
Compositional Risk Minimization

Divyat Mahajan 1 2 ⋆ Mohammad Pezeshki 1 Charles Arnal 1 Ioannis Mitliagkas 2

Kartik Ahuja 1 † Pascal Vincent 1 2 ⋆ †

Abstract
Compositional generalization is a crucial step to-
wards developing data-efficient intelligent ma-
chines that generalize in human-like ways. In
this work, we tackle a challenging form of dis-
tribution shift, termed compositional shift, where
some attribute combinations are completely ab-
sent at training but present in the test distribution.
This shift tests the model’s ability to generalize
compositionally to novel attribute combinations
in discriminative tasks. We model the data with
flexible additive energy distributions, where each
energy term represents an attribute, and derive a
simple alternative to empirical risk minimization
termed compositional risk minimization (CRM).
We first train an additive energy classifier to pre-
dict the multiple attributes and then adjust this
classifier to tackle compositional shifts. We pro-
vide an extensive theoretical analysis of CRM,
where we show that our proposal extrapolates to
special affine hulls of seen attribute combinations.
Empirical evaluations on benchmark datasets con-
firms the improved robustness of CRM compared
to other methods from the literature designed to
tackle various forms of subpopulation shifts.

1. Introduction
The ability to make sense of the rich complexity of the sen-
sory world by decomposing it into sets of elementary factors
and recomposing these factors in new ways is a hallmark of
human intelligence. This capability is typically grouped un-
der the umbrella term compositionality (Fodor & Pylyshyn,
1988; Montague, 1970). Compositionality underlies both
semantic understanding and the imaginative prowess of hu-
mans, enabling robust generalization and extrapolation. For
instance, human language allows us to imagine situations we

⋆Work done at Meta †Joint last author 1Meta FAIR 2Mila, Uni-
versité de Montréal. Correspondence to: Divyat Mahajan <di-
vyat.mahajan@mila.quebec>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

have never seen before, such as “a blue elephant riding a bi-
cycle on the Moon.” While most works on compositionality
have focused on its generative aspect, i.e., imagination, as
seen in diffusion models (Yang et al., 2023a), composition-
ality is equally important in discriminative tasks. In these
tasks, the goal is to make predictions in novel circumstances
that are best described as combinations of circumstances
seen before. In this work, we dive into this less-explored
realm of compositionality in discriminative tasks.

We work with multi-attribute data, where each input (e.g.,
an image) is associated with multiple categorical attributes,
and the task is to predict an attribute or multiple attributes.
During training, we observe inputs from only a subset of all
possible combinations of individual attributes, and during
test we will see novel combinations of attributes never seen
at training. Following Liu et al. (2023), we refer to this
distribution shift as compositional shift. Towards the goal
of tackling these compositional shifts, we develop an adap-
tation of naive discriminative Empirical Risk Minimization
(ERM) tailored for multi-attribute data under compositional
shifts. We term our approach Compositional Risk Min-
imization (CRM). The foundations of CRM are built on
additive energy distributions that are studied in generative
compositionality (Liu et al., 2022a), where each energy term
represents one attribute. In CRM, we first train an additive
energy classifier to predict all the attributes jointly, and then
we adjust this classifier for compositional shifts.

Our main contributions are as follows:

• Theory of discriminative compositional shifts: For the
family of additive energy distributions, we prove that
additive energy classifiers generalize compositionally
to novel combinations of attributes represented by a
special mathematical object, which we call discrete
affine hull. Our characterization of extrapolation is
sharp, i.e., we show that it is not possible to generalize
beyond discrete affine hull. We show that the volume
of discrete affine hull grows very fast in the number
of training attribute combinations thus generalizing to
many attribute combinations. The proof techniques
developed in this work are very different from exist-
ing works on distribution shifts and hence may be of
independent interest.

1

Compositional Risk Minimization

R
ep

re
se

nt
at

io
n

ϕ
(x;

θ)

x

E(x)
Components

for a

Components
for y

log q(y, a)

log p(y, a)
Train log prior

Test log prior

Train adjusted logits

−B(y, a)
Bias (learned)

−B⋆(y, a)
Bias (extrapolated)

Test adjusted logits

× (−1)

+ + +

+ +

−∞
−∞

−∞
−∞

0
00

0

Deep Net
Backbone

 ϕ(.)
Linear
Layer
W

: in train set : only in test

a

y

Figure 1. The additive energy classifier trained in CRM computes the logits for each group z = (y, a) by adding the energy components
of each attribute via boradcasting. For the train logits, we add the log of the prior probabilities and a learned bias B(y, a) for the groups
present in train data. At test time, the log prior term is replaced with the log of the test prior (if available, otherwise assumed to be
uniform), and the biases for novel test groups, B⋆(y, a), are extrapolated using Eq.11. Finally, we obtain p(y, a|x) by applying softmax
function on the adjusted logits. This adaptation from train to test is possible because of the additive energy distribution p(x|y, a), which
allows the model to factorize the distribution into distinct components associated with each attribute.

• A practical method: CRM is a simple algorithm for
training classifiers, which first trains an additive energy
classifier and then adjusts the trained classifier for tack-
ling compositional shifts. We empirically validate the
superiority of CRM to other methods previously pro-
posed for addressing subpopulation shifts. Our code
repository can be accessed via the link in the footnote1.

2. Problem Setting
2.1. Generalizing under Compositional Shifts

In compositional generalization, we aim to build a classifier
that performs well in new contexts that are best described as
a novel combination of seen contexts. Consider an input x
(e.g., image), this input belongs to a group that is character-
ized by an attribute vector z = (z1, . . . , zm) (e.g., class la-
bel, background label), where zi corresponds to the value of
ith attribute. There arem attributes and each attribute zi can
take d possible values. So z ∈ Z with Z = {1, . . . , d}m.

We use the Waterbirds dataset as the running example
(Sagawa et al., 2019). Each image x has two labeled at-
tributes summarized in the attribute vector z = (y, a), where
y tells the class of the bird – Waterbird (WB) or Landbird
(LB), and a tells the type of the background – Water (W)
or Land (L). Our training distribution consists of data from
three groups – (WB,W), (LB,L), (LB,W). Our test dis-
tribution also consists of points from the remaining group
(WB,L) as well. We seek to build class predictors that per-
form well on such test distributions that contain new groups.
This problem setting differs from the commonly studied
problem in Sagawa et al. (2019); Kirichenko et al. (2022),

1Github: facebookresearch/compositional-risk-minimization

where we observe data from all the groups but some groups
present much more data than the others.

Formally, let p(x, z) = p(z)p(x|z) denote the train distri-
bution, and q(x, z) = q(z)q(x|z) the test distribution. We
denote the support of each attribute component zi under
training distribution as Ztrain

i and the support of z under
training distribution as Ztrain. The corresponding supports
for the test distribution are denoted as Ztest

i and Ztest. We
define the Cartesian product of marginal support under train-
ing as Z× := Ztrain

1 ×Ztrain
2 × · · · Ztrain

m .

In this work, we study compositional shifts from a training
distribution p to a test distribution q, characterized by:

1. p(x|z) = q(x|z),∀z ∈ Z×.

2. Ztest ̸⊆ Ztrain but Ztest ⊆ Z×.

The first point states that the conditional density of inputs
conditioned on attributes remains invariant from train to
test, which can be understood as the data generation mecha-
nism from attributes to the inputs remains invariant. What
changes between train and test is thus due to only shift-
ing prior probabilities of attributes from p(z) to q(z). The
second point specifies how these differ in their support: at
test we observe novel combinations of individual attributes
but not a completely new individual attribute. The task of
compositional generalization is then to build classifiers that
are robust to such compositional distribution shifts. Also,
we remark that the above notion should remind the reader of
the notion of Cartesian Product Extrapolation (CPE) from
Lachapelle et al. (2024). Specifically, if a model succeeds
on test distributions q(z) with support equal to the full Carte-
sian product (Ztest = Z×), then it is said to achieve CPE.

2

https://github.com/facebookresearch/compositional-risk-minimization

Compositional Risk Minimization

2.2. Additive Energy Distribution

We assume that p(x|z) is of the form of an additive energy
distribution (AED):

p(x|z) = 1

Z(z)
exp

(
−

m∑
i=1

Ei(x, zi)
)

(1)

where Z(z) :=
∫

exp
(
−
∑m

i=1Ei(x, zi)
)
dx is the parti-

tion function that ensures that the probability density p(x|z)
integrates to one. Also, the support of p(x|z) is assumed to
be Rn, ∀z ∈ Z×.

We thus have one energy termEi associated to each attribute
zi. Note that we do not make assumptions on Ei except
Z(z) <∞, leaving the resulting p(x|z) very flexible. This
form is a natural choice to model inputs that must satisfy a
conjunction of characteristics (such as being a natural image
of a landbird AND having a water background), correspond-
ing to our attributes.

Recall z = (z1, . . . , zm) is a vector of m categorical at-
tributes that can each take d possible values. We will denote
as σ(z) the representation of this attribute vector as a con-
catenation of m one-hot vectors, i.e.

σ(z) = [onehot(z1), . . . , onehot(zm)]⊤

Thus σ(z) will be a sparse vector of length md containing
m ones. We also define a vector valued map E(x) =
[E1(x, 1), . . . , E1(x, d), . . . , Em(x, 1), . . . , Em(x, d)]⊤

where Ei(x, zi) is the energy term for ith attribute taking
the value zi. This allows us to reexpress equation 1 using a
simple dot product, denoted ⟨·, ·⟩:

p(x|z) = 1

Z(z)
exp

(
− ⟨σ(z), E(x)⟩

)
, (2)

where Z(z) =
∫

exp
(
− ⟨σ(z), E(x)⟩

)
dx is the partition

function.

There are two lines of work that inspire the choice of addi-
tive energy distributions. Firstly, these distributions have
been used to enhance compositionality in generative tasks
(Du et al., 2020; 2021; Liu et al., 2021) but they have not
been used in discriminative compositionality. Secondly, for
readers from the causal machine learning community, it may
be useful to think of additive energy distributions from the
perspective of the independent mechanisms principle (Janz-
ing & Schölkopf, 2010; Parascandolo et al., 2018). The
principle states that the data distribution is composed of
independent data generation modules, where the notion of
independence refers to algorithmic independence and not
statistical independence. In these distributions, we think of
energy function of an attribute as an independent function.

This is the right juncture to contrast AEDs with distribu-
tional assumptions in recent provable approaches to compo-
sitional generalization (Dong & Ma, 2022; Wiedemer et al.,
2023; 2024; Brady et al., 2023; Lachapelle et al., 2024).
These works assume labeling functions or decoders that are
deterministic and additive over individual features, proving
generalization over the Cartesian product of feature sup-
ports (further discussion in Appendix A). While insightful,
this assumption is restrictive, as each attribute combination
corresponds to a single observation with limited generative
interactions. In contrast, AEDs capture stochastic decoders,
offering a more flexible way to model inputs as a conjunc-
tion of characteristics (see Appendix B).

3. Provable Compositional Generalization
Our goal is to learn a model yielding a q̂(z|x) that will match
the test distribution q(z|x) and thus allow us to predict
the attributes at test time in a Bayes optimal manner. If
we successfully learn the distribution q(z|x), then we can
straightforwardly predict the individual attributes q(zi|x),
e.g., the bird class in Waterbirds dataset, by marginalizing
over the rest, e.g., the background in Waterbirds dataset.
Observe that q(z|x) differs from the training p(z|x), which
can be estimated through standard ERM with cross-entropy
loss. Since some attributes z observed at test time are never
observed at train time, the distribution learned via ERM
assigns a zero probability to these attributes and thus it
cannot match the test distribution q(z|x).

In what follows, we first introduce a novel mathematical
object termed Discrete Affine Hull over the set of attributes.
We then describe a generative approach for classification
that requires us to learn p(x|z) including the partition func-
tion, which is not practical. Next, we describe a purely
discriminative approach that circumvents the issue of learn-
ing p̂(x|z) and achieves the same extrapolation guarantees
as the generative approach. We present the generative ap-
proach as it allows to understand the results more easily.
Building generative models based on our theory is out of
scope of this work but is an exciting future work.

3.1. Discrete Affine Hull

We define the discrete affine hull of a set of attribute vectors
A = {z(1), . . . , z(k)} where z(i) ∈ Z , defined DAff(A) as:

{
z ∈ Z | ∃ α ∈ Rk, σ(z) =

k∑
i=1

αiσ
(
z(i)

)
,

k∑
i=1

αi = 1
}

In other words, the discrete affine hull of A consists of all
attribute vectors whose one-hot encoding lies in the (regular)
affine hull of the one-hot encodings of the attribute vectors
of A. This construct helps characterize which new attribute
combinations we can extrapolate to.

3

Compositional Risk Minimization

As an illustration, consider the Waterbirds dataset, where
we observe three of four possible groups. In one-hot en-
coding, WB is [1, 0], LB is [0, 1], Water is [1, 0], and Land
is [0, 1]. We show that the missing attribute vector WB on
L, represented as [1 0 0 1], can be expressed as an affine
combination of the observed vectors, meaning the discrete
affine hull of three one-hot concatenated vectors contains
all four possible combinations.

(+1) ·

010
1

 + (−1) ·

011
0

 + (+1) ·

101
0

 =

100
1

 (3)

In Section D.5, we generalize this finding to a formal mathe-
matical characterization of discrete affine hulls, providing a
visualization method. In Section D.7, we show how discrete
affine hulls generalize the extrapolation of additive func-
tions studied in Dong & Ma (2022); Lachapelle et al. (2024)
over discrete domains. We also show how our results lead to
a sharp characterization of extrapolation of these functions.
Throughout, “affine hull” refers to the discrete affine hull.

3.2. Extrapolation of Conditional Density

We learn a set of conditional probability densities p̂(x|z) =
1

Ẑ(z) exp
(
− ⟨σ(z), Ê(x)⟩

)
,∀z ∈ Ztrain by maximizing

the likelihood over the training distribution, where Ê de-
notes the estimated energy components and Ẑ denotes the
estimated partition function. Under perfect maximum like-
lihood maximization p̂(x|z) = p(x|z) for all the train-
ing groups z ∈ Ztrain. We can define p̂(x|z) for all
z ∈ Z× beyond Ztrain in a natural way as follows. For
each z ∈ Z×, we have estimated the energy for ev-
ery individual component zi denoted Êi(x, zi). We set

Ẑ(z) =
∫

exp
(
− ⟨σ(z), Ê(x)⟩

)
dx and the density for

each z ∈ Z×, p̂(x|z) = 1
Ẑ(z) exp

(
− ⟨σ(z), Ê(x)⟩

)
.

Theorem 1. If the true and learned distribution (p(·|z) and
p̂(·|z)) are AED, then p̂(·|z) = p(·|z),∀z ∈ Ztrain =⇒
p̂(·|z′) = p(·|z′),∀z′ ∈ DAff(Ztrain).

The result above argues that so long as the group z′ is in
the discrete affine hull of Ztrain, the estimated density ex-
trapolates to it. We provide a proof sketch ahead, with the
complete proof in Appendix D.1.

Proof sketch: Under perfect maximum likelihood maxi-
mization p̂(x|z) = p(x|z),∀z ∈ Ztrain. Replacing these
densities by their expressions and taking their log we obtain

⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩+ C(z),∀z ∈ Ztrain (4)

where C(z) = log
(
Z(z)/Ẑ(z)

)
.

For any z′ ∈ DAff(Ztrain), by definition there exists α
such that σ(z′) =

∑
z∈Ztrain αzσ(z). Thus ⟨σ(z′), Ê(x)⟩ =∑

z∈Ztrain αz ⟨σ(z), Ê(x)⟩, by linearity of the dot product.
Substituting the expression for ⟨σ(z), Ê(x)⟩ from equa-
tion 4, this becomes

⟨σ(z′), Ê(x)⟩ =
∑

z∈Ztrain

αz

(
⟨σ(z), E(x)⟩+ C(z)

)
= ⟨σ(z′), E(x)⟩+

∑
z∈Ztrain

αzC(z),
(5)

From equation 5, we can conclude that ⟨σ(z′), Ê(x)⟩ es-
timates ⟨σ(z′), E(x)⟩ perfectly up to a constant error that
does not depend on x. This difference of constant is ab-
sorbed by the partition function and hence the conditional
densities match: p̂(x|z′) = p(x|z′).

Classifier based on conditional density p(x|z). If, on
data from training distribution p, we were able to train a
good conditional density estimate p̂(x|z),∀z ∈ Ztrain, then
Theorem 1 implies that p̂(x|z′) will also be a good esti-
mate of p(x|z′) for new unseen attributes z′ ∈ DAff(Ztrain).
Provided Ztest ⊆ DAff(Ztrain), it is then straightforward to
obtain a classifier that generalizes to compositionally-shifted
test distribution q. Indeed, we have

q(z′|x) = q(x|z′)q(z′)∑
z′′∈Ztest q(x|z′′)q(z′′)

=
p(x|z′)q(z′)∑

z′′∈Ztest p(x|z′′)q(z′′)
≈ p̂(x|z′)q(z′)∑

z′′∈Ztest p̂(x|z′′)q(z′′)
(6)

where we used the property of compositional shifts
q(x|z) = p(x|z). If we know test group prior q(z′) (or
e.g. assume it to be uniform), we can directly use the expres-
sion in RHS to correctly compute the test group probabilities
q(z|x), even for groups never seen at training.

3.3. Extrapolation of Discriminative Model

In Section 3.2, we saw how we could, in principle, obtain
a classifier that generalizes under compositional shift, by
first training energy based conditional probability density
models p̂(x|z). However learning such a model requires
dealing with the problematic partition function throughout
training. Indeed making a gradient step to maximize its log
likelihood with respect to parameters θ involves estimating
the gradient of its log partition function ∇θ log Ẑ(z; θ) =
∇θ log

∫
exp

(
− ⟨σ(z), Ê(x; θ)⟩

)
dx which is typically

intractable. This difficulty in training energy-based models
is a well known open problem. While crude stochastic
approximations of this gradient might be obtained via e.g.
Contrastive Divergence (Hinton, 2002) or variants of more
expensive MCMC sampling, no unbiased computationally
efficient solution is known in the general case.

4

Compositional Risk Minimization

But is it really necessary to precisely model the conditional
density of high dimensional x, when our goal is simply to
predict a few classes and attributes z, given x? We will now
develop an alternative approach, Compositional Risk Mini-
mization (CRM), that achieves a similar extrapolation result
as Theorem 1, while being based on simple discriminative
classifier training. It sidesteps the need and difficulties of
explicitly modeling p(x|z) and doesn’t require dealing with
the partition function throughout training.

Observe that if we apply Bayes rule to the AED p(x|z) in
equation 2, we get

p(z|x) = p(x|z)p(z)∑
z′∈Ztrain p(x|z′)p(z′)

=
exp

(
− ⟨σ(z), E(x)⟩+ log p(z)− logZ(z)

)
∑

z′∈Ztrain exp
(
− ⟨σ(z′), E(x)⟩+ log p(z′)− logZ(z′)

)

We thus define our additive energy classifier as follows. To
guarantee that we can model this p(z|x), we use a model
with the same form. For each z ∈ Ztrain

p̃(z|x) =
exp

(
− ⟨σ(z), Ẽ(x)⟩+ log p̂(z)− B̃(z)

)
∑

z′∈Ztrain exp
(
− ⟨σ(z′), Ẽ(x)⟩+ log p̂(z′)− B̃(z′)

)
(7)

where p̂(z) is the empirical estimate of the prior over z,
i.e., p(z), Ẽ : Rn → Rmd is a function to be learned,
bias B̃ is a lookup table containing a learnable offset for
each combination of attribute. Given a data point (x, z),
loss ℓ(z, p̃(·|x)) = − log p̃(z|x) measures the prediction
performance of p̃(·|x). The risk, defined as the expected
loss, corresponds to the negated conditional log-likelihood:

R(p̃) = E(x,z)∼p

[
ℓ(z, p̃(·|x))

]
= E(x,z)∼p

[
− log p̃(z|x)

]
(8)

In the first step of CRM, we minimize the risk R.

Ê, B̂ ∈ argmin
Ẽ,B̃

R(p̃) (9)

If the minimization is over arbitrary functions, then p̂(·|x) =
p(·|x),∀x ∈ Rn. In the second step of CRM, we compute
our final predictor q̂(z|x) as follows. Let q̂(z) be an estimate
of the marginal distribution over the attributes q(z) with
support Ẑtest. For each z ∈ Ztest

q̂(z|x) =
exp

(
− ⟨σ(z), Ê(x)⟩+ log q̂(z)−B⋆(z)

)
∑

z′∈Ẑtest exp
(
− ⟨σ(z′), Ê(x)⟩+ log q̂(z′)−B⋆(z′)

)
(10)

where, B⋆ is the extrapolated bias defined as B⋆(z) =

logEx∼p

[exp
(
− ⟨σ(z), Ê(x)⟩

)
∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]
(11)

where Ê, B̂ are the solutions from optimization equation 9.
Note that B̂(z) was learned for all z ∈ Ztrain but never for
z ∈ Ztest, hence the necessity of extrapolation B∗. Each of
these steps is easy to operationalize. We explain the process
and provide pseudocode in Section 4 .

