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Abstract

Aspect-Based Sentiment Analysis (ABSA) fo-001
cuses on analyzing the sentiment of specific002
aspect terms. Despite substantial progress in003
this field, most models often exhibit signifi-004
cant biases, particularly in recognizing neutral005
sentiments, due to the predominance of emo-006
tional content in training datasets. To improve007
the quality of data and enhance model com-008
prehension of aspect term sentiments across009
diverse context, we propose the Multifaceted010
Data Enhancement (MDE) framework, which011
enhances both the breadth and depth of ABSA012
datasets. MDE leverages large language mod-013
els (LLMs) for data paraphrasing and imple-014
ments a Dual Confidence Filtering algorithm to015
select high-quality samples, thereby enhancing016
data diversity. Furthermore, MDE incorporates017
data enhancement strategies for aspect term018
clarification and sentiment reasoning. Through019
multiple rounds of inquiry with LLMs, MDE020
refines the understanding of aspect terms and021
strengthens the logical consistency between022
data and sentiment labels. We apply MDE to023
several ABSA benchmark datasets and fine-024
tune various models. Experimental results025
demonstrate that MDE effectively mitigates026
sentiment recognition bias and outperforms027
state-of-the-art baselines 1.028

1 Introduction029

Aspect-based sentiment analysis (ABSA) is a fine-030

grained sentiment analysis task that aims to identify031

the sentiment polarity towards specific aspect terms032

within a given review (Pontiki et al., 2014). Due033

to its broad applicability across diverse real-world034

contexts, ABSA is considered a pivotal task within035

the field of sentiment analysis.036

In recent years, neural network-based solutions037

for ABSA have achieved notable success. Recur-038

rent neural networks and attention mechanisms039

1Code and data will be available after anonymous review.
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Figure 1: The phenomenon of low accuracy in recogniz-
ing neutral sentiments.

have been employed to capture term-context re- 040

lationships (Tang et al., 2016; Wang et al., 2016; 041

Cheng et al., 2017; Li et al., 2018), while graph 042

neural networks (GNNs) have been utilized to ex- 043

ploit syntactic structures (Huang and Carley, 2019; 044

Sun et al., 2019; Wang et al., 2020; Zhang et al., 045

2022). The advent of pretrained models has further 046

elevated ABSA performance (Song et al., 2019; Xu 047

et al., 2019; Li et al., 2021a; Yang and Li, 2024). 048

More recently, large language models (LLMs), 049

such as ChatGPT, have demonstrated impressive 050

zero-shot capabilities in sentiment classification 051

tasks (Wang et al., 2024b). 052

Despite these advancements, fine-tuned pre- 053

trained models exhibit obvious sentiment bias 054

with a low recognition accuracy for neutral sen- 055

timent. As shown in the upper part of Fig. 1, fine- 056

tuning models such as BERT (Devlin et al., 2019), 057

RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020) 058

and Flan-T5 (Chung et al., 2024) on ABSA datasets 059

(Pontiki et al., 2014) reveals a significant perfor- 060

mance drop in neutral sentiment detection. These 061
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models fine-tuned on emotionally rich user reviews062

tend to overfit on explicit emotional expressions.063

For example, as shown in the lower part of Fig. 1,064

the term "fresh" frequently implies a positive sen-065

timent in food-related reviews, but "fresh salsa"066

refers to a type of salsa without inherent emotional067

connotation. Similarly, the phrase structure "in-068

clude... and..." is often associated with optional069

dishes. These dishes are often described with sub-070

jective adjectives in training set, which leads to071

incorrect positive classification when this structure072

is used to convey factual statements in the test data.073

Due to model bias, neutral sentiment aspect074

terms in emotionally charged data can lead to in-075

accurate predictions when subtle variations occur.076

The underlying causes of this issue are two fold: 1)077

the limited and low-diverse nature of the training078

data, and 2) the model’s inability to accurately cap-079

ture the relationship between context and aspect080

terms. To address these, we propose a Multifaceted081

Data Enhancement (MDE) framework designed to082

expand both the breadth and depth of the dataset,083

which increases diversity and uncovers nuanced084

relationships between aspect terms and sentiment.085

To expand the data breadth, LLMs can effort-086

lessly generate large amounts of synthetic data.087

However, LLMs struggle with aspect term extrac-088

tion and neutral sentiment identification (Wang089

et al., 2024b; Xu et al., 2024), leading to po-090

tential annotation errors. Therefore, MDE lever-091

ages LLMs to produce paraphrased candidate data092

from existing datasets, avoiding direct labeling by093

LLMs. It then implements a Dual Confidence094

Filtering (DCF) algorithm to select high-quality095

samples based on confidence scores from both cor-096

rectly classified and misclassified data, ensuring097

enhanced data diversity.098

For deepening data exploration, MDE incorpo-099

rates enhancement for aspect term clarification100

and sentiment logic reasoning. By leveraging the101

knowledge stored in LLMs, MDE elucidates the102

meanings of aspect terms, preventing misinterpre-103

tations of specialized aspects. Additionally, the rea-104

soning process strengthens the logical consistency105

between data and sentiment labels, thus mitigating106

the model’s tendency to learn erroneous shortcuts.107

We apply MDE to enhance several ABSA bench-108

mark datasets and fine-tune various pretrained mod-109

els, achieving significant performance improve-110

ments. In particular, for encoder-decoder models111

such as T5 and Flan-T5, transforming sentiment112

classification into sentiment prediction generation113

with reasoning notably enhances the model’s com- 114

prehension of the relationship between intrinsic 115

semantics and sentiment. Experimental results 116

demonstrate that MDE surpasses state-of-the-art 117

(SOTA) baselines, significantly improves the accu- 118

racy of neutral sentiment recognition, and exhibits 119

superior performance in robustness tests. 120

Our contributions are summarized as follows: 121

• We propose MDE framework, enhancing both 122

the breadth and depth of ABSA datasets 123

through LLM-driven paraphrase generation 124

and task-specific sentiment reasoning, improv- 125

ing data diversity and quality. 126

• We transform the training objective by shift- 127

ing from sentiment classification to sentiment 128

prediction generation with reasoning, which 129

enhances models’ understanding of the rela- 130

tionship between semantics and sentiment. 131

• Experiments show that MDE achieves signif- 132

icant performance improvements on ABSA, 133

surpassing SOTA baselines and notably boost- 134

ing neutral sentiment recognition accuracy. 135

2 Related Work 136

2.1 Aspect-based Sentiment Analysis 137

ABSA aims to analyze the sentiment towards spe- 138

cific aspects within a sentence. Initially, attention 139

mechanisms are employed to capture relationships 140

between context and target words (Tang et al., 2016; 141

Wang et al., 2016; Cheng et al., 2017; Li et al., 142

2018; Gu et al., 2018; Fan et al., 2018). Subse- 143

quently, researchers incorporate syntactic informa- 144

tion and use graph neural networks to model syn- 145

tactic connections between words and target as- 146

pects (Huang and Carley, 2019; Sun et al., 2019; 147

Wang et al., 2020; Zhang et al., 2022; Liang et al., 148

2022). More recently, pretrained language models 149

such as BERT (Devlin et al., 2019) and RoBERTa 150

(Liu et al., 2019) are applied to ABSA with no- 151

table success (Song et al., 2019; Jiang et al., 2019; 152

Wang et al., 2020, 2022b). Additionally, LLMs 153

show significant advancements in sentiment anal- 154

ysis, particularly excelling in zero-shot scenarios 155

(Fei et al., 2023; Wang et al., 2024b). These models 156

leverage extensive linguistic and world knowledge 157

but commonly used base encoders like BERT and 158

RoBERTa exhibit significant sentiment recognition 159

bias. We proposse ABSA-specific data enhance- 160

ments to mitigate the bias. 161
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Step 3 & 4: Aspect Clarification & Sentiment Reasoning

The sentiment towards "battery life" in the given sentence is positive 
because the speaker expresses satisfaction with the device's ability to 
hold a charge for an extended period. By stating that they can skip 
taking the charging cord due to the good battery life, the speaker 
implies convenience and reliability, indicating a positive sentiment. 
This suggests that the battery life meets or exceeds the user's 
expectations, contributing to a positive experience with the device.

