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Abstract
Federated Active Learning (FAL) has emerged as
a promising framework to leverage large quanti-
ties of unlabeled data across distributed clients
while preserving data privacy. However, real-
world deployments remain limited by high an-
notation costs and communication-intensive sam-
pling processes, particularly in a cross-silo setting,
when clients possess substantial local datasets.
This paper addresses the crucial question: What is
the best practice to reduce communication costs
in human-in-the-loop learning with minimal an-
notator effort? Existing FAL methods typically
rely on iterative annotation processes that sepa-
rate active sampling from federated updates, lead-
ing to multiple rounds of expensive communica-
tion and annotation. In response, we introduce
FAST, a two-pass FAL framework that harnesses
foundation models for weak labeling in a prelimi-
nary pass, followed by a refinement pass focused
exclusively on the most uncertain samples. By
leveraging representation knowledge from foun-
dation models and integrating refinement steps
into a streamlined workflow, FAST substantially
reduces the overhead incurred by iterative active
sampling. Extensive experiments on diverse med-
ical and natural image benchmarks demonstrate
that FAST outperforms existing FAL methods by
an average of 4.36% while reducing communica-
tion rounds eightfold under a limited 5% labeling
budget.

1. Introduction
Federated Learning (FL) emerges as a key decentralized
paradigm that enables edge clients (e.g., institutions or de-
vices) to collaboratively train the unified model through
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Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

global aggregation without compromising local data privacy
(McMahan et al., 2017; Li et al., 2020; Kairouz et al., 2021).
In recent research, many FL approaches have been devel-
oped under the supervised learning setting, assuming that all
training data on clients are fully annotated. However, in real-
istic scenarios, data are typically unlabeled, with only a very
limited number of annotated instances. For instance, in the
cross-silo scenario, a few organizations possess substantial
datasets but face constraints in large-scale data annotation
due to limited budgets, expertise, or time (Kairouz et al.,
2021; Liu et al., 2022).

To tackle this challenge, recent studies (Deng et al., 2022;
Cao et al., 2023; Kim et al., 2023; Ahn et al., 2024; Chen
et al., 2024) delve into the concept of federated active learn-
ing (FAL) which incorporate the active learning (AL) into
the context of FL. AL aims to maximize model performance
in situations with scarce labeled data and limited annotation
budgets. It achieves this by iteratively selecting the most
informative data instances for labeling by an oracle (i.e., a
human annotator) based on specific query strategies. FAL
bridges these two fields by incorporating active sampling
steps during federated training rounds. Specifically, each
client independently conducts active sampling on its local
data, utilizing either the local model or the aggregated global
model as a query selector to identify informative instances
prior to local updates (Chen et al., 2024; Kim et al., 2023;
Ahn et al., 2024). After each AL iteration, local models are
aggregated on the server to form a global model that can
guide subsequent query selections.

Recent advances in FAL have demonstrated significant ben-
efits of AL in harnessing unlabeled data within the FL sys-
tems. While numerous studies have been proposed to ad-
dress challenges posed by data heterogeneity in federated
settings (Cao et al., 2023; Kim et al., 2023), prior research
has paid little attention to the additional communication
costs incurred during federated active sampling. One major
concern arises from the communication overhead caused
by iterative local training on the updated labeled dataset
during active sampling. This concern is particularly acute
in cross-silo scenarios (Kairouz et al., 2021), where each
edge device (e.g., institution) holds a significant amount of
data and requires extra communication support to achieve
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subpar global performance. Moreover, annotation costs in
FL are inherently more expensive than in centralized AL
due to the distributed and fragmented nature of the data
across multiple clients, which requires further coordination
and resource allocation.

In our work, we aim to reduce the communication overhead
during the FAL process with a limited annotation budget
while achieving superior overall prediction performance of
the global model. A critical challenge in FAL is the selec-
tion of a query selector for active sampling. (Ahn et al.,
2024) investigate the discrepancy of utilizing a global or
local-only model for active sampling and achieve robust
performance by solely applying sampling strategies with the
global model on IID data distribution. Nevertheless, (Chen
et al., 2024; Cao et al., 2023) prove that the superiority of
the query model depends on the heterogeneity of data distri-
bution on the clients. Despite the advancement in exploring
the utilization of query models, these methods all require
sufficient active training rounds to iteratively improve the
generalizability of client models as the feature extractor
for selecting informative unlabeled samples. Instead of
training the query model from scratch with the initial data
pool from random sampling, we seek the applicability of
foundation models in enhancing active sampling throughout
the federated training process. Notably, previous research
(Radford et al., 2021; Zhai et al., 2023; Sun et al., 2023;
Oquab et al., 2023) on foundation models show that fea-
tures learned from the foundation models are semantically
organized in the representation space, providing robust and
informative embeddings for downstream tasks.

