu et al., 2024), leading to po-
tential annotation errors. Therefore, MDE lever-
ages LLMs to produce paraphrased candidate data
from existing datasets, avoiding direct labeling by
LLMs. It then implements a Dual Confidence
Filtering (DCF) algorithm to select high-quality
samples based on confidence scores from both cor-
rectly classified and misclassified data, ensuring
enhanced data diversity.

For deepening data exploration, MDE incorpo-
rates enhancement for aspect term clarification
and sentiment logic reasoning. By leveraging the
knowledge stored in LLMs, MDE elucidates the
meanings of aspect terms, preventing misinterpre-
tations of specialized aspects. Additionally, the rea-
soning process strengthens the logical consistency
between data and sentiment labels, thus mitigating
the model’s tendency to learn erroneous shortcuts.

We apply MDE to enhance several ABSA bench-
mark datasets and fine-tune various pretrained mod-
els, achieving significant performance improve-
ments. In particular, for encoder-decoder models
such as TS5 and Flan-T5, transforming sentiment
classification into sentiment prediction generation

with reasoning notably enhances the model’s com-
prehension of the relationship between intrinsic
semantics and sentiment. Experimental results
demonstrate that MDE surpasses state-of-the-art
(SOTA) baselines, significantly improves the accu-
racy of neutral sentiment recognition, and exhibits
superior performance in robustness tests.
Our contributions are summarized as follows:

* We propose MDE framework, enhancing both
the breadth and depth of ABSA datasets
through LLM-driven paraphrase generation
and task-specific sentiment reasoning, improv-
ing data diversity and quality.

* We transform the training objective by shift-
ing from sentiment classification to sentiment
prediction generation with reasoning, which
enhances models’ understanding of the rela-
tionship between semantics and sentiment.

* Experiments show that MDE achieves signif-
icant performance improvements on ABSA,
surpassing SOTA baselines and notably boost-
ing neutral sentiment recognition accuracy.

2 Related Work

2.1 Aspect-based Sentiment Analysis

ABSA aims to analyze the sentiment towards spe-
cific aspects within a sentence. Initially, attention
mechanisms are employed to capture relationships
between context and target words (Tang et al., 2016;
Wang et al., 2016; Cheng et al., 2017; Li et al.,,
2018; Gu et al., 2018; Fan et al., 2018). Subse-
quently, researchers incorporate syntactic informa-
tion and use graph neural networks to model syn-
tactic connections between words and target as-
pects (Huang and Carley, 2019; Sun et al., 2019;
Wang et al., 2020; Zhang et al., 2022; Liang et al.,
2022). More recently, pretrained language models
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) are applied to ABSA with no-
table success (Song et al., 2019; Jiang et al., 2019;
Wang et al., 2020, 2022b). Additionally, LLMs
show significant advancements in sentiment anal-
ysis, particularly excelling in zero-shot scenarios
(Feietal., 2023; Wang et al., 2024b). These models
leverage extensive linguistic and world knowledge
but commonly used base encoders like BERT and
RoBERTa exhibit significant sentiment recognition
bias. We proposse ABSA-specific data enhance-
ments to mitigate the bias.
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Figure 2: Overview of MDE framework. Step 1 expands the data breadth, Step 2 ensures data diversity and quality,

and Step 3 involves mining semantic depth.

2.2 Data Enhancemant for ABSA

Enhancing training datasets is an effective way to
improve model performance. In ABSA, it has
gained traction (Chen et al., 2022; Wang et al.,
2022a; Hsu et al., 2021). However, traditional
methods, such as token replacement, masked as-
pect prediction, and polarity reversal, often lack
semantic diversity. Recent approaches leverage lan-
guage models to generate more varied expressions.
Ouyang et al. (2024) propose generating sentences
with more explicit opinion words to enhance the
understanding of implicit sentiment for specific
aspects. Chang et al. (2024) use LLMs to create
counterfactual data, which strengthens model ro-
bustness. Wang et al. (2023) harness the reasoning
capabilities of LLMs to produce explanatory senti-
ment information as training data, aiming to reduce
spurious correlations in ABSA. Additionally, Deng
et al. (2023) and Wang et al. (2024a). generate new
sentences using aspect-opinion-sentiment tuples to
address cross-domain data scarcity. In contrast,
our MDE approach takes a multifaceted approach,
considering data diversity, quality, and logical con-
sistency to mitigate model bias.

3 Methodology

3.1 Task Definition

Given a dataset D, = {(z;, ;) | i€ [1,]|Do|]}
containing |D,| instances, each instances x; con-
sists of a sentence s; and an aspect term a; that
is a subsequence of s;. Each x; has a sentiment
label y; € {Positive, Negative, Neutral}. The
goal of ABSA is to predict a sentiment polarity ¢;
towards the aspect a; given the input z;.

3.2 Method Overview

The method consists of two phases: MDE and
model training. Firstly, MDE construct enhanced
dataset through four key steps: semantic paraphras-
ing, data filtering, aspect clarification, and sen-
timent reasoning. Then, a sentiment reasoning
model is trained on the MDE dataset. This training
incorporates the broader data coverage and deeper
semantic insights provided by MDE, enabling the
model to develop intrinsic logical reasoning capa-
bilities. Following sections will elaborate on these
components.

3.3 Multifaceted Data Enhancement

We first outline MDE and define some symbols.
Let D, represent the original dataset. The first
step is to generates /N new samples for each in-
stance, resulting in the paraphrased dataset D).
After filtering D), we obtain the filtered dataset
Dy. The final step involves merging D, and
Dy to incorporate aspect clarification and senti-
ment reasoning. The final enhanced dataset D, =
{(zi,ciyriyyi) | i € [1,]|De|]}, where ¢; is the as-
pect clarification and 7; is the sentiment reasoning.

Step 1: Semantic Paraphrasing. Leveraging cur-
rent LLM technologies enables substantial data
generation. However, when using LLMs to con-
struct ABSA data for specific domains, several is-
sues arise: 1) Domain Shift: LLM-generated data
may not consistently align with the original do-
main due to content uncontrollability; 2) Aspect
Annotation Deviations: LLMs often diverge from
ground-truth aspect labels (Wang et al., 2024b);
3) Sentiment Annotation Bias: LLMs frequently
misclassify neutral data as positive or negative sen-
timent (Wang et al., 2024b).