In the provided sentence " [I charge it at night and skip taking 
the cord with me because of the good battery life. ] ", explain 
why the sentiment expressed by the aspect " [ battery life ] " is 
[positive]. Your explanation is limited to 100 words.
Output Format: The sentiment towards "[battery life]" in the given 
sentence is positive because ...

"Battery life" refers to the duration a device can operate on a single 
charge. In the given context, it indicates that the device's battery has 
a long-lasting charge, allowing the user to forgo carrying the 
charging cord.

Describe in 20 to 60 words the meaning of the term "[battery life]" 
as it is used in the context of the sentence "[I charge it at night and 
skip taking the cord with me because of the good battery life.]"

Original Sentence: I charge it at night and skip taking 
the cord with me because of the good battery life.
Aspect: battery life
Label: Positive

Step 1: Semantic Paraphrasing

LLM

Sentence 2: The laptop's excellent 
battery performance means I can 
leave the charger at home and still 
have power all day.
Label: Positive

Sentence 1: The laptop's impressive 
battery life allows me to leave the 
charger behind when I'm on the go.
Label: Positive

Aspect 2:
battery performance

Aspect 1:
battery life

Original Data Augmented Data

Step 2: Data Filtering

Top-K & NeutralTop-K

Correct Incorrect

Filter by Confidence

Data Combination

Aspect-based Sentiment Classifier

Sentence

Prediction

Aspect
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Figure 2: Overview of MDE framework. Step 1 expands the data breadth, Step 2 ensures data diversity and quality,
and Step 3 involves mining semantic depth.

2.2 Data Enhancemant for ABSA162

Enhancing training datasets is an effective way to163

improve model performance. In ABSA, it has164

gained traction (Chen et al., 2022; Wang et al.,165

2022a; Hsu et al., 2021). However, traditional166

methods, such as token replacement, masked as-167

pect prediction, and polarity reversal, often lack168

semantic diversity. Recent approaches leverage lan-169

guage models to generate more varied expressions.170

Ouyang et al. (2024) propose generating sentences171

with more explicit opinion words to enhance the172

understanding of implicit sentiment for specific173

aspects. Chang et al. (2024) use LLMs to create174

counterfactual data, which strengthens model ro-175

bustness. Wang et al. (2023) harness the reasoning176

capabilities of LLMs to produce explanatory senti-177

ment information as training data, aiming to reduce178

spurious correlations in ABSA. Additionally, Deng179

et al. (2023) and Wang et al. (2024a). generate new180

sentences using aspect-opinion-sentiment tuples to181

address cross-domain data scarcity. In contrast,182

our MDE approach takes a multifaceted approach,183

considering data diversity, quality, and logical con-184

sistency to mitigate model bias.185

3 Methodology186

3.1 Task Definition187

Given a dataset Do = {(xi, yi) | i ∈ [1, |Do|]}188

containing |Do| instances, each instances xi con-189

sists of a sentence si and an aspect term ai that190

is a subsequence of si. Each xi has a sentiment191

label yi ∈ {Positive,Negative,Neutral}. The192

goal of ABSA is to predict a sentiment polarity ŷi193

towards the aspect ai given the input xi.194

3.2 Method Overview 195

The method consists of two phases: MDE and 196

model training. Firstly, MDE construct enhanced 197

dataset through four key steps: semantic paraphras- 198

ing, data filtering, aspect clarification, and sen- 199

timent reasoning. Then, a sentiment reasoning 200

model is trained on the MDE dataset. This training 201

incorporates the broader data coverage and deeper 202

semantic insights provided by MDE, enabling the 203

model to develop intrinsic logical reasoning capa- 204

bilities. Following sections will elaborate on these 205

components. 206

3.3 Multifaceted Data Enhancement 207

We first outline MDE and define some symbols. 208

Let Do represent the original dataset. The first 209

step is to generates N new samples for each in- 210

stance, resulting in the paraphrased dataset Dp. 211

After filtering Dp, we obtain the filtered dataset 212

Df . The final step involves merging Do and 213

Df to incorporate aspect clarification and senti- 214

ment reasoning. The final enhanced dataset De = 215

{(xi, ci, ri, yi) | i ∈ [1, |De|]}, where ci is the as- 216

pect clarification and ri is the sentiment reasoning. 217

Step 1: Semantic Paraphrasing. Leveraging cur- 218

rent LLM technologies enables substantial data 219

generation. However, when using LLMs to con- 220

struct ABSA data for specific domains, several is- 221

sues arise: 1) Domain Shift: LLM-generated data 222

may not consistently align with the original do- 223

main due to content uncontrollability; 2) Aspect 224

Annotation Deviations: LLMs often diverge from 225

ground-truth aspect labels (Wang et al., 2024b); 226

3) Sentiment Annotation Bias: LLMs frequently 227

misclassify neutral data as positive or negative sen- 228

timent (Wang et al., 2024b). 229
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According to these issues, directly using LLMs230

to generate sentences and annotate aspects and sen-231

timents may lead to misalignment with the original232

data. Therefore, we use sentence-to-sentence se-233

mantic paraphrasing method to generate N new234

sentences for each original sentence. This ensures235

that these sentences possess the same semantics but236

exhibit varied expressions, thus mitigating domain237

shift. By adding the original sentence si and the238

original aspect term ai as reference examples in the239

prompt, utilizing LLMs to annotate aspects for sen-240

tences with similar semantics becomes straightfor-241

ward and effective. Additionally, there is no need242

to re-label sentiment for the generated sentences,243

as their preserved semantics ensure consistent sen-244

timent labels with the original samples. Overall, by245

employing LLMs for semantic paraphrasing and as-246

pect annotation, we generate a substantial volume247

of paraphrased data that retains the same sentiment248

labels as the original samples, denoted as Dp.249

Step 2: Data Filtering. Models trained on orig-250

inal dataset are good at recognizing positive and251

negative sentiments, but struggle with identifying252

neutral sentiments. We propose a Dual Confidence253

Filtering (DCF) algorithm to leverage the strengths254

and mitigate the weaknesses of data distribution.255

As described in Algorithm 1, an ABSA classi-256

fier f trained on the original dataset Do is used to257

classify the generated paraphrased samples, cate-258

gorizing them into correctly classified set P cc and259

misclassified set Pmc. For Pmc, we only select260

those samples with neutral sentiment labels. P cc261

and Pmc represent the strengths and weaknesses262

of the data, respectively. To further refine the data263

quality, we rank the samples in P cc by confidence264

score, retaining the top Kcc samples. The confi-265

dence score is the probability value to the predicted266

sentiment. Similarly, for Pmc, we apply the same267

ranking method to preserve the top Kmc samples.268

The combined dataset from these two subsets forms269

the filtered dataset Df .270

Step 3: Aspect Clarification. Aspect terms may271

be specialized domain-specific terms whose mean-272

ings are difficult to grasp based on limited context273

alone. We leverage LLMs to provide supplemen-274

tary clarification on these terms, helping models275

better understand the underlying meanings and thus276

improving sentiment analysis accuracy.277

Step 4: Sentiment Reasoning. Models are prone278

to learning erroneous shortcuts during training.279

We utilize LLMs to generate detailed explanations280

for sentiment polarity judgments. These explana-281

Algorithm 1 Dual Confidence Filtering
Input: Original dataset Do, ABSA model f
Parameter: N , Kcc, Kmc