Theorem 2. Consider the setting where p(.|z) follows AED
∀z ∈ Z×, the test distribution q satisfies compositional shift
characterization and Ztest ⊆ DAff(Ztrain). If p̂(z|x) =
p(z|x),∀z ∈ Ztrain,∀x ∈ Rn and q̂(z) = q(z),∀z ∈ Ztest,
then the output of CRM (equation 10) matches the test dis-
tribution, i.e., q̂(z|x) = q(z|x),∀z ∈ Ztest,∀x ∈ Rn.

A complete proof is provided in Appendix D.2. Observe
that p̂(·|x) = p(·|x) is a condition that even a model trained
via ERM can satisfy (with sufficient capacity and data) but
it cannot match the true q(·|x). In contrast, CRM optimally
adjusts the additive-energy classifier for the compositional
shifts. CRM requires the knowledge of test prior q(z) but the
choice of uniform distribution over all possible groups is a
reasonable one to make in the absence of further knowledge.
Notice how learned bias B̂(z) can only be fitted for z ∈
Ztrain, remaining undefined for z′ /∈ Ztrain. But we can
compute the extrapolated bias B⋆(z′), ∀z′ ∈ Ztest, based
remarkably on only data from the train distribution.

Illustrating CRM’s adaptation to test distribution. To
better convey how CRM can adapt to the Bayes optimal
classifier of the test distribution, we provide an example.
Consider a two-dimensional setting, where the distribution
of x ∈ R2 conditioned on the attributes z1 ∈ {−1, 1} and
z2 ∈ {−1, 1} is a Gaussian with mean (z1, z2) and identity
covariance. Suppose the training groups are drawn with
equal probability and can take one of the following three
possible values (+1,+1), (−1,+1), (+1,−1). We do not
observe data from the group (−1,−1) during training, but
at test time we draw samples from all the four groups with
equal probability. First, we can show that the above distribu-
tion can be expressed as an additive energy distribution, as
E(x, (z1, z2)) =

1
4∥x−(2z1, 0)∥

2+ 1
4∥x−(0, 2z2)∥

2). For
the task of classifying groups, the Bayes optimal classifier
has a closed form solution, where each decision region is an
intersection of two half-spaces. Figure 2 shows that CRM
learns the Bayes optimal classifier on the training distribu-
tion, enables shifting from train prior to test prior to yield
the Bayes optimal classifier for the test distribution, and cor-
rectly generalize to the unseen (−1− 1) group. For further
details, including illustration of the failure of ERM-trained
binary classifier on this problem, see Appendix E. Beyond

5

Compositional Risk Minimization

2 1 0 1 2

2

1

0

1

2

Train Prior

2 1 0 1 2

2

1

0

1

2

Uniform Prior

Figure 2. Extrapolating to an unseen test group. The distribu-
tion to model corresponds to a mixture of 4 Gaussians. But the
(−1,−1) group (pink dashed) has zero prior probability in the
training distribution, i.e., is absent from the training set. As a
result, discriminative training (left) learns only three decision re-
gions and would misclassify test points from (−1,−1). CRM
adjusts the prior at test time (right) to a uniform distribution over
all attribute combinations, enabling it to recover four decision re-
gions and correctly generalize to the unseen (−1,−1) group. The
additive energy form composes the attributes’ information to yield
this unseen group’s location. Decision regions were obtained from
finite-data simulations, leading to minor imperfections.

this toy example, we highlight that the additive energy form
supports modeling nearly arbitrarily complex distributions.

Analyzing growth of Discrete Affine Hull. In the dis-
cussion so far, we have relied on a crucial assumption that
the attribute combinations in the test distribution are in the
affine hull. Is this also a necessary condition? Can we
generalize to attributes outside the affine hull? We consider
the task of learning p(·|z) from Theorem 1 and the task of
learning q(·|x) from Theorem 2. In Appendix D.6, we show
that the restriction to affine hulls is indeed necessary.

Under the assumption of compositional shifts Ztest is only
restricted to be a subset of the Cartesian product set Z×,
but our results so far have required us to restrict the sup-
port further by confining it to the affine hull, i.e., Ztest ⊆
DAff(Ztrain) ⊆ Z×. This leads us to a natural question. If
the training groups that form Ztrain are drawn at random,
then how many groups do we need such that the affine hull
captures Z×, i.e., DAff(Ztrain) = Z×, at which point CRM
can achieve Cartesian Product Extrapolation (CPE). Another
way to think about this is to say, how fast does the affine
hull grow and capture the Cartesian product set Z×? Next,
we answer this question.

Consider the the general setting with m attributes, where
each attribute takes d possible values, leading to dm possible
attribute combinations. Suppose we sample s attribute vec-
tors z that comprise the support Ztrain uniformly at random
(with replacement) from these dm possibilites. In the next
theorem, we show that if the number of sampled attribute
vectors exceeds 2c(md+ d log(d)), then DAff(Ztrain) con-

tains all the possible dm combinations with a high probabil-
ity (greater than 1− 1

c), hence CRM achieves CPE. We want
to emphasize this surprising finding: with almost a linear
growth in m and d, CRM generalizes to exponentially many
dm groups.

Theorem 3. Consider the setting where p(.|z) follows AED
∀z ∈ Z×, Ztrain comprises of s attribute vectors z drawn
uniformly at random from Z×, and the test distribution q
satisfies compositional shift characterization with Ztest =
Z×. If s ≥ 2c(md+ d log(d)), where d is sufficiently large,
p̂(z|x) = p(z|x),∀z ∈ Ztrain,∀x ∈ Rn, q̂(z) = q(z),∀z ∈
Z×, then the output of CRM (equation 10) matches the test
distribution, i.e., q̂(z|x) = q(z|x), ∀z ∈ Z×,∀x ∈ Rn,
with probability greater than 1− 1

c .

In Appendix D.3, we first present the proof for the case with
m = 2 attributes and provide visual illustrations to assist
the reader. It is then followed by the more involved proof
for the general case of m attributes in Appendix D.4.

3.4. Further Insights on CRM

Does test distribution belong to the affine hull of train
distributions? A key implication of the AED assump-
tion is that the energy for a novel group z′ ∈ DAff(Ztrain)
at test time can be expressed as an affine combination of
the energies of the training groups, i.e., ⟨σ(z′), E(x)⟩ =∑

z∈Ztrain αz ⟨σ(z), E(x)⟩ (check Lemma 1 in Appendix D
for details). However, this does not imply that the condi-
tional density q(x|z′) is an affine combination of the train-
ing conditional densities {p(x|z) | z ∈ Ztrain}. Instead, we
have the following relationship.

log
(
q(x|z′)

)
=

∑
z∈Ztrain

αz log p(x|z)

− log

∫
exp

(∑
z∈Ztrain

αz log p(x|z)
)
dx

(12)
Please check Appendix D.2 for the derivation. In contrast,
prior works impose a stronger assumption that the test dis-
tribution should lie in the convex/affine hull of the train
distributions (Krueger et al., 2021; Qiao & Peng, 2023; Yao
et al., 2023).

Why Additive Energy Classifier? In Appendix D.2, for
novels group z′ ∈ DAff(Ztrain), we derive the following
relationship between the test classifier for the novel group
q(z′|x) and the training classifiers {p(z|x) | z ∈ Ztrain}.

q(z′|x) = Softmax
(
log q(z′) +

∑
z∈Ztrain

αz log p(z|x)

− logEx∼p(x)

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])
(13)

6

Compositional Risk Minimization

This equation is central in deriving the classifier q̂(z′|x)
(equation 10) in the second step of CRM, where we substi-
tute p(z|x) with the learned additive energy classifier p̂(z|x)
(equation 9). While alternative methods could be used to
estimate p(z|x), but they would have to separately infer the
affine combination weights αz . To address this, we adopt
the additive energy classifier (equation 7), which simplifies
the computation of q̂(z′|x). Crucially, it avoids the need
to explicitly estimate the affine weights (αz), rather the re-
quired adjustment is absorbed into a single updated bias
term B⋆ (equation 11).

Why Compositional Risk? To better understand the com-
positional risk formulation, note that the classical ERM
objective (8) can be restated as follows,

R(p̃) =
∑

z∈Z×

p(z)R(p̃|z)

where R(p̃|z) = Ex∼p(x|z)
[
ℓ(z, p̃(·|x))

]
. Note that in the

above summation p(z) is zero on all groups that are not in
the support of the training distribution. However, to tackle
compositional shifts, we want to learn predictors that instead
minimize the following compositional risk,

Rcomp(p̃) = Ez∼q(z)Ex∼q(x|z)
[
ℓ(z, p̃(·|x))

]
=
∑

z∈Z×

q(z)R(p̃|z) (14)

as we have p(x|z) = q(x|z) ∀z ∈ Z×. In the above ob-
jective, q(z) can be non-zero on groups z that have zero
probability under p(z). Hence, the minimizer of expected
risk R(p̃) can be different from the minimizer of composi-
tional risk Rq(p̃). In Theorem 3, we show that our approach
(CRM) outputs the Bayes optimal predictor and hence it
provably minimizes Rcomp(p̃).

4. Algorithm for CRM
In a nutshell, CRM consists of: a) training additive energy
classifier p̂(z|x) (e.q. 7) by maximum likelihood (e.q.9) for
trainset group prediction; b) compute extrapolated biases
B⋆ (e.q.11); c) infer group probabilities on compositionally
shifted test distribution using q̂(z|x) (e.q 10). Algorithm 1
provides the associated pseudo-code, where we have a ba-
sic architecture using a deep network backbone ϕ(x; θ) fol-
lowed by a linear mapping (matrixW) 2. For the case where
we have 2 attributes z = (y, a) (illustrated in Figure 1), we
provide a detailed algorithm and PyTorch implementation
in Appendix C.

2Instead of linear, we could use separate non-linear heads to
obtain the energy components for each attribute.

Algorithm 1 Compositional Risk Minimization (CRM)
Input: Training set Dtrain = {(x, z)}
Output: Classifier parameters θ̂, Ŵ , B⋆

Training:
• Estimate train prior p̂(z) based on group counts in Dtrain

• Compute the energy terms as Ẽ(x) = W̃ϕ(x; θ̃)

• CRM Step 1: Train additive energy classifier p̃ (e.q. 7) by
emprirical risk minimization: θ̂, Ŵ , B̂ ∈ argminθ̃,W̃ ,B̃ R(p̃)

• CRM Step 2: Estimate extrapolated bias B⋆ (e.q. 11) via an
average over training examples.

Inference on test point x:
• Set q̂(z) as uniform prior over all groups.

• Compute test group probabilities q̂(z|x) via e.q. 10,
using Ê and B⋆ learned during training.

5. Experiments
5.1. Setup

We evaluate CRM on widely recognized benchmarks for
subpopulation shifts (Yang et al., 2023b), that have attributes
z = (y, a), where y denotes the class label and a denotes
the spurious attribute (y and a are correlated). However, the
standard split between train and test data mandated in these
benchmarks does not actually evaluate compositional gen-
eralization capabilities, because both train and test datasets
contain all the groups (Ztrain = Ztest = Z×). Therefore,
we repurpose these benchmarks for compositional shifts
by discarding samples from one of the groups (z) in the
train (and validation) dataset; but we don’t change the test
dataset, i.e., z ̸∈ Ztrain but z ∈ Ztest. Let us denote the data
splits from the standard benchmarks as (Dtrain,Dval,Dtest).
Then we generate multiple variants of compositional shifts
{(D¬z

train,D¬z
val ,Dtest) | z ∈ Z×}, where D¬z

train and D¬z
val are

generated by discarding samples from Dtrain and Dval that
belong to the group z.

Following this procedure, we adapted Waterbirds (Wah et al.,
2011), CelebA (Liu et al., 2015), MetaShift (Liang & Zou,
2022), MultiNLI (Williams et al., 2017), and CivilCom-
ments (Borkan et al., 2019) for experiments. We also exper-
iment with the NICO++ dataset (Zhang et al., 2023), where
we already have Ztrain ⊊ Ztest = Z× as some groups were
not present in the train dataset. However, these groups are
still present in the validation dataset (Zval = Z×). Hence,
the only transformation we apply to NICO++ is to drop sam-
ples from the validation dataset so that Ztrain = Zval. Note
that our benchmarks cover diverse scenarios, with binary
(Waterbirds, CelebA, MetaShift) and non-binary attributes
(MultiNLI, CivilComments, NICO++), resulting in total
groups varying from 4 to 360 (NICO++).

For baselines, we train classifiers via ERM, Group Dis-

7

Compositional Risk Minimization

tributionally Robust Optimization (GroupDRO) (Sagawa
et al., 2019), Logit Correction (LC) (Liu et al., 2022b), su-
pervised logit adjustment (sLA) (Tsirigotis et al., 2024),
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019),
Risk Extrapolation (VREx) (Krueger et al., 2021), and
Mixup (Zhang et al., 2017). In all cases we employ a pre-
trained architecture as the representation network ϕ, fol-
lowed by a linear layer W to get class predictions, and
fine-tune them jointly (see Appendix F.3 for details).

For evaluation metrics, we computed the average accuracy,
group-balanced accuracy, and worst-group accuracy (WGA)
on the test set. Due to imbalances in group distribution, a
method can obtain good average accuracy despite having
bad worst-group accuracy. Therefore, WGA is more indica-
tive of robustness to spurious correlations (Appendix F.2).

5.2. Results

Table 1 shows the results of our experiment, where due to
space constraints, we only compare with the best performing
baselines and don’t report the group balanced accuracy and
standard error over random seeds. Complete results with
comparisons with IRM, VREx, and Mixup are provided in
Appendix G.1 (Table 5). For each dataset and metric, we re-
port the average performance over its various compositional
shift scenarios {(D¬z

train,D¬z
val ,Dtest) | z ∈ Z×} (detailed

results for all scenarios are in Appendix G.2). In all cases,
CRM either outperforms or is competitive with the baselines
in terms of worst group accuracy (WGA).

Further, for Waterbirds and MultiNLI, while the logit adjust-
ment baselines appear competitive with CRM on average,
if we look more closely at the worst case compositional
shift scenario, we find these baselines fare much worse than
CRM. For Waterbirds, LC obtains 69.0% WGA while CRM
obtains 73.0% WGA for the worst case scenario of dropping
the group (0, 1) (Table 6). Similarly, for MultiNLI, sLA ob-
tains 19.7% WGA while CRM obtains 31.0% WGA for the
worst case scenario of dropping the group (0, 0) (Table 9).

We also report the worst group accuracy (other metrics
in Table 14, Appendix G.5) for the original benchmark
(Dtrain,Dval,Dtrain), which was not transformed for compo-
sitional shifts, denoted WGA (No Groups Dropped). This
can be interpreted as the “oracle” performance for that
benchmark, and we can compare methods based on the
performance drop in WGA due to discarding groups in com-
positional shifts. ERM and GroupDRO appear the most
sensitive to compositional shifts, and the logit adjustment
baselines also show a sharp drop for the CelebA benchmark;
while CRM is more robust to compositional shifts.

Multiple spurious attributes case. We benchmark CRM
for class label prediction with multiple spurious attributes.
For this, we augment the CelebA benchmark to have three

Dataset Method Average
Acc WGA WGA

(No Groups Dropped)

Waterbirds

ERM 77.9 43.0 62.3
G-DRO 77.9 42.3 87.3
LC 88.3 75.5 88.7
sLA 89.3 77.3 89.7
CRM 87.1 78.7 86.0

CelebA

ERM 85.8 39.0 52.0
G-DRO 89.2 67.8 91.0
LC 91.1 57.4 90.0
sLA 90.9 57.4 86.7
CRM 91.1 81.8 89.0

MetaShift

ERM 85.7 60.5 63.0
G-DRO 86.0 63.8 80.7
LC 88.5 68.2 80.0
sLA 88.4 63.0 80.0
CRM 87.6 73.4 74.7

MultiNLI

ERM 68.4 7.5 68.0
G-DRO 70.4 34.3 57.0
LC 75.9 54.3 74.3
sLA 76.4 55.0 71.7
CRM 74.3 58.7 74.7

Civil
Comments

ERM 80.4 55.9 61.0
G-DRO 80.1 61.6 64.7
LC 80.7 65.7 67.3
sLA 80.6 65.6 66.3
CRM 83.7 67.9 70.0

NICO++

ERM 85.0 35.3 35.3
G-DRO 84.0 36.7 33.7
LC 85.0 35.3 35.3
sLA 85.0 33.0 35.3
CRM 84.7 40.3 39.0

Table 1. Robustness under compositional shift. We compare the
proposed CRM method to baseline ERM classifier training with
no group information, and to robust methods that leverage group
labels: G-DRO, LC, and sLA. We report test Average Accuracy
and Worst Group Accuracy (WGA) (mean over 3 random seeds),
averaged as a group is dropped from training and validation sets.
Last column is WGA under the dataset’s standard subpopulation
shift benchmark, i.e. with no group dropped. All methods have a
harder time to generalize when groups are absent from training, but
CRM appears consistently more robust. Full results with balanced
group accuracy, standard error across random seeds, and baselines
IRM, VREx, and Mixup in Appendix (Table 5).

additional attributes (total m = 5 attributes). We provide
setup details in Appendix G.3, and Table 12 presents the
associated results. We find that CRM still continues to be
the superior method (as per WGA), in fact, the difference
in WGA between CRM and runner up baseline increases
to 28.9%, as compared to 14% for the case of CelebA 2-
attribute (Table 2). Hence, the benefits with CRM become
more pronounced for multiple spurious attributes settings.

Importance of extrapolating the bias. We conduct an
ablation study for CRM where we test a variant that uses

8

Compositional Risk Minimization

Method Waterbirds CelebA MetaShift MulitNLI CivilComments NICO++

CRM (B̂) 55.7 (1.0) 58.9 (0.4) 58.7 (0.6) 30.4 (2.6) 52.4 (0.7) 31.0 (1.0)
CRM 78.7 (1.6) 81.8 (1.2) 73.4 0.7) 58.7 (1.4) 67.9 (0.5) 40.3 (4.3)

Table 2. Importance of bias extrapolation. We report Worst Group Accuracy, averaged as a group is dropped from training and validation
(standard error based on 3 random seeds). CRM (B̂) is an ablated version of CRM where we use the trained bias B̂ instead of the
extrapolated bias B⋆ mandated by our theory. The extrapolation step appears crucial for robust compositional generalization. Merely
adjusting logits based on shifting group prior probabilities does not suffice.

the learned bias B̂ (e.q. 9) instead of the extrapolated bias
B⋆ (e.q. 11). Results are presented in Table 2. They show
a significant drop in worst-group accuracy if we use the
learned bias instead of the extrapolated one. Hence, our
theoretically grounded bias extrapolation step is crucial to
generalization under compositional shifts. In Appendix G.4
(Table 13) we conduct further ablation studies, showing the
impact of different choices of the test log prior.

Further, we analyze CRM’s performance with varying num-
ber of train groups, details in Appendix G.6.

6. Related works
Due to space constraints, we briefly describe the relevant
prior works, with a detailed discussion in Appendix A.

Compositional Generalization Compositionality has long
been seen as an essential capability (Fodor & Pylyshyn,
1988; Hinton, 1990; Plate et al., 1991; Montague, 1970) on
the path to building human-level intelligence. The history of
compositionality being too long to cover in detail here, we
refer the reader to these surveys (Lin et al., 2023; Sinha et al.,
2024). Most prior works have focused on generative aspect
of compositionality, where the model needs to recombine
individual distinct factors/concepts and generate the final
output in the form of text (Gordon et al., 2019; Lake &
Baroni, 2023) or image (Liu et al., 2022a; Wang et al., 2024).
For image generation in particular, a fruitful line of work
is rooted in additive energy based models (Du et al., 2020;
2021; Liu et al., 2021; Nie et al., 2021), which translates
naturally to additive diffusion models (Liu et al., 2022a; Su
et al., 2024). Our present work also leverages an additive
energy form, but our focus is on learning classifiers robust
under compositional shifts, rather than generative models.

Domain Generalization Generalization under subpopu-
lation shifts, where certain groups or combinations of at-
tributes are underrepresented in the training data, is a well-
known challenge in machine learning. GroupDRO (Sagawa
et al., 2019) is a prominent method that minimizes the
worst-case group loss to improve robustness across groups.
IRM (Arjovsky et al., 2019) encourages the model to learn
invariant representations that perform well across multi-
ple environments. Closely related to our proposed method
are the logit adjustment methods, LC (Liu et al., 2022b)

and sLA (Tsirigotis et al., 2024) that use logit adjustment
for group robustness. There are many other interesting ap-
proaches that were proposed, see the survey (Zhou et al.,
2022) for details. The theoretical guarantees developed for
these approaches (Arjovsky et al., 2019; Rosenfeld et al.,
2020; Ahuja et al., 2020) require a large diversity in terms
of the environments seen at the training time. In our setting,
we incorporate inductive biases based on additive energy
distributions that help us arrive at provable generalization
with limited diversity in the environments.

7. Conclusion
We provide a novel approach (CRM) based on flexible ad-
ditive energy models for compositionality in discriminative
tasks. CRM can provably extrapolate to novel attribute
combinations within the discrete affine hull of the training
support, where the affine hull grows quickly with the train-
ing groups to cover the Cartesian product extension of the
training support. Our empirical results demonstrate that the
additive energy assumption is sufficiently flexible to yield
good classifiers for high-dimensional images, and CRM is
able to extrapolate to novel combinations in DAff(Ztrain),
without having to model high-dimensional p(x|z) nor hav-
ing to estimate their partition function. CRM is a simple
and efficient algorithm that empirically proved consistently
more robust to compositional shifts than approaches based
on other logit-shifting schemes and GroupDRO.