According to these issues, directly using LLMs
to generate sentences and annotate aspects and sen-
timents may lead to misalignment with the original
data. Therefore, we use sentence-to-sentence se-
mantic paraphrasing method to generate N new
sentences for each original sentence. This ensures
that these sentences possess the same semantics but
exhibit varied expressions, thus mitigating domain
shift. By adding the original sentence s; and the
original aspect term a; as reference examples in the
prompt, utilizing LLMs to annotate aspects for sen-
tences with similar semantics becomes straightfor-
ward and effective. Additionally, there is no need
to re-label sentiment for the generated sentences,
as their preserved semantics ensure consistent sen-
timent labels with the original samples. Overall, by
employing LLMs for semantic paraphrasing and as-
pect annotation, we generate a substantial volume
of paraphrased data that retains the same sentiment
labels as the original samples, denoted as D).
Step 2: Data Filtering. Models trained on orig-
inal dataset are good at recognizing positive and
negative sentiments, but struggle with identifying
neutral sentiments. We propose a Dual Confidence
Filtering (DCF) algorithm to leverage the strengths
and mitigate the weaknesses of data distribution.

As described in Algorithm 1, an ABSA classi-
fier f trained on the original dataset D,, is used to
classify the generated paraphrased samples, cate-
gorizing them into correctly classified set P and
misclassified set P™¢. For P™¢, we only select
those samples with neutral sentiment labels. P
and P™° represent the strengths and weaknesses
of the data, respectively. To further refine the data
quality, we rank the samples in P by confidence
score, retaining the top K samples. The confi-
dence score is the probability value to the predicted
sentiment. Similarly, for P™*¢, we apply the same
ranking method to preserve the top K™ samples.
The combined dataset from these two subsets forms
the filtered dataset Dy.

Step 3: Aspect Clarification. Aspect terms may
be specialized domain-specific terms whose mean-
ings are difficult to grasp based on limited context
alone. We leverage LL.Ms to provide supplemen-
tary clarification on these terms, helping models
better understand the underlying meanings and thus
improving sentiment analysis accuracy.

Step 4: Sentiment Reasoning. Models are prone
to learning erroneous shortcuts during training.
We utilize LLMs to generate detailed explanations
for sentiment polarity judgments. These explana-

Algorithm 1 Dual Confidence Filtering

Input: Original dataset D,, ABSA model f
Parameter: N, K¢, K™¢
Output: Filtered dataset D
1: Initialize empty set Dy
2: forx € D, do
3: // Obtain N paraphrased samples
4: P = Paraphrase(z, N)
5:  Initialize empty set P°¢, P™°
6.
7
8

for p € P do
/1 Obtain the prediction and the confidence
(3, con fidence) = f(p)

0f  PC(p)ifg—y

10 P™¢ « (p), if § # y and y is neutral

11 end for

12:  // Sort P¢¢ and P™° based on con fidence

13:  P° = SortbyConfidence(P)

14 P¢¢ = SortbyConfidence( P™°)

15 // Select top K samples

16: Dy « SelectTop(P°°, K°°)

178 Dy < SelectTop(P™¢, K™°)

18: end for

19: return Filtered dataset Dy

tions establish logical connections between data
instances and their sentiment labels, thereby en-
hancing the model’s sentiment reasoning capabili-
ties. To ensure consistency between the reasoning
and sentiment labels, the labels are incorporated
into the prompt as input to the LLMs.

The aspect clarification and sentiment reason-
ing are achieved through multi-turn dialogues with
LLMs. The dialogue process is depicted in Step
3 & 4 of Fig. 2. For a given sample x;, the LLM
first clarifies the meaning of its aspect terms within
the context. Next, the LLM analyze the reasons for
the sentiment polarity of the aspect terms being y;,
with the resulting explanation denoted as r;. Merg-
ing the original dataset D, and the filtered dataset
Dy, and performing aspect clarification and sen-
timent reasoning, we obtain the enhanced dataset

De = {(wi,¢i,7,9i) }-
3.4 Model Training

We fine-tune generative T5 and Flan-T5. The train-
ing objective is redefined from traditional sentiment
classification to sentiment prediction generation
with reasoning. The encoder’s input consists of
the sentence s;, the aspect term a;, and the aspect
clarification c;. The decoder’s output includes both
the sentiment polarity prediction for the aspect and
the corresponding explanation for this prediction.
The model is trained by minimizing the following
loss function:

1

N T
L= N z; ;log P(9it|9i,<t, siyai,¢;) (1)
1= =



where g; = [y;; ;] represents the target sequence
of the output, g; ; denotes the true token at position
t, i<t represents the generated sequence at posi-
tions less than ¢, and P(g; ¢|gi <¢, Si, @i, ¢;) is the
probability of generating token g; ; given g; ¢, Si,
a;, and C;.

4 Experimental Setup

4.1 Datasets.

We evaluate MDE on four ABSA datasets: Rest14
and Lap14 from (Pontiki et al., 2014), Rest15 from
(Pontiki et al., 2015), and Rest16 (Pontiki et al.,
2016) from (Pontiki et al., 2016). For instances
with multiple aspects, each aspect is treated as a
separate single-aspect data instance. Detailed statis-
tics of the datasets are provided in Table 1. See the
Appendix D for details on MDE data.

4.2 Implement Details.

We use LLM GPT-3.5 2 in MDE. All prompts used
are provided in Appendix G. The models T5-base
and Flan-T5-base are fine-tuned using the trans-
formers library 3. The fine-tuning process involve
training for 10 epochs using the AdamW optimizer
with a learning rate of le-4. We set N = 10, and
select parameters K °° and K™ from the range [0,
3]. We choose the values for K¢ and K™ based
on the highest F1 score and then run the experi-
ments three times, reporting the average results as
the main results. All experiments are implemented
in PyTorch and conducted on an A5000 GPU with
24GB of memory. The Accuracy (Acc) and Macro-
F1 score (F1) are used as the evaluation metrics.

4.3 Compared Baselines

4.3.1 BERT-Based Baselines:

BERT (Devlin et al., 2019) processes sentence-
aspect pairs to learn aspect-aware representations.
BERT-PT (Xu et al., 2019) further trains BERT
on domain-specific data. BERT-RSC (Wang et al.,
2023) induces LLMs to generate explanations for
aspect sentiment. BERT-CEIB (Chang et al., 2024)
uses counterfactual data to reduce spurious correla-
tions. BERT-RGAT (Wang et al., 2020) employs re-
lational graph attention for syntactic dependencies.
BERT-DualGCN (Li et al., 2021b) integrates syn-
tactic and semantic knowledge. BERT-SenticGCN
(Liang et al., 2022) adds affective knowledge into
the dependency graph.