Output: Filtered dataset Df

1: Initialize empty set Df

2: for x ∈ Do do
3: // Obtain N paraphrased samples
4: P = Paraphrase(x,N)
5: Initialize empty set P cc, Pmc

6: for p ∈ P do
7: // Obtain the prediction and the confidence
8: (ŷ, confidence) = f(p)
9: P cc ← (p), if ŷ = y

10: Pmc ← (p), if ŷ 6= y and y is neutral
11: end for
12: // Sort P cc and Pmc based on confidence
13: P cc = SortbyConfidence(P cc)
14: P cc = SortbyConfidence(Pmc)
15: // Select top K samples
16: Df ← SelectTop(P cc,Kcc)
17: Df ← SelectTop(Pmc,Kmc)
18: end for
19: return Filtered dataset Df

tions establish logical connections between data 282

instances and their sentiment labels, thereby en- 283

hancing the model’s sentiment reasoning capabili- 284

ties. To ensure consistency between the reasoning 285

and sentiment labels, the labels are incorporated 286

into the prompt as input to the LLMs. 287

The aspect clarification and sentiment reason- 288

ing are achieved through multi-turn dialogues with 289

LLMs. The dialogue process is depicted in Step 290

3 & 4 of Fig. 2. For a given sample xi, the LLM 291

first clarifies the meaning of its aspect terms within 292

the context. Next, the LLM analyze the reasons for 293

the sentiment polarity of the aspect terms being yi, 294

with the resulting explanation denoted as ri. Merg- 295

ing the original dataset Do and the filtered dataset 296

Df , and performing aspect clarification and sen- 297

timent reasoning, we obtain the enhanced dataset 298

De = {(xi, ci, ri, yi)}. 299

3.4 Model Training 300

We fine-tune generative T5 and Flan-T5. The train- 301

ing objective is redefined from traditional sentiment 302

classification to sentiment prediction generation 303

with reasoning. The encoder’s input consists of 304

the sentence si, the aspect term ai, and the aspect 305

clarification ci. The decoder’s output includes both 306

the sentiment polarity prediction for the aspect and 307

the corresponding explanation for this prediction. 308

The model is trained by minimizing the following 309

loss function: 310

L = − 1

N

N∑
i=1

T∑
t=1

logP (gi,t|ĝi,<t, si, ai, ci) (1) 311
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where gi = [yi; ri] represents the target sequence312

of the output, gi,t denotes the true token at position313

t, ĝi,<t represents the generated sequence at posi-314

tions less than t, and P (gi,t|ĝi,<t, si, ai, ci) is the315

probability of generating token gi,t given ĝi,<t, si,316

ai, and ci.317

4 Experimental Setup318

4.1 Datasets.319

We evaluate MDE on four ABSA datasets: Rest14320

and Lap14 from (Pontiki et al., 2014), Rest15 from321

(Pontiki et al., 2015), and Rest16 (Pontiki et al.,322

2016) from (Pontiki et al., 2016). For instances323

with multiple aspects, each aspect is treated as a324

separate single-aspect data instance. Detailed statis-325

tics of the datasets are provided in Table 1. See the326

Appendix D for details on MDE data.327

4.2 Implement Details.328

We use LLM GPT-3.5 2 in MDE. All prompts used329

are provided in Appendix G. The models T5-base330

and Flan-T5-base are fine-tuned using the trans-331

formers library 3. The fine-tuning process involve332

training for 10 epochs using the AdamW optimizer333

with a learning rate of 1e-4. We set N = 10, and334

select parameters Kcc and Kmc from the range [0,335

3]. We choose the values for Kcc and Kmc based336

on the highest F1 score and then run the experi-337

ments three times, reporting the average results as338

the main results. All experiments are implemented339

in PyTorch and conducted on an A5000 GPU with340

24GB of memory. The Accuracy (Acc) and Macro-341

F1 score (F1) are used as the evaluation metrics.342

4.3 Compared Baselines343

4.3.1 BERT-Based Baselines:344

BERT (Devlin et al., 2019) processes sentence-345

aspect pairs to learn aspect-aware representations.346

BERT-PT (Xu et al., 2019) further trains BERT347

on domain-specific data. BERT-RSC (Wang et al.,348

2023) induces LLMs to generate explanations for349

aspect sentiment. BERT-CEIB (Chang et al., 2024)350

uses counterfactual data to reduce spurious correla-351

tions. BERT-RGAT (Wang et al., 2020) employs re-352

lational graph attention for syntactic dependencies.353

BERT-DualGCN (Li et al., 2021b) integrates syn-354

tactic and semantic knowledge. BERT-SenticGCN355

(Liang et al., 2022) adds affective knowledge into356

the dependency graph.357

2https://openai.com (version: gpt-3.5-turbo-1106)
3https://github.com/huggingface/transformers

Dataset Split Pos. Neu. Neg. Total

Rest14 Train 2164 633 805 3602
Test 728 196 196 1120

Lap14 Train 987 460 866 2313
Test 341 169 128 638

Rest15 Train 912 36 256 1204
Test 326 34 182 542

Rest16 Train 1240 69 439 1748
Test 469 30 117 616

Table 1: Statistics of the ABSA datasets.

4.3.2 T5-Based Baselines: 358

T5 and Flan-T5 predicts sentiment labels from sen- 359

tences and aspect terms. T5-C3DA (Wang et al., 360

2022a) uses contrastive data augmentation by alter- 361

ing aspect terms and sentiment polarity. T5-ESA 362

(Ouyang et al., 2024) generates augmentations with 363

distinct opinion words for aspect terms. 364

5 Experimental Results and Analysis 365

5.1 Main Results 366

Table 2 is the main results of different methods 367

on four datasets. MDE achieves the best perfor- 368

mance across all datasets. Overall, T5-based meth- 369

ods outperform those based on BERT. MDE en- 370

hances sentiment prediction by providing logically 371

reasoned data, which requires the model to gener- 372

ate both sentiment predictions and the reasoning 373

behind them. Therefore, MDE data is trained on 374

generative models to realize its full potential. Both 375

T5 and Flan-T5 trained on MDE data exceed previ- 376

ous methods. Compared to data enhanced methods 377

such as RSC, CEIB, C3DA, and ESA, MDE still 378

achieves superior performance due to its compre- 379

hensive enhancement of both the breadth and depth 380

of the data. 381

5.2 Performance Breakdown by Sentiment 382

Table 3 shows the F1 scores for T5 across differ- 383

ent sentiment classes on the original and MDE- 384

enhanced datasets4. Training with MDE data sig- 385

nificantly improves neutral sentiment recognition 386

while maintaining high performance for positive 387

and negative sentiments. Neutral sentiment sam- 388

ples are sparse in Rest15 and Rest16 datasets, with 389

9.77% and 13.16% F1 improvements on them. 390

Fig. 3 compares the confusion matrices of vanilla 391

T5 and T5-MDE on the Rest14 test set. MDE no- 392

4Subsequent experments are based on T5, with Flan-T5
results in the Appendix H.
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Method Rest14 Lap14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1

BERT 84.46 76.81 78.37 73.21 82.66 65.91 90.58 75.41
BERT-PT[ 84.95 76.96 78.07 75.08 - - - -
BERT-RSC[ 84.66 76.18 78.68 75.19 82.63 65.97 90.12 73.69
BERT-CEIB[ 87.77 82.08 82.92 79.50 86.16 72.97 92.86 81.08
BERT-RGAT 85.18 78.38 78.21 73.27 82.84 69.33 90.91 75.76
BERT-DualGCN[ 87.13 81.16 81.80 78.10 - - - -
BERT-SenticGCN[ 86.92 81.03 82.12 79.05 85.32 71.28 91.07 79.56

T5 87.59 80.60 81.03 76.48 87.45 74.42 93.83 78.41
T5-C3DA\ 86.93 81.23 80.61 77.11 - - - -
T5-ESA\ 88.29 81.74 82.44 79.34 - - - -
Flan-T5 87.41 79.91 82.76 78.96 86.90 74.18 94.15 77.00
T5-MDE 90.18 85.78 83.54 81.37 89.85 78.90 93.34 82.24
Flan-T5-MDE 90.27 85.96 84.80 82.01 88.38 76.04 94.48 84.34

Table 2: Experimental results of MDE and baseline models. Results marked with \ are from (Ouyang et al., 2024),
and those marked with [ are from the original papers. All other results are from our own implementations. The
highest scores are highlighted in bold, and the previous highest scores are underlined.