Motivated by this, we introduce a two-pass Federated
Active learning framework with foundation models for
communication-efficient Sampling and Training, named
FAST. In the initial pass, we leverage a frozen image
encoder from a Vision-Language foundation model (e.g.,
SigLIP (Zhai et al., 2023)) to perform weak labeling by
selecting and prioritizing informative samples based on un-
certainty estimates. This preliminary phase utilizes the se-
mantic richness of foundation models to efficiently identify
candidate data points for annotation. In the second pass,
human oracles refine these weak labels to ensure labeling
quality while operating under a limited labeling budget,
thereby reducing communication overhead and minimizing
the required human effort in the active sampling process.
Our contributions are summarized as follows:

• We investigate a challenging FAL scenario in which
human annotation is costly and communication support
is constrained, necessitating efficient strategies for both
labeling and training.

• We propose a two-pass FAL framework to effectively
utilize unlabeled data with minimal human interven-

tion, achieving strong performance in a resource-
efficient manner.

• We conduct extensive experiments on diverse bench-
mark datasets, covering both medical and natural
images. Our results demonstrate that the proposed
method outperforms existing approaches across vari-
ous data distributions while reducing the required com-
munication rounds by eightfold (8x) under only a 5%
labeling budget.

2. Related Work
2.1. Weakly Supervised Learning

Weakly supervised learning (WSL) addresses scenarios
where large portions of ground-truth labels are unavailable
or limited. Based on the confidence of label availability,
WSL is commonly divided into three paradigms: incomplete
supervision, inexact supervision, and inaccurate supervision
(Zhou, 2018; Ren et al., 2023). Incomplete supervision in-
volves abundant unlabeled instances and only a small subset
of labeled data. This setting is often tackled either through
active sampling (i.e., human intervention) or by exploiting
semi-supervised learning with clustering or manifold as-
sumptions (Dempster et al., 1977; Li et al., 2013; Li & Zhou,
2014). Inexact supervision arises when only coarse-grained
labels are provided, necessitating fine-grained instance-level
identification via multi-instance learning algorithms (Settles
et al., 2007; Wei & Zhou, 2016; Wei et al., 2016). Lastly,
inaccurate supervision denotes the presence of label noise
(Frénay & Verleysen, 2013), which is typically mitigated
through label correction (Yi & Wu, 2019; Zheng et al., 2021;
Wu et al., 2021) or regularization-based robust training (Pa-
trini et al., 2017; Hendrycks et al., 2018; Wang et al., 2019;
Lukasik et al., 2020). In this work, we focus on the in-
complete supervision paradigm in the FL setting, where
local datasets are largely unlabeled and distributed across
multiple clients with minimal human intervention.

2.2. Active learning

Existing research in AL generally focuses on querying or-
acles to label the most informative data points, thereby
minimizing labeling effort while maximizing model per-
formance. The AL methods are typically divided into
uncertainty-based, representativeness-based, and hybrid
strategies. Uncertainty-based methods focus on samples
with high aleatoric or epistemic uncertainty (Zhan et al.,
2022), using metrics such as entropy, margin, or least con-
fidence (Shannon, 1948; Wang & Shang, 2014; Nguyen
et al., 2019). For example, BALD (Houlsby et al., 2011;
Gal et al., 2017; Kirsch et al., 2019) seeks points maxi-
mizing mutual information between predictions and model
parameters, while (Yoo & Kweon, 2019) prioritizes samples
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expected to produce large errors. Similarly, (Huang et al.,
2021) employs Temporal Output Discrepancy to estimate
uncertainty by measuring output discrepancies at different
optimization steps.

Representativeness-based methods aim to cover diverse re-
gions of the input space to ensure broad decision boundaries.
CoreSet (Sener & Savarese, 2017; Geifman & El-Yaniv,
2017; Caramalau et al., 2021) addresses this by solving a
k-center problem to create a representative core set. Addi-
tionally, clustering-based approaches, such as hierarchical
clustering or self-organizing maps (Kutsuna et al., 2012;
Citovsky et al., 2021), and set coverage optimization (Urner
et al., 2013; Yang et al., 2017), enhance representativeness
and reduce redundancy in labeled data. In FL, clients en-
gage in joint training of a global model while independently
learning local models that can serve as query selectors. A
naive way to adopt classical AL in FL is to apply local
query sampling on individual clients. However, this ap-
proach faces significant challenges due to heterogeneous
data distributions. In particular, local query selectors cannot
fully leverage global knowledge, especially under non-IID
conditions.

2.3. Federated Active Learning

Recent research has begun to investigate the applicability
of AL within FL environments, where the scarcity of la-
beled client data constitutes a significant bottleneck for FL
processes. Preliminary studies have focused on integrat-
ing AL into federated training by directly applying existing
AL strategies to perform data annotation on client devices
(Aussel et al., 2020; Wu et al., 2022; Alfalqi & Bellaiche,
2023; Kong et al., 2023). Nonetheless, conventional AL ap-
proaches are not specifically designed for decentralized data
annotation, and numerous challenges remain unresolved.