*https://openai.com (version: gpt-3.5-turbo-1106)
3hitps://github.com/huggingface/transformers

Dataset Split Pos. Neu. Neg. Total
Restla  Train 2164 633 805 3602
Test 728 196 196 1120
Laol4 Train 987 460 866 2313
P Test 341 169 128 638
Train 912 36 256 1204
Restl>  mest 326 34 182 542
Restlg  Train 1240 69 439 1748

Test 469 30 117 616

Table 1: Statistics of the ABSA datasets.

4.3.2 T5-Based Baselines:

TS5 and Flan-T5 predicts sentiment labels from sen-
tences and aspect terms. T5-C3DA (Wang et al.,
2022a) uses contrastive data augmentation by alter-
ing aspect terms and sentiment polarity. T5-ESA
(Ouyang et al., 2024) generates augmentations with
distinct opinion words for aspect terms.

5 Experimental Results and Analysis

5.1 Main Results

Table 2 is the main results of different methods
on four datasets. MDE achieves the best perfor-
mance across all datasets. Overall, T5-based meth-
ods outperform those based on BERT. MDE en-
hances sentiment prediction by providing logically
reasoned data, which requires the model to gener-
ate both sentiment predictions and the reasoning
behind them. Therefore, MDE data is trained on
generative models to realize its full potential. Both
T5 and Flan-T5 trained on MDE data exceed previ-
ous methods. Compared to data enhanced methods
such as RSC, CEIB, C3DA, and ESA, MDE still
achieves superior performance due to its compre-
hensive enhancement of both the breadth and depth
of the data.

5.2 Performance Breakdown by Sentiment

Table 3 shows the F1 scores for TS across differ-
ent sentiment classes on the original and MDE-
enhanced datasets*. Training with MDE data sig-
nificantly improves neutral sentiment recognition
while maintaining high performance for positive
and negative sentiments. Neutral sentiment sam-
ples are sparse in Rest15 and Rest16 datasets, with
9.77% and 13.16% F1 improvements on them.
Fig. 3 compares the confusion matrices of vanilla
T5 and T5-MDE on the Rest14 test set. MDE no-

*Subsequent experments are based on T5, with Flan-T5
results in the Appendix H.



Method Rest14 Lap14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1
BERT 84.46 76.81 78.37 73.21 82.66 65.91 90.58 75.41
BERT-PT® 84.95 76.96 78.07 75.08 - - - -
BERT-RSC’ 84.66 76.18 78.68 75.19 82.63 65.97 90.12 73.69
BERT-CEIB’ 87.77 82.08 82.92 79.50 86.16 72.97 92.86 81.08
BERT-RGAT 85.18 78.38 78.21 73.27 82.84 69.33 90.91 75.76
BERT-DualGCN’ 87.13 81.16 81.80 78.10 - - - -
BERT-SenticGCN’ 86.92 81.03 82.12 79.05 85.32 71.28 91.07 79.56
T5 87.59 80.60 81.03 76.48 87.45 74.42 93.83 78.41
T5-C3DA" 86.93 81.23 80.61 77.11 - - - -
T5-ESA" 88.29 81.74 82.44 79.34 - - - -
Flan-T5 87.41 79.91 82.76 78.96 86.90 74.18 94.15 77.00
T5-MDE 90.18 85.78 83.54 81.37 89.85 78.90 93.34 82.24
Flan-T5-MDE 90.27 85.96 84.80 82.01 88.38 76.04 94.48 84.34

Table 2: Experimental results of MDE and baseline models. Results marked with ! are from (Ouyang et al., 2024),
and those marked with * are from the original papers. All other results are from our own implementations. The
highest scores are highlighted in bold, and the previous highest scores are underlined.

Dataset Pos. Neu. Neg. Overall
Rest14 93.55 62.39 85.85 80.60
+MDE 94.06 75.83 86.54 85.78
Lapl4 91.42 62.46 75.56 76.48
+MDE 90.54 72.30 81.52 81.37
Restl5 92.61 44.78 85.88 74.42
+MDE 93.37 54.55 88.77 78.90
Rest16 97.37 50.00 87.87 78.41
+MDE 96.73 63.16 86.84 82.24

Table 3: Breakdown of F1 Performance for T5 on origi-
nal and MDE-enhanced datasets.

tably boosts neutral sentiment accuracy but intro-
duces a trade-off, with a slight increase in misclas-
sifying positive and negative sentiments as neutral.
This shift is likely attributed to the increased sus-
ceptibility of neutral sentiment labeling to subjec-
tivity compared to positive or negative sentiments.
Mild positive or negative instances may be cate-
gorized as neutral, and defining what constitutes
"mild" is challenging and subjective.

5.3 Generalization of MDE.

MDE expands data in three key areas: paraphrase-
filtered (PF) data, aspect clarification (AC) data,
and sentiment reasoning (SR) data. To validate
the generalization of MDE, we applied partially or
fully MDE data across different models, as shown
in Table 4. BERT-RGAT constructs a syntactic de-
pendency tree based on the input, making it unable
to incorporate additional data as input, so it only
utilizes PF data. BERT, which are not suited for
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Figure 3: Confusion matrices of Rest14 test set.

generative tasks, cannot use SR data. MDE data
improves performance across models.

Notably, T5’s performance slightly declines with
AC and SR data, but improves significantly when
the full MDE dataset is used. This suggests that
greater data diversity boosts model performance,
and integrating AC and SR data within a more
varied dataset enhances the model’s understanding
and reasoning. These findings highlight MDE’s
effectiveness in balancing data breadth and depth.

5.4 MDE Effectiveness Analysis

DCF vs Random. In the DCF algorithm, top K
correctly classified and K¢ misclassified samples
are selected based on confidence for augmentation.
Comparing with random (RD) selection, where K
augmented samples are randomly selected for each
original sample, Table 5 shows the result. When
K = K¢ and K™° € [1,3], the scale of data
expansion is similar, but DCF proves more effective
for model training.