Dataset Pos. Neu. Neg. Overall

Rest14 93.55 62.39 85.85 80.60
+MDE 94.06 75.83 86.54 85.78

Lap14 91.42 62.46 75.56 76.48
+MDE 90.54 72.30 81.52 81.37

Rest15 92.61 44.78 85.88 74.42
+MDE 93.37 54.55 88.77 78.90

Rest16 97.37 50.00 87.87 78.41
+MDE 96.73 63.16 86.84 82.24

Table 3: Breakdown of F1 Performance for T5 on origi-
nal and MDE-enhanced datasets.

tably boosts neutral sentiment accuracy but intro-393

duces a trade-off, with a slight increase in misclas-394

sifying positive and negative sentiments as neutral.395

This shift is likely attributed to the increased sus-396

ceptibility of neutral sentiment labeling to subjec-397

tivity compared to positive or negative sentiments.398

Mild positive or negative instances may be cate-399

gorized as neutral, and defining what constitutes400

"mild" is challenging and subjective.401

5.3 Generalization of MDE.402

MDE expands data in three key areas: paraphrase-403

filtered (PF) data, aspect clarification (AC) data,404

and sentiment reasoning (SR) data. To validate405

the generalization of MDE, we applied partially or406

fully MDE data across different models, as shown407

in Table 4. BERT-RGAT constructs a syntactic de-408

pendency tree based on the input, making it unable409

to incorporate additional data as input, so it only410

utilizes PF data. BERT, which are not suited for411
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Figure 3: Confusion matrices of Rest14 test set.

generative tasks, cannot use SR data. MDE data 412

improves performance across models. 413

Notably, T5’s performance slightly declines with 414

AC and SR data, but improves significantly when 415

the full MDE dataset is used. This suggests that 416

greater data diversity boosts model performance, 417

and integrating AC and SR data within a more 418

varied dataset enhances the model’s understanding 419

and reasoning. These findings highlight MDE’s 420

effectiveness in balancing data breadth and depth. 421

5.4 MDE Effectiveness Analysis 422

DCF vs Random. In the DCF algorithm, top Kcc 423

correctly classified and Kmc misclassified samples 424

are selected based on confidence for augmentation. 425

Comparing with random (RD) selection, where K 426

augmented samples are randomly selected for each 427

original sample, Table 5 shows the result. When 428

K = Kcc and Kmc ∈ [1, 3], the scale of data 429

expansion is similar, but DCF proves more effective 430

for model training. 431

MDE Data Efficiency. To evaluate MDE data ef- 432

ficiency, we randomly select 10%, 30%, and 50% 433
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Method Rest14 Lap14

Acc F1 Acc F1

BERT-RGAT 85.18 78.38 78.21 73.27
+ PF 85.71 78.94 79.15 75.31

BERT 84.46 76.81 78.37 73.21
+ PF 85.27 77.18 79.62 75.74
+ AC 85.09 76.75 79.62 74.58
+ PF & AC 86.43 78.89 81.35 77.42

T5 87.59 80.60 81.03 76.48
+ PF 88.04 83.45 83.07 79.87
+ AC 86.96 80.14 82.76 79.16
+ SR 87.14 80.18 82.45 78.91
+ AC & SR 88.66 82.58 81.35 78.22
+ MDE 90.18 85.78 83.54 81.37

Table 4: Experimental results of different models using
partial or full MDE data.

Method Rest14 Lap14

Scale F1 Scale F1

T5 1.00 82.58 1.00 78.22

RD (1) 2.00 84.16 2.00 80.13
DCF (1) 2.08 85.76 2.09 81.30

RD (2) 3.00 84.29 3.00 81.12
DCF (2) 3.01 85.36 3.14 82.01

RD (3) 4.00 84.57 4.00 80.08
DCF (3) 4.15 85.78 3.97 81.85

Table 5: Comparison of DCF and random selection. The
numbers in parentheses is the values of K and Kcc.

of the original data to construct the corresponding434

MDE data. In the main experiment, MDE data435

includes two sources, Do and Dp. Here, we use436

only Dp to compare the training performance of437

the new data against the original data. As shown in438

Table 6, MDE data (only from Dp) consistently out-439

performs the original data. Notably, with 30% and440

50% original data, when the MDE data scale is ap-441

proximately 1x, the model performance surpasses442

that of using the full original data, demonstrating443

the efficiency of MDE data.444

Effect of Kcc and Kmc. We conduct experiments445

with Kcc and Kmc values ranging from 0 to 3. The446

results, shown in Fig. 4, indicate significant perfor-447

mance differences across various combinations of448

Kcc and Kmc. Configurations with Kcc 6= 0 con-449

sistently outperform those with those with Kcc = 0.450

On the Rest14 dataset, setting Kcc = 0 results in451

consistently poor performance, regardless of Kmc.452

Solely increasing misclassified data may cause the453

model to forget previously learned information, so454

including correctly classified data is essential to455

preserve its strengths. Overall, the model performs456

Method Rest14 Lap14

Scale F1 Scale F1

10% Do 0.10 73.38 0.10 71.62
MDE (1) 0.11 73.67 0.11 77.13
MDE (2) 0.22 76.90 0.22 77.18
MDE (3) 0.30 78.73 0.30 77.18

30% Do 0.30 75.77 0.30 76.06
MDE (1) 0.38 79.50 0.33 79.49
MDE (2) 0.66 82.39 0.61 79.83
MDE (3) 0.94 83.15 0.95 81.17

50% Do 0.50 79.30 0.50 79.62
MDE (1) 0.60 79.29 0.54 81.10
MDE (2) 1.12 83.64 1.11 81.43
MDE (3) 1.47 84.02 1.49 81.02

full Do 1.00 82.58 1.00 78.22
MDE (1) 1.20 84.07 1.09 81.35
MDE (2) 2.13 84.59 2.03 80.90
MDE (3) 3.15 85.65 3.08 81.17

Table 6: Comparison of T5 performance using original
data (Do) versus MDE data (from Dp). The numbers
in parentheses is the values of Kcc, and the underlined
values indicate data sizes close to the original data.
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Figure 4: Results of T5 for different Kcc and Kmc.