Unlike centralized AL, where the model independently se-
lects samples for querying, FL enables clients to train the
model collaboratively. In this context, (Deng et al., 2022)
explores the efficacy of global (F-AL) and local-only (S-AL)
query selection in FL, revealing that F-AL effectively lever-
ages inter-client collaboration to outperform S-AL. Further
research on F-AL has sought to address the heterogeneity
inherent in FL. (Cao et al., 2023) introduces a knowledge-
aware method (KAFAL) to address the mismatch in sam-
pling goals between local clients and the global model in
non-IID federated settings. Similarly, (Kim et al., 2023) pro-
poses an innovative FAL sampling method (LoGo) that com-
bines global and local model benefits to enhance inter-class
diversity handling. (Chen et al., 2024) integrates evidential
learning with a Dirichlet-based model to handle uncertainty
and improve data diversity, providing a robust solution for
FAL in medical domains with domain shifts.

Despite these advancements, communication overhead re-

mains a core bottleneck for FAL. Each active sampling
round typically involves additional local training and global
aggregation steps, leading to high communication costs
and substantial annotation efforts—particularly under cross-
device FL with potentially millions of clients (Kairouz et al.,
2021). By contrast, our method focuses on the annotation
process at the initial training stage, requiring only a limited
labeling budget. We thus propose a communication-efficient
FAL framework, FAST, that addresses both uncertainty and
diversity in active sampling with minimal human effort.

3. Methodology
3.1. Problem Formulation

Given a federated learning (FL) task involving K clients,
where each client k possesses a local dataset Dk stored
on its device. The global dataset is the union of all local
datasets, denoted as D =

⋃K
k=1 Dk. The objective of FL

is to collaboratively learn a global model by solving the
following optimization problem in a distributed manner:

min
w

F (w) ≜
1

K

K∑
k=1

Fk(wk)

=
1

K

K∑
k=1

E(x,y)∼Dk

[
Fk(wk;xk, yk)

]
. (1)

where w ∈ Rd represents the global model parameters
to be optimized. F (w) is the global loss function aggre-
gating the local losses from all clients, and Fk(wk) =
E(xk,yk)∼Dk

[Fk(wk;xk, yk)] is the expected risk over data
distribution Dk at client k corresponding to parameter vec-
tor wk. Fk(wk;xk, yk) denotes the loss incurred by the
local model wk on data sample (xk, yk) generated from the
local data distribution of client k. In heterogeneous FL, data
is distributed across clients in a non-IID manner, i.e., data
distribution on each local client is distinct, for clients data
{Dk, Dj} ∈ D, Dk ̸= Dj .

Previous studies typically (McMahan et al., 2017) solve
Eq.1 by iteratively updating the global model through local
computations on each client and averaging client updates at
the server. At communication round t, the server sends the
current global model parameters w(t) to a selected subset of
clients Kt ⊆ 1, 2, . . . ,K. Each client k ∈ Kt initializes its
local model with the received parameters, w(t)

k = w(t), and
performs τ steps of local stochastic gradient descent (SGD)
on its local dataset Dk:

w
(t,i+1)
k = w

(t,i)
k − η∇Fk(w

(t,i)
k ; ξ

(t,i)
k ), (2)

where η is the learning rate, i = 0, 1, . . . , τ − 1, and
ξ
(t,i)
k denotes a mini-batch sampled from Dk. After lo-

cal updates, clients send their updated local models w
(t)
k

3
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Figure 1: Overview of FAST. FAST is a communication-efficient FAL framework that employs a two-pass labeling strategy.
In the first pass, foundation models perform weak sampling to identify informative data points with minimal communication
overhead. In the subsequent pass, human annotators refine the labeled ground truth dataset by validating and correcting the
sampled labels, ensuring high-quality annotations.

back to the server. The server aggregates these mod-
els by computing an average to update the global model,
w(t+1) = 1

|Kt|
∑

k∈Kt
w

(t)
k .

3.2. Federated Active Sampling

AL aims to enhance model performance by iteratively query-
ing and labeling the most informative and representative
samples from an unlabeled dataset, under a limited anno-
tation budget. In FAL, this process is adapted to the de-
centralized setting by executing local active sampling and
federated training at each r AL round, r ⊆ 1, 2, . . . , R.

We consider a standard FAL case, where, clients utilize
the global model w(t) as the query selector for client-level
sampling. During the active sampling phase, each client k
selects b unlabeled samples from its local unlabeled dataset
Uk using a predefined query strategy A(·). At the first AL
round, client k randomly selects a small set of b samples for
annotation to form the initial labeled ground truth data G0k:

G(0)k = A(Uk, b) = Random(Uk, b),where G(0)k ∈ Uk.
(3)

In subsequent R − 1 AL rounds, the query strategy A(·)
utilizes the aggregated global model w(r) from the previous
round as the query selector to identify informative samples.
The selected samples are then labeled and added to the
labeled local dataset Gk, while being removed from the
unlabeled dataset Uk

G(r)k ← G(r−1)
k ∪ A(w(r)

k ;Uk, b), Uk ← Uk \ A(Uk, b).
(4)

The active sampling process continues until the global label-
ing budget of B is exhausted, ensuring that the total number

of labeled samples across all clients does not exceed B.
K∑

k=1

|G(r)k | ≤ B, ∀r. (5)

After each active sampling step at round r, federated training
is performed. Each client k updates its local model w(r)

k

by training on the updated labeled dataset G(r)k , and sends
their updated models to the server, which aggregates them to
form the new global model wt as discussed in Eq. 2. Given
T federated training rounds, the overall federated rounds
across K clients is R× T ×K.