Limitations. A key limitation of our work is the reliance
on labeled attributes, which may not always be available
in practice. Prior works (Pezeshki et al., 2023; Tsirigotis
et al., 2024) propose to first infer spurious attributes and
then use domain generalization methods, in the context
of subpopulation shifts. A promising direction for future
research is to extend such methods to the compositional
shift setting and integrate them with our approach.

Further, based on AED, we provided compositional general-
ization guarantees that are applicable in both discriminative
and generative tasks. However, we only offer a tractable
approach using CRM for the discriminative task. Extending
these ideas to the generative counterpart, e.g. by starting
from equation 12, remains a promising direction for future
work and could further leverage our theoretical framework.

9

Compositional Risk Minimization

Acknowledgements
We thank Yash Sharma for his contribution to early explo-
ration of compositional generalization from a generative
perspective, and Vinayak Tantia for having many years ago
helped shed light on the challenges posed by composition-
ality in discriminative training. This research was entirely
funded by Meta, in the context of Meta’s AI Mentorship
program with Mila. Ioannis Mitliagkas in his role as Di-
vyat Mahajan’s academic advisor, acknowledges support
by an NSERC Discovery grant (RGPIN-2019-06512), and
a Canada CIFAR AI chair. Pascal Vincent is a CIFAR
Associate Fellow in the Learning in Machines & Brains pro-
gram. Divyat Mahajan acknowledges support via FRQNT
doctoral scholarship (https://doi.org/10.69777/
354785) for his graduate studies.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ahuja, K., Wang, J., Dhurandhar, A., Shanmugam, K., and

Varshney, K. R. Empirical or invariant risk minimiza-
tion? a sample complexity perspective. arXiv preprint
arXiv:2010.16412, 2020.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Bayat, R., Pezeshki, M., Dohmatob, E., Lopez-Paz, D., and
Vincent, P. The pitfalls of memorization: When memo-
rization hurts generalization. Proceeding international
conference on representaiton learning (ICLR), 2025.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced metrics for measuring unintended bias
with real data for text classification. In Companion pro-
ceedings of the 2019 world wide web conference, pp.
491–500, 2019.

Brady, J., Zimmermann, R. S., Sharma, Y., Schölkopf, B.,
Von Kügelgen, J., and Brendel, W. Provably learning
object-centric representations. In International Confer-
ence on Machine Learning, pp. 3038–3062. PMLR, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, K. and Ma, T. First steps toward understanding the
extrapolation of nonlinear models to unseen domains.
arXiv preprint arXiv:2211.11719, 2022.

Du, Y., Li, S., and Mordatch, I. Compositional visual gen-
eration with energy based models. Advances in Neural
Information Processing Systems, 33:6637—-6647, 2020.

Du, Y., Li, S., Sharma, Y., Tenenbaum, J., and Mordatch, I.
Unsupervised learning of compositional energy concepts.
Advances in Neural Information Processing Systems, 34,
2021.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-
tive architecture: A critical analysis. Cognition, 28(1-2):
3–71, 1988.

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt,
D. Permutation equivariant models for compositional
generalization in language. In International Conference
on Learning Representations, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G. E. Mapping part-whole hierarchies into connec-
tionist networks. Artificial Intelligence, 46(1-2):47–75,
1990.

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771–
1800, 2002.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Compo-
sitionality decomposed: How do neural networks gen-
eralise? Journal of Artificial Intelligence Research, 67:
757–795, 2020.

Idrissi, B. Y., Arjovsky, M., Pezeshki, M., and Lopez-Paz,
D. Simple data balancing achieves competitive worst-
group-accuracy. In Conference on Causal Learning and
Reasoning, pp. 336–351. PMLR, 2022.

Janzing, D. and Schölkopf, B. Causal inference using the
algorithmic markov condition. IEEE Transactions on
Information Theory, 56(10):5168–5194, 2010.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A.,
Feng, J., and Kalantidis, Y. Decoupling representation
and classifier for long-tailed recognition. arXiv preprint
arXiv:1910.09217, 2019.

Kim, N. and Linzen, T. Cogs: A compositional gener-
alization challenge based on semantic interpretation. In
Proceedings of the 2020 conference on empirical methods
in natural language processing (emnlp), pp. 9087–9105,
2020.

10

https://doi.org/10.69777/354785
https://doi.org/10.69777/354785

Compositional Risk Minimization

Kirichenko, P., Izmailov, P., and Wilson, A. G. Last layer
re-training is sufficient for robustness to spurious correla-
tions. arXiv preprint arXiv:2204.02937, 2022.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Le Priol, R., and Courville, A. Out-of-
distribution generalization via risk extrapolation (rex). In
International conference on machine learning, pp. 5815–
5826. PMLR, 2021.

Lachapelle, S., Mahajan, D., Mitliagkas, I., and Lacoste-
Julien, S. Additive decoders for latent variables identifi-
cation and cartesian-product extrapolation. Advances in
Neural Information Processing Systems, 36, 2024.

Lake, B. and Baroni, M. Generalization without systematic-
ity: On the compositional skills of sequence-to-sequence
recurrent networks. In International conference on ma-
chine learning, pp. 2873–2882. PMLR, 2018.

Lake, B. M. and Baroni, M. Human-like systematic general-
ization through a meta-learning neural network. Nature,
623(7985):115–121, 2023.

Liang, W. and Zou, J. Metashift: A dataset of datasets
for evaluating contextual distribution shifts and training
conflicts. arXiv preprint arXiv:2202.06523, 2022.

Lin, B., Bouneffouf, D., and Rish, I. A survey on com-
positional generalization in applications. arXiv preprint
arXiv:2302.01067, 2023.

Liu, N., Li, S., Du, Y., Tenenbaum, J., and Torralba, A.
Learning to compose visual relations. Advances in Neural
Information Processing Systems, 34, 2021.

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum, J. B.
Compositional visual generation with composable dif-
fusion models. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022a.

Liu, S., Zhang, X., Sekhar, N., Wu, Y., Singhal, P., and
Fernandez-Granda, C. Avoiding spurious correlations
via logit correction. arXiv preprint arXiv:2212.01433,
2022b.

Liu, Y., Alahi, A., Russell, C., Horn, M., Zietlow, D.,
Schölkopf, B., and Locatello, F. Causal triplet: An open
challenge for intervention-centric causal representation
learning. In Conference on Causal Learning and Reason-
ing, pp. 553–573. PMLR, 2023.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pp. 3730–
3738, 2015.

Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit,
A., and Kumar, S. Long-tail learning via logit adjustment.
arXiv preprint arXiv:2007.07314, 2020.

Montague, R. Pragmatics and intensional logic. Synthese,
22(1):68–94, 1970.

Nie, W., Vahdat, A., and Anandkumar, A. Controllable and
compositional generation with latent-space energy-based
models. Advances in Neural Information Processing
Systems, 34, 2021.

Nikolaus, M., Abdou, M., Lamm, M., Aralikatte, R., and
Elliott, D. Compositional generalization in image cap-
tioning. arXiv preprint arXiv:1909.04402, 2019.

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., and
Schölkopf, B. Learning independent causal mechanisms.
In International Conference on Machine Learning, pp.
4036–4044. PMLR, 2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pezeshki, M., Bouchacourt, D., Ibrahim, M., Ballas, N.,
Vincent, P., and Lopez-Paz, D. Discovering environments
with xrm. arXiv preprint arXiv:2309.16748, 2023.

Plate, T. et al. Holographic reduced representations: Con-
volution algebra for compositional distributed representa-
tions. In IJCAI, pp. 30–35, 1991.

Qiao, F. and Peng, X. Topology-aware robust optimiza-
tion for out-of-distribution generalization. arXiv preprint
arXiv:2307.13943, 2023.

Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al. Bal-
anced meta-softmax for long-tailed visual recognition.
Advances in neural information processing systems, 33:
4175–4186, 2020.

Rosenfeld, E., Ravikumar, P., and Risteski, A. The
risks of invariant risk minimization. arXiv preprint
arXiv:2010.05761, 2020.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Schug, S., Kobayashi, S., Akram, Y., Wołczyk, M., Proca,
A., Von Oswald, J., Pascanu, R., Sacramento, J., and
Steger, A. Discovering modular solutions that generalize
compositionally. arXiv preprint arXiv:2312.15001, 2023.

Sinha, S., Premsri, T., and Kordjamshidi, P. A survey on
compositional learning of ai models: Theoretical and
experimetnal practices. arXiv preprint arXiv:2406.08787,
2024.

11

Compositional Risk Minimization

Su, J., Liu, N., Wang, Y., Tenenbaum, J. B., and Du, Y. Com-
positional image decomposition with diffusion models.
arXiv preprint arXiv:2406.19298, 2024.

Tsirigotis, C., Monteiro, J., Rodriguez, P., Vazquez, D.,
and Courville, A. C. Group robust classification without
any group information. Advances in Neural Information
Processing Systems, 36, 2024.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Wang, Z., Gui, L., Negrea, J., and Veitch, V. Concept alge-
bra for (score-based) text-controlled generative models.
Advances in Neural Information Processing Systems, 36,
2024.

Wiedemer, T., Brady, J., Panfilov, A., Juhos, A., Bethge,
M., and Brendel, W. Provable compositional gener-
alization for object-centric learning. arXiv preprint
arXiv:2310.05327, 2023.

Wiedemer, T., Mayilvahanan, P., Bethge, M., and Brendel,
W. Compositional generalization from first principles.
Advances in Neural Information Processing Systems, 36,
2024.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Zhang, W., Cui, B., and Yang, M.-H. Diffusion models:
A comprehensive survey of methods and applications.
ACM Computing Surveys, 56(4):1–39, 2023a.

Yang, Y., Zhang, H., Katabi, D., and Ghassemi, M. Change
is hard: A closer look at subpopulation shift. In Interna-
tional Conference on Machine Learning, 2023b.

Yao, H., Yang, X., Pan, X., Liu, S., Koh, P. W., and Finn, C.
Improving domain generalization with domain relations.
arXiv preprint arXiv:2302.02609, 2023.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. 2017.

Zhang, X., He, Y., Xu, R., Yu, H., Shen, Z., and Cui, P.
Nico++: Towards better benchmarking for domain gen-
eralization. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 16036–
16047, 2023.

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., and Loy, C. C. Do-
main generalization: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(4):4396–
4415, 2022.

12

Compositional Risk Minimization

Appendix
List of Contents
The content in the Appendix has been organized as follows.

• Appendix A: Further Discussion on Related Works

• Appendix B. Additive Energy Distributions versus Additive Decoder Models: A Closer Look

• Appendix C: CRM Implementation Details

– Appendix C.1 Algorithm for Two Attribute Case
– Appendix C.2 PyTorch Implementation for Two Attribute Case

• Appendix D: Proofs

– Appendix D.1: Proof for Theorem 1: Extrapolation of Conditional Density
– Appendix D.2: Proof for Theorem 2: Extrapolation of CRM
– Appendix D.3: Growth of Discrete Affine Hull for 2 Attribute Case
– Appendix D.4: Proof for Theorem 3: Growth of Discrete Affine Hull for m Attribute Case
– Appendix D.5: Discrete Affine Hull: A Closer Look
– Appendix D.6: No Extrapolation beyond Discrete Affine Hull: Proof for Theorem 10
– Appendix D.7: Extrapolation of Discrete Additive Functions via Discrete Affine Hulls

• Appendix E: Additional Details on CRM’s Adaptation to Test Distribution

• Appendix F: Experiments Setup

– Appendix F.1: Dataset Details
– Appendix F.2: Metric Details
– Appendix F.3: Method Details

• Appendix G: Additional Results

– Appendix G.1: Results Averaged over all the Compositional Shift Scenarios
– Appendix G.2: Detailed Results for all the Compositional Shift Scenarios
– Appendix G.3: CelebA Multiple Suprious Attributes
– Appendix G.4: Results for Ablations with CRM
– Appendix G.5: Results for the Original Benchmark
– Appendix G.6: CRM’s Analysis with Varying Group Size

13

Compositional Risk Minimization

A. Further Discussion on Related Works
Compositional Generalization. Compositionality has long been seen as an important capability on the path to building
(Fodor & Pylyshyn, 1988; Hinton, 1990; Plate et al., 1991; Montague, 1970) human-level intelligence. The history of
compositionality is very long to cover in detail here, refer to these surveys (Lin et al., 2023; Sinha et al., 2024) for more detail.
Compositionality is associated with many different aspects, namely systematicity, productivity, substitutivity, localism, and
overgeneralization (Hupkes et al., 2020). In this work, we are primarily concerned with systematicity, which evaluates a
model’s capability to understand known parts or rules and combine them in new contexts. Over the years, several popular
benchmarks have been proposed to evaluate this systematicity aspect of compositionality, (Lake & Baroni, 2018) proposed
the SCAN dataset, (Kim & Linzen, 2020) proposed the COGS dataset. These works led to development of several insightful
approaches to tackle the challenge of compositionality (Lake & Baroni, 2023; Gordon et al., 2019). Most of these works on
systematicity have largely focused on generative tasks, (Liu et al., 2022a; Lake & Baroni, 2023; Gordon et al., 2019; Wang
et al., 2024), i.e., where the model needs to recombine individual distinct factors/concepts and generate the final output in
the form of image or text. There has been lesser work on discriminative tasks (Nikolaus et al., 2019), i.e., where the model
is given an input composed of a novel combination of factors and it has to predict the underlying novel combination. In this
work, our focus is to build an approach that can provably solve these discriminative tasks.

On the theoretical side, recently, there has been a growing interest to build provable approaches for compositional gen-
eralization (Wiedemer et al., 2023; 2024; Brady et al., 2023; Dong & Ma, 2022; Lachapelle et al., 2024). These works
study models where the labeling function or the decoder is additive over individual features, and prove generalization
guarantees over the Cartesian product of the support of individual features. The ability of a model to generalize to Cartesian
products of the individual features is an important form of compositionality, which checks the model’s capability to correctly
predict in novel circumstances described as combination of contexts seen before. (Dong & Ma, 2022) developed results for
additdynamicallyive models, i.e., labeling function is additive over individual features. While in (Wiedemer et al., 2023),
the authors considered a more general model class in comparison to Dong & Ma (2022). The labeling function/decoder
in (Wiedemer et al., 2023) takes the form f(x1, · · · , xn) = C(ψ1(x1), · · · , ψn(xn)). However, they require a strong
assumption, where the learner needs to know the function C that is used to generate the data. (Lachapelle et al., 2024; Brady
et al., 2023) extended the results from (Dong & Ma, 2022) to the unsupervised setting. (Lachapelle et al., 2024; Brady
et al., 2023) are inspired by the success of object-centric models and show additive decoders enable generative models
(autoencoders) to achieve Cartesian product extrapolation. While these works take promising and insightful first steps for
provable compositional guarantees, the assumption of additive deterministic decoders (labeling functions) may come as
quite restrictive. In particular a given attribute combination can then only correspond to a unique observation, produced
by a very limited interaction between generative factors, not to a rich distribution of observations. By contrast an additive
energy model can associate an almost arbitrary distribution over observations to a given set of attributes. Hence, we take
inspiration independent mechanisms principle (Janzing & Schölkopf, 2010; Parascandolo et al., 2018) for our setting based
on additive energy models. In the spirit of this principle, we think of each factor impacting the final distribution through
an independent function, where independence is in the algorithmic sense and not the statistical sense. Based on this more
realistic assumption of additive energy, our goal is to develop an approach that provably enables zero-shot compositional
generalization in discriminative tasks, where the model needs to robustly predict never seen before factor combinations that
the input is composed of. These additive energy distributions have also been used in generative compositionality (Liu et al.,
2022a) but not in discriminative compositionality.

Finally, in another line of work (Schug et al., 2023), the authors consider compositionality in the task space and develop an
approach that achieves provable compositional guarantees over this task space and empirically outperforms meta-learning
approaches such as MAML and ANIL. Specifically, they operate in a student-teacher framework, where each task has a
latent code that specifies the weights for different modules that are active for that task.

Domain Generalization. Generalization under subpopulation shifts, where certain groups or combinations of attributes
are underrepresented in the training data, is a well-known challenge in machine learning. Group Distributionally Robust
Optimization (GroupDRO) (Sagawa et al., 2019) is a prominent method that minimizes the worst-case group loss to improve
robustness across groups. Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) encourages the model to learn invariant
representations that perform well across multiple environments. Perhaps the simplest methods are SUBG and RWG (Idrissi
et al., 2022), which focus on constructing a balanced subset or reweighting examples to minimize or eliminate spurious
correlations. There are many other interesting approaches that were proposed, see the survey for details (Zhou et al., 2022).
The theoretical guarantees developed for these approaches (Rosenfeld et al., 2020; Arjovsky et al., 2019; Ahuja et al., 2020)

14

Compositional Risk Minimization

require a large diversity in terms of the environments seen at the training time. In our setting, we incorporate inductive
biases based on additive energy distributions that help us arrive at provable generalization with limited diversity in the
environments.

Closely related to our proposed method are the logit adjustment methods (Kang et al., 2019; Menon et al., 2020; Ren et al.,
2020; Bayat et al., 2025) used in robust classification. (Kang et al., 2019) introduced Label-Distribution-Aware Margin
(LDAM) loss for long-tail learning, proposing a method that adjusts the logits of a classifier based on the class frequencies in
the training set to counteract bias towards majority classes. Similarly, (Menon et al., 2020) and (Ren et al., 2020) (Balanced
Softmax), modify the standard softmax cross-entropy loss to account for class imbalance by shifting the logits according to
the prior distribution over the classes. (Bayat et al., 2025) shifts the logits according to the held-out prediction of examples
to prevent memorization towards robust generalization. Closest to our work are the Logit Correction (LC) (Liu et al., 2022b)
and Supervised Logit Adjustment (sLA) (Tsirigotis et al., 2024) methods that use logit adjustment for group robustness.
LC adjusts logits based on the joint distribution of environment and class label, reducing reliance on spurious features in
imbalanced training sets. When environment annotations are unknown, a second network infers them. Supervised Logit
Adjustment (sLA) adjusts logits according to the conditional distribution of classes given the environment. In the absence of
environment annotations, Unsupervised Logit Adjustment (uLA) uses self-supervised learning (SSL) to pre-train a model for
general feature representations, then derives a biased network from this pre-trained model to infer the missing environment
annotations.

B. Additive Energy Distributions versus Additive Decoder Models: A Closer Look
We will explore examples demonstrating the flexibility of additive energy distributions. Consider a set of images, each
containing a distinct object that varies in shape, size, and color. We can associate an energy term with each attribute: one
detecting shape, another detecting color, and a third detecting size. Together, these energy terms define the distribution of
images conditioned on an object’s shape, color, and size.

Now, contrast this with an additive decoder-based model. At any given pixel, it is unlikely that shape, color, and size
attributes interact additively—rather, their interactions are complex and non-trivial. This example illustrates why additive
energy distributions naturally model the conjunction of object characteristics, whereas additive decoders struggle with this
task.

Another example from a different data modality is the CivilComments benchmark (Borkan et al., 2019), where the attributes
toxic language (class label) and demographic identity (spurious attribute) interact non-trivially in text space. However, under
additive energy distributions, we can model their interactions via an energy component that checks whether the language is
toxic, and another energy component checks the demographic identity.

We now provide a simple example that can be modeled both by an additive decoder and additive energy distribution.
Consider a two dimensional x, where each dimension of x is controlled by a different attribute.

x = (x1, x2) = (g(z1), h(z2)) (15)

Observe that we can express the above in terms of an additive decoder x = (g(z1), 0) + (0, h(z2)). We can also express the
above in terms of an additive energy distribution as follows using Dirac delta functions δ as follows.

p(x|z) = δ(x− (g(z1), h(z2))) = δ(x1 − g(z1))δ(x2 − h(z2)) = exp
(
log(δ(x1 − g(z1))) + log(δ(x2 − g(z2)))

)
.

The above example is meant to illustrate the point that if there are different subsets of the pixels, where each subset is
controlled or impacted by a different set of attributes, then they can be modeled via an additive energy distribution or an
additive decoder equivalently.

15

Compositional Risk Minimization

C. CRM Implementation Details
C.1. Algorithm for Two Attribute Case

Algorithm 2 Compositional Risk Minimization (CRM) for 2 Attribute Case
Input: training set Dtrain with examples (x, y, a), where y is the class to predict and a is an attribute spuriously correlated
with y
Output: classifier parameters θ, W , B⋆.

• Let L,B ∈ Rdy×da be the log prior and the bias terms.

• Define logits: FL,B(x) := −((W · ϕ(x; θ))1:dy + (W · ϕ(x; θ))⊤dy+1:dy+da
) + L−B

• Define log probabilities: log p(y, a|x; θ,W,L,B) := (FL,B(x)− logsumexp(FL,B(x)))y,a

Training:

• Estimate log prior Ltrain from Dtrain; Ltrain
y,a ← −∞ if (y, a) absent from Dtrain.