MDE Data Efficiency. To evaluate MDE data ef-
ficiency, we randomly select 10%, 30%, and 50%



Method Rest14 Lap14 Method Rest14 Lap14
Acc F1 Acc F1 Scale F1 Scale F1
BERT-RGAT 85.18 78.38 78.21 73.27 10% D, 0.10 73.38 0.10 71.62
+PF 85.71 78.94 79.15 75.31 MDE (1) 0.11 73.67 0.11 77.13
MDE (2) 0.22 76.90 0.22 77.18
+ PF 85.27 77.18 79.62 75.74
+ AC 85.09 76.75 79.62 74.58 30% D, 0.30 75.77 0.30 76.06
+PF & AC 86.43 78.89 81.35 77.42 MDE (1) 0.38 79.50 0.33 79.49
MDE (2) 0.66 82.39 0.61 79.83
TS 87.59 80.60 81.03 76.48 MDE (3) 0.94 83.15 0.95 81.17
+PF 88.04 83.45 83.07 79.87
+ AC 86.96 80.14 82.76 79.16 50% D, 0.50 79.30 0.50 79.62
+SR 87.14  80.18 8245 7891 MDE (1) 0.60 79.29 0.54 81.10
+ AC & SR 88.66 82.58 81.35 78.22 MDE (2) 1.12 83.64 1.11 81.43
+ MDE 90.18 85.78 83.54 81.37 MDE (3) 1.47 84.02 1.49 81.02
full D, 1.00 82.58 1.00 78.22
Table 4: Experimental results of different models using MDE (1) 1.20 84.07 1.09 81.35
partial or full MDE data. MDE (2) 2.13 84.59 2.03 80.90
MDE (3) 3.15 85.65 3.08 81.17

Method Rest14 Lap14
Scale F1 Scale F1

T5 1.00 82.58 1.00 78.22
RD (1) 2.00 84.16 2.00 80.13
DCF (1) 2.08 85.76 2.09 81.30
RD (2) 3.00 84.29 3.00 81.12
DCF (2) 3.01 85.36 3.14 82.01
RD (3) 4.00 84.57 4.00 80.08
DCF (3) 4.15 85.78 3.97 81.85

Table 5: Comparison of DCF and random selection. The
numbers in parentheses is the values of K and K “°.

of the original data to construct the corresponding
MDE data. In the main experiment, MDE data
includes two sources, D, and D,,. Here, we use
only D), to compare the training performance of
the new data against the original data. As shown in
Table 6, MDE data (only from D)) consistently out-
performs the original data. Notably, with 30% and
50% original data, when the MDE data scale is ap-
proximately 1x, the model performance surpasses
that of using the full original data, demonstrating
the efficiency of MDE data.

Effect of K°“ and K™°. We conduct experiments
with K¢ and K¢ values ranging from O to 3. The
results, shown in Fig. 4, indicate significant perfor-
mance differences across various combinations of
K and K™¢. Configurations with K # ( con-
sistently outperform those with those with K¢ = 0.
On the Rest14 dataset, setting K°“ = 0 results in
consistently poor performance, regardless of K.
Solely increasing misclassified data may cause the
model to forget previously learned information, so
including correctly classified data is essential to
preserve its strengths. Overall, the model performs

Table 6: Comparison of T5 performance using original
data (D,) versus MDE data (from D,,). The numbers
in parentheses is the values of K““, and the underlined
values indicate data sizes close to the original data.
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Figure 4: Results of TS for different K °“ and K™°.

optimally when K¢ is set to 2 or 3 and K™ to 2.
Furthermore, we investigate the impact of cor-
rectly classified data (CC Data), misclassified data
(MC Data), and both types (PF Data) on the recog-
nition of different sentiments. As shown in Table 7,
performance for positive sentiment remains rela-
tively high, while neutral sentiment exhibits no-
ticeable fluctuations. Adding only CC or MC data
does not always result in consistent improvement.
The use of PF data, combining both types, better
balances strengths and weaknesses, effectively mit-
igating the model’s sentiment recognition bias.

5.5 MDE Data Quality Analysis

We leverage LLMs to paraphrase the original sen-
tences and use them as references to annotate as-
pect terms in the new sentences. Since the new
sentences may use different expressions, the aspect
terms in these sentences may not exactly match
those in the original data (e.g., "cord," "power

cord," "charger"). This introduces greater data



Method Rest14 Lap14

Pos. Neu. Neg. Overall Pos. Neu. Neg. Overall
TS5 (K““=0,K™°=0) 94.16 68.22 85.35 82.58 89.49 66.24 78.93 78.22
w/ MC Data (K““=0) 92.06 62.80 81.17 78.68 88.96 68.42 79.43 78.94
w/ CC Data (K™ =0) 94.55 74.02 86.68 85.08 90.55 68.75 80.00 79.77
w/ PF Data (K““#0, K™“#0) 94.96 75.83 86.54 85.78 90.54 72.30 81.25 81.37

Table 7: Experimental results under different filtering settings, reporting the F1 for each category and the overall

macro-F1.
Metric Rest14 Lap14 Rest15 Rest16 Method Rest14-ARTS Lap14-ARTS
Poub (%) 90.46 90.44 91.64 91.95 F1 Drop F1 Drop
Poo (%) 7127 7033 7027 6854 BERTRGAT  60.10 2125 5568 -18.38
BERT-CEIB 7397 806 6551  -12.02
Table 8: Results of Pg,, and P,, in different MDE- . %§M6E 77777 79.65 -76.137 - }5 45 T -75.§87 B
enhanced dataset. Flan-T5-MDE 7946  -650  76.82  -5.19
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Figure 5: Distribution of similarity scores between new
and original aspect terms in different datasets

diversity. Additionally, a few aspect terms may
not strictly be substrings of the sentence, such as
"widely used hardware" in the sentence "It now uti-
lizes hardware that is widely used in the industry."
While this may not meet the substring requirement,
it is semantically reasonable and helps improve
model robustness.

Given these considerations, we evaluate the va-
lidity of aspect terms using three metrics: 1) aspect
term substring ratio (Ps,;): the correctness of as-
pect term formatting; 2) co-occurrence ratio of
new and original aspect terms (F.,): the lexical
similarity between the two; 3) semantic similarity
of new and original aspect terms: the cosine simi-
larity based on their embeddings’. Table 8 shows
results for P, and P.,, demonstrating high ac-
curacy and lexical similarity. Fig. 5 displays the
distribution of similarity scores between new and
original aspect terms, with most values concen-

Shttps://huggingface.co/sentence-transformers/

Table 9: Robustness results on ARTS test set.

trated between 0.9 and 1. These results indicate
that the new aspect terms are highly accurate and
retain strong similarity to the original terms.