optimally when Kcc is set to 2 or 3 and Kmc to 2. 457

Furthermore, we investigate the impact of cor- 458

rectly classified data (CC Data), misclassified data 459

(MC Data), and both types (PF Data) on the recog- 460

nition of different sentiments. As shown in Table 7, 461

performance for positive sentiment remains rela- 462

tively high, while neutral sentiment exhibits no- 463

ticeable fluctuations. Adding only CC or MC data 464

does not always result in consistent improvement. 465

The use of PF data, combining both types, better 466

balances strengths and weaknesses, effectively mit- 467

igating the model’s sentiment recognition bias. 468

5.5 MDE Data Quality Analysis 469

We leverage LLMs to paraphrase the original sen- 470

tences and use them as references to annotate as- 471

pect terms in the new sentences. Since the new 472

sentences may use different expressions, the aspect 473

terms in these sentences may not exactly match 474

those in the original data (e.g., "cord," "power 475

cord," "charger"). This introduces greater data 476
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Method Rest14 Lap14

Pos. Neu. Neg. Overall Pos. Neu. Neg. Overall

T5 (Kcc=0,Kmc=0) 94.16 68.22 85.35 82.58 89.49 66.24 78.93 78.22
w/ MC Data (Kcc=0) 92.06 62.80 81.17 78.68 88.96 68.42 79.43 78.94
w/ CC Data (Kmc=0) 94.55 74.02 86.68 85.08 90.55 68.75 80.00 79.77
w/ PF Data (Kcc 6=0,Kmc 6=0) 94.96 75.83 86.54 85.78 90.54 72.30 81.25 81.37

Table 7: Experimental results under different filtering settings, reporting the F1 for each category and the overall
macro-F1.

Metric Rest14 Lap14 Rest15 Rest16

Psub (%) 90.46 90.44 91.64 91.95
Pco (%) 71.27 70.33 70.27 68.54

Table 8: Results of Psub and Pco in different MDE-
enhanced dataset.
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Figure 5: Distribution of similarity scores between new
and original aspect terms in different datasets

diversity. Additionally, a few aspect terms may477

not strictly be substrings of the sentence, such as478

"widely used hardware" in the sentence "It now uti-479

lizes hardware that is widely used in the industry."480

While this may not meet the substring requirement,481

it is semantically reasonable and helps improve482

model robustness.483

Given these considerations, we evaluate the va-484

lidity of aspect terms using three metrics: 1) aspect485

term substring ratio (Psub): the correctness of as-486

pect term formatting; 2) co-occurrence ratio of487

new and original aspect terms (Pco): the lexical488

similarity between the two; 3) semantic similarity489

of new and original aspect terms: the cosine simi-490

larity based on their embeddings5. Table 8 shows491

results for Psub and Pco, demonstrating high ac-492

curacy and lexical similarity. Fig. 5 displays the493

distribution of similarity scores between new and494

original aspect terms, with most values concen-495

5https://huggingface.co/sentence-transformers/

Method Rest14-ARTS Lap14-ARTS

F1 Drop F1 Drop

BERT-RGAT 60.10 -21.25 55.68 -18.38
BERT-CEIB 73.97 -8.06 65.51 -12.02
T5-MDE 79.65 -6.13 75.49 -5.88
Flan-T5-MDE 79.46 -6.50 76.82 -5.19

Table 9: Robustness results on ARTS test set.

trated between 0.9 and 1. These results indicate 496

that the new aspect terms are highly accurate and 497

retain strong similarity to the original terms. 498

5.6 Robustness Analysis. 499

Rest14-ARTS and Lap14-ARTS (Xing et al., 2020) 500

are adversarial datasets designed to test ABSA 501

models’ robustness by manipulating sentiment for 502

target and non-target aspects. As shown in Table 9, 503

the experimental results indicate that T5-MDE and 504

Flan-T5-MDE significantly outperform other meth- 505

ods. Compared to the main results in Table 2, our 506

models exhibit smaller performance drops, high- 507

lighting their superior robustness. 508

6 Conclusion and Future Work 509

In this paper, we propose the MDE framework to 510

address sentiment recognition bias in ABSA mod- 511

els. MDE enhances data diversity and semantic 512

depth through four key steps: semantic paraphras- 513

ing, data filtering, aspect clarification, and senti- 514

ment reasoning. By training generative models 515

with MDE data, we improve the logical coherence 516

of both sentiment predictions and explanations. 517

In the future, extending the MDE framework 518

to other sentiment analysis tasks is a promising 519

direction. Ensuring high-quality and diverse train- 520

ing data is crucial for developing more reliable 521

and robust sentiment analysis models. Addition- 522

ally, further refining the MDE framework to build 523

high-quality demonstrations for in-context learning 524

offers an efficient approach to address various tasks 525

without extensive training. 526
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Limitations527

Dependence on LLMs528

MDE relies on LLMs for semantic paraphrasing,529

knowledge enhancement, and explainable senti-530

ment analysis. The quality of the enhanced data is531

directly tied to the performance and capabilities of532

the underlying LLMs. Since the performance of533

different LLMs varies, investigating whether using534

multiple LLMs to generate more diverse data can535

further enhance the robustness of ABSA models is536

a potential area for future research. Additionally,537

the performance of LLMs is often closely related538

to the design of prompts. Exploring various prompt539

designs to push the boundaries of LLMs is another540

worthy focus.541

Sentiment Recognition Bias of LLMs542

LLMs exhibit significant sentiment recognition bi-543

ases in ABSA tasks compared to human-annotated544

data. Given the enormous computational resources545

required to train large models, retraining them is of-546

ten impractical. Addressing sentiment recognition547

bias through prompt optimization, example-based548

prompting, or parameter-efficient fine-tuning meth-549

ods is a promising area of investigation. Moreover,550

exploring whether similar bias issues exist in other551

tasks can serve as a direction for future research.552
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Appendix 820

A Case Study 821

Neutral

Case 1

Prediction

Input

Lable

Sentence: The unfortunate lady next to us thought she had ord-
ered a salad  a (including asking for salad dressing) and was 
instead given a quesedilla.

C larification:  A quesadilla is a Mexican dish consisting of a 
tortilla filled with cheese, and often other ingredients, then 
folded in half and grilled. In this context, it refers to a mix-up in 
the lady's order, receiving a quesadilla instead of a salad.

The sentiment towards "quesadilla" in the given sentence is 
neutral because it simply describes a mistake in the lady's order, 
without expressing any positive or negative emotion. The term 
"quesadilla" is used in a factual manner to describe the 
substitution, without conveying any specific feelings or opinions 
about the dish itself. Therefore, the sentiment expressed by the 
aspect term "quesadilla" remains neutral in this context.

The sentiment towards "fresh salsa" in the given sentence is 
neutral because the term "fresh" does not inherently convey 
positive or negative emotions. It simply refers to the type of salsa 
used, without expressing any particular sentiment towards it. The 
use of "fresh" suggests a positive aspect, but the overall 
sentiment is neutral as it does not express any particularly 
positive or negative feelings towards the fresh salsa itself.

Neutral

Case 2

Prediction

Input

Lable

Sentence: The guac is fresh, yet lacking flavor, we like to add 
our fresh salsa into it.

C larification :  Fresh salsa refers to a type of salsa made with 
freshly chopped ingredients such as tomatoes, onions, peppers, 
and cilantro. It is typically uncooked and known for its vibrant, 
crisp flavors that complement dishes like guacamole.

2024/12/12 10:24 Case-3.svg
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Figure 6: Examples with neutral sentiment that are eas-
ily mispredicted. Flan-T5 incorrectly predicts them as
negative and positive respectively, while Flan-T5-MDE
correctly identifies them all.

In the Fig. 6, we present two examples where Flan- 822

T5 incorrectly predicts sentiment, highlighting the 823

cues that are prone to misinterpretation. For in- 824

stance, the word "unfortunate" in the first case tend 825

to bias the sentiment towards the negative. In the 826

second case, the term "fresh" commonly associ- 827

ated with positive sentiment regarding ingredient 828

quality. Flan-T5-MDE effectively recognizes these 829

aspect terms as neutral, providing clear reasoning 830

that demonstrates the model’s ability to accurately 831

identify targets and deliver coherent explanations. 832
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Figure 7: Results of T5 for different Kcc and Kmc on
the Lap14 dataset constructed using GPT-4o.