• Optimize θ, W , and B to maximize the log-likelihood over Dtrain:
θ,W,B ← argmaxθ,W,B

∑
(x,y,a)∈Dtrain log p(y, a|x; θ,W,Ltrain, B)

• Extrapolate bias: B⋆ ← log
(
1
n

∑
x∈Dtrain exp(F0,0(x)− logsumexp(FLtrain,B(x)))

)
Inference on test point x:

• Compute group probabilities, using B⋆, and Lunif = log 1
dyda

aiming for shift to uniform prior:
q(y, a|x)← exp(log p(y, a|x; θ,W,Lunif , B⋆))

• Marginalize over a to get class probabilities: q(y|x)←
∑

a q(y, a|x)

C.2. PyTorch Implementation for Two Attribute Case

1 # Pseudo-code for Compositional Risk Minimization (CRM)
2 import torch
3 import torchvision
4 from torch import nn
5 from torch.nn import functional as F
6 import load_dataloaders
7 import compute_metric
8

9

10 class CRM(nn.Module):
11 """ Architcture of CRM Layer
12 Args:
13 d_phi: Input feature dimension
14 d_y: Total categories for class labels y
15 d_a: Total cateogies for spurious attributes a
16 """
17 def __init__(self,
18 d_phi: int,
19 d_y: int,
20 d_a: int,
21):
22 super(CRM, self).__init__()
23 self.d_phi= d_phi
24 self.d_y= d_y
25 self.d_a= d_a
26

27 self.linear_layer= nn.Linear(d_phi, d_y+d_a)
28 self.bias= nn.Parameter(torch.zeros((self.d_y, self.d_a))).requires_grad

()

16

Compositional Risk Minimization

29

30 def forward(self, x):
31 return self.linear_layer(x)
32

33 def CRM_logits(x, phi, crm_layer, log_prior):
34 """ Computes the logit as per the additive energy classifier
35 Inputs:
36 x: Batch of input images, Expected Shape (batch size, 3, 224, 224)
37 phi: Representation network
38 crm_layer: CRM layer with linear layer and bias
39 log_prior: Expected Shape (d_y, d_a)
40

41 Returns:
42 Logits for all groups of shape (batch_size, d_y, d_a)
43 """
44 d_y= crm_layer.d_y
45 d_a= crm_layer.d_a
46

47 #Obtain features via the representation network
48 features = phi(x)
49 #E_x is a vector of size d_y+d_a
50 E_x = crm_layer.linear_layer(features)
51 #Energy components for y, vector of size d_y
52 E_1 = E_x[0:d_y]
53 #Energy components for a, vector of size d_a
54 E_2 = E_x[d_y:d_y+d_a]
55 # Energy for all groups
56 logits = -(E_1.unsqueeze(1) + E_2.unsqueeze(0))
57 # Integrate log prior and bias
58 logits += log_prior - crm_layer.bias
59 return logits
60

61 def estimate_priors(dataset):
62 """Return counts of different groups in the dataset"""
63 d_y= dataset.num_y
64 d_a= dataset.num_a
65 counts = torch.zeros((d_y, d_a))
66 for x, y, a in dataset:
67 counts[y,a] += 1
68 priors = counts / len(dataset)
69 return priors
70

71 def CRM_extrapolate_bias(trainset, phi, crm_layer, log_prior):
72 """Compute extrapolated bias (Bˆ{\star}) as per equation (11)
73 Inputs:
74 trainset: Train Dataloader
75 phi: Representation Network
76 crm_layer: CRM layer with linear layer and bias
77 log_prior: Expected Shape (d_y, d_a)
78

79 Returns:
80 Updated CRM layer with extrapolated bias of shape (d_y, d_a)
81 """
82 d_y= trainset.num_y
83 d_a= trainset.num_a
84

85 #Compute logits on all samples in trainset
86 logits=[]
87 for x, y, a in trainset:
88 logits.append(CRM_logits(x, phi, crm_layer, log_prior))
89 logits= torch.cat(logits, dim=0)
90

91 #Compute extrapolated bias (Bˆ{\star})
92 energy_tr= logits - log_prior + crm_layer.bias
93 log_probs= torch.sum(torch.exp(logits).view(-1), dim=1)

17

Compositional Risk Minimization

94 extrapolated_bias= torch.log(torch.mean(torch.exp(-energy_tr) / log_probs ,
dim=0))

95

96 crm_layer.extrapolaed_bias= extrapolated_bias
97 return crm_layer
98

99 def CRM_test(testset, phi, crm_layer):
100 """Module for evaluating CRM
101 Inputs:
102 testset: Test Dataloader
103 phi: Representation Network
104 crm_layer: CRM layer with linear layer and bias
105

106 Returns:
107 List of values corresponing to evaluation of metric on each test batch
108 """
109

110 d_y= testset.num_y
111 d_a= testset.num_a
112

113 #Set test prior to be uniform
114 log_prior= torch.log(1./(d_y+d_a)) * torch.ones()
115

116 final_res=[]
117 for x, y, a in testset:
118 #Forward Pass
119 logit = CRM_logits(x, phi, crm_layer, log_prior)
120 #Marginalize over attribute a to get class label predictions
121 y_pred= logit.sum(2)
122 #Compute metric of choices
123 res = compute_metric(y_pred, y)
124 final_res.append(res)
125

126 return final_res
127

128 def CRM_train(trainset, phi, crm_layer):
129 """Module for training CRM
130 Inputs:
131 trainset: Train Dataloader
132 phi: Representation Network
133 crm_layer: CRM layer with linear layer and bias
134

135 Returns:
136 Learned models phi and crmlayer
137 """
138

139 #Initalize Optimizer
140 opt= torch.optim.SGD(
141 [phi.parameters()+crm_layer.parameters()],
142 lr=0.001,
143)
144

145 priors = estimate_priors(trainset)
146 #Since some group counts can be 0, so we clamp them to a tiny value to avoud -

inf with log
147 log_prior = priors.clamp(min=1e-10).log()
148

149 #CRM Step 1 training loop
150 for epoch in range(1000):
151 for x, y, a in trainset:
152 #Forward Pass
153 opt.zero_grad()
154 logit = CRM_logits(x, phi, crm_layer, log_prior)
155 #Compute group label
156 g=trainset.d_a * y + a

18

Compositional Risk Minimization

157 #Compute cross entropy loss
158 loss = F.cross_entropy(logit.view(-1), g.long(), reduction=’mean’)
159 #Optimize parameters
160 loss.backward()
161 opt.step()
162

163 return phi, crm_layer, log_prior
164

165 def example_main():
166

167 #Load training and test dataloaders
168 trainset, testset = load_dataloaders()
169 #Attributes z = (y,a)
170 d_y = trainset.num_y
171 d_a = trainset.num_a
172

173 #Pretrained representation network
174 phi= torchvision.models.resnet.resnet50(pretrained=True)
175 #Feature Dimension
176 d_phi = phi.feat_dim
177 #CRM Layer
178 crm_layer= CRM(d_phi, d_y, d_a)
179

180 #Train
181 phi, crm_layer, log_prior= CRM_train(trainset, phi, crm_layer)
182

183 #This is where the magic is happening: extrapolating to biases of unseen
combinations

184 crm_layer = CRM_extrapolate_bias(trainset, phi, crm_layer, log_prior)
185

186 #Test
187 CRM_test(testset, phi, crm_layer)

19

Compositional Risk Minimization

D. Proofs
Remark on proofs We want to emphasize that the proofs developed here are quite different from related works on
compositionality (Dong & Ma, 2022; Wiedemer et al., 2023). The foundation of proofs is built on a new mathematical
object, discrete affine hull. The proof of Theorem 2 cleverly exploits properties of softmax and discrete affine hulls to show
how we can learn the correct distribution without involving the intractable partition function in learning. The proof of
Theorem 3, uses fundamental ideas from randomized algorithms to arrive at the probabilistic extrapolation guarantees.

We start with a basic lemma.

Lemma 1. If z′ ∈ DAff(Ztrain), i.e., σ(z′) =
∑

z∈Ztrain αzσ(z), where ⟨1, αz⟩ = 1, then ⟨σ(z′), E(x)⟩ =∑
z∈Ztrain αz ⟨σ(z), E(x)⟩.

Proof. ⟨σ(z′), E(x)⟩ = ⟨
∑

z∈Ztrain αzσ(z), E(x)⟩ =
∑

z∈Ztrain αz ⟨σ(z), E(x)⟩ .

D.1. Proof for Theorem 1: Extrapolation of Conditional Density

Theorem 1. If the true and learned distribution (p(·|z) and p̂(·|z)) are AED, then p̂(·|z) = p(·|z),∀z ∈ Ztrain =⇒
p̂(·|z′) = p(·|z′),∀z′ ∈ DAff(Ztrain).

Proof. We start by expanding the expressions for true and estimated log densities below

− log
[
p(x|z)

]
= ⟨σ(z),E(x)⟩+ log(Z(z)),

− log
[
p̂(x|z)

]
= ⟨σ(z), Ê(x)⟩+ log(Ẑ(z)).

(16)

We equate these densities for the training attributes z ∈ Ztrain. For a fixed z ∈ Ztrain, we obtain that for all x ∈ Rn

⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩+ C(z), (17)

where C(z) = log
(
Z(z)/Ẑ(z)

)
. Since z′ ∈ DAff(Ztrain), we can write z′ =

∑
z∈Ztrain αzz, ⟨1, αz⟩ = 1. From Lemma 1,

we know that ⟨σ(z′), E(x)⟩ =
∑

z∈Ztrain αz ⟨σ(z), Ê(x)⟩.

We use this decomposition and equation 17 to arrive at the key identity below. For all x ∈ Rn

⟨σ(z′), Ê(x)⟩ =
∑

z∈Ztrain

αz ⟨σ(z), Ê(x)⟩

=
∑

z∈Ztrain

αz(⟨σ(z), E(x)⟩+ C(z))

=
(∑

z∈Ztrain

αz(⟨σ(z), E(x)⟩
)
+
(∑

z∈Ztrain

αzC(z)
)

= ⟨σ(z′), E(x)⟩+
∑

z∈Ztrain

αzC(z)

(18)

From this we can infer that

p̂(x|z′) = 1

Ẑ(z′)
exp

(
− ⟨σ(z′), Ê(x)⟩

)
=

1

Ẑ(z′)
exp

(
− ⟨σ(z′), E(x)⟩ −

∑
z∈Ztrain

αzC(z)
) (19)

20

Compositional Risk Minimization

We now use the fact that density integrates to one for continuous random variables (or alternatively the probability sums to
one for discrete random variables). Thus ∫

p̂(x|z′)dx = 1∫
1

Ẑ(z′)
exp

(
− ⟨σ(z′), E(x)⟩ −

∑
z∈Ztrain

αzC(z)
)
dx = 1

1

Ẑ(z′)
exp

(
−

∑
z∈Ztrain

αzC(z)
)∫

exp
(
− ⟨σ(z′), E(x)⟩

)
dx = 1

1

Ẑ(z′)
exp

(
−

∑
z∈Ztrain

αzC(z)
)
Z(z′) = 1

1

Ẑ(z′)
exp

(
−

∑
z∈Ztrain

αzC(z)
)
=

1

Z(z′)
(20)

We substitute equation 20 into equation 19 to obtain

p̂(x|z′) = 1

Z(z′)
exp

(
− ⟨σ(z′), E(x)⟩

)
= p(x|z′),∀x ∈ Rn (21)

D.2. Proof for Theorem 2: Extrapolation of CRM

Theorem 2. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, the test distribution q satisfies compositional shift
characterization and Ztest ⊆ DAff(Ztrain). If p̂(z|x) = p(z|x),∀z ∈ Ztrain,∀x ∈ Rn and q̂(z) = q(z),∀z ∈ Ztest, then
the output of CRM (equation 10) matches the test distribution, i.e., q̂(z|x) = q(z|x),∀z ∈ Ztest,∀x ∈ Rn.

Proof. Since q follows compositional shifts,

log q(x|z) = log p(x|z) = −⟨σ(z), E(x)⟩ − logZ(z) (22)

We can write it as −⟨σ(z), E(x)⟩ = log p(x|z) + logZ(z).

Consider z′ ∈ DAff(Ztrain). We can express z′ as σ(z′) =
∑

z∈Ztrain αzσ(z), where ⟨1, αz⟩ = 1.

We use equation 22 and show that the partition function at z′ can be expressed as affine combination of partition of the
individual points and a correction term. We obtain the following condition. ∀z′ ∈ Ztest, where recall Ztest ⊆ DAff(Ztrain),

log
(
Z(z′)

)
= log

∫
exp

(
− ⟨σ(z′), E(x)⟩

)
dx

= log

∫
exp

(
−

∑
z∈Ztrain

αz ⟨σ(z), E(x)⟩
)
dx

= log

∫
exp

(∑
z∈Ztrain

αz

(
log p(x|z) + logZ(z)

))
dx

=
∑

z∈Ztrain

αz logZ(z) + log

∫
exp

(∑
z∈Ztrain

αz log p(x|z)
)
dx

(23)

Denote the latter term in the above expression as

R({αz}z∈Ztrain) = log

∫
exp

(∑
z∈Ztrain

αz log p(x|z)
)
dx (24)

21

Compositional Risk Minimization

We now simplify log
(
q(x|z′)

)
using the property of partition function from equation 23 below. ∀z′ ∈ Ztest,

log
(
q(x|z′)

)
= −⟨σ(z′), E(x)⟩ − logZ(z′)

=
∑

z∈Ztrain

αz

(
log p(x|z) + logZ(z)

)
− logZ(z′)

=
∑

z∈Ztrain

αz log p(x|z) +
∑

z∈Ztrain

αz logZ(z)−
∑

z∈Ztrain

αz logZ(z)−R
(
{αz}z∈Ztrain

)
=

∑
z∈Ztrain

αz log p(x|z)−R
(
{αz}z∈Ztrain

)
(25)

We now simplify the first term in the above expression, i.e.,
∑

z∈Ztrain αz log p(x|z), in terms of p(z|x).

∑
z∈Ztrain

αz

(
log
(
p(x|z)

)
=

∑
z∈Ztrain

αz log

(
p(z|x)p(x)

p(z)

)

=
∑

z∈Ztrain

αz

(
log p(z|x)− log p(z)

)
+ log p(x)

(26)

Similarly, R({αz}z∈Ztrain) can be phrased in terms of p(z|x) as follows.

R
(
{αz}z∈Ztrain

)
= log

∫
exp

(∑
z∈Ztrain

αz log p(x|z)
)
dx

= −
∑

z∈Ztrain

αz log p(z) + log
(
Ex∼p(x)

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

= −
∑

z∈Ztrain

αz log p(z) + S
(
{αz}z∈Ztrain

)
,

(27)

where S
(
{αz}z∈Ztrain

)
= log

(
Ex∼p(x)

[
exp

(∑
z∈Ztrain αz log p(z|x)

)])
and Ex∼p(x) is the expectation w.r.t distribution

p(x). We use equation 26, equation 27 to simplify equation 25 as follows.∀z′ ∈ Ztest,

log q(x|z′) =
∑

z∈Ztrain

αz log p(z|x)− S
(
{αz}z∈Ztrain

)
+ log p(x)

log
(q(z′|x)q(x)

q(z′)

)
=

∑
z∈Ztrain

αz log p(z|x)− S
(
{αz}z∈Ztrain

)
+ log p(x)

log
(
q(z′|x)

)
=

∑
z∈Ztrain

αz

(
q(z′) + log p(z|x)

)
− S

(
{αz}z∈Ztrain

)
+ log

(p(x)
q(x)

) (28)

We use translation invariance of softmax to obtain

q(z′|x) = Softmax
(
log q(z′) +

∑
z∈Ztrain

αz log p(z|x)− S
(
{αz}z∈Ztrain

))
q(z′|x) = Softmax

(
log q(z′) +

∑
z∈Ztrain

αz log p(z|x)− log
(
Ex∼p(x)

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])) (29)

22

Compositional Risk Minimization

To avoid cumbersome notation, we took the liberty to show only one input to softmax, other inputs bear the same
parametrization, they are computed at other z’s. From the above equation it is clear that if the learner knows the marginal
distribution over the groups at test time, i.e., q(z) and estimates p(z|x) for all z’s in the training distribution’s support, i.e.,
Ztrain, then the learner can successfully extrapolate to q(z′|x).

Let us now use the additive energy classifier of the form we defined in equation 7 and whose energy Ê and bias B̂ we
optimized (equation 9) to match p(z|x), so that:

p(z|x) =
exp

(
− ⟨σ(z), Ê(x)⟩+ log p̂(z)− B̂(z)

)
∑

z̃∈Ztrain exp

(
− ⟨σ(z̃), Ê(x)⟩+ log p̂(z̃)− B̂(z̃)

) ,

Consequently∑
z∈Ztrain

αz log p(z|x)

=

(∑
z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

))
− log

(∑
z̃∈Ztrain

exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

))
(30)

where we used the property that ⟨1, αz⟩ = 1.

Let us use this to simplify the last term of equation 29:

log

(
Ex∼p(x)

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

= log

Ex∼p(x)

[
exp

(∑
z∈Ztrain αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

))
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]
= log

Ex∼p(x)

[
exp

(∑
z∈Ztrain αz

(
− ⟨σ(z), Ê(x)⟩

)
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)] exp(∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

))
= log

Ex∼p(x)

[
exp

(∑
z∈Ztrain αz

(
− ⟨σ(z), Ê(x)⟩

)
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]
+

∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

)

= log

Ex∼p(x)

[
exp

(
− ⟨σ(z′), Ê(x)⟩

)
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]
+

∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

)
= B⋆(z′) +

∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

)

(31)

where we used Lemma 1, and B⋆ is as defined in equation 11.

Let us also define c(x) = log
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

))
so that we can reexpress equation 30

as: ∑
z∈Ztrain

αz log p(z|x) =

(∑
z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

))
− c(x) (32)

23

Compositional Risk Minimization

Subtracting equation 31 from equation 32 we get:

∑
z∈Ztrain

αz log p(z|x)− log

(
Ex∼p(x)

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

=
∑

z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

)
− c(x)

−B⋆(z′)−
∑

z∈Ztrain

αz

(
log p(z)− B̂(z)

)
=
∑

z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩

)
− c(x)−B⋆(z′)

=− ⟨σ(z′), Ê(x)⟩ − c(x)−B⋆(z′) (33)

Substituting this inside equation 29 yields

q(z′|x) = Softmax
(
log q(z′)− ⟨σ(z′), Ê(x)⟩ − c(x)−B⋆(z′)

)
= Softmax

(
− ⟨σ(z′), Ê(x)⟩+ log q(z′)−B⋆(z′)

) (34)

where we removed the c(x) term as softmax is invariant to addition of terms that do not depend on z′.

If q̂(z′) = q(z′),∀z′ ∈ Ztest, then the expression in RHS corresponds to q̂(z′|x), as we had defined it in equation 10, before
stating our theorem. Thus q(z′|x) = q̂(z′|x). This completes the proof.

D.3. Growth of Discrete Affine Hull for 2 Attribute Case

Before presenting the proof of Theorem 3, we specifically deal with the case of m = 2 attributes and present a proof guided
with visual intuitions. We believe this proof is easier to understand and helps build intuition for a reader to better grasp the
proof in the next section for the general case. We first establish some basic lemmas. In the first lemma below, we consider a
setting with two attributes, where each attribute takes two possible values, i.e., m = 2 and d = 2. In this setting there are
four possible one-hot vectors z1, z2, z3, z4. We first show that each zi can be expressed as an affine combination of the
remaining three.

Lemma 2. If m = 2, d = 2, then there are four possible concatenated one-hot vectors z denoted z1, z2, z3, z4. Each zi

can be expressed as an affine combination of the remaining.

Proof. Below we explicitly show how each zi can be expressed in terms of other zj’s.

(+1) ·

0
1
0
1

 + (−1) ·

0
1
1
0

 + (+1) ·

1
0
1
0

 =

1
0
0
1

 (35)

(−1) ·

0
1
0
1

 + (+1) ·

0
1
1
0

 + (+1) ·

1
0
0
1

 =

1
0
1
0

 (36)

(+1) ·

1
0
1
0

 + (+1) ·

0
1
0
1

 + (−1) ·

1
0
0
1

 =

0
1
1
0

 (37)

24

Compositional Risk Minimization

1 2

1

2

z2
z1

Figure 3. Setting of two attributes and two possible values per attribute. Illustration of extrapolation from three groups to the remaining
fourth group. Three dark colored groups indicate the observed groups and the light colored shaded group indicates the group that is the
affine combination of the three observed groups.

(−1) ·

1
0
1
0

 + (+1) ·

0
1
1
0

 + (+1) ·

1
0
0
1

 =

0
1
0
1

 (38)

We illustrate the setting of Lemma 2 in Figure 3. We now understand an implication of Lemma 2. Let us consider
the setting where m = 2 and d > 2. Consider a subset of four groups {(i, j), (i′, j), (i, j′), (i′, j′)}. Under one-hot
concatenations these groups are denoted as z1 = [0, · · · , 1i, · · · 0︸ ︷︷ ︸

first attribute

, 0, · · · , 1j , · · · 0︸ ︷︷ ︸
second attribute

], z2 = [0, · · · , 1i′ , · · · 0, 0, · · · , 1j , · · · 0],

z3 = [0, · · · , 1i, · · · 0, 0, · · · , 1j′ , · · · 0], and z4 = [0, · · · , 1i′ , · · · 0, 0, · · · , 1j′ , · · · 0]. Observe that using Lemma 2, we get
z4 = z2+z3−z1. Similarly, we can express every other zi in terms of rest of zj’s in the the set {(i, j), (i′, j), (i, j′), (i′, j′)}.