3.3. Two-Pass Federated Labeling

We introduce FAST, a communication-efficient federated
active learning framework grounded in a two-pass labeling
strategy. In the preliminary pass, foundation models (e.g.,
vision or vision-language) generate preliminary labels based
on their representation-based knowledge. This is followed
by a refinement pass, where human annotators provide addi-
tional annotations to enhance label accuracy and reliability.
Unlike previous FAL methods—which rely on iterative cy-
cles of active sampling and federated training and thus incur
significant communication overhead—FAST mitigates fre-
quent client-server exchanges, substantially reducing overall
communication costs.

In FAST, each client k utilizes the frozen encoder from a
pre-trained foundation model as a feature extractor f(·) to
encode its local dataset Dk into high-dimensional represen-
tations: Zk = f(Dk), Zk ∈ Rd. Specifically, the unlabeled
dataset Uk and the initial labeled dataset G(0)k are encoded:

ZUk
= f(Uk), ZGk

= f(G(0)k ). (6)

To augment the labeled dataset with weak labels for the
samples in Uk, we perform label propagation on extracted

4
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representation ZUk
based on k-nearest neighbors in the em-

bedding space. For each sample xi in unlabeled dataset
Uk, we assign the weak labels based on the majority vote
of these neighbors with respect to L2 distance in the initial
labeled dataset G(0)k . Next, we compute the cosine similar-
ity between the embedding of each weakly labeled sample
xi and the embeddings of all labeled samples in G(0)k . For
each class c ∈ C, we calculate the average cosine similarity
si,c between the embedding zi of sample xi ∈ Uk and the
embeddings zj of all labeled samples xj ∈ G(0)k,c :

si,c =
1∣∣∣G(0)k,c

∣∣∣
∑

xj∈G(0)
k,c

zi · zj
∥zi∥∥zj∥

, ∀c ∈ C (7)

where G(0)k,c denotes the set of initial labeled samples of class
c at client k, and and C represents the set of all classes. This
process yields a prototype vector si = [si,1, si,2, ..., si,C ]
for each weakly labeled sample xi. The logits vector rep-
resents the average similarity of the sample to each class
prototype in the labeled dataset, thereby capturing more
nuanced relationships between the weakly labeled samples
and the labeled data. We then utilize an uncertainty-based
query functionA(·), such as entropy (Wang & Shang, 2014),
on the softmax-normalized logits vector si to compute the
uncertainty of each weakly labeled sample:

ui = A(si) = −
∑C

c=1

(
exp(si,c)∑C

c′=1
exp(si,c′ )

)
log

(
exp(si,c)∑C

c′′=1
exp(si,c′′ )

)
.

(8)
Samples with higher uncertainty scores ui are considered
more informative. We rank the samples in Uk based on their
uncertainty scores and select the top b samples for anno-
tation with the given labeling budget in Eq.5. The newly
annotated samples are added to the labeled dataset Gk and
removed from the unlabeled dataset Uk, as shown in Eq.4.
Subsequently, these human-labeled samples are combined
with the weakly labeled samples to form the final labeled
dataset for the federated training process, eliminating the
need for additional active sampling steps. We summarize
the whole procedure of FAST approach in Algorithm 1.

4. Experiments
4.1. Experimental Configuration

Datasets. We evaluate our method primarily on im-
age classification tasks spanning both natural and med-
ical benchmark datasets. Specifically, we use four nat-
ural image datasets—CIFAR10/100 (Krizhevsky et al.,
2009), Tiny-ImageNet (Le & Yang, 2015), and SVHN
(Netzer et al., 2011)—as well as two medical image
datasets—PathMNIST and DermaMNIST (Yang et al.,
2023). To account for the inherent heterogeneity among
clients, we consider three data distribution settings: IID,

Non-IID, and heterogeneous inter-class diversity (i.e., vari-
ations in local class distributions) (Kim et al., 2023). As
shown in Table 2, we report the total labeling budget and
the corresponding number of training rounds. Following
existing FAL approaches, each client trains its local model
from scratch and iteratively selects 5% of the total dataset
for annotation in each AL round, until reaching a predefined
global labeling budget. We use a 20% labeling budget for
most of our experiments and ablation studies. To ensure
fairness in labeling costs, we assume this global labeling
budget is evenly shared among clients, such that each client
queries the same number of samples per AL round.

Baselines. We compare FAST with nine standard active
learning (AL) strategies: Random, Entropy (Wang & Shang,
2014), Coreset (Sener & Savarese, 2017), BADGE (Ash
et al., 2019), LL4AL (Yoo & Kweon, 2019), GCNAL
(Caramalau et al., 2021), and ALFA-Mix (Parvaneh et al.,
2022). Although originally designed for centralized AL,
these strategies can be independently applied on either a
global or a local model within a federated environment. In
our experiments, we employ the global model as the query
selector for active sampling. We further include two feder-
ated AL (FAL) strategies, KAFAL (Cao et al., 2023) and
LoGo (Kim et al., 2023). For the Non-IID experiment in
Figure 2, we select KAFAL as it is specifically tailored for
global heterogeneity problems. Regarding the experiment
on IID datasets in Table 2, we add LoGo as the baseline
considering its focus on solving heterogeneous data from
the client level.