Additionally, we notice an inconsistency in the833

explanation of the second example, initially stat-834

ing, "fresh does not inherently convey positive or835

negative emotion", while later suggesting "The use836

of fresh implies positivity". These two statements837

convey contradictory meanings, yet the model still838

accurately identifies the sentiment as neutral.839

B MDE with GPT-4o840

MDE data used in the main experiments is con-841

structed with GPT-3.5. Since both Step 1 and Step842

3 of MDE rely on LLMs, we further validate MDE843

using the updated model, GPT-4o 6. To manage844

API costs, we conduct validation on the Lap14845

dataset. Fig. 7 presents the results under various846

Kcc and Kmc combinations, with the best result847

from the GPT-3.5-based MDE data as the base-848

line. MDE data constructed with GPT-4o generally849

outperforms that from GPT-3.5.850

Table 16 compares the MDE-enhanced Lap14851

data constructed by both models. GPT-4o gen-852

erates longer clarifications and reasonings. We853

also evaluate aspect term substring ratio (Psub), co-854

occurrence ratio (Pco), and semantic similarity be-855

tween new and original aspects. Psub for GPT-4o is856

94.01%, higher than GPT-3.5’s 90.46%, indicating857

better substring accuracy. Pco is 65.38%, slightly858

lower than GPT-3.5’s 70.33%, while the cosine sim-859

ilarity between 0.9 and 1, is 58.19%, nearly iden-860

tical to GPT-3.5’s 58.42%. These results suggest861

that GPT-4o uses semantically similar but more862

diversified expressions, leading to improved model863

performance.864

C Zero-shot Experiments865

We conduct zero-shot experiments with Llama-2-866

7B, Llama-3-8B, GPT-3.5, and GPT-4o on Rest14867

6version: gpt-4o-mini-2024-07-18

Method Pos. Neu. Neg. Overall

Rest14

Llama-2-7B 87.90 37.89 67.46 64.42
Llama-3-8B 90.60 44.38 78.59 71.19
GPT-3.5 91.42 40.79 78.38 70.20
GPT-4o 93.90 47.48 82.93 74.77

Flan-T5-MDE 94.96 74.49 88.42 88.96

Lap14

Llama-2-7B 84.43 48.07 62.80 65.10
Llama-3-8B 87.06 55.10 76.82 72.99
GPT-3.5 88.52 55.51 79.60 74.54
GPT-4o 88.61 48.74 77.99 71.78

Flan-T5-MDE 91.78 72.29 81.46 82.01

Table 10: Zero-shot experiment results. The table re-
ports the F1 score for each class and the overall macro-
F1 score. Flan-T5-MDE is our fine-tuned model.

and Lap14 datasets. The specific prompts used 868

are detailed in Table 18. The experimental results 869

are presented in Table 10, where we report the F1 870

scores for the three sentiment categories as well as 871

the overall F1 score. For comparison, we also in- 872

clude the results of Flan-T5-MDE. All three models 873

exhibit similar sentiment recognition biases: their 874

performance in classifying positive sentiment is the 875

best, nearly reaching the level of our fine-tuned 876

method, but their performance in recognizing neu- 877

tral sentiment is significantly lower than the other 878

categories. The experimental results suggest that 879

directly leveraging LLMs for data synthesis and 880

sentiment annotation is not feasible. 881

D MDE Data Details 882

D.1 Confidence Distribution. 883

We train an ABSA classifier using the original 884

dataset and subsequently applied it to classify the 885

paraphrased data. We compute the confidence 886

scores for both correctly and incorrectly classified 887

instances, segmented into various intervals as illus- 888

trated in Table 11. Remarkably, irrespective of the 889

correctness of classification, the confidence scores 890

predominantly reside in high intervals, indicating 891

a strong conviction in the classifier’s predictions. 892

This high level of confidence suggests that the para- 893

phrased sentences exhibit a high degree of semantic 894

similarity to the original training data, which aligns 895

with our expectations. The paraphrased sentences 896

maintain the same sentiment polarity towards the 897

same targets without significant deviation from the 898

original domain. 899

Moreover, the concentration of confidence 900

12



Interval #Correct #Incorrect

Rest14

[0, 0.9) 832 871
[0.9, 0.99) 1296 901
[0.99, 1] 29190 2930
Total 31318 4702

Lap14

[0, 0.9) 390 334
[0.9, 0.99) 421 347
[0.99, 1] 19786 1852
Total 20597 2533

Rest15

[0, 0.9) 50 90
[0.9, 0.99) 87 73
[0.99, 1] 11243 497
Total 11380 660

Rest16

[0, 0.9) 104 198
[0.9, 0.99) 198 210
[0.99, 1] 15885 885
Total 16187 1293

Table 11: Statistics of paraphrased data across varying
confidence intervals.

scores in high intervals underscores our rationale901

for adopting a Top-K filtering strategy. A threshold-902

based filtering approach would be impractical due903

to the challenge of selecting an optimal threshold904

that balances the dataset volume and quality. The905

observed distribution of confidence scores substan-906

tiates the feasibility and efficacy of Top-K filtering.907

D.2 Data Details in DifferentKcc and Kmc.908

During the data filtering stage, we introduce two909

hyperparameters, Kcc and Kmc. Kcc represents910

the number of samples selected from the set of911

correctly classified instances, while Kmc denotes912

the number of samples chosen from the set of in-913

correctly classified neutral instances. In our ex-914

periments, we vary these parameters from 0 to 3.915

Table 16 and 17 provide a detailed breakdown of916

the number of instances for each class, along with917

the total number of instances. Additionally, we918

measure the average length of sentence, aspect clar-919

ifications and sentiment reasonings. The original920

review sentences are very short and contain limited921

information, the clarifications enrich the content922

with prior knowledge. The lengths of clarifica-923

tions and reasonings remain relatively stable across924

different datasets, indicating that the information925

generated by LLMs is both consistent and effective.926

D.3 Experiments of Different Kcc and Kmc927

We conducted experiments using different com-928

binations of Kcc and Kmc on both T5 and Flan-929

T5. The results of T5 for the Rest14 and Lap14930
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Figure 8: Results of T5 for different Kcc and Kmc.
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Figure 9: Results of Flan-T5 for different Kcc and Kmc.

Method Rest14 Lap14

AllF1 ISAF1 ALLF1 ISAF1

Flan-T5 79.91 69.16 78.96 73.81
Flan-T5-THOR 82.98 71.70 79.75 67.63
Flan-T5-ESA 83.79 73.76 81.78 77.91
Flan-T5-MDE 85.96 73.84 82.01 80.23

Table 12: Experimental results of implicit sentiment
analysis.

datasets are presented in the main content. The rest 931

of experimental results are shown in Fig. 8 and 9. 932

When Kcc is set to 0, the model’s performance 933

may slightly lag behind the baseline without en- 934

hanced data. However, when both Kcc and Kmc 935

are greater than 0, the models consistently outper- 936

form the baseline. 937

E Implicit Sentiment Analysis (ISA). 938

In the Rest14 and Lap14 datasets, aspect terms 939

lacking explicit sentiment expression are marked 940

as implicit sentiments (Li et al., 2021c). We com- 941

pare our approach with THOR (Fei et al., 2023) 942

and ESA, both based on Flan-T5. THOR employs 943

chain-of-thought prompting to offer additional in- 944

sights for implicit sentiment analysis. As shown in 945

Table 12, MDE achieves the highest F1 scores for 946

both overall and implicit sentiment data. These re- 947
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Figure 10: Confusion matrices of Rest14 test set.