5.6 Robustness Analysis.

Rest14-ARTS and Lap14-ARTS (Xing et al., 2020)
are adversarial datasets designed to test ABSA
models’ robustness by manipulating sentiment for
target and non-target aspects. As shown in Table 9,
the experimental results indicate that TS-MDE and
Flan-T5-MDE significantly outperform other meth-
ods. Compared to the main results in Table 2, our
models exhibit smaller performance drops, high-
lighting their superior robustness.

6 Conclusion and Future Work

In this paper, we propose the MDE framework to
address sentiment recognition bias in ABSA mod-
els. MDE enhances data diversity and semantic
depth through four key steps: semantic paraphras-
ing, data filtering, aspect clarification, and senti-
ment reasoning. By training generative models
with MDE data, we improve the logical coherence
of both sentiment predictions and explanations.

In the future, extending the MDE framework
to other sentiment analysis tasks is a promising
direction. Ensuring high-quality and diverse train-
ing data is crucial for developing more reliable
and robust sentiment analysis models. Addition-
ally, further refining the MDE framework to build
high-quality demonstrations for in-context learning
offers an efficient approach to address various tasks
without extensive training.



Limitations

Dependence on LLMs

MDE relies on LLMs for semantic paraphrasing,
knowledge enhancement, and explainable senti-
ment analysis. The quality of the enhanced data is
directly tied to the performance and capabilities of
the underlying LLMs. Since the performance of
different LLMs varies, investigating whether using
multiple LLMs to generate more diverse data can
further enhance the robustness of ABSA models is
a potential area for future research. Additionally,
the performance of LLMs is often closely related
to the design of prompts. Exploring various prompt
designs to push the boundaries of LLMs is another
worthy focus.

Sentiment Recognition Bias of LL.Ms

LLMs exhibit significant sentiment recognition bi-
ases in ABSA tasks compared to human-annotated
data. Given the enormous computational resources
required to train large models, retraining them is of-
ten impractical. Addressing sentiment recognition
bias through prompt optimization, example-based
prompting, or parameter-efficient fine-tuning meth-
ods is a promising area of investigation. Moreover,
exploring whether similar bias issues exist in other
tasks can serve as a direction for future research.
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Appendix
A Case Study

Case 1
Sentence: The unfortunate lady next to us thought she had ord-
ered a salad a (including asking for salad dressing) and was
instead given a quesedilla.

Input Clarification: A quesadilla is a Mexican dish consisting of a
tortilla filled with cheese, and often other ingredients, then
folded in half and grilled. In this context, it refers to a mix-up in

the lady's order, receiving a quesadilla instead of a salad.

Lable Neutral

The sentiment towards "quesadilla" in the given sentence is
neutral because it simply describes a mistake in the lady's order,
without expressing any positive or negative emotion. The term
"quesadilla" is used in a factual manner to describe the
substitution, without conveying any specific feelings or opinions
about the dish itself. Therefore, the sentiment expressed by the
aspect term "quesadilla" remains neutral in this context.

Case 2

Sentence: The guac is fresh, yet lacking flavor, we like to add
our fresh salsa into it.

Prediction

Clarification: Fresh salsa refers to a type of salsa made with
freshly chopped ingredients such as tomatoes, onions, peppers,
and cilantro. It is typically uncooked and known for its vibrant,
crisp flavors that complement dishes like guacamole.

Input

Lable Neutral

The sentiment towards "fresh salsa" in the given sentence is
neutral because the term "fresh" does not inherently convey
positive or negative emotions. It simply refers to the type of salsa
used, without expressing any particular sentiment towards it. The
use of "fresh" suggests a positive aspect; but the overall
sentiment is neutral as it does not express any particularly
positive or negative feelings towards the fresh salsa itself.

Prediction

Figure 6: Examples with neutral sentiment that are eas-
ily mispredicted. Flan-T5 incorrectly predicts them as
negative and positive respectively, while Flan-T5-MDE
correctly identifies them all.

In the Fig. 6, we present two examples where Flan-
TS5 incorrectly predicts sentiment, highlighting the
cues that are prone to misinterpretation. For in-
stance, the word "unfortunate" in the first case tend
to bias the sentiment towards the negative. In the
second case, the term "fresh" commonly associ-
ated with positive sentiment regarding ingredient
quality. Flan-T5-MDE effectively recognizes these
aspect terms as neutral, providing clear reasoning
that demonstrates the model’s ability to accurately
identify targets and deliver coherent explanations.
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Figure 7: Results of T5 for different K°° and K¢ on
the Lap14 dataset constructed using GPT-4o.

Additionally, we notice an inconsistency in the
explanation of the second example, initially stat-
ing, "fresh does not inherently convey positive or
negative emotion", while later suggesting "The use
of fresh implies positivity". These two statements
convey contradictory meanings, yet the model still
accurately identifies the sentiment as neutral.

B MDE with GPT-40

MDE data used in the main experiments is con-
structed with GPT-3.5. Since both Step 1 and Step
3 of MDE rely on LLMs, we further validate MDE
using the updated model, GPT-40 6. To manage
API costs, we conduct validation on the Lap14
dataset. Fig. 7 presents the results under various
K¢ and K™¢ combinations, with the best result
from the GPT-3.5-based MDE data as the base-
line. MDE data constructed with GPT-40 generally
outperforms that from GPT-3.5.

Table 16 compares the MDE-enhanced Lap14
data constructed by both models. GPT-4o0 gen-
erates longer clarifications and reasonings. We
also evaluate aspect term substring ratio (FPksyp), cO-
occurrence ratio (F,,), and semantic similarity be-
tween new and original aspects. Ps,; for GPT-40 is
94.01%, higher than GPT-3.5’s 90.46%, indicating
better substring accuracy. P, is 65.38%, slightly
lower than GPT-3.5’s 70.33%, while the cosine sim-
ilarity between 0.9 and 1, is 58.19%, nearly iden-
tical to GPT-3.5’s 58.42%. These results suggest
that GPT-40 uses semantically similar but more
diversified expressions, leading to improved model
performance.