Implementation Settings. We implement our proposed
FAST method in PyTorch using the Flower FL framework
(Beutel et al., 2020). As our primary federated learning
(FL) strategy, we adopt FedAvg (McMahan et al., 2017),
and additionally evaluate on FedProx (Li et al., 2020) and
FedNova (Wang et al., 2020) to examine the robustness of
FAST across different FL paradigms (see Table 5). Our
experiments primarily target cross-silo settings with full
client participation, involving a total of 10 clients. Each AL
round spans T = 100 federated communication rounds, and
each client executes τ = 5 local stochastic gradient descent
(SGD) steps per round. In alignment with prior work (Kim
et al., 2023; Cao et al., 2023), we employ a four-layer CNN
as our main model architecture and employ a ResNet-8
network for ablation studies on communication efficiency.
We simulate the Non-IID data partitions by sampling from
a Dirichlet distribution with a concentration parameter of
α = 0.1, where smaller values of α indicate greater data
heterogeneity across clients (Hsu et al., 2019). For the
implementation of FAST, we initialize with 1% of labeled
data and employ a frozen SigLIP (Zhai et al., 2023) as the
foundation model for feature extraction and weak labeling
in the two-pass process. We conducted all experiments on 2
NVIDIA A10 GPUs with Intel Xeon Gold 6342 CPUs.

5
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Figure 2: Experimental comparison of our method with existing approaches on CIFAR-10 and CIFAR-100 under a Non-IID
data distribution. Other AL methods begin by randomly selecting 10% of the initial data, followed by 50 communication
rounds of training after each AL sampling step until reaching a 35% labeling budget. In contrast, our method completes
training at 100 rounds and achieves its highest performance (indicated by the grey line). Refer to Appendix Figure 4 for
results over the entire 300-round training process.

4.2. Results

FAST under a fixed communication budget with Non-
IID data distribution. We assess the effectiveness of FAST
in a non-IID data setting by distributing client data accord-
ing to a Dirichlet distribution with a concentration param-
eter of α = 0.1, thereby inducing high data heterogene-
ity across all clients. Figure 2 illustrates the comparative
convergence rates of the global model on CIFAR-10 and
CIFAR-100, where the grey line denotes the optimal per-
formance achieved by all AL methods. To evaluate the
communication efficiency of our approach, we conduct a
total of T = 300 FL communication rounds across all meth-
ods. For the baseline methods, we initialize the process
with 10% of labeled data at the beginning of the first 50
FL rounds. In the subsequent federated training phases, the
server queries 5% of unlabeled instances for human annota-
tion every 50 rounds until the total communication budget
is exhausted.

In contrast, FAST employs a two-pass active sampling pro-
cess at the onset of the AL phase to utilize the predefined
global labeling budget without necessitating further oracle
participation. As depicted in Figure 2, FAST achieves supe-
rior global model performance by the 100th FL round with-
out depleting the allocated communication budget. These
results demonstrate that our method enables the server to
efficiently train a high-performing global model within lim-
ited communication resources in realistic scenarios.

5. Conclusion
In this paper, we introduced a two-pass FAL framework,
FAST, designed to address the critical challenges of lim-
ited annotation budgets and communication-intensive sam-
pling processes in FAL. Our approach leverages robust
representation-based knowledge from foundation models
to efficiently query informative unlabeled data for annota-
tion, thereby minimizing human effort and communication
overhead. Extensive experiments on diverse vision datasets
demonstrate that FAST consistently outperforms existing
FAL methods in terms of both predictive performance and
communication cost. These findings underscore the po-
tential of leveraging foundation models to enhance FAL
under realistic resource constraints. Future directions in-
clude exploring more sophisticated query strategies within
FAST and quantifying weak labeling quality. Developing
an additional filtering mechanism after the two-pass label-
ing process to enable label correction prior to final human
annotation, thereby further enhancing performance and com-
munication efficiency.
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A. Appendix
A.1. Algorithm of FAST

Algorithm 1 FAST: Two-Pass Federated Active Learning

Data: Local datasets Dk = {Uk, G(0)k }.
Input: K clients; T federated rounds with τ local steps; Feature encoder f(·); Budget B =

∑R
r=1 b.

Output: The target global model w.
1: Initialize: Server initializes global model with w(0).