In the setting when m = 2 and d ≥ 2, the total number of possible values z takes is d2. Each group recall is associated with
attribute vector z = [z1, z2], where z1 ∈ {1, · · · , d} and z2 ∈ {1, · · · d}. The set of all possible values of z be visualized as
d× d grid in this notation. We call this d× d grid as G. We will first describe a specific approach of selecting observed
groups z for training, which shows that with just 2d− 1 it is possible to affine span all the possible d2 groups in the grid G.
We leverage the insights from this approach and show that with a randomized approach of selecting groups, we can continue
to affine span d2 groups with O(d log(d)) groups.

Denote the set of observed groups as N . Suppose that their affine hull contains all the points in a subgrid S ⊆ G of size
m×n. Let the subgrid S = {x1, · · · , xm}×{y1, · · · , yn}. Without loss of generality, we can permute the points and make
the subgrid contiguous as follows S = {1, · · · ,m} × {1, · · · , n}. Next, we add a new point g = (gx, gy) ∈ G but g ̸∈ S.
We argue that if gx ∈ {1, · · · ,m}, then the affine hull of N ∪ {g} contains a larger subgrid of size m× (n+ 1). Similarly,
we want to argue that if gy ∈ {1, · · · , n}, then the affine hull of N ∪ {g} contains a larger subgrid of size (m + 1) × n.
Define Cx as the Cartesian product of {gx} with {1, · · · , n}, i.e., Cx = {(gx, 1), (gx, 2), · · · , (gx, n)}. Define Cy as the
Cartesian product of {1, · · · ,m} with {gy}, i.e., Cy = {(1, gy), (2, gy), · · · , (m, gy)}.
Theorem 4. Suppose the affine hull of the observed set N contains a subgrid S of size m× n. If the new point g = (gx, gy)
shares the x-coordinate with a point in S, and g ̸∈ S, then the the affine hull of N ∪ {g} contains S ∪ Cy .

Proof. We write the set of observed groupsN asN = {zθj}j . The affine hull ofN contains S = {1, · · · ,m}×{1, · · · , n}.
We observe a new group g ̸∈ S, which shares its x coordinate with one of the points in S. Without loss of generality let
this point be g = (1, n+ 1) (if this were not the case, then we can always permute the columns and rows to achieve such
a configuration). Consider the triplet – (z1, z2, z3) =

(
(1, n), (2, n), (1, n+ 1)

)
. Observe that z1, z2, z3, z4 form a 2× 2

subgrid, where z4 = (2, n+ 1). We use Lemma 2 to infer that the fourth point z4 = (2, n+ 1) on this 2× 2 subgrid can be
obtained as an affine combination of this triplet, i.e., z4 = αz1 + βz2 + γz3. Since z1, z2 are in the affine hull of N , they
can be written as an affine combination of seen points in N as follows z1 =

∑
k∈N akz

θk , z2 =
∑

k∈N bkz
θk . As a result,

25

Compositional Risk Minimization

(a) Step 1 (b) Step 2 (c) Step 3

Figure 4. Illustration of steps of the deterministic sampling procedure for a 4× 4 grid. (a) shows the base set, (b) add a group in blue and
the affine hull extends to include all the blue cells, (c) add a group in yellow and the affine hull extends to include all yellow cells.

we obtain

z4 = αz1 + βz2 + γz3 = α
(∑

akz
θk
)
+ β

(∑
bkz

θk
)
+ γz3

=
∑
k∈N

(
αak + βbk

)
zθk + γz3

(39)

Observe that
∑

k(αak + βbk) = (α
∑

k ak + β
∑

k bk) = α + β. Since α + β + γ = 1, z4 is an affine combination of
points in N ∪ {g}. Thus we have shown the claim for the point (2, n+ 1). We can repeat this claim for point (3, n+ 1) and
so on until we reach (m,n+ 1) beyond which there would be no points in S that are expressed as affine combination of N .
We can make this argument formal through induction. We have already shown the base case above. Suppose all the points
(j, n + 1) in j ≤ i < m are in the affine hull of N ∪ {g}. Consider the point z4 = (i + 1, n + 1). Construct the triplet
(z1, z2, z3) =

(
(i, n), (i, n+1), (i+1, n)

)
. Again from Lemma 2, it follows that z4 = αz1+βz2+γz3. We substitute z1, z2

and z3 with their corresponding affine combinations. z4 = α
∑

k∈N∪{g} akz
θk +β

∑
k∈N∪{g} bkz

θk +γ
∑

k∈N∪{g} ckz
θk .

Since
∑

k∈N∪{g} αak + βbk + γck = 1, it follows that z4 is an affine combination of z1, z2 and z3. This completes the
proof.

We now describe a simple deterministic procedure that helps us understand how many groups we need to see before we are
guaranteed that the affine hull of seen points span the whole grid G = {1, · · · , d} × {1, · · · , d}.

• We start with a base set of three points – B = {(1, 1), (1, 2), (2, 1)}. From Lemma 2, the affine hull contains (2, 2).

• For each i ∈ {2, · · · , d− 1} add the points (1, i+ 1), (i+ 1, 1) to the set B. From Theorem 4, it follows that affine
hull of B ∪{(1, i+1)}∪ {(i+1, 1)} contains (i+1× i+1) subgrid {1, · · · , i+1}×{1, · · · , i+1} (here we apply
Theorem 4 in two steps once for the addition of (1, i+ 1) and then for the addition of (i+ 1, 1).

At the end of the above procedure B contains 2d − 1 points and its affine hull contains the grid G. We illustrate this
procedure in Figure 4.

We now discuss a randomized procedure that also allows us to span the entire grid G with O(d log(d)) groups. The idea of
the procedure is to start with a base set of groups and construct their affine hull S. Then we wait to sample a group g that is
outside this affine hull. If this sampled group shares the x coordinate with affine hull of B denoted as S, then we expand the
subgrid by one along with y coordinate. Similarly, we also wait for a point that shares a y coordinate and then we expand
the subgrid by one along the x coordinate.

We use Sx to denote the distinct set of x-coordinates that appear in S and same goes for Sy. We write g = (gx, gy). The
procedure goes as follows.

Set S = ∅, B = ∅ and Flag = x.

26

Compositional Risk Minimization

• Sample a group g from G uniform at random. Update B = B ∪ {g}, S = S ∪ {g}.

• While S ̸= G, sample a group g from G uniform at random.

– If Flag == x, gx ∈ Sx, g ̸∈ S, then update B = B ∪ {g}, S = S ∪ (Sx × {gy}) and Flag = y.
– If Flag == y, gy ∈ Sy , g ̸∈ S, then update B = B ∪ {g}, S = S ∪ ({gx} × Sy) and Flag = x.

In the above procedure, in every step in the while loop a group g is sampled. Whenever the Flag flips from x to y, then
following Theorem 4, the updated set S belongs to the affine hull of B. We can say the same when Flag flips from y to x. In
the next theorem, we will show that the while loop terminates after 8cd log(d) steps with a high probability and the affine
hull of B contains the entire grid G. We follow this strategy. We count the time it takes for Flag to flip from x to y (from y
to x) as it grows the size of S from a k × k subgrid to k × (k + 1) (k × (k + 1) subgrid to (k + 1)× (k + 1)) subgrid.
Theorem 5. Suppose we sample the groups based on the randomized procedure described above. If the number of sampled
groups is greater than 8cd log(d), then G ⊆ DAff(B) with a probability greater than equal to 1− 1

c .

Proof. We take the first group g that is sampled. Without loss of generality, we say this group is (1, 1).

Suppose the Flag is set to x. Define an event Ak
1 : newly sampled g = (gx, gy) shares x-coordinate with a point in S (size

k × k), g ̸∈ S. Under these conditions Flag flips from x to y. To compute the probability of this event let us count the
number of scenarios in which this happens. If gx takes one of the k values in Sx and gy takes one of the remaining (d− k),
then the event happens. As a result, the probability of this event is P (Ak

1) =
(k)(d−k)

d2 .

Suppose the Flag is set to y. Define an event Ak
2 : newly sampled g = (gx, gy) shares y-coordinate with a point in S (size

k× (k+1)) and g ̸∈ S. Under these conditions Flag flips from y to x. The probability of this event isP (Ak
2) =

(k+1)(d−k)
d2 .

Define T k
1 as the number of groups that need to be sampled before Ak

1 occurs. Define T k
2 as the number of groups that need

to be sampled before Ak
2 occurs. Observe that after T k

1 + T k
2 number of sampled groups the size of the current subgrid S,

which is in the affine hull of B, grows to (k + 1)× (k + 1).

Define Tsum =
∑d−1

k=1(T
k
1 + T k

2). Tsum is the total number of groups sampled before the affine span of the observed groups
B contains the grid G.

We compute

E[Tsum] =
d−1∑
k=1

(E[T k
1] + E[T k

2])

d∑
k=1

E[T k
1] =

d−1∑
k=1

d2/(k(d− k)) = 2

(d−1)/2∑
k=1

d2/(k(d− k))

2

(d−1)/2∑
k=1

d2/(k(d− k)) = 2d

(d−1)/2∑
k=1

[1
k
+

1

d− k

]
≈ 4d log((d− 1)/2)

(40)

Similarly, we obtain a similar bound for
∑d−1

k=1 E[T k
2].

d∑
k=1

(E[T k
2] =

d−1∑
k=1

d2/((k + 1)(d− k)) = 2

(d−1)/2∑
k=1

d2/((k + 1)(d− k))

2

(d−1)/2∑
k=1

d2/((k + 1)(d− k)) ≤ 2d

(d−1)/2∑
k=1

[1

k + 1
+

1

d− k

]
≈ 4d log((d− 1)/2)

(41)

Overall E[Tsum] ≈ 8d log(d/2). From Markov inequality, it immediately follows that P (Tsum ≤ 8cd log(d/2)) ≥ 1− 1
c . In

the above approximations, we use
∑d

i=1
1
i ≈ log d+ γ, where γ is Euler’s constant. We drop γ as its a constant, which can

always be absorbed by adapting the constant c.

27

Compositional Risk Minimization

Theorem 6. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, Ztrain comprises of s attribute vectors z drawn
uniformly at random from Z×, and the test distribution q satisfies compositional shift characterization. If s ≥ 8cd log d,
where d is sufficiently large, p̂(z|x) = p(z|x),∀z ∈ Ztrain,∀x ∈ Rn, q̂(z) = q(z),∀z ∈ Ztest, then the output of CRM
(equation 10) matches the test distribution, i.e., q̂(z|x) = q(z|x), ∀z ∈ Ztest,∀x ∈ Rn, with probability greater than 1− 1

c .

Proof. Suppose the support of training distribution p(z) contains s groups. We know that these s groups are drawn uniformly
at random. From Theorem 5, it is clear that if s grows as O(d log d), then with a high probability the entire grid of d2

combinations is contained in the affine span of these observed groups. This can be equivalently stated as Z× ⊆ DAff(Ztrain)
with a probability greater than equal to 1− 1

c . If Z× ⊆ DAff(Ztrain), then from the assumption of compositional shifts, it
follows that Ztest ⊆ DAff(Ztrain). We can now use Theorem 2 and arrive at our result. This completes the proof.

D.4. Proof for Theorem 3: Growth of Discrete Affine Hull for m Attribute Case

Let G = {1, · · · , d}m and let us consider the groups z = [z1, . . . , zm] ∈ G. G contains dm points. We are given a set of
groups S ⊂ G. DAff(S) is the discrete affine hull of S, where recall DAff(S) = Aff(S) ∩G is the set of points in the affine
hull of S that lie on the grid G.

Theorem 7. If the total number of groups sampled is greater than 2cd(m+ 1+ ln(d)), then DAff(S) = G with probability
at least 1− 1

c .

Proof. Let us write s := 2cd(m + 1 + ln(d)). It is easy to see that Aff(G) is an affine vector space of dimension
m(d− 1). Consider an infinite sequence (zl)l∈N of i.i.d. uniformly sampled groups in G, the increasing sequence of sets
Sl := {z1, . . . , zl}, and the corresponding increasing sequence of affine spaces Aff(Sl). The theorem is equivalent to
stating that we have Aff(Ss) = Aff(G) with probability at least 1− 1

c .

For every l ≥ 1, if the “newly sampled” point zl does not belong to Aff(Sl−1), then necessarily dimAff(Sl) =
dimAff(Sl−1) + 1. For Aff(S) to be equal to Aff(G), there needs to be m(d − 1) = dimAff(G) such increases in
dimensionality when going from S0 = ∅ to Ss (and there cannot be more increases than that). Note that as long as
DAff(Sl−1) ̸= G, the probability that zl does not belong to Aff(Sl−1) is at least 1/|G|, hence with probability 1 we have
DAff(Sl) = G for l large enough.

For i = 1, . . . ,m(d− 1), define the random variable

Ti := |{j : dimAff(Sj) = i}|

(as noted above, Ti is well-defined and finite with probability 1) and the random index

ti := min{j : dimAff(Sj) = i}.

The random variable Ti counts the number of points zl sampled before a point not yet in Aff(Sti) is sampled (thus leading
to an increase in dimension). Define also

Tsum := 1 +

m(d−1)−1∑
i=1

Ti.

Note that Tsum = min{j : Aff(Sj) = Aff(G)}. Hence we have to show that with high probability, the random variable
Tsum is smaller than s.

The probability of a newly sampled point not belonging to DAff(Sti) (and thus leading to an increase in dimension) is equal
to (|G| − |DAff(Sti)|)/|G|, hence Ti is a geometric variable of mean |G|/(|G| − |DAff(Sti)|) = dm/(dm − |DAff(Sti)|),
and

E[Tsum] = 1 +

m(d−1)−1∑
i=1

E[Ti] = 1 +

m(d−1)−1∑
i=1

dm

dm − |DAff(Sti)|
. (42)

The following lemma, whose proof is given further below, is the key ingredient to bound this sum:

28

Compositional Risk Minimization

Lemma 3. Let A ⊂ G be such that DAff(A) = A. If |A|
dm ≥ 1

2 , i.e. if A contains more than half the points of G, then the
following inequality holds:

dimAff(G)− dimAff(A) ≤ 2d
dm − |A|
dm

.

Intuitively, the lemma states that if the set A contains most points in G (whose cardinality is dm), then the dimension of the
affine space it spans is almost that of Aff(G).

Let i∗ := min{i : |DAff(Sti)|/dm > 1/2}. Then Lemma 3 applies to DAff(St) for all t ≥ ti∗ , and we see in particular
that

dimAff(G)− i∗ = dimAff(G)− dimAff(Sti∗) ≤ 2d
dm − |DAff(Sti∗)|

dm
< d,

hence i∗ must be greater than dimAff(G)− d = m(d− 1)− d. Thus we can split the sum as follows:

E[Tsum] = 1 +

m(d−1)−1∑
i=1

E[Ti]

≤ 1 +

i∗−1∑
i=1

dm

dm − |DAff(Sti)|
+

m(d−1)−1∑
i=i∗

dm

dm − |DAff(Sti)|

≤ 1 +

i∗−1∑
i=1

2 +

m(d−1)−1∑
i=i∗

2d

dimAff(G)− dimAff(Sti)

≤ 1 + 2(i∗ − 1) +

m(d−1)−1∑
i=m(d−1)−d

2d

m(d− 1)− dimAff(Sti)

≤ 2md+

d∑
j=1

2d

j
≈ 2d(m+ 1 + ln(d)),

where we apply both Lemma 3 and the definition of i∗ to get the third line.

From Markov’s inequality, we then see that P (Tsum ≤ cE[Tsum]) ≥ 1− 1
c =⇒ P (Tsum ≤ s = 2cd(m+1+ln(d))) ≥ 1− 1

c .

Proof of Lemma 3 . We prove the lemma by induction on m ∈ N. If m = 1, then dimAff(A) = |A| − 1 and the statement
reduces to the almost trivial inequality

dimAff(G)− dimAff(A) = d− |A| ≤ 2d
d− |A|
d

.

Let us now consider m ∈ N and assume that the lemma has been proved for m− 1. Let c := (dm − |A|)/dm be the ratio of
missing points, and let us define the subsets

Gk = {z ∈ G : zm = k}

for k ∈ [d]. Consider the set of indices
I := {k ∈ [d] : A ∩Gk ̸= ∅}.

As
A ⊂

⋃
k∈I

Gk,

the average number of points of A within each set Gk (for k ∈ I) must be |A|/|I|, and in particular there exists k′ ∈ I such
that |A ∩Gk′ | ≥ |A|/|I|. Up to reordering the elements {1, . . . , d}, we can assume without loss of generality that k′ = 1.
Consider now the sets G1 and A1 := A ∩G1. There is a trivial isomorphism between the one hot encoding representations

29

Compositional Risk Minimization

of G1 and that of the set [d]m−1, and the set A1 does verify Aff(A1)∩G1 = A1. Moreover, |A1|
dm−1 ≥ |A|

|I|dm−1 = d
|I|

|A|
dm ≥ 1

2

by assumption. Hence we can apply our recursive hypothesis to the sets A1 and G1 to conclude that

dimAff(G1)− dimAff(A1) ≤ 2d
dm−1 − |A1|

dm−1
≤ 2d

dm − |A|d/|I|
dm

. (43)

As A1 ⊂ A, we can write {a1, . . . , al} = A\A1 for some l, and we see that

dimAff(G1)− dimAff(A1) ≥ dimAff(G1 ∪ {a1})− dimAff(A1 ∪ {a1})
≥ dimAff(G1 ∪ {a1, a2})− dimAff(A1 ∪ {a1, a2})
≥ . . .
≥dimAff(G1 ∪ {a1, . . . , al})
− dimAff(A1 ∪ {a1, . . . , al})

=dimAff(G1 ∪A)− dimAff(A),

where each successive inequality is true because the newly added point as+1 either belongs to both Aff(G1 ∪ {a1, . . . , as})
and Aff(A1 ∪ {a1, . . . , as}), to neither of them, or only to Aff(A1 ∪ {a1, . . . , as}). Hence we find that

dimAff(G1 ∪A)− dimAff(A) ≤ dimAff(G1)− dimAff(A1). (44)

Note also that
⋃

k∈I G
k ⊂ Aff(G1∪A) (in fact, the inclusion is an equality). Indeed, it is easy to see that for any z ∈ Gk, we

haveGk ⊂ Aff(G1∪{z}): with our vectorization ofG, the setGi is composed of all vectors of the shape [u1, . . . , um−1, e
d
i],

where the uj ∈ Rd are one-hot encodings and edi = [0, . . . , 1, . . . , 0] is a one-hot encoding of i ∈ [d], i.e. d− 1 zeroes and a
one in position i. Let us write z ∈ Gk as [v1, . . . , vm−1, e

d
k], and consider z̃ := [v1, . . . , vm−1, e

d
1] ∈ G1. Note that z− z̃ =

[0, . . . , 0, edk− ed1]. Then any z′ = [u1, . . . , um−1, e
d
k] ∈ Gk can be written as [u1, . . . , um−1, e

d
1] + z− z̃ ∈ Aff(G1 ∪{z}),

which shows that Gk ⊂ Aff(G1 ∪ {z}). As A ∩Gk ̸= ∅ for any k ∈ I (by definition), this means that Gk ⊂ Aff(G1 ∪A)
for all k ∈ I . Hence we get

dimAff

(⋃
k∈I

Gk

)
− dimAff(A) ≤ 2d

dm − |A|d/|I|
dm

(45)

by combining equation 43 and equation 44. Furthermore, the same argument as above shows that if zj ∈ Gj for j ∈ [d]\I ,
then Gj ⊂ Aff(G1 ∪ {zj}), which means that

G = Aff

((⋃
k∈I

Gk

)
∪ {zj}j∈[d]\I

)
.

This means that adding d − |I| vectors to Aff
(⋃

k∈I G
k
)

is enough for the resulting set to affinely generate G; this is
equivalent to saying that

dimAff (G)− dimAff

(⋃
k∈I

Gk

)
≤ d− |I|. (46)

By combining equation 45 and equation 46, we find that

dimAff (G)− dimAff (A) ≤ 2d
dm − |A|d/|I|

dm
+ d− |I|

= 2d
dm − |A|
dm

+ 2d
|A|
dm

(1− d/|I|) + d− |I|.