C Zero-shot Experiments

We conduct zero-shot experiments with Llama-2-
7B, Llama-3-8B, GPT-3.5, and GPT-40 on Rest14

Sversion: gpt-40-mini-2024-07-18
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Method Pos Neu. Neg. Overall
Rest14
Llama-2-7B 8790 37.89 67.46 64.42
Llama-3-8B 90.60  44.38 78.59 71.19
GPT-3.5 9142  40.79  78.38 70.20
GPT-40 9390 4748 82.93 74.77
Flan-T5-MDE 9496 74.49 88.42 88.96
Lap14
Llama-2-7B 84.43 48.07 62.80 65.10
Llama-3-8B 87.06 55.10 76.82 72.99
GPT-3.5 88.52 55,51  79.60 74.54
GPT-40 88.61 48.74  77.99 71.78
Flan-T5-MDE  91.78  72.29 81.46 82.01

Table 10: Zero-shot experiment results. The table re-
ports the F1 score for each class and the overall macro-
F1 score. Flan-T5-MDE is our fine-tuned model.

and Lap14 datasets. The specific prompts used
are detailed in Table 18. The experimental results
are presented in Table 10, where we report the F1
scores for the three sentiment categories as well as
the overall F1 score. For comparison, we also in-
clude the results of Flan-T5-MDE. All three models
exhibit similar sentiment recognition biases: their
performance in classifying positive sentiment is the
best, nearly reaching the level of our fine-tuned
method, but their performance in recognizing neu-
tral sentiment is significantly lower than the other
categories. The experimental results suggest that
directly leveraging LLMs for data synthesis and
sentiment annotation is not feasible.

D MDE Data Details

D.1 Confidence Distribution.

We train an ABSA classifier using the original
dataset and subsequently applied it to classify the
paraphrased data. We compute the confidence
scores for both correctly and incorrectly classified
instances, segmented into various intervals as illus-
trated in Table 11. Remarkably, irrespective of the
correctness of classification, the confidence scores
predominantly reside in high intervals, indicating
a strong conviction in the classifier’s predictions.
This high level of confidence suggests that the para-
phrased sentences exhibit a high degree of semantic
similarity to the original training data, which aligns
with our expectations. The paraphrased sentences
maintain the same sentiment polarity towards the
same targets without significant deviation from the
original domain.

Moreover, the concentration of confidence



Interval #Correct #Incorrect
[0,0.9) 832 871
Rest14 [0.9,0.99) 1296 901
[0.99, 1] 29190 2930
Total 31318 4702
[0,0.9) 390 334
Lapta  [0:9,0.99) 421 347
[0.99,1] 19786 1852
Total 20597 2533
[0,0.9) 50 90
Rest15 [0.9,0.99) 87 73
0.99, 1] 11243 497
Total 11380 660
[0,0.9) 104 198
Restlg  0-9,0.99) 198 210
[0.99,1] 15885 885
Total 16187 1293

Table 11: Statistics of paraphrased data across varying
confidence intervals.

scores in high intervals underscores our rationale
for adopting a Top-K filtering strategy. A threshold-
based filtering approach would be impractical due
to the challenge of selecting an optimal threshold
that balances the dataset volume and quality. The
observed distribution of confidence scores substan-
tiates the feasibility and efficacy of Top-K filtering.

D.2 Data Details in Different K¢ and K"°.

During the data filtering stage, we introduce two
hyperparameters, K¢ and K"°. K represents
the number of samples selected from the set of
correctly classified instances, while K™ denotes
the number of samples chosen from the set of in-
correctly classified neutral instances. In our ex-
periments, we vary these parameters from O to 3.
Table 16 and 17 provide a detailed breakdown of
the number of instances for each class, along with
the total number of instances. Additionally, we
measure the average length of sentence, aspect clar-
ifications and sentiment reasonings. The original
review sentences are very short and contain limited
information, the clarifications enrich the content
with prior knowledge. The lengths of clarifica-
tions and reasonings remain relatively stable across
different datasets, indicating that the information
generated by LLMs is both consistent and effective.

D.3 Experiments of Different K and K¢

We conducted experiments using different com-
binations of K“¢ and K" on both T5 and Flan-
T5. The results of TS for the Rest14 and Lap14
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Figure 8: Results of TS for different K °“ and K™°.
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Figure 9: Results of Flan-T5 for different K °“ and K.

Method Rest14 Lap14
Allpr ISAp1 ALLp1 ISAp:
Flan-T5 7991  69.16 78.96 73.81
Flan-T5-THOR 8298  71.70 79.75 67.63
Flan-T5-ESA 83.79  73.76 81.78 77.91
Flan-T5-MDE 85.96 73.84 82.01 80.23

Table 12: Experimental results of implicit sentiment
analysis.

datasets are presented in the main content. The rest
of experimental results are shown in Fig. 8 and 9.
When K is set to 0, the model’s performance
may slightly lag behind the baseline without en-
hanced data. However, when both K¢ and K™¢
are greater than 0, the models consistently outper-
form the baseline.

E Implicit Sentiment Analysis (ISA).

In the Rest14 and Lapl4 datasets, aspect terms
lacking explicit sentiment expression are marked
as implicit sentiments (Li et al., 2021c). We com-
pare our approach with THOR (Fei et al., 2023)
and ESA, both based on Flan-T5. THOR employs
chain-of-thought prompting to offer additional in-
sights for implicit sentiment analysis. As shown in
Table 12, MDE achieves the highest F1 scores for
both overall and implicit sentiment data. These re-
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Figure 10: Confusion matrices of Rest14 test set.

Dataset Pos. Neu. Neg. Overall
Rest14 93.45 60.70 85.58 79.91
+MDE 94.96 74.49 88.42 85.96
Lapl4 91.01 65.74 80.13 78.96
+MDE 91.78 72.79 81.46 82.01
Rest15 91.12 46.67 83.76 74.18
+MDE 92.75 50.00 85.38 76.04
Rest16 97.47 54.55 90.83 80.95
+MDE 97.56 66.67 88.79 84.34

Table 13: Breakdown of F1 Performance for Flan-T5
on original and MDE-enhanced datasets.

Method Rest14 Lap14
Acc F1 Acc F1

Flan-T5 87.41 79.91 82.76 78.96
+ PF 87.95 81.20 82.76 79.21
+ AC 89.20 83.04 81.82 77.54
+ SR 88.04 81.69 83.07 79.13
+ AC & SR 87.14 79.43 82.92 78.88
+ MDE 90.27 85.96 84.80 82.01

Table 14: Experimental results of Flan-T5 using partial
or full MDE data.

sults underscore that a diverse training dataset can
effectively capture various sentiment expressions.