============================ Preliminary Pass ============================
2: for client k = 1, . . . ,K (in parallel) do
3: Feature encoding Zk ← f(Uk) ∪ f(G(0)k )
4: Perform label propagation on ZUk

to assign weak
labels based on G(0)k

5: for class c ∈ C do
6: Compute class similarity si,c for each weakly

labeled sample xi ∈ Uk using Eq. (7)
7: end for
8: end for

============================= Refinement Pass =============================
9: for client k = 1, . . . ,K (in parallel) do

10: Compute uncertainty score ui using Eq. (8)
11: Select top-b samples with highest ui for each sample

xi ∈ Uk for oracle annotation
12: Update labeled set Gk ← Gk ∪ U (b)

k

13: Merge refined annotated data with labeled data G(0)k

14: end for
============================ Federated Training ============================

15: for communication round t = 1, . . . , T do
16: Client Update: Distribute w(t) to clients in K.
17: for client k = 1, . . . ,K (in parallel) do
18: Initialize local model w(t)

k ← w(t).
19: for i = 0, . . . , τ − 1 do
20: Perform local SGD updates on client k

w
(t+1)
k ← w

(t)
k − η∇Fk(w

(t)
k ).

21: end for
22: Send updated w

(t+1)
k back to server.

23: end for
24: Server Update: Aggregate local models.
25: Update global model w(t+1) ← 1

|K|
∑

k∈K w
(t)
k

26: end for
27: Return Target global model w.

A.2. Analysis on computational and communications overhead in FAST.

In FL, communication overhead is most commonly measured either by the number of rounds or by the total volume of
parameter transmissions (i.e., model uploads and downloads) (Luping et al., 2019; Al-Saedi et al., 2021; Morell et al., 2022).
As shown in Table I and Figure 2 of the main paper, FAST achieves higher accuracy within 100 FL rounds while reducing
the number of communication rounds by a factor of eight. Table 1 reports the aggregate parameter-transmission cost of each
method. In FAST’s preliminary stage, a small set of labeled embeddings is uploaded to and redistributed from the server for
weak labeling, incurring an initial communication cost. However, by leveraging representation-based labeling and minimal
human annotation, FAST greatly reduces the required number of FL rounds and thus the overall communication volume.
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In contrast, conventional FAL methods incur identical model-aggregation and distribution costs in every round, and their
extensive active-learning cycles result in comparable or higher total communication overhead.

Furthermore, we compare computational costs in terms of wall-clock time (Table 1). The only additional expense in FAST’s
preliminary stage is encoding local data via the foundation model’s encoder for uncertainty estimation. By contrast, LoGo
(Kim et al., 2023) performs both macro- and micro-level informativeness evaluations using local and global models in each
active-learning round, imposing a substantially higher runtime burden. As the table shows, on CIFAR-10 LoGo incurs
approximately 2310 s more wall-clock time than random sampling over the same number of rounds.

Table 1: Comparison of classification accuracy (%), communication cost (MB), and wall-clock time (s) for FAST, LoGo,
and random sampling on CIFAR-10, SVHN, and PathMNIST under the IID setting. We apply FedAvg on a four-layer
CNN classifier (with a size of 0.45 MB on the CIFAR-10 dataset). FAST is evaluated with one AL round (100 FL rounds),
whereas Random and LoGo use 8 AL rounds (i.e., 800 FL rounds).

Method CIFAR-10 CIFAR-100 SVHN

Acc. (%) Comm. Cost (MB) Walltime (s) Acc. (%) Comm. Cost (MB) Walltime (s) Acc. (%) Comm. Cost (MB) Walltime (s)

Random 69.14 7090.94 30398.95 32.67 8502.69 37258.75 85.47 6969.79 58064.42
LoGo 71.92 7090.94 32709.14 34.27 8502.69 39268.24 87.08 6969.79 61638.97
Ours 77.16 ↑ 902.54 (87.27%) ↓ 7342.52 (76.73%) ↓ 41.94 ↑ 1079.56 (87.30%) ↓ 15104.38 (60.53%) ↓ 88.79 ↑ 896.72 (87.13%) ↓ 19178.83 (67.96%) ↓

A.3. Comparison on heterogeneous inter-class diversity data.

We first evaluate the performance of FAST in comparison with other baseline methods on datasets characterized by high
levels of local heterogeneity. In this context, each client shares the same pool of classes but exhibits varying inter-class
distributions. We deliberately fix FAST’s labeling budget at 5% to underscore its cost-effectiveness (Table 2). With just
one AL round and 5% labeled data, FAST matches or exceeds the accuracy of baselines that consume up to 40% budget
over multiple AL rounds. In contrast, conventional AL methods sample 5% per round iteratively until they exhaust the
same budget, incurring additional communication and computation. FAST achieves competitive performance through a
single, one-shot active labeling round. This design choice highlights FAST’s significant efficiency advantages in reducing
communication overhead.

Conventional AL methods aim to minimize labeling efforts by selecting a small subset of instances based on their
informativeness across the entire dataset. However, in a decentralized setting where each local dataset maintains distinct
class distributions, such imbalanced data partitions often lead to inconsistent knowledge sharing. Consequently, the
selected samples may not be representative or sufficiently informative for all clients, thereby hindering the overall learning
performance. As presented in Table 2, we compare the performance of FAST with other existing AL strategies under a
one-shot setting, wherein only a single active sampling round is conducted. We observe that FAST outperforms all baseline
methods even within the constraints of this one-shot scenario. Notably, in this experiment, the server exhausts 5% of the
labeling budget per round until reaching the total budget limit.