Now we only need to show that 2d |A|
dm (1−d/|I|)+d−|I| ≤ 0 to complete the recurrence and prove the lemma. Remember

that we have assumed that |A|
dm ≥ 1/2. Note also that as A =

⊔
k∈I(G

k ∩A) ≤ |I|dm−1, we have |A|/dm ≤ |I|/d. Then
the desired inequality is equivalent (by setting a := |A|

dm and c := |I|/d) to showing that for any a ∈ [1/2, 1] and any
c ∈ [a, 1], we have

2a(1− 1/c) + 1− c ≤ 0,

30

Compositional Risk Minimization

1 2 3 4 5 6

1

2

3

4

5

6

z2

z1

Cartesian
Product for C1

Cartesian
Product for C2

Observed
Combinations

Steps for completing the Cartesian product
via small connected components of size three:

Unobserved combinations
to which we generalize

Figure 5. Illustration of the discrete affine hull. Each cell in the 6 × 6 grid represents an attribute combination, where observed
combinations are solid-colored. The elements in blue form one connected component, C1, and the elements in yellow form another
connected component, C2. Extrapolation is possible for unobserved combinations, represented by the crosshatched cells, as long as
the test distribution samples from the Cartesian products of the connected components. The steps for completing the Cartesian product
visually shows the intuition behind the extrapolation process.

which is a simple exercise (one sees that the expression is an increasing function of c on [a, 1] by deriving with respect to c,
and that it is equal to 0 when c = 1).

Theorem 8. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, Ztrain comprises of s attribute vectors z drawn
uniformly at random from Z×, and the test distribution q satisfies compositional shift characterization. If s ≥ 2d(m+ 1 +
ln(d)), p̂(z|x) = p(z|x),∀z ∈ Ztrain,∀x ∈ Rn, q̂(z) = q(z),∀z ∈ Ztest, then the output of CRM (equation 10) matches
the test distribution, i.e., q̂(z|x) = q(z|x), ∀z ∈ Ztest,∀x ∈ Rn, with probability greater than 1− 1

c .

Proof. Firstly, we can use Theorem 7 to conclude that DAff(Ztrain) = Z× with probability at least 1 − 1/c. Owing to
compositional shifts Ztest ⊆ DAff(Ztrain). We can now use Theorem 2 to arrive at the result.

D.5. Discrete Affine Hull: A Closer Look

In the next result, we aim to give a characterization of discrete affine hull that helps us give a two-dimensional visualization
of DAff(Ztrain). Before we even state the result, we illustrate discrete affine hull of a 6× 6 grid. Consider the 6× 6 grid
shown in Figure 5. The attribute combinations corresponding to the observed groups are shown as solid colored cells (blue
and yellow). The light shaded elements (blue and yellow) denote the set of groups that belong to the affine hull of the solid
colored groups. We now build the characterization that helps explain this visualization.

We introduce a graph on the attribute vectors observed. Each vertex corresponds to the attribute vector, i.e., [z1, z2]. There is
an edge between two vertices if the Hamming distance between the attribute vectors is one. A connected component is a
subgraph in which all vertices are connected, i.e., between every pair in the subgraph there exists a path. Let us start by
making an observation about the connected components in this graph.

We consider a partition of observed groups into K maximally connected components, {C1, · · · , CK}. Define Cij as the set
of values the jth component takes in the ith connected component. Observe that Cij ∩ Clj = ∅ for i ̸= l. Suppose this
was not that case and Cij ∩ Clj ̸= ∅. In such a case, there exists a point in Ci and another point in Cl that share the jth

component. As a result, the two points are connected by an edge and hence that would connect Ci and Cj . This contradicts
the fact that Ci and Cj are maximally connected, i.e., we cannot add another vertex to the graph while maintaining that there
is a path between any two points in the component. In what follows, we will show that the afine hull of Cj is Cj1 × Cj2,

31

Compositional Risk Minimization

which is the Cartesian product extension of set Cj . Next, we give some definitions and make a simple observation that
allows us to think of sets Cj1 × Cj2 as subgrids, which are easier to visualize.

Definition 1. Contiguous connected component: For each coordinate j ∈ {1, 2}, consider the smallest value and the
largest value assumed by it in the connected component C and call it minj and maxj . We say that the connected component
C is contigous if each value in the set {minj ,minj +1, · · · ,maxj −1,maxj} is assumed by some point in C for all
j ∈ {1, 2}.

Smallest subgrid containing a contigous connected component C: The range of values assumed by jth coordinate in
C, where j ∈ {1, 2}, are {minj , · · · ,maxj}. The subgrid {min1, · · ·max1} × {min2, · · ·max2} is the smallest subgrid
containing C. Observe that this subgrid is the smallest grid containing C because if we drop any column or row, then some
point taking that value in C will not be in the subgrid anymore.

The groups observed at training time can be divided intoK maximally connected components {C1, · · · , CK}. We argue that
without any loss of generality each of these components are contiguous. Suppose some of the components in {C1, · · · , CK}
are not contiguous. We relabel the first coordinate as π(cri1) =

∑
j<i |Cj1|+ r, where cri1 is the rth point in Ci1. We can

similarly relabel the second coordinate as well. Under the relabeled coordinates, each component is maximally connected
and contiguous. Also, under this relabeling the Cartesian products Cj1 × Cj2 correspond to the smallest subgrid containing
Cj . Let us go back to the setting of Figure 5. The sets of observed groups shown in solid blue and solid yellow form two
connected components C1 and C2 respectively. Their Cartesian product extensions are shown as well in the Figure 5. Since
the connected components were contiguous the Cartesian product extensions correspond to smallest subgrids containing the
respective connected component.

Theorem 9. Given the partition of training support as Ztrain = {C1, · · · , CK}, we have:

• The affine span of a contiguous connected component C is the smallest subgrid that contains that connected component
C.

• The affine span of the union over disjoint contiguous connected components is the union of the smallest subgrids that
contain the respective connected components.

Proof. C denotes the connected component under consideration and the smallest subgrid containing it is S. Denote the
affine span of C as A. We first show that the subgrid S ⊆ A.

We start with a target point t = (t1, t2) inside S. We want show that the one-hot concatention of this point t can be expressed
as an affine combination of the points in C.

Firstly, if t is already in C, then the point is trivially in the affine span. If that is not the case, then let us proceed to more
involved cases. Consider the shortest path joining a point of the form (t1, s2) ∈ C, where s2 ̸= t2, and a point of the form
(s1, t2) ∈ C, where s1 ̸= t1. If such points do not exist, then t cannot be in S, which is a contradiction.

We assign a weight of (+1) to the concatenation of one-hot encodings of the point (t1, s2). We then traverse the path until
we encounter a point where s2 changes, note that such a point has to occur because of existence of (s1, t2) on the path.
We call this point v = (s̃

′

1, s
′

2). The point before v on the path is w = (s̃
′

1, s2). We assign a weight of (−1) to w. We
summarize the path seen so far below. We also write the weights assigned to the points

s = (t1, s2) (+1)

u = (s
′

1, s2)

...

w = (s̃
′

1, s2) (−1)

v = (s̃
′

1, s
′

2)

(47)

After w, we have a weight of +1 assigned to t1, −1 assigned to s̃
′

1 (note that s̃
′

1 cannot be t1, this follows from the fact that
we are on shortest path between points of the form (t1, s2) and (s1, t2)). We call this state S1. After w, we wait for a point

32

Compositional Risk Minimization

on the path where s̃
′

1 changes or we reach the terminal state (s1, t2). The latter can happen if s̃
′

1 = s1. In the latter case, we
assign a weight (+1) to the terminal state and thus the final weights are (+1) for t1 and t2 and zero for everything else.
This leads to the desired affine combination. We call this state T1, corresponding to terminal state.

Now suppose we were in a situation where we reach a point q = (s+1 , s̃
′

2). The point before q is r = (s̃
′

1, s̃
′

2). We assign a
weight of (+1) to r. We summarize the path seen after encountering w below.

v = (s̃
′

1, s
′

2)

...

r = (s̃
′

1, s̃
′

2) (+1)

q = (s+1 , s̃
′

2)

(48)

After r, we have a weight of +1 assigned to t1 and a weight of +1 assigned to s̃
′

2. We call this state S2. After r, we wait for
a point where s̃

′

2 changes. It could be that s̃
′

2 changes to t2. The state before it is say u = (s1, s̃
′

2) and last state e = (s1, t2).
Assign a weight of −1 to u and assign a weight of +1 to e. Thus we achieve the target as affine combination of points on
the path. We call this state T2, corresponding to the terminal state.

Now let us consider the other possibility that the terminal state has not been reached. We call such a point m = (s̃+1 , s̃
+
2).

The point that occurs before this point is l = (s̃+1 , s̃
′

2). We assign a weight of (−1) to l. We summarize the path taken below.

q = (s+1 , s̃
′

2)

...

l = (s̃+1 , s̃
′

2) (−1)
m = (s̃+1 , s̃

+
2)

(49)

After l, t1 is assigned a weight of +1 and s̃+1 is assigned a weight of −1. We reach the state S1 again. From this point on,
the same steps repeat. We keep cycling between S1 and S2 until we reach the terminal state from either S1 or S2 at which
point we achieve the desired affine combination. The cycling of states only goes on for a finite number of steps as the entire
path we are concerned with has a finite length. We show the process in Figure 6. Thus S ⊆ A.

We now make an observation about the set A, which is the affine hull of set C. Suppose the first coordinate
takes values between {min1, · · · ,max1}. The corresponding one-hot encodings of the first coordinate are written as
{onehot(min1), · · · , onehot(max1)}. Now consider a value c which is not in {min1, · · · ,max1}. We claim that no
affine combination of vectors in {onehot(min1), · · · , onehot(max1)} can lead to onehot(c). We justify this claim as
follows. Observe that no vector in {onehot(min1), · · · , onehot(max1)} has a non-zero entry in the same coordinate
where onehot(c) is also non-zero. Hence, any affine combination of vectors in {onehot(min1), · · · , onehot(max1)} will
always have a zero weight in the entry where onehot(c) is non-zero. It is now clear that the first component of affine
hull of A is always between {min1, · · · ,max1}. Similarly, the second component of affine hull of A is always between
{min2, · · · ,max2}. Therefore, A ⊆ S. As a result, A = S. Another way to say this is that DAff(Cj) = Cj1 × Cj2.

We now move to the second part of the theorem. We have already shown that DAff(Cj) = Cj1 × Cj2. We now want to
show that

DAff
(K⋃
j=1

Cj

)
=

K⋃
j=1

(
Cj1 × Cj2

)
Observe that DAff(A) ⊆ DAff(A∪B) and DAff(B) ⊆ DAff(A∪B), which implies DAff(A)∪DAff(B) ⊆ DAff(A∪B).
Therefore, from the first part and this observation it follows that

⋃K
j=1

(
Cj1 × Cj2

)
⊆ DAff

(⋃K
j=1 Cj

)
. We now show

DAff
(⋃K

j=1 Cj

)
⊆
⋃K

j=1

(
Cj1 × Cj2

)
.

33

Compositional Risk Minimization

S1 S2T1 T2

Figure 6. Illustration of state transition in proof of Theorem 9.

Take the K maximally connected components {C1, · · · , CK} and let the set of respective smallest subgrids con-
taining them be {S1, · · · , SK}. Define a point z′ as the affine combination of points across these components as
z′ =

∑K
i=1

∑Ni

j=1 αijzij , where zij is the jth point in Ci, which contains Ni points. We can also write z′ as

z′ =
∑K

i=1

(∑Ni

j=1 αij

)∑Ni

j=1
αij∑Ni

j=1 αij

zij . Define z′i =
∑Ni

j=1
αij∑Ni

j=1 αij

zij . Observe that z′i is in the affine combi-

nation of points in Ci and hence z′i is a point in Si. Let α̃i =
∑Ni

j=1 αij . In this notation, we can see z′ is an affine

combination of z′i’s denoted as
∑K

i=1 α̃iz
′
i. In this representation, there is at most one point per Si in the affine combination.

There are two cases to consider. In the first case, exactly one component α̃i is non-zero and rest all components are zero. In
the second case, at least two components α̃i’s are non-zero. In this setting, we can only keep the non-zero α̃i’s in the sum
denoted as

∑
i α̃iz

′
i. Suppose z′i = (ep, eq) (without loss of generality), where ep is one-hot vector that is one on the pth

coordinate. Observe that no other point in the sum
∑

i α̃iz
′
i will have a non-zero contribution on the pth coordinate. As a

result, in the final vector the pth coordinate of the first attribute will take the value 0 < α̃i < 1. This point is not a valid
point in the set of all possible one-hot concatenations Z and hence it does not belong to the affine hull DAff

(⋃K
j=1 Cj

)
.

Thus we are left with the first case. Observe that in the first case, we will always generate a point in one of the DAff(Cj),
where j ∈ {1, · · · ,K}. Thus DAff

(⋃K
j=1 Cj

)
⊆
⋃K

j=1 DAff(Cj), which implies DAff
(⋃K

j=1 Cj

)
⊆
⋃K

j=1 Cj1 × Cj2.
This completes the proof.

D.6. No Extrapolation beyond Discrete Affine Hull: Proof for Theorem 10

In this section, we rely on the characterization of discrete affine hulls shown in the previous section in Theorem 9. Suppose
we learn an additive energy model to estimate p̂(x|z) and estimate the density p(x|z) for all training groups using maximum
likelihood. In this case, we know that p̂(x|z) = p(x|z) for all z ∈ DAff(Ztrain). In the next theorem, we show that such
densities that satisfy p̂(x|z) = p(x|z) for all z ∈ DAff(Ztrain) may not match the true density outside the affine hull. In the
next result, we assume that ∀z ∈ Z×, p(·|z) is not uniform.

Theorem 10. Suppose we learn an additive energy model to estimate p̂(x|z) and estimate the density p(x|z) for all training
groups. There exist densities that maximize likelihood and exactly match the training distributions but do not extrapolate to
distributions outside the affine hull of Ztrain, i.e., ∃z ∈ Z×, where p̂(·|z) ̸= p(·|z).

Proof. We first take Ztrain and partition the groups into K maximally connected components denoted {C1, · · · , CK}. From
Theorem 9, we know that the affine hull of Ztrain is the union of subgrids {S1, · · · , SK}, where each subgrid Sj is the
Cartesian product Cj1 × Cj2.

Let us consider all points (z̃1, z̃2) in some subgrid Sk. For each such (z̃1, z̃2) ∈ Sk, define Ê1(x, z̃1) = E1(x, z̃1) + αk(x),

Ê2(x, z̃2) = E(x, z̃2)− αk(x). Note that regardless of choice of αk the density, p̂(x|z) = 1
Z(z)e

−⟨σ(z),Ê(x)⟩ matches the

true density p(x|z) for all groups z in
⋃K

i=1 Si.

Select any group zref = (z1, z2) that is not in the union of subgrids. From the definition of Z×, it follows that there
are points of the form (z1, z

′
2) in one of the subgrid Sj and points of the form (z′1, z2) are in some subgrid Sr. Let

αj(x) = −E1(x,z1)+E2(x,z2)
2 and αr(x) =

E1(x,z1)+E2(x,z2)
2 . Observe that Ê1(x, z1)+Ê2(x, z2) = E1(x, z1)+E2(x, z2)+

34

Compositional Risk Minimization

αj(x)−αr(x) = 0. Thus this choice of αj(x)−αr(x) ensures that p̂(x|z1, z2) is uniform and hence cannot match the true
p(x|z1, z2).

This completes the proof.

Based on the above proof, we now argue that there exist solutions to CRM that do not extrapolate outside the affine hull.
Let us consider solutions to CRM denoted Ê, B̂, which satisfies the property that ⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩ , B̂(z) =
B(z)∀z ∈ Ztrain. Following the proof above, we can choose Ê′s in such a way that the sum of energies at a certain reference
point outside the affine hull is zero and at all points inside the affine hull the sum of energies achieve a perfect match. For
the group zref = (z1, z2) not in the affine hull of Ztrain, we set Ê1(x, z1) + Ê2(x, z2) = ⟨σ(z), Ê(x)⟩ = 0.

Suppose q̂(z|x) = q(z|x),∀z ∈ DAff(Ztrain)
⋃
{zref}. We now compute the likelihood ratio at zref and a point z ∈ Ztrain.

We obtain

q̂(zref |x)
q̂(z|x)

=
q(zref |x)
q(z|x)

=⇒

− log
(q̂(zref |x)
q̂(z|x)

)
= − log

(q(zref |x)
q(z|x)

)
=⇒

⟨σ(zref), Ê(x)⟩ − ⟨σ(z), Ê(x)⟩ = ⟨σ(zref), E(x)⟩ − ⟨σ(z), E(x)⟩ − (θ(z)− θ(zref))

(50)

where θ(z) corresponds to collection of all terms that only depend on z. We already know that ⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩
and ⟨σ(zref), Ê(x)⟩ = 0. Substituting these into the above expression we obtain

⟨σ(zref), E(x)⟩ = θ(z)− θ(zref) (51)

From the above condition, it follows that q(x|zref) is uniform. This implies that p(x|zref) is also uniform, which contradicts
the condition that p(x|zref) is not uniform. Therefore, q̂(z|x) = q(z|x),∀z ∈ Ztrain

⋃
{zref} cannot be true.

D.7. Extrapolation of Discrete Additive Functions via Discrete Affine Hulls

Define a real-valued function f(z1, · · · , zm) =
∑m

j=1 fj(zj), where each zj ∈ {1, · · · , d}, ∀j ∈ {1, · · · ,m}. Define
fj = [fj(1), · · · , fj(d)] and f = [f1, · · · ,fm]. We can re-express the function f in terms of one-hot encoding notation.
f(z1, · · · , zm) = ⟨σ(z),f⟩. Given data {(zj , yj)}sj=1, where yj = f(zj). Denote S = {zj}sj=1. Given a new point z̃,
which is not in the training data, we seek to predict the label ỹ. We can exploit the additive structure of the function to
predict ỹ. Suppose z̃ ∈ DAff(S). From this σ(z̃) =

∑s
j=1 αjσ(z

j), where
∑

j αj = 1. We can express ỹ in terms of the
seen data as follows. Observe that ỹ = ⟨σ(z̃),f⟩ = ⟨

∑s
j=1 αjσ(z

j),f⟩ =
∑n

j=1 αj ⟨σ(zj),f⟩ =
∑n

j=1 αjy
j . From this,

it follows that we can perfectly predict the labels for points in the discrete affine hull. Thus from Theorem 7, it follows that
if points in S are sampled uniformly at random, then O(md+ d log d) suffice to extrapolate to the entire grid of dm points
and achieves CPE. In the work of (Dong & Ma, 2022), the authors also studied such discrete functions. However, their
analysis does not propose the crucial object discrete affine hull, which gives a sharp characterization of extrapolation, and
also do not provide sharp bounds on the number of samples needed for CPE. In (Dong & Ma, 2022), show that non-trivial
extrapolation is achievable provided the bipartite graph induced the probability distribution over the seen data is connected.

35

Compositional Risk Minimization

2 1 0 1 2

2

1

0

1

2

Attribute z1

2 1 0 1 2

2

1

0

1

2

Attribute z2

(a) ERM

2 1 0 1 2

2

1

0

1

2

Attribute z1

2 1 0 1 2

2

1

0

1

2

Attribute z2

(b) CRM (Uniform Prior)

Figure 7. Failure of ERM to generalize to unseen test group. We consider the same task as in Figure 2, where we model a distribution
with four Gaussian components. The group (−1,−1) (pink dashed) has zero prior probability in the training distribution. Subfigure
(a) shows the decision boundary obtained by an ERM-trained binary classifier for predicting the attribute z1 (attribute on x-axis), or
attribute z2 (attribute on y-axis) respectively. ERM fails to learn the decision boundary y that would generalize well on samples from the
missing group (−1,−1),]. Subfigure b) shows the classifiers obtained using CRM with uniform test priors (and where we marginalize the
predicted group probabilities to get q(z1|x) and q(z2|x)). By contrast to ERM, CRM extrapolates and yields decision boundaries that
generalize well on samples from the unseen group (−1,−1). Decision regions were obtained from finite-data simulations, leading to
minor imperfections.

E. Additional Details on CRM’s Adaptation to Test Distribution
E.1. Derivation of Bayes Optimal Classifier

Three group setting. (Figure 2 left, train prior) Suppose the data is drawn from three groups
{+1,+1), (−1,+1), (+1,−1)}, which are sampled with equal probability.

The Bayes optimal classifier predicts (+1,+1) if

e−∥x−(1,1)∥2

> e−∥x−(1,−1)∥2

=⇒ ∥x− (1, 1)|2 < ∥x− (1,−1)∥2 =⇒ −2(x1 + x2) < −2(x1 − x2) =⇒ x2 > 0

e−∥x−(1,1)∥2

> e−∥x−(−1,1)∥2

=⇒ ∥x− (1, 1)∥2 < ∥x− (−1, 1)∥2 =⇒ −2(x1 + x2) < −2(−x1 + x2) =⇒ x1 > 0

(52)

The Bayes optimal classifier predicts (+1,−1) if

e−∥x−(1,−1)∥2

> e−∥x−(1,1)∥2

=⇒ ∥x− (1, 1)|2 > ∥x− (1,−1)∥2 =⇒ −2(x1 + x2) > −2(x1 − x2) =⇒ x2 < 0

e−∥x−(1,−1)∥2

> e−∥x−(−1,1)∥2

=⇒ ∥x− (1, 1)∥2 < ∥x− (−1, 1)∥2 =⇒ −2(x1 − x2) < −2(−x1 + x2) =⇒ x1 > x2
(53)

From same calculation it follows that the Bayes optimal classifier predicts (−1,+1) if x1 < 0 and x2 > x1.

Four group setting. (Figure 2 right, uniform prior) Suppose the data is drawn from four groups
{+1,+1), (−1,+1), (+1,−1), (−1,−1)}, which are sampled with equal probability.