Dataset Pos. Neu. Neg. Overall

Rest14 93.45 60.70 85.58 79.91
+MDE 94.96 74.49 88.42 85.96

Lap14 91.01 65.74 80.13 78.96
+MDE 91.78 72.79 81.46 82.01

Rest15 91.12 46.67 83.76 74.18
+MDE 92.75 50.00 85.38 76.04

Rest16 97.47 54.55 90.83 80.95
+MDE 97.56 66.67 88.79 84.34

Table 13: Breakdown of F1 Performance for Flan-T5
on original and MDE-enhanced datasets.

Method Rest14 Lap14

Acc F1 Acc F1

Flan-T5 87.41 79.91 82.76 78.96
+ PF 87.95 81.20 82.76 79.21
+ AC 89.20 83.04 81.82 77.54
+ SR 88.04 81.69 83.07 79.13
+ AC & SR 87.14 79.43 82.92 78.88
+ MDE 90.27 85.96 84.80 82.01

Table 14: Experimental results of Flan-T5 using partial
or full MDE data.

sults underscore that a diverse training dataset can948

effectively capture various sentiment expressions.949

F Implement Details for BERT950

We replicate BERT to solve ABSA using the bert-951

base-uncased. The input to the model is formatted952

as {[CLS] si ci [SEP] ai}, where si represents953

the input sentence, ci denotes the aspect clarifica-954

tion, and ai corresponds to the aspect term. It is955

important to note that in the vanilla BERT imple-956

mentation, ci is not included in the input sequence.957

The model is fine-tuned for 10 epochs using the958

AdamW optimizer, with a learning rate set to 1e-5.959

G Prompt Templates960

In evaluating the ABSA performance of LLMs961

and various stages of the MDA method, we uti-962

lize LLMs. Table 18 lists the prompts used in each963

step. Our prompt design is generally divided into 964

two parts: task description and output format. In 965

the sentiment reasoning step of MDE framework, 966

we include sentiment labels in the prompt to ensure 967

that the generated explanatory information aligns 968

with the sentiment labels. 969

H Other Experimental Results of Flan-T5 970

Due to page limitations, some Flan-T5 experimen- 971

tal results are not included in the main content. 972

They exhibit similar characteristics to the T5 model, 973

leading to the same conclusions. These results are 974

listed here for reference and to demonstrate the 975

generalizability of MDE. 976

• Performance breakdown by sentiment: Ta- 977

ble 13 presents Flan-T5’s performance across 978

different sentiment classes before and after 979

applying MDE data. Fig. 10 shows the confu- 980

sion matrix results for Flan-T5 on the Rest14 981

test set. 982

• Flan-T5-MDE ablation study: Table 14 shows 983

the impact of using different subsets of MDE 984

data on Flan-T5. Full MDE data ensures di- 985

versity, accuracy, and logical consistency, ef- 986

fectively unlocking the model’s potential for 987

optimal performance. 988

• Impact of correctly classified (CC) and mis- 989

classified (MC) data: Table 15 shows model 990

performance when using only CC, only MC, 991

or both types of data. 992

14



Method Rest14 Lap14

Pos. Neu. Neg. Overall Pos. Neu. Neg. Overall

Flan-T5 (Kcc=0,Kmc=0) 93.52 60.38 84.39 79.43 91.30 55.85 79.87 78.88
w/ MC Data (Kcc=0) 93.53 61.58 82.41 79.17 90.52 71.26 81.02 80.94
w/ CC Data (Kmc=0) 94.60 73.63 83.67 85.23 91.51 70.95 80.91 81.12
w/ PF Data (Kcc 6=0,Kmc 6=0) 94.96 74.49 88.42 85.96 91.78 72.29 81.46 82.01

Table 15: Experimental results under different filtering settings, reporting the F1 for each category and the overall
macro-F1.

Pos. Neu. Neg. Total Scale Len. of S Len. of C Len. of R

Lap14-GPT-3.5

Kcc = 0,Kmc = 0 987 460 866 2313 1.00 19.31 36.25 70.67
Kcc = 0,Kmc = 1 987 753 866 2606 1.13 19.29 36.37 70.20
Kcc = 0,Kmc = 2 987 1003 866 2856 1.23 19.30 36.50 69.86
Kcc = 0,Kmc = 3 987 1214 866 3064 1.32 19.28 36.58 69.56
Kcc = 1,Kmc = 0 1965 853 1714 4532 1.96 18.47 36.28 69.83
Kcc = 1,Kmc = 1 1965 1146 1714 4825 2.09 18.51 36.34 69.63
Kcc = 1,Kmc = 2 1965 1396 1714 5075 2.19 18.55 36.28 69.83
Kcc = 1,Kmc = 3 1965 1714 1714 5286 2.29 18.57 36.47 69.30
Kcc = 2,Kmc = 0 2939 1222 2558 6719 2.90 18.16 36.43 69.63
Kcc = 2,Kmc = 1 2939 1515 2558 7012 3.03 18.20 36.47 69.50
Kcc = 2,Kmc = 2 2939 1765 2558 7262 3.14 18.24 36.52 69.39
Kcc = 2,Kmc = 3 2939 1976 2558 7473 3.23 18.26 36.55 69.28
Kcc = 3,Kmc = 0 3911 1582 3398 8891 3.84 18.04 36.52 69.47
Kcc = 3,Kmc = 1 3911 1875 3398 9184 3.97 18.08 36.55 69.37
Kcc = 3,Kmc = 2 3911 2125 3398 9434 4.08 18.11 36.58 69.29
Kcc = 3,Kmc = 3 3911 2396 3398 9645 4.17 18.13 36.61 69.20

Lap14-GPT-4o

Kcc = 0,Kmc = 0 987 460 866 2313 1.00 19.31 45.68 83.07
Kcc = 0,Kmc = 1 987 710 866 2563 1.11 19.36 45.72 82.98
Kcc = 0,Kmc = 2 987 894 866 2747 1.19 19.39 45.79 82.94
Kcc = 0,Kmc = 3 987 1042 866 2895 1.25 19.40 45.82 82.92
Kcc = 1,Kmc = 0 1968 896 1717 4581 1.98 18.86 45.51 83.26
Kcc = 1,Kmc = 1 1968 1146 1717 4831 2.09 18.91 45.55 83.20
Kcc = 1,Kmc = 2 1968 1330 1717 5015 2.17 18.95 45.59 83.17
Kcc = 1,Kmc = 3 1968 1478 1717 5163 2.23 18.96 45.61 83.15
Kcc = 2,Kmc = 0 2947 1324 2553 6824 2.95 18.71 45.46 83.30
Kcc = 2,Kmc = 1 2947 1574 2553 7074 3.06 18.76 45.48 83.26
Kcc = 2,Kmc = 2 2947 1758 2553 7258 3.14 18.78 45.51 83.24
Kcc = 2,Kmc = 3 2947 1906 2553 7406 3.20 18.80 45.53 83.22
Kcc = 3,Kmc = 0 3921 1582 3379 9038 3.91 18.64 45.42 83.34
Kcc = 3,Kmc = 1 3921 1988 3379 9288 4.02 18.67 45.44 83.31
Kcc = 3,Kmc = 2 3921 2172 3379 9472 4.10 18.69 45.46 83.29
Kcc = 3,Kmc = 3 3921 2320 3379 9620 4.16 18.71 45.44 83.28