In FAST, each client shares their representation-based knowledge with other clients without revealing the raw local dataset,
thereby enabling the server’s query selector to address imbalanced class distributions from a global perspective. By fully
exploiting the comprehensive information of the unlabeled dataset, FAST is able to achieve superior performance after the
first AL round.

A.4. Impact of two-pass active sampling on Foundation Models with Linear Probing.

In this experiment, we evaluate the efficacy of a two-pass sampling strategy within FAST by integrating a foundation
model as the backbone during training. Instead of training client-specific models from scratch, we employ linear probing
on the client side using only a limited labeled dataset. To systematically analyze the contribution of each component, we
decompose the training process into four distinct elements: 1 Linear Probing, 2 Weak Labeling, 3 Active Learning, and
4 Random Sampling.

Table 3 illustrates the performance outcomes of various component combinations across multiple datasets under a fixed
labeling budget of 20%, encompassing 100 FL rounds distributed among 10 clients, with an initial training dataset comprising
1% of labeled data for all clients. Specifically, we consider five different scenarios to examine the efficacy of the two-pass
mechanism in FAST, where the combination of the first three components ( 1 , 2 , and 3 ) represents the integration of
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Table 2: Test accuracy comparison of various Active Learning (AL) strategies across multiple datasets. We evaluate FAST
in a one-shot (i.e., a single AL round) setting, where each AL round is followed by 100 Federated Learning (FL) rounds,
resulting in a total of RFL = RAL × 100. The labeling budget denotes the percentage of data allocated for labeling, with
each AL round querying 5% of the unlabeled samples for annotation.

Method RAL CIFAR-10 SVHN PathMNIST DermaMNIST RFL Budget

Random 4 64.19 80.90 68.41 71.70 400 20%
8 69.07 84.22 73.76 72.66 800 40%

Entropy (Wang & Shang, 2014) 4 64.02 82.08 71.54 72.49 400 20%
8 69.12 85.88 75.91 73.02 800 40%

Coreset (Sener & Savarese, 2017) 4 64.66 80.94 74.84 72.02 400 20%
8 69.43 83.81 76.85 72.34 800 40%

BADGE (Ash et al., 2019) 4 65.12 82.81 72.21 72.59 400 20%
8 69.57 85.89 75.53 73.23 800 40%

GCNAL (Caramalau et al., 2021) 4 65.40 82.05 75.51 72.01 400 20%
8 70.05 85.09 78.13 73.07 800 40%

ALFA-Mix (Parvaneh et al., 2022) 4 65.45 83.02 73.34 72.39 400 20%
8 69.87 86.05 76.31 73.27 800 40%

LoGo (Kim et al., 2023) 4 66.50 83.46 76.32 72.61 400 20%
8 71.70 86.02 79.51 73.33 800 40%

Ours 1 77.14 87.91 88.48 74.37 100 5%

1 2 3 4 CIFAR-10 CIFAR-100 Tiny-ImageNet PathMNIST
✓ ✓ ✓ 96.04 60.83 54.41 86.67
✓ ✓ ✓ 95.31 58.94 52.95 82.33
✓ ✓ 94.47 53.56 46.92 75.84
✓ ✓ 94.53 52.84 47.79 74.12
✓ 80.43 5.61 1.60 49.89

Table 3: Effects of training components: ① Linear Probing, ② Preliminary Pass, ③ Refinement Pass, ④ Random. We train
with a limited 1% of initial labeled data across all 10 clients for 100 FL rounds. The labeling budget is 20%.

FAST into linear probing. In Table 3, the configuration employing the two-pass sampling strategy ( 1 , 2 , 3 ) achieves
superior performance compared to the configurations that only implement preliminary labeling ( 1 , 2 ) and those that omit
oracle refinement phase ( 1 , 2 , 4 ). This demonstrates the critical role of human refinement during the FAL process in
enhancing model performance. Notably, we observe significantly lower performance when directly applying linear probing
with the foundation model on the initial labeled data without any further AL operations ( 1 only). These findings collectively
highlight that the two-pass active sampling mechanism in FAST not only maximizes the utility of the limited labeling
budget but also fosters effective knowledge sharing across heterogeneous clients, thereby achieving superior global model
performance with constrained communication resources.

Moreover, our analysis in Table 3 decomposes the FAST framework into distinct components for qualitative evaluation.
Notably, we observe that applying uncertainty sampling ( 1 + 2 + 3 ) consistently outperforms random sampling in the
refinement pass ( 1 + 2 + 4 ) across various datasets. These results empirically validate the effectiveness of uncertainty
sampling within the second pass of our framework.

Effect of Varying the Number of Clients on FAST.