The Bayes optimal classifier for predicting the groups can be obtained using exactly same calculations as above.

The Bayes optimal classifier predicts: (+1,+1) if x1 > 0 and x2 > 0, (−1, 1) if x1 < 0 and x2 > 0, (−1,−1) if x1 < 0
and x2 < 0, and (−1, 1) if x1 < 0 and x2 > 0.

E.2. Comparison with ERM

We also train ERM on the same training datasets where we observe data sampled uniformly from the groups
(+1,+1), (−1,+1), (+1,−1), but we don’t observe data from the group (−1,−1). Figure 7a shows the decision boundary
of ERM for predicting the attribute z1 (attribute on x-axis) and attribute z2 (attribute on y-axis). Note that ERM fails to
generalize to the novel group at test time (bottom left quadrant), while CRM with uniform test prior (Figure 7b) can adapt to
the test distribution and extrapolate to the missing group.

36

Compositional Risk Minimization

F. Experiments Setup
F.1. Dataset Details

Waterbirds (Wah et al., 2011). The task is to classify land birds (y = 0) from water birds (y = 1), where the spurious
attributes are land background (a = 0) and water background (a = 1). Hence, we have a total of 4 groups z = (y, a) in the
dataset.

CelebA (Liu et al., 2015). The task is to classify blond hair (y = 1) from non-blond hair (y = 0), where the spurious
attribute is gender, female (a = 0) and male (a = 1). Hence, we have a total of 4 groups z = (y, a) in the dataset.

MetaShift (Liang & Zou, 2022). The task is to classify cats (y = 0) from dogs (y = 1), where the spurious attribute is
background, indoor (a = 0) and outdoor (a = 1). Hence, we have a total of 4 groups z = (y, a) in the dataset.

MultiNLI (Williams et al., 2017). The task is to classify the relationship between the premise and hypothesis in a text
document into one of the 3 classes: netural (y = 0), contradiction (y = 1), and entailment (y = 2). The spurious attribute
are words like negation (binary attribute a), which are correlated with the contradiction class. Hence, we have a total of 6
groups z = (y, a) in the dataset.

CivilComments (Borkan et al., 2019). The task is to classify whether a text document contains toxic language (y = 0)
versus it doesn’t contain toxic language (y = 1), where the spurious attribute a corresponds to 8 different demographic
identities (Male, Female, LGBTQ, Christian, Muslim, Other Religions, Black, and White). Hence, we have a total of 16
groups z = (y, a) in the dataset.

NICO++ (Zhang et al., 2023). This is a a large scale (60 classes with 6 spurious attributes) domain generalization
benchmark, and we follow the procedure in Yang et al. (2023b) where all the groups with less than 75 samples were dropped
from training. This leaves us with 337 groups during training, however, the validation set still has samples from all the 360
groups. Hence, we additionally discard these groups from the validation set as well to design the compositional shift version.

Dataset Total Classes Total Groups Train Size Val Size Test Size

Waterbirds 2 4 4795 1199 5794
CelebA 2 4 162770 19867 19962

MetaShift 2 4 2276 349 874
MultiNLI 3 6 206175 82462 123712

CivilComments 2 16 148304 24278 71854
NICO++ 60 360 62657 8726 17483

Table 3. Statitics for the different benchmarks used in our experiments.

F.2. Metric Details

Given the test distributions z = (y, a) ∼ q(z) and x ∼ q(x|z), lets denote the corresponding class predictions as ŷ = M̂(x)
as per the method M̂ . Then average accuracy is defined as follows:

Average Acc := E(y,a)Ex∼q(x|z)
[
1[y == M̂(x)]

]
Hence, this denotes the mean accuracy with groups drawn as per the test distribution q(z). However, if certain (majority)
groups have a higher probability of being sampled than others (minority groups) as per the distribution q(z|x), then the
average accuracy metric is more sensitive to mis-classifications in majority groups as compared to the minority groups.
Hence, a method can achieve high average accuracy even though its accuracy for the minority groups might be low.

Therefore, we use the worst group accuracy metric, defined as follows.

Worst Group Acc := min(y,a)∈ZtestEx∼q(x|z)
[
1[y == M̂(x)]

]
Essentially we compute the accuracy for each group (y, a) ∼ q(z) as Ex∼q(x|z)

[
1[y == M̂(x)]|

]
and then report the worst

performance over all the groups. This metrics has been widely used for evaluating methods for subpopulation shifts (Sagawa

37

Compositional Risk Minimization

et al., 2019; Yang et al., 2023b).

Similarly, we define the group balanced accuracy (Tsirigotis et al., 2024) as follows, where we compute the average of all
per-group accuracy Ex∼q(x|z)

[
1[y == M̂(x)]

]
.

Group Balanced Acc :=
1

|Ztest|
∑

(y,a)∈Ztest

Ex∼q(x|z)
[
1[y == M̂(x)]

]

F.3. Method Details

For all the methods we have a pre-trained representation network backbone with linear classifier heads. We use ResNet-
50 (He et al., 2016) for the vision datasets (Waterbirds, CelebA, MetaShift, NICO++) and BERT (Devlin et al., 2018) for
the text datasets (MultiNLI, CivilComments). The parameters of both the representation network and linear classifier are
updated with the same learning rate, and do not employ any special fine-tuning strategy for the representation network. For
vision datasets we use the SGD optimizer (default values for momemtum 0.9), while for the text datasets we use the AdamW
optimizer (Paszke et al., 2017) (default values for beta (0.9, 0.999)).

Hyperparameter Selection. We rely on the group balanced accuracy on the validation set to determine the optimal
hyperparameters. We specify the grids for each hyperparameter in Table 4, and train each method with 5 randomly drawn
hyperparameters. The grid sizes for hyperparameter selection were designed following Pezeshki et al. (2023).

Dataset Learning Rate Weight Decay Batch Size Total Epochs

Waterbirds 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 5000
CelebA 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 10000

MetaShift 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 5000
MulitNLI 10Uniform(−6,−4) 10Uniform(−6,−3) 2Uniform(4,6) 10000

CivilComments 10Uniform(−6,−4) 10Uniform(−6,−3) 2Uniform(4,6) 10000
NICO++ 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 10000

Table 4. Details about the grids for hyperparameter selection. The choices for grid sizes were taken from Pezeshki et al. (2023).

38

Compositional Risk Minimization

G. Additional Results
G.1. Results Averaged over all the Compositional Shift Scenarios

We provide complete results on benchmarking CRM for compositional shifts on the datasets Waterbirds (Wah et al., 2011),
CelebA (Liu et al., 2015), MetaShift (Liang & Zou, 2022), MultiNLI (Williams et al., 2017), CivilComments (Borkan et al.,
2019), and NICO++ dataset (Zhang et al., 2023). We compare CRM against 7 baselines; ERM, Group Distributionally
Robust Optimization (GroupDRO) (Sagawa et al., 2019), Logit Correction (LC) (Liu et al., 2022b), supervised logit
adjustment (sLA) (Tsirigotis et al., 2024), Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), Risk Extrapolation
(VREx) (Krueger et al., 2021), and Mixup (Zhang et al., 2017).

Table 5 provides full results for the same, with groups balanced accuracy, standard across 3 random seeds, and baselines
IRM, VREx, and Mixup, that were excluded from Table 1 in the main paper. We find that CRM is either competitive or
outperforms all the baselines w.r.t. both group balanced accuracy and the worst group accuracy. Also, CRM outperforms
the baselines IRM, VREx, and Mixup by a wide margin w.r.t WGA. Hence, we had decided to drop these baselines from
the Table 1 in the main paper to show succinct comparison with strong baselines.

Further, in scenarios where CRM is competitive with baselines on WGA (Waterbirds, MultiNLI, CivilComments), please
note that here we aggregate performance over multiple compositional shift scenarios. When we analyze the worst case com-
positional shift scenario, we find that CRM outperforms all the baselines. Please check the next subsection (Appendix G.2)
for detailed results in each compositional shift scenario.

G.2. Detailed Results for all the Compositional Shift Scenarios

We now present resutls for all the compositional shift scenarios associated with each benchmark; Waterbirds (Table 6),
CelebA (Table 7), MetaShift (Table 8), MultiNLI (Table 9), and CivilComments (Table 10, Table 11). Here we do not
aggregate over the multiple compositional shift scenarios of a benchmark, and provide a more detailed analysis with results
for each scenario. For each method, we further highlight the worst case scenario for it, i.e, the scenario with the lowest worst
group accuracy amongst all the compositional shift scenarios. This helps us easily compare the performance of methods
for the respective worst case compositional shift scenario, as opposed to the average over all scenarios in Table 1. An
interesting finding is that CRM outperforms all the baselines in the respective worst case compositional shift scenarios by a
wide margin, especially w.r.t worst-group accuracy.

39

Compositional Risk Minimization

Dataset Method Average Acc Balanced Acc Worst Group Acc Worst Group Acc
(No Groups Dropped)

Waterbirds

ERM 77.9 (0.1) 75.3 (0.1) 43.0 (0.2) 62.3 (1.2)
G-DRO 77.9 (0.9) 78.8 (0.7) 42.3 (2.6) 87.3 (0.3)
LC 88.3 (0.9) 86.9 (0.6) 75.5 (1.8) 88.7 (0.3)
sLA 89.3 (0.4) 87.5 (0.4) 77.3 (1.4) 89.7 (0.3)
IRM 73.6 (0.8) 70.4 (0.3) 28.7 (2.2) 72.3 (1.2)
VREx 81.0 (0.6) 80.0 (0.5) 45.6 (1.1) 84.3 (0.7)
Mixup 81.6 (0.1) 79.9 (0.1) 52.2 (0.4) 69.7 (0.9)
CRM 87.1 (0.7) 87.8 (0.1) 78.7 (1.0) 86.0 (0.6)

CelebA

ERM 85.8 (0.3) 75.6 (0.1) 39.0 (0.3) 52.0 (1.0)
G-DRO 89.2 (0.5) 86.8 (0.1) 67.8 (0.8) 91.0 (0.6)
LC 91.1 (0.2) 83.5 (0.0) 57.4 (0.5) 90.0 (0.6)
sLA 90.9 (0.2) 83.6 (0.3) 57.4 (1.3) 86.7 (1.9)
IRM 80.4 (1.3) 76.7 (1.1) 40.1 (2.4) 67.7 (3.5)
VREx 86.2 (0.3) 82.8 (0.5) 49.2 (2.1) 89.0 (0.6)
Mixup 84.9 (0.2) 77.9 (0.2) 42.8 (0.9) 62.0 (1.0)
CRM 91.1 (0.2) 89.2 (0.0) 81.8 (0.5) 89.0 (0.6)

MetaShift

ERM 85.7 (0.4) 81.7 (0.3) 60.5 (0.5) 63.0 (0.0)
G-DRO 86.0 (0.3) 82.6 (0.2) 63.8 (1.1) 80.7 (1.3)
LC 88.5 (0.0) 85.0 (0.0) 68.2 (0.5) 80.0 (1.2)
sLA 88.4 (0.1) 84.0 (0.0) 63.0 (0.5) 80.0 (1.2)
IRM 83.7 (0.3) 80.3 (0.4) 55.8 (1.0) 69.3 (2.4)
VREx 84.9 (0.4) 81.7 (0.3) 59.9 (0.2) 75.3 (2.2)
Mixup 86.8 (0.0) 82.8 (0.1) 62.8 (0.7) 68.3 (2.7)
CRM 87.6 (0.3) 84.7 (0.2) 73.4 (0.4) 74.7 (1.5)

MultiNLI

ERM 68.4 (2.1) 68.1 (1.9) 7.5 (1.3) 68.0 (1.7)
G-DRO 70.4 (0.2) 73.7 (0.2) 34.3 (0.2) 57.0 (2.3)
LC 75.9 (0.1) 77.3 (0.2) 54.3 (1.0) 74.3 (1.2)
sLA 76.4 (0.3) 77.4 (0.2) 55.0 (1.5) 71.7 (0.3)
IRM 65.7 (0.1) 63.7 (0.4) 8.1 (0.8) 54.3 (2.4)
VREx 69.0 (0.0) 68.8 (0.2) 4.1 (0.3) 69.7 (0.3)
Mixup 70.2 (0.1) 69.7 (0.1) 14.6 (1.0) 63.7 (2.9)
CRM 74.3 (0.3) 76.1 (0.3) 58.7 (1.4) 74.7 (1.3)

CivilComments

ERM 80.4 (0.2) 78.4 (0.0) 55.9 (0.2) 61.0 (2.5)
G-DRO 80.1 (0.1) 78.9 (0.0) 61.6 (0.5) 64.7 (1.5)
LC 80.7 (0.1) 79.0 (0.0) 65.7 (0.5) 67.3 (0.3)
sLA 80.6 (0.1) 79.1 (0.0) 65.6 (0.2) 66.3 (0.9)
IRM 79.7 (0.2) 78.0 (0.0) 53.5 (0.5) 60.3 (1.5)
VREx 79.8 (0.1) 78.7 (0.1) 57.5 (0.4) 63.3 (1.5)
Mixup 80.1 (0.1) 78.2 (0.0) 55.4 (0.6) 61.3 (1.5)
CRM 83.7 (0.1) 78.4 (0.0) 67.9 (0.5) 70.0 (0.6)

NICO++

ERM 85.0 (0.0) 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)
G-DRO 84.0 (0.0) 83.7 (0.3) 36.7 (0.7) 33.7 (1.2)
LC 85.0 (0.0) 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)
sLA 85.0 (0.0) 85.0 (0.0) 33.0 (0.0) 35.3 (2.3)
IRM 64.0 (0.6) 62.7 (0.3) 0.0 (0.0) 0.0 (0.0)
VREx 86.0 (0.0) 86.0 (0.0) 37.3 (4.3) 38.0 (5.0)
Mixup 85.0 (0.0) 84.7 (0.3) 33.0 (0.0) 33.0 (0.0)
CRM 84.7 (0.3) 84.7 (0.3) 40.3 (4.3) 39.0 (3.2)

Table 5. Robustness under compositional shift. We compare the proposed Compositional Risk Minimization (CRM) method with 7
baselines. We report various metrics, averaged as a group is dropped from training and validation sets. Last column is WGA under the
dataset’s standard subpopulation shift benchmark, i.e. with no group dropped. All methods have a harder time to generalize when groups
are absent from training, but CRM appears consistently more robust (standard error based on 3 random seeds).

40

Compositional Risk Minimization

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 74.0 (0.0) 82.3 (0.3) 67.0 (0.0)

G-DRO 77.3 (0.7) 83.0 (0.6) 59.7 (1.9)

LC 85.7 (0.3) 88.7 (0.3) 82.0 (0.6)

sLA 86.0 (0.0) 89.0 (0.0) 82.3 (0.3)

IRM 72.7 (2.0) 81.3 (1.2) 58.7 (3.2)

VREx 80.0 (1.5) 85.7 (0.9) 69.3 (2.4)

Mixup 87.3 (0.3) 89.3 (0.3) 84.3 (0.3)

CRM 86.7 (0.9) 88.7 (0.3) 83.0 (1.5)

(0, 1)

ERM 67.3 (0.3) 71.7 (0.3) 28.0 (1.2)

G-DRO 58.3 (3.2) 70.7 (2.0) 11.7 (4.6)

LC 82.7 (3.2) 86.0 (1.7) 72.0 (5.8)

sLA 86.3 (1.7) 88.0 (1.0) 78.7 (3.3)

IRM 55.7 (2.2) 67.7 (0.9) 7.7 (3.7)

VREx 66.0 (1.0) 74.0 (0.6) 22.7 (1.9)

Mixup 65.7 (0.3) 73.0 (0.0) 19.7 (0.3)

CRM 86.0 (2.1) 86.7 (0.7) 73.0 (4.2)

(1, 0)

ERM 84.0 (0.0) 78.0 (0.0) 38.3 (0.3)

G-DRO 90.0 (0.0) 86.0 (0.6) 67.0 (3.6)

LC 93.0 (0.0) 89.0 (0.6) 79.0 (1.2)

sLA 93.0 (0.0) 89.0 (0.6) 79.3 (1.5)

IRM 87.7 (0.3) 81.3 (0.7) 48.0 (4.0)

VREx 89.7 (0.3) 82.7 (0.3) 50.3 (1.7)

Mixup 84.3 (0.3) 80.7 (0.3) 51.7 (2.0)

CRM 86.7 (0.3) 89.0 (0.0) 83.7 (0.3)

ERM 86.3 (0.3) 69.3 (0.3) 38.7 (0.7)

G-DRO 86.0 (0.6) 75.7 (2.2) 31.0 (9.2)

(1, 1) LC 92.0 (0.0) 84.0 (0.6) 69.0 (1.5)

sLA 92.0 (0.0) 84.0 (0.6) 69.0 (1.5)

IRM 78.3 (0.3) 51.3 (0.9) 0.3 (0.3)

VREx 88.3 (0.7) 77.7 (1.8) 40.0 (5.5)

Mixup 89.0 (0.0) 76.7 (0.3) 53.0 (0.6)

CRM 89.0 (0.6) 86.7 (0.7) 75.0 (3.2)

Table 6. Results for the various compositional shift scenarios for the Waterbirds benchmark. For each metric, report the mean (standard
error) over 3 random seeds on the test dataset. We highlight the worst case compositional shift scenario for each method, i.e, the scenario
with the lowest worst group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the respective
worst case compositional shift scenarios.

41

Compositional Risk Minimization

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 68.7 (0.3) 74.0 (0.0) 37.7 (0.3)

G-DRO 85.0 (0.6) 88.0 (0.0) 75.0 (1.2)

LC 88.0 (0.0) 90.3 (0.3) 82.3 (0.3)

sLA 87.7 (0.3) 90.3 (0.3) 82.3 (0.7)

IRM 65.0 (2.5) 72.0 (0.6) 31.3 (4.7)

VREx 82.7 (0.3) 87.7 (0.3) 70.7 (0.9)

Mixup 64.7 (0.3) 72.0 (0.0) 29.3 (0.7)

CRM 91.7 (0.3) 89.3 (0.3) 81.0 (2.0)

(0, 1)

ERM 91.3 (0.9) 91.0 (0.6) 86.7 (1.3)

G-DRO 85.0 (1.5) 88.7 (0.7) 72.7 (3.7)

LC 93.0 (0.6) 87.7 (0.9) 71.0 (1.7)

sLA 92.7 (0.3) 88.0 (0.0) 71.3 (0.9)

IRM 77.0 (2.5) 83.7 (1.3) 53.0 (4.5)

VREx 78.7 (0.9) 85.0 (0.6) 55.7 (1.9)

Mixup 92.0 (0.6) 91.3 (0.3) 87.3 (0.9)

CRM 88.3 (0.9) 91.0 (0.6) 85.0 (2.0)

ERM 87.0 (0.0) 59.3 (0.3) 4.0 (0.0)

G-DRO 91.7 (0.3) 86.3 (0.7) 71.7 (0.9)

(1, 0) LC 88.3 (0.3) 70.7 (0.7) 21.0 (2.1)

sLA 88.3 (0.3) 71.0 (0.6) 21.3 (1.9)

IRM 84.7 (1.5) 72.7 (3.9) 47.3 (10.3)

VREx 88.3 (0.7) 79.3 (1.8) 40.3 (7.9)

Mixup 88.0 (0.0) 67.7 (0.3) 17.3 (1.7)

CRM 93.0 (0.0) 85.7 (0.3) 73.3 (1.8)

(1, 1)

ERM 96.0 (0.0) 78.0 (0.6) 27.7 (2.0)

G-DRO 95.0 (0.0) 84.3 (0.3) 51.7 (1.2)

LC 95.0 (0.0) 85.3 (0.3) 55.3 (1.9)

sLA 95.0 (0.0) 85.0 (0.6) 54.7 (2.3)

IRM 95.0 (0.0) 78.3 (0.7) 28.7 (3.0)

VREx 95.0 (0.0) 79.0 (0.0) 30.3 (0.9)

Mixup 95.0 (0.0) 80.7 (0.3) 37.0 (1.2)

CRM 91.3 (0.3) 91.0 (0.0) 88.0 (0.6)

Table 7. Results for the various compositional shift scenarios for the CelebA benchmark. For each metric, report the mean (standard error)
over 3 random seeds on the test dataset. We highlight the worst case compositional shift scenario for each method, i.e, the scenario with
the lowest worst group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the respective worst
case compositional shift scenarios.