F Implement Details for BERT

We replicate BERT to solve ABSA using the bert-
base-uncased. The input to the model is formatted
as {[CLS] s; ¢; [SEP] a;}, where s; represents
the input sentence, c; denotes the aspect clarifica-
tion, and a; corresponds to the aspect term. It is
important to note that in the vanilla BERT imple-
mentation, c; is not included in the input sequence.
The model is fine-tuned for 10 epochs using the
AdamW optimizer, with a learning rate set to le-5.

G Prompt Templates

In evaluating the ABSA performance of LLMs
and various stages of the MDA method, we uti-
lize LLMs. Table 18 lists the prompts used in each
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step. Our prompt design is generally divided into
two parts: task description and output format. In
the sentiment reasoning step of MDE framework,
we include sentiment labels in the prompt to ensure
that the generated explanatory information aligns
with the sentiment labels.

H Other Experimental Results of Flan-T5

Due to page limitations, some Flan-T5 experimen-
tal results are not included in the main content.
They exhibit similar characteristics to the TS model,
leading to the same conclusions. These results are
listed here for reference and to demonstrate the
generalizability of MDE.

* Performance breakdown by sentiment: Ta-
ble 13 presents Flan-T5’s performance across
different sentiment classes before and after
applying MDE data. Fig. 10 shows the confu-
sion matrix results for Flan-T5 on the Rest14
test set.

* Flan-T5-MDE ablation study: Table 14 shows
the impact of using different subsets of MDE
data on Flan-T5. Full MDE data ensures di-
versity, accuracy, and logical consistency, ef-
fectively unlocking the model’s potential for
optimal performance.

* Impact of correctly classified (CC) and mis-
classified (MC) data: Table 15 shows model
performance when using only CC, only MC,
or both types of data.



Method Rest14 Lap14

Pos. Neu. Neg. Overall Pos. Neu. Neg. Overall
Flan-T5 (K““=0, K™“=0) 93.52 60.38 84.39 79.43 91.30 55.85 79.87 78.88
w/ MC Data (K““=0) 93.53 61.58 82.41 79.17 90.52 71.26 81.02 80.94
w/ CC Data (K™°=0) 94.60 73.63 83.67 85.23 91.51 70.95 80.91 81.12

w/ PF Data (K““#0, K™ #0) 94.96 74.49 88.42 85.96 91.78 72.29 81.46 82.01

Table 15: Experimental results under different filtering settings, reporting the F1 for each category and the overall
macro-F1.

Pos. Neu. Neg. Total Scale Len. of S Len. of C Len. of R
Lap14-GPT-3.5
K“=0,K"=0 987 460 866 2313 1.00 19.31 36.25 70.67
K“=0,Km™ =1 987 753 866 2606 1.13 19.29 36.37 70.20
K« =0,K"=2 987 1003 866 2856 1.23 19.30 36.50 69.86
(KT =0KT™ =3 987 _ 1214 866  _ 3064 _ 132 1928 3658 69.56 _
Ke“=1,K™=0 1965 853 1714 4532 1.96 18.47 36.28 69.83
K“°=1K" =1 1965 1146 1714 4825 2.09 18.51 36.34 69.63
Ke=1,Km =2 1965 1396 1714 5075 2.19 18.55 36.28 69.83
(ET=LEKT =3 1965 1714 1714 5286 229 1857 3647 _ _ _ _ 69.30 _
K«“=2 K™ =0 2939 1222 2558 6719 2.90 18.16 36.43 69.63
Ke=2 K" =1 2939 1515 2558 7012 3.03 18.20 36.47 69.50
K =2 K™ =2 2939 1765 2558 7262 3.14 18.24 36.52 69.39
(KT =2,KT" =3 2939 1976 2558 _ 7473 323 1826 3655 _ _ _ 6928
K« =3K™"=0 3911 1582 3398 8891 3.84 18.04 36.52 69.47
Ke=3 K" =1 3911 1875 3398 9184 3.97 18.08 36.55 69.37
K« =3,K™ =2 3911 2125 3398 9434 4.08 18.11 36.58 69.29
K« =3 K" =3 3911 2396 3398 9645 4.17 18.13 36.61 69.20
Lap14-GPT-40
K*“=0,K"=0 987 460 866 2313 1.00 19.31 45.68 83.07
K“=0,K™ =1 987 710 866 2563 1.11 19.36 45.72 82.98
K =0,K"=2 987 894 866 2747 1.19 19.39 45.79 82.94
(KT =0KT =3 987 1042 866 2895 125 1940 4582 8292
K“=1,K™ =0 1968 896 1717 4581 1.98 18.86 45.51 83.26
K“=1K" =1 1968 1146 1717 4831 2.09 18.91 45.55 83.20
Ke“=1,K" =2 1968 1330 1717 5015 2.17 18.95 45.59 83.17
CKC=1K7C=3 198 _ 1478 1717 _ 5163 223 1896 __ 456l __ __ 83.05
K«“=2 K™ =0 2947 1324 2553 6824 2.95 18.71 45.46 83.30
K“=2 K" =1 2947 1574 2553 7074 3.06 18.76 45.48 83.26
K =2 K" =2 2947 1758 2553 7258 3.14 18.78 45.51 83.24
BT =2, KM =3 2947 1906 2553 7406 320 1880 4553 8322
K*“=3K™=0 3921 1582 3379 9038 391 18.64 45.42 83.34
K“=3 K™ =1 3921 1988 3379 9288 4.02 18.67 45.44 83.31
K =3,K™ =2 3921 2172 3379 9472 4.10 18.69 45.46 83.29
K“=3K" =3 3921 2320 3379 9620 4.16 18.71 45.44 83.28