We evaluate FAST with 10, 20, and 30 clients on CIFAR-10 and CIFAR-100 to assess its scalability and robustness. As
shown in Appendix A.4, the test accuracy decreases smoothly as the client count increases, indicating that more federated
training rounds may be needed for convergence. Nonetheless, even under a limited annotation budget, FAST maintains
strong performance without significant degradation, demonstrating its stability in larger federated learning clusters.
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Table 4: Performance of uncertainty sampling strategies on weak-labeled data across various datasets. Training with 10
clients for 100 rounds, utilizing a 4-layer CNN network. Evaluating with FedAvg.

Dataset Norm-Based Entropy-Based Least Confidence Smallest Margin Largest Margin

CIFAR-10 73.81 73.79 73.62 74.14 73.90
CIFAR-100 34.77 35.55 35.49 35.72 35.25
PathMNIST 84.64 85.43 85.29 84.85 85.70
Tiny-ImageNet 28.37 29.18 28.89 28.72 28.91

Average 55.40 55.74 55.82 55.86 55.94
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Figure 3: Performance of FAST across 10, 20, and 30 clients on CIFAR-10/100 under FedAvg with 150 FL rounds.

FAST under a fixed communication budget with Non-IID data distribution.

‘1

In Figure 2, we showed FAST’s rapid convergence within the first 100 communication rounds. For completeness, Figure 4
presents extended results up to 300 rounds under the same Non-IID setting. As before, each method starts with a 10% initial
labeling and continues AL sampling until reaching 35% of the labeling budget.

Evaluating Uncertainty Strategies for Prototype-Based Weak Labeling.

We evaluate several uncertainty-based query strategies: norm-based, entropy-based, least confidence, smallest margin, and
largest margin—applied to the prototype vectors computed for each weakly labeled sample. As summarized in Table 4,
the results are generally comparable across different datasets, suggesting that the prototype-based logits capture the key
uncertainty information leveraged by a variety of query strategies. This underscores the effectiveness of the prototype
representation in identifying highly uncertain samples for human refinement.

Ablation on different federated learning strategies.

We investigate the impact of various FL strategies on the performance of FAST under a fixed labeling budget of 20%.
Table 5 reports the accuracy across five benchmark datasets. Notably, FedNova offers marginal yet consistent improvements
over FedAvg and FedProx on most datasets, indicating that FAST is compatible with advanced FL aggregation strategies
and can further support heterogeneous scenarios. These findings confirm the robustness of FAST under different federated
aggregation schemes.

Table 5: Performance of Our Method Across Different Federated Learning Strategies with 20% Labeling Budget

Strategy CIFAR-10 CIFAR-100 SVHN PathMNIST Tiny-ImageNet

FedAvg 73.81 34.77 86.27 84.64 26.03
FedProx 73.63 32.84 83.19 85.36 25.90
FedNova 74.12 36.60 87.12 87.92 28.30
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Figure 4: Experimental comparison of our method with existing approaches on the CIFAR-10 and CIFAR-100 datasets
under a Non-IID data distribution. For other active learning (AL) methods, the process begins by randomly selecting 10% of
the initial data, followed by training with 50 communication rounds after each AL sampling step until a labeling budget of
35% is reached.

Table 6: Performance of Our Method with Varying Labeling Budgets. Training with the FedAvg strategy using a CNN-4
model, 10 clients, 100 rounds.

Dataset Labeling Budget

0% 5% 40% 80%

CIFAR-10 75.92 76.73 77.24 77.48
CIFAR-100 31.33 33.34 39.65 44.27
PathMNIST 73.16 75.89 82.28 85.46

Effect of Different Foundation Model Selections on FAST.

We next evaluate how the choice of foundation model for the preliminary pass in FAST influences its overall performance.
Specifically, we compare three vision-language models—CLIP, EvaCLIP, and SigLIP—along with an image-specific model,
DINOv2, using a pre-trained ResNet-50 as the baseline. As shown in Table 7, EvaCLIP consistently achieves the highest
accuracy across all datasets, followed closely by SigLIP and DINOv2. This underscores the importance of rich representation
knowledge for enhancing weak labeling quality in the preliminary pass. Furthermore, the results suggest that leveraging
expressive embeddings can significantly improve active sampling outcomes, even under constrained annotation budgets.

Table 7: Performance Comparison of Our Methods with Different Foundation Models

Dataset ResNet-50 CLIP Eva-CLIP SigLIP DINOv2

CIFAR-10 77.86 83.81 85.98 84.87 85.34
CIFAR-100 28.86 38.32 53.27 50.41 50.38
PathMNIST 82.67 87.73 91.04 88.79 89.19

subsection*Ablation on varying of Labeling Budget. To assess the scalability of FAST with respect to the labeling budget,
we evaluate its performance under varying labeling budgets ranging from 0% to 80%. Table 6 illustrates the accuracy of
FAST across various datasets as the labeling budget increases. The results demonstrate a positive correlation between the
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labeling budget and model accuracy, with significant performance improvements observed as the budget increases. For
instance, on CIFAR-10, accuracy improves from 75.92% at 0% budget to 77.48% at 80% budget. Similar trends are observed
across CIFAR-100 and Path-MNIST, indicating the effectiveness of FAST in leveraging additional unlabeled data to enhance
model performance under constrained labeling budgets.
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