Table 16: Details of MDE-enhanced Lap14 constructed using GPT-3.5 and GPT-4o under different Kcc and Kmc

conditions. "Scale" indicates the ratio by which the original dataset is expanded. "Len. of S", "Len. of C" and "Len.
of R" refers to the average length of, sentence, aspect clarification and sentiment reasonings respectively.
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Pos. Neu. Neg. Total Scale Len. of S Len. of C Len. of R

Rest14

Kcc = 0,Kmc = 0 2164 633 805 3602 1.00 17.57 35.08 72.41
Kcc = 0,Kmc = 1 2164 1098 805 4067 1.13 17.64 35.11 71.99
Kcc = 0,Kmc = 2 2164 1513 805 4482 1.24 17.70 35.15 71.66
Kcc = 0,Kmc = 3 2164 1886 805 4855 1.35 17.77 35.24 71.46
Kcc = 1,Kmc = 0 4307 1138 1585 7030 1.95 17.57 35.17 71.97
Kcc = 1,Kmc = 1 4307 1603 1585 7495 2.08 17.61 35.18 71.76
Kcc = 1,Kmc = 2 4307 2018 1585 7910 2.20 17.65 35.20 71.59
Kcc = 1,Kmc = 3 4307 2391 1585 8283 2.30 17.69 35.25 71.48
Kcc = 2,Kmc = 0 6364 1600 2352 10386 2.88 17.69 35.23 71.86
Kcc = 2,Kmc = 1 6364 2065 2352 10851 3.01 17.63 35.24 71.72
Kcc = 2,Kmc = 2 6364 2480 2352 11266 3.13 17.65 35.25 71.60
Kcc = 2,Kmc = 3 6364 2853 2352 11639 3.23 17.68 35.28 71.52
Kcc = 3,Kmc = 0 8553 2033 3108 13694 3.80 17.59 35.22 71.92
Kcc = 3,Kmc = 1 8553 2498 3108 14159 3.93 17.61 35.23 71.81
Kcc = 3,Kmc = 2 8553 2913 3108 14574 4.05 17.63 35.24 71.71
Kcc = 3,Kmc = 3 8553 3286 3108 14947 4.15 17.66 35.26 71.65

Rest15

Kcc = 0,Kmc = 0 912 36 256 1204 1.00 16.99 35.09 71.64
Kcc = 0,Kmc = 1 912 69 256 1237 1.03 16.95 35.10 71.54
Kcc = 0,Kmc = 2 912 98 256 1266 1.05 16.93 35.09 71.47
Kcc = 0,Kmc = 3 912 124 256 1292 1.07 16.89 35.09 71.40
Kcc = 1,Kmc = 0 1818 65 506 2389 1.98 16.38 34.81 72.03
Kcc = 1,Kmc = 1 1818 98 506 2422 2.03 16.37 34.82 71.97
Kcc = 1,Kmc = 2 1818 127 506 2451 2.36 16.37 34.82 71.93
Kcc = 1,Kmc = 3 1818 153 506 2477 2.06 16.35 34.82 71.89
Kcc = 2,Kmc = 0 2721 87 754 3562 2.96 16.16 34.74 72.03
Kcc = 2,Kmc = 1 2721 120 754 3595 2.99 16.15 34.75 71.99
Kcc = 2,Kmc = 2 2721 149 754 3624 3.01 16.15 34.75 71.97
Kcc = 2,Kmc = 3 2721 175 754 3650 3.03 16.14 34.75 71.94
Kcc = 3,Kmc = 0 3624 108 999 4731 3.93 16.04 34.69 72.06
Kcc = 3,Kmc = 1 3624 141 999 4764 3.96 16.04 34.69 72.03
Kcc = 3,Kmc = 2 3624 170 999 4793 3.98 16.04 34.69 72.01
Kcc = 3,Kmc = 3 3624 196 999 4819 4.00 16.04 34.63 71.91

Rest16

Kcc = 0,Kmc = 0 1240 69 439 1748 1.00 17.34 34.87 71.09
Kcc = 0,Kmc = 1 1240 124 439 1803 1.03 17.26 34.93 70.88
Kcc = 0,Kmc = 2 1240 174 439 1853 1.06 17.19 34.92 70.77
Kcc = 0,Kmc = 3 1240 220 439 1899 1.09 17.12 34.94 70.74
Kcc = 1,Kmc = 0 2473 124 855 3452 1.97 16.55 34.76 71.32
Kcc = 1,Kmc = 1 2473 179 855 3507 2.01 16.52 34.76 71.25
Kcc = 1,Kmc = 2 2473 224 855 3557 2.03 16.49 34.76 71.19
Kcc = 1,Kmc = 3 2473 275 855 3603 2.06 16.47 34.77 71.17
Kcc = 2,Kmc = 0 3702 173 1265 5140 2.94 16.27 34.68 71.4
Kcc = 2,Kmc = 1 3702 228 1265 5195 2.97 16.25 34.68 71.35
Kcc = 2,Kmc = 2 3702 278 1265 5245 3.00 16.24 34.68 71.31
Kcc = 2,Kmc = 3 3702 324 1265 5291 3.03 16.22 34.69 71.29
Kcc = 3,Kmc = 0 4972 220 1666 6813 3.90 16.13 34.68 71.53
Kcc = 3,Kmc = 1 4972 275 1666 6868 3.93 16.12 34.68 71.49
Kcc = 3,Kmc = 2 4972 325 1666 6918 3.96 16.11 34.68 71.46
Kcc = 3,Kmc = 3 4972 371 1666 6964 3.98 16.10 34.69 71.45

Table 17: Details of MDE-enhanced Rest14, Rest15 and Rest16 constructed using GPT-3.5 under different Kcc and
Kmc conditions. "Scale" indicates the ratio by which the original dataset is expanded. "Len. of S", "Len. of C" and
"Len. of R" refers to the average length of, sentence, aspect clarification and sentiment reasonings respectively.
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Task Prompt

Evaluation of ABSA

Analyze the sentiment polarity towards a specified aspect within a given
sentence.
Input Components:

The sentence to be analyzed.
The specific aspect within the sentence that the sentiment analysis

should focus on.
Formatted Output:

At the end of the output, provide a formatted result as follows: Final
Result: The sentiment towards the aspect is [positive, negative, or neutral].
Sentence: {sentence}
Aspect: {aspect}

Semantic Paraphrasing

Generate 10 review sentences about {domain} that convey a similar mean-
ing to the provided review sentence: "{sentence}". Each sentence should
capture the essence of the original review while presenting it in a different
way.
Output Format:

Sentence i: {sentence}

Aspect Annotation

Provide aspect annotations for ten sentences that convey a similar meaning
to the given source sentence. The source sentence includes an annotated
aspect term. Your task is to identify and annotate the aspect term within
each of the ten sentences, ensuring that the aspect term is a subsequence
within its sentence and that carries a similar meaning to the source aspect
term.
Just output the aspect of each sentence in the following format:

Aspect i: {aspect for sentence i}
Input:

Source Sentence: {sentence}
Source Aspect: {aspect}
Sentence {i}: {new sentencei}
(Note: Ten paraphrased sentences are listed here.)

Aspect Clarification &
Sentiment Reasoning

Turn 1
Describe in 20 to 60 words the meaning of the term "{aspect}" as it is
used in the context of the sentence "{sentence}".

Turn 2
In the provided sentence "{sentence}", explain why the sentiment ex-
pressed by the aspect term "{aspect}" is {label}. Your explanation is
limited to 100 words.
Output Format:

The sentiment towards "{aspect}" in the given sentence is {label}
because ...

Table 18: The prompt templates used in LLMs have placeholders marked by {bold text} that need to be replaced.
Aspect Clarification and Sentiment Reasoning is a multi-turn dialogue process.
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