Table 16: Details of MDE-enhanced Lap14 constructed using GPT-3.5 and GPT-40 under different K °“ and K¢
conditions. "Scale" indicates the ratio by which the original dataset is expanded. "Len. of S", "Len. of C" and "Len.
of R" refers to the average length of, sentence, aspect clarification and sentiment reasonings respectively.
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Pos Neu Neg Total Scale Len. of S Len. of C Len. of R
Rest14
K“=0,K"=0 2164 633 805 3602 1.00 17.57 35.08 72.41
K“=0,K" =1 2164 1098 805 4067 1.13 17.64 35.11 71.99
K“=0,Km" =2 2164 1513 805 4482 1.24 17.70 35.15 71.66
(KT=0K™=3 2164 186 _ 805 485 135 1777 3524 7146 _
K“=1,K™ =0 4307 1138 1585 7030 1.95 17.57 35.17 71.97
K“=1Km" =1 4307 1603 1585 7495 2.08 17.61 35.18 71.76
K“=1,Km" =2 4307 2018 1585 7910 2.20 17.65 35.20 71.59
(KT=LK™=3 4307 2391 1585 8283 230 1769 3525 _ __ 7148 _
K“=2 K™ =0 6364 1600 2352 10386 2.88 17.69 35.23 71.86
K“=2 K" =1 6364 2065 2352 10851 3.01 17.63 35.24 71.72
K“=2 K" =2 6364 2480 2352 11266 3.13 17.65 35.25 71.60
(KT =2K™=3 6364 2853 2352 11639 323 = 1768 3528 152 _
K“=3Km" =0 8553 2033 3108 13694 3.80 17.59 3522 71.92
K“=3 K" =1 8553 2498 3108 14159 3.93 17.61 35.23 71.81
K“=3K" =2 8553 2913 3108 14574 4.05 17.63 35.24 71.71
K“=3,K™" =3 8553 3286 3108 14947 4.15 17.66 35.26 71.65
Rest15
K“=0,K™ =0 912 36 256 1204 1.00 16.99 35.09 71.64
K“=0,K" =1 912 69 256 1237 1.03 16.95 35.10 71.54
K“=0,Km" =2 912 98 256 1266 1.05 16.93 35.09 71.47
O KC=0K"=3 912 124 2% 1292 107 __ 1689 3509 7140
K“=1,K™ =0 1818 65 506 2389 1.98 16.38 34.81 72.03
K“e=1K" =1 1818 98 506 2422 2.03 16.37 34.82 71.97
K“=1,Km" =2 1818 127 506 2451 2.36 16.37 34.82 71.93
O KC=1 K" =3 1818 153 __ 506 2477 _ 206 _ 1635 3482 7189
K“=2 K™ =0 2721 87 754 3562 2.96 16.16 34.74 72.03
K“=2K" =1 2721 120 754 3595 2.99 16.15 34.75 71.99
K“=2 K" =2 2721 149 754 3624 3.01 16.15 34.75 71.97
O KC=2K"=3 2721 175 754 _ 3650 __ 303 1614 3475 7194
K“=3,K™" =0 3624 108 999 4731 393 16.04 34.69 72.06
K“=3 K" =1 3624 141 999 4764 3.96 16.04 34.69 72.03
K“=3K" =2 3624 170 999 4793 3.98 16.04 34.69 72.01
K“=3,K™" =3 3624 196 999 4819 4.00 16.04 34.63 71.91
Rest16
K“=0,K™ =0 1240 69 439 1748 1.00 17.34 34.87 71.09
K“=0,Km™ =1 1240 124 439 1803 1.03 17.26 34.93 70.88
K“=0,Km =2 1240 174 439 1853 1.06 17.19 34.92 70.77
CKTC=O0K™ =3 1240 200 439 1899 109 1702 3494 074
K“=1,K™ =0 2473 124 855 3452 1.97 16.55 34.76 71.32
Ke=1,Km" =1 2473 179 855 3507 2.01 16.52 34.76 71.25
K“=1,Km" =2 2473 224 855 3557 2.03 16.49 34.76 71.19
O KC=1 K" =3 2473 275 855 _ 3603 206 1647 3477 1T
K“=2 K™ =0 3702 173 1265 5140 2.94 16.27 34.68 71.4
Ke=2 K" =1 3702 228 1265 5195 2.97 16.25 34.68 71.35
K“=2 K" =2 3702 278 1265 5245 3.00 16.24 34.68 71.31
O KC=2K7C=3 3702 324 1265 591 303 1622 3469 7129
K“=3,K™ =0 4972 220 1666 6813 3.90 16.13 34.68 71.53
K“=3 K™ =1 4972 275 1666 6868 3.93 16.12 34.68 71.49
K“=3,K™" =2 4972 325 1666 6918 3.96 16.11 34.68 71.46
K«“=3 K" =3 4972 371 1666 6964 3.98 16.10 34.69 71.45

Table 17: Details of MDE-enhanced Rest14, Rest15 and Rest16 constructed using GPT-3.5 under different K ““ and
K™ conditions. "Scale" indicates the ratio by which the original dataset is expanded. "Len. of S", "Len. of C" and
"Len. of R" refers to the average length of, sentence, aspect clarification and sentiment reasonings respectively.
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Task Prompt

Analyze the sentiment polarity towards a specified aspect within a given
sentence.
Input Components:
The sentence to be analyzed.
The specific aspect within the sentence that the sentiment analysis
Evaluation of ABSA should focus on.
Formatted Output:

At the end of the output, provide a formatted result as follows: Final
Result: The sentiment towards the aspect is [positive, negative, or neutral].
Sentence: {sentence}

Aspect: {aspect}

Generate 10 review sentences about {domain} that convey a similar mean-
ing to the provided review sentence: "{sentence}". Each sentence should
capture the essence of the original review while presenting it in a different
way.
Output Format:

Sentence i: {sentence}

Semantic Paraphrasing

Provide aspect annotations for ten sentences that convey a similar meaning
to the given source sentence. The source sentence includes an annotated
aspect term. Your task is to identify and annotate the aspect term within
each of the ten sentences, ensuring that the aspect term is a subsequence
within its sentence and that carries a similar meaning to the source aspect
term.
Aspect Annotation Just output the aspect of each sentence in the following format:

Aspect i: {aspect for sentence i}
Input:

Source Sentence: {sentence}

Source Aspect: {aspect}

Sentence {i}: {new sentence; }

(Note: Ten paraphrased sentences are listed here.)

Turn 1
Describe in 20 to 60 words the meaning of the term "{aspect}" as it is
used in the context of the sentence "{sentence}".

Turn 2
Aspect Clarification & In the provided sentence "{sentence}", explain why the sentiment ex-
pressed by the aspect term "{aspect}" is {label}. Your explanation is
limited to 100 words.
Output Format:
The sentiment towards "{aspect}" in the given sentence is {label}
because ...

Sentiment Reasoning

Table 18: The prompt templates used in LLMs have placeholders marked by {bold text} that need to be replaced.
Aspect Clarification and Sentiment Reasoning is a multi-turn dialogue process.
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