42

Compositional Risk Minimization

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 84.3 (0.3) 84.0 (0.6) 80.3 (0.9)

G-DRO 84.0 (0.6) 83.3 (0.7) 78.0 (0.6)

LC 89.0 (0.0) 85.7 (0.3) 74.3 (1.8)

sLA 90.0 (0.0) 85.0 (0.0) 67.3 (1.9)

IRM 81.0 (0.6) 81.7 (0.3) 70.0 (1.5)

VREx 83.7 (0.9) 83.0 (0.6) 76.7 (1.9)

Mixup 85.0 (0.0) 84.0 (0.0) 77.0 (0.6)

CRM 87.3 (0.3) 84.3 (0.3) 73.3 (0.7)

(0, 1)

ERM 85.0 (0.0) 79.0 (0.0) 49.0 (0.0)

G-DRO 86.0 (1.0) 81.7 (0.3) 55.3 (3.2)

LC 86.0 (0.0) 84.0 (0.0) 63.7 (0.3)

sLA 86.0 (0.0) 84.0 (0.0) 64.0 (0.6)

IRM 83.7 (0.3) 78.7 (0.9) 44.7 (1.9)

VREx 84.0 (0.0) 81.0 (0.0) 48.3 (0.7)

Mixup 86.0 (0.0) 80.0 (0.0) 52.7 (0.3)

CRM 88.3 (0.3) 85.7 (0.3) 78.0 (1.0)

ERM 90.0 (0.0) 82.0 (0.0) 48.3 (0.3)

G-DRO 90.3 (0.3) 82.7 (0.9) 52.7 (2.3)

(1, 0) LC 90.0 (0.0) 84.3 (0.3) 62.0 (0.0)

sLA 88.7 (0.3) 81.0 (0.0) 46.7 (0.7)

IRM 90.0 (0.0) 81.7 (0.3) 49.3 (1.7)

VREx 90.0 (0.0) 82.0 (0.0) 48.3 (0.3)

Mixup 90.3 (0.3) 82.7 (0.3) 52.3 (1.7)

CRM 87.0 (1.2) 83.3 (0.7) 70.0 (1.0)

(1, 1)

ERM 83.3 (1.2) 81.7 (0.9) 64.3 (1.2)

G-DRO 83.7 (0.9) 82.7 (0.9) 69.3 (2.0)

LC 89.0 (0.0) 86.0 (0.0) 72.7 (0.7)

sLA 89.0 (0.0) 86.0 (0.0) 74.0 (0.0)

IRM 80.0 (0.6) 79.0 (0.6) 59.0 (1.0)

VREx 82.0 (0.6) 81.0 (0.6) 66.3 (0.9)

Mixup 85.7 (0.3) 84.3 (0.3) 69.3 (0.9)

CRM 87.7 (0.3) 85.3 (0.3) 72.3 (1.7)

Table 8. Results for the various compositional shift scenarios for the MetaShift benchmark. For each metric, report the mean (standard
error) over 3 random seeds on the test dataset. We highlight the worst case compositional shift scenario for each method, i.e, the scenario
with the lowest worst group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the respective
worst case compositional shift scenarios.

43

Compositional Risk Minimization

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

ERM 62.7 (0.3) 66.7 (0.3) 0.7 (0.3)

G-DRO 63.3 (0.3) 68.0 (0.0) 1.7 (0.7)

(0, 0) LC 68.0 (0.0) 72.0 (0.0) 20.0 (0.0)

sLA 67.7 (0.3) 72.0 (0.0) 19.7 (1.5)

IRM 61.3 (0.7) 64.3 (0.3) 4.3 (0.9)

VREx 63.3 (0.3) 68.7 (0.3) 7.0 (1.0)

Mixup 63.0 (0.0) 64.3 (0.3) 1.0 (0.0)

CRM 64.7 (0.9) 70.7 (0.9) 31.0 (5.6)

(0, 1)

ERM 77.7 (0.3) 71.7 (0.3) 14.0 (1.0)

G-DRO 80.7 (0.7) 80.7 (0.7) 74.0 (1.0)

LC 81.0 (0.0) 81.0 (0.0) 75.3 (0.3)

sLA 81.3 (0.3) 80.7 (0.3) 69.0 (0.6)

IRM 74.0 (0.0) 68.7 (0.3) 10.0 (1.5)

VREx 76.0 (0.0) 69.7 (0.3) 4.0 (0.6)

Mixup 78.3 (0.3) 74.3 (0.3) 34.0 (2.0)

CRM 80.0 (0.6) 78.0 (1.2) 62.3 (8.2)

(1, 0)

ERM 58.0 (0.0) 67.0 (0.0) 0.0 (0.0)

G-DRO 57.7 (0.3) 67.7 (0.3) 0.0 (0.0)

LC 70.7 (0.9) 74.3 (0.3) 47.3 (4.3)

sLA 73.3 (2.7) 76.3 (1.7) 58.3 (9.7)

IRM 49.0 (0.6) 55.3 (1.5) 0.7 (0.3)

VREx 55.3 (0.3) 65.7 (0.3) 1.0 (0.0)

Mixup 57.0 (0.0) 66.0 (0.0) 0.0 (0.0)

CRM 69.5 (0.5) 74.0 (0.0) 63.5 (0.5)

(1, 1)

ERM 82.0 (0.2) 73.0 (0.2) 20.0 (1.2)

G-DRO 80.3 (0.3) 79.3 (0.3) 72.7 (0.9)

LC 81.7 (0.3) 81.3 (0.3) 74.3 (1.5)

sLA 82.0 (0.0) 81.0 (0.0) 75.3 (0.7)

IRM 76.3 (0.3) 67.7 (1.2) 23.0 (7.0)

VREx 79.7 (0.3) 69.0 (0.0) 3.0 (1.5)

Mixup 80.7 (0.3) 72.3 (0.3) 28.3 (3.8)

CRM 81.3 (0.3) 80.7 (0.3) 71.3 (1.8)

(2, 0)

ERM 62.0 (0.0) 68.3 (0.3) 0.0 (0.0)

G-DRO 60.0 (0.0) 67.7 (0.3) 0.0 (0.0)

LC 72.3 (0.3) 74.7 (0.3) 48.7 (0.7)

sLA 72.7 (0.7) 74.3 (0.3) 48.3 (0.9)

IRM 57.0 (0.6) 57.3 (0.3) 0.0 (0.0)

VREx 59.7 (0.3) 67.7 (0.3) 0.0 (0.0)

Mixup 61.0 (0.0) 66.3 (0.3) 0.0 (0.0)

CRM 68.7 (0.3) 72.7 (0.3) 50.0 (0.6)

(2, 1)

ERM 81.3 (0.3) 74.3 (0.3) 17.3 (2.4)

G-DRO 80.7 (0.3) 79.0 (0.0) 57.3 (2.2)

LC 82.0 (0.0) 80.7 (0.3) 60.0 (1.2)

sLA 81.7 (0.3) 80.3 (0.3) 59.3 (0.9)

IRM 76.3 (0.3) 69.0 (0.0) 10.7 (0.9)

VREx 80.0 (0.0) 72.3 (0.3) 9.7 (1.2)

Mixup 81.0 (0.0) 75.0 (0.6) 24.3 (3.0)

CRM 81.3 (0.3) 80.0 (0.6) 72.7 (0.9)

Table 9. Results for the various compositional shift scenarios for the MultiNLI benchmark. For each metric, report the mean (standard
error) over 3 random seeds on the test dataset. We highlight the worst case compositional shift scenario for each method, i.e, the scenario
with the lowest worst group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the respective
worst case compositional shift scenarios. 44

Compositional Risk Minimization

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 79.0 (0.6) 78.7 (0.3) 61.3 (1.5)
G-DRO 79.3 (1.2) 79.0 (0.0) 64.7 (3.0)
LC 79.7 (0.3) 79.0 (0.0) 64.3 (0.9)
sLA 79.7 (0.3) 79.3 (0.3) 66.7 (1.8)
IRM 77.7 (0.3) 78.0 (0.0) 60.3 (0.3)
VREx 79.3 (0.3) 79.0 (0.0) 65.0 (0.0)
Mixup 77.7 (0.3) 78.3 (0.3) 58.7 (1.9)
CRM 84.0 (0.0) 78.7 (0.3) 67.0 (2.5)

(0, 1)

ERM 78.0 (0.6) 78.3 (0.3) 64.3 (1.2)
G-DRO 78.0 (0.6) 78.7 (0.3) 64.3 (1.5)
LC 79.3 (0.3) 79.0 (0.0) 64.3 (0.9)
sLA 79.7 (0.3) 79.0 (0.0) 65.3 (0.3)
IRM 77.3 (0.7) 78.0 (0.0) 62.3 (2.6)
VREx 77.3 (0.7) 79.0 (0.0) 66.0 (1.2)
Mixup 78.0 (0.6) 78.3 (0.3) 62.3 (2.4)
CRM 83.3 (0.7) 78.7 (0.3) 71.0 (1.5)

ERM 78.3 (0.3) 77.7 (0.3) 38.0 (1.0)
(0, 2) G-DRO 79.0 (0.6) 78.3 (0.3) 43.7 (0.3)

LC 79.0 (0.6) 79.0 (0.0) 53.7 (2.3)
sLA 79.3 (0.3) 79.0 (0.0) 55.0 (2.1)
IRM 78.3 (0.3) 77.7 (0.3) 34.7 (3.2)
VREx 78.3 (0.7) 77.7 (0.3) 30.7 (2.2)
Mixup 79.7 (0.9) 77.7 (0.3) 40.0 (0.6)
CRM 83.3 (0.3) 78.7 (0.3) 68.0 (1.0)

(0, 3)

ERM 80.3 (0.3) 79.0 (0.0) 64.3 (2.0)
G-DRO 80.0 (0.6) 79.0 (0.0) 67.3 (2.7)
LC 81.3 (0.3) 79.0 (0.0) 69.0 (1.2)
sLA 80.7 (0.7) 79.0 (0.0) 66.7 (2.7)
IRM 79.7 (0.7) 79.0 (0.0) 65.7 (2.3)
VREx 77.7 (0.3) 79.0 (0.0) 64.7 (0.9)
Mixup 78.7 (0.9) 78.7 (0.3) 62.7 (2.8)
CRM 83.7 (0.3) 78.7 (0.3) 69.7 (0.3)

(0, 4)

ERM 78.0 (0.0) 77.7 (0.3) 38.0 (0.6)
G-DRO 78.7 (0.9) 78.7 (0.3) 52.0 (3.2)
LC 79.0 (0.0) 79.0 (0.0) 60.7 (1.5)
sLA 78.3 (0.3) 79.0 (0.0) 62.0 (1.0)
IRM 76.7 (1.3) 77.7 (0.3) 33.0 (2.0)
VREx 77.0 (0.6) 78.3 (0.3) 41.7 (1.2)
Mixup 77.7 (0.7) 77.7 (0.3) 37.0 (4.4)
CRM 83.7 (0.3) 79.0 (0.0) 69.7 (1.9)

(0, 5)

ERM 80.0 (0.0) 79.0 (0.0) 61.0 (0.6)
G-DRO 80.0 (0.6) 79.0 (0.0) 67.3 (1.8)
LC 79.3 (0.9) 79.0 (0.0) 65.7 (2.3)
sLA 80.0 (0.0) 79.7 (0.3) 66.7 (0.3)
IRM 78.3 (0.3) 78.3 (0.3) 59.7 (0.9)
VREx 78.7 (0.3) 78.7 (0.3) 59.0 (0.6)
Mixup 79.3 (0.7) 78.7 (0.3) 59.3 (3.4)
CRM 84.0 (0.0) 78.7 (0.3) 71.0 (1.0)

(0, 6)

ERM 78.7 (0.3) 78.0 (0.0) 36.3 (1.2)
G-DRO 78.3 (0.3) 78.3 (0.3) 46.3 (1.2)
LC 80.7 (0.3) 79.0 (0.0) 58.7 (2.3)
sLA 79.7 (0.9) 79.0 (0.0) 57.0 (3.1)
IRM 78.0 (0.6) 77.0 (0.0) 28.3 (1.2)
VREx 78.7 (0.3) 78.0 (0.0) 37.3 (2.2)
Mixup 78.7 (0.3) 78.0 (0.0) 33.7 (0.3)
CRM 83.3 (0.7) 78.7 (0.3) 70.0 (1.0)

(0, 7)

ERM 79.0 (0.0) 77.7 (0.3) 40.0 (1.2)
G-DRO 77.7 (0.3) 78.7 (0.3) 49.7 (0.3)
LC 79.7 (0.3) 79.0 (0.0) 60.0 (2.3)
sLA 78.7 (0.3) 79.0 (0.0) 56.3 (1.3)
IRM 77.0 (0.6) 77.3 (0.3) 33.0 (2.0)
VREx 77.0 (1.5) 78.0 (0.0) 39.3 (4.5)
Mixup 77.7 (1.2) 77.7 (0.3) 40.7 (3.5)
CRM 83.3 (0.3) 78.3 (0.3) 64.0 (1.2)

Table 10. Results for the various compositional shift scenarios for the CivilComments benchmark (Part 1). For each metric, report the
mean (standard error) over 3 random seeds on the test dataset. We highlight the worst case compositional shift scenario for each method,
i.e, the scenario with the lowest worst group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in
the respective worst case compositional shift scenarios.

45

Compositional Risk Minimization

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(1, 0)

ERM 81.3 (0.3) 79.0 (0.0) 60.3 (0.3)
G-DRO 82.3 (0.7) 79.0 (0.0) 69.7 (1.3)
LC 81.3 (0.3) 79.0 (0.0) 71.0 (0.6)
sLA 81.3 (0.9) 79.0 (0.0) 70.0 (1.2)
IRM 81.7 (0.3) 78.3 (0.3) 64.0 (0.6)
VREx 82.0 (0.0) 79.0 (0.0) 68.3 (1.2)
Mixup 81.3 (0.3) 78.0 (0.0) 63.3 (1.2)
CRM 84.0 (0.0) 78.0 (0.0) 68.3 (0.9)

(1, 1)

ERM 81.7 (0.3) 77.7 (0.3) 60.3 (1.2)
G-DRO 82.0 (0.6) 79.0 (0.0) 67.3 (0.9)
LC 80.7 (0.3) 79.0 (0.0) 69.3 (0.9)
sLA 81.3 (0.3) 79.0 (0.0) 71.0 (1.2)
IRM 81.7 (0.3) 78.0 (0.0) 58.0 (1.0)
VREx 82.3 (0.7) 79.0 (0.0) 67.3 (1.2)
Mixup 82.3 (0.7) 78.0 (0.0) 58.3 (0.3)
CRM 84.0 (0.0) 78.3 (0.3) 70.0 (0.6)

(1, 2)

ERM 81.3 (0.3) 78.7 (0.3) 61.3 (0.7)
G-DRO 80.7 (0.3) 79.0 (0.0) 63.7 (2.4)
LC 82.0 (0.6) 79.0 (0.0) 70.0 (2.1)
sLA 82.0 (0.6) 79.0 (0.0) 69.7 (1.8)
IRM 81.3 (0.3) 78.0 (0.0) 56.3 (0.9)
VREx 81.3 (0.3) 79.0 (0.0) 60.0 (2.6)
Mixup 81.7 (0.3) 78.7 (0.3) 62.3 (1.3)
CRM 83.7 (0.3) 78.3 (0.3) 63.7 (3.2)

(1, 3)

ERM 82.3 (0.9) 78.0 (0.0) 59.0 (1.5)
G-DRO 81.0 (0.6) 79.0 (0.0) 67.3 (2.6)
LC 82.0 (0.0) 79.0 (0.0) 70.0 (1.5)
sLA 82.7 (0.9) 79.3 (0.3) 69.0 (1.5)
IRM 82.0 (1.0) 78.0 (0.0) 58.7 (1.5)
VREx 81.3 (0.3) 79.0 (0.0) 66.7 (0.3)
Mixup 82.0 (0.6) 78.0 (0.0) 57.3 (1.2)
CRM 83.7 (0.3) 78.0 (0.0) 71.0 (1.5)

(1, 4)

ERM 82.3 (0.3) 78.7 (0.3) 58.3 (1.8)
G-DRO 80.3 (0.3) 79.0 (0.0) 68.0 (0.6)
LC 82.0 (0.0) 79.3 (0.3) 70.7 (0.3)
sLA 82.0 (0.6) 79.3 (0.3) 70.0 (0.6)
IRM 81.0 (0.0) 78.0 (0.0) 54.3 (0.9)
VREx 81.0 (0.6) 79.0 (0.0) 59.7 (0.3)
Mixup 82.0 (0.6) 78.0 (0.0) 57.3 (1.2)
CRM 83.7 (0.3) 78.3 (0.3) 60.0 (1.5)

(1, 5)

ERM 82.0 (0.0) 78.7 (0.3) 63.7 (0.3)
G-DRO 81.7 (0.3) 79.0 (0.0) 64.7 (1.3)
LC 81.3 (0.3) 79.3 (0.3) 68.3 (0.7)
sLA 82.0 (0.6) 79.0 (0.0) 71.3 (0.9)
IRM 81.7 (0.3) 78.0 (0.0) 62.0 (1.2)
VREx 81.3 (0.3) 79.0 (0.0) 65.0 (2.1)
Mixup 82.0 (1.0) 78.3 (0.3) 61.7 (0.3)
CRM 83.7 (0.3) 78.3 (0.3) 70.0 (1.0)

(1, 6)

ERM 82.0 (0.6) 79.0 (0.0) 65.3 (2.4)
G-DRO 81.0 (0.0) 79.3 (0.3) 66.0 (1.2)
LC 81.7 (0.7) 79.0 (0.0) 69.7 (2.3)
sLA 80.7 (0.3) 79.0 (0.0) 66.7 (0.3)
IRM 81.3 (0.3) 79.0 (0.0) 63.3 (0.7)
VREx 82.0 (0.0) 79.0 (0.0) 65.3 (1.9)
Mixup 81.3 (0.9) 79.0 (0.0) 64.7 (1.7)
CRM 84.0 (0.0) 78.3 (0.3) 70.0 (1.5)

(1, 7)

ERM 82.0 (1.2) 78.7 (0.3) 63.3 (1.8)
G-DRO 81.0 (0.0) 79.0 (0.0) 64.3 (0.3)
LC 81.7 (0.3) 79.0 (0.0) 66.0 (1.5)
sLA 82.3 (0.3) 79.0 (0.0) 67.0 (1.5)
IRM 81.3 (0.3) 78.3 (0.3) 61.7 (0.7)
VREx 81.0 (0.6) 79.0 (0.0) 63.3 (1.5)
Mixup 82.3 (0.3) 79.0 (0.0) 66.3 (1.2)
CRM 84.3 (0.3) 77.0 (0.0) 63.0 (1.2)

Table 11. Results for the various compositional shift scenarios for the CivilComments benchmark (Part 2). For each metric, report the
mean (standard error) over 3 random seeds on the test dataset. We highlight the worst case compositional shift scenario for each method,
i.e, the scenario with the lowest worst group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in
the respective worst case compositional shift scenarios.

46

Compositional Risk Minimization

G.3. CelebA Multiple Suprious Attributes

We augment the CelebA dataset (Liu et al., 2015) with three more binary spurious attribute (a2, a3, a4), described as follows:

• a2: Determines whether the person is wearing eyeglasses or not

• a3: Determines whether the person is wearing hat or not

• a4: Determines whether the person is wearing earring or not

Hence, we have a total of 25 = 32 groups with three binary attributes (y, a1, a2, a3, a4); with y denoting blond hair and
a1 denoting the gender, same as in our prior experiments with CelebA. Since CRM models each attribute with a different
energy component, we incorporate additional energy layer for new attributes as compared to our prior experiments with two
attributes. However, all the baselines would treat the two spurious attributes (a1, a2, a3, a4) as a single ”meta” spurious
attribute a′ that takes 16 possible values, and aim to predict y. Table 12 presents the results for the multi-attribute CelebA
dataset, where we generate multiple benchmarks with compositional shift by dropping one of the 32 groups from the training
& validation dataset (similar to the setup for our prior experiments). We find that CRM outperforms all the baselines w.r.t
worst group accuracy and balanced accuracy, hence, remains superior for the case of multiple attributes as well.

Method Average Acc Balanced Acc Worst Group Acc Worst Group Acc
(No Groups Dropped)

ERM 94.8 (0.1) 83.5 (0.1) 0.9 (0.5) 0.0 (0.0)

G-DRO 93.2 (0.0) 89.1 (0.0) 11.2 (1.5) 0.0 (0.0)

LC 93.1 (0.1) 91.7 (0.3) 34.3 (5.9) 52.0 (26.1)

sLA 93.4 (0.1) 91.7 (0.0) 33.0 (1.3) 26.3 (26.3)

IRM 90.2 (0.6) 85.6 (0.2) 26.6 (0.4) 40.0 (2.0)

VREx 90.0 (0.3) 89.1 (0.1) 10.6 (1.3) 25.0 (25.0)

Mixup 94.9 (0.0) 87.0 (0.0) 2.7 (0.5) 14.7 (14.7)

CRM 91.0 (0.1) 90.1 (0.1) 63.2 (2.6) 73.7 (2.9)

Table 12. CelebA with Multiple Spurious Attributes. We compare CRM to baselines on CelebA dataset with 5 attributes. Similar to the
prior setup (Table 1), we report the Average Accuracy, Group Balanced Accuracy, and Worst Group Accuracy (WGA), averaged as a
group is dropped from the training and validation sets. Last column is WGA under the standard subpopulation shift scenario where no
groups were dropped. CRM is the best approach w.r.t the worst group accuracy.

G.4. Results for Ablations with CRM

In the implementation of CRM in Algorithm C, we have the following two choices; 1) we use the extrapolated bias B⋆

(equation 11); 2) we set q̂(z) as the uniform distribution, i.e, q̂(z = (y, a)) = 1
dy×da

. We now conduct ablation studies by
varying these components as follows.

• Bias B⋆ + Emp Prior: We still use the extrapolated bias B⋆ but instead of uniform q̂(z), we use test dataset to obtain
the counts of each group, denoted as the empirical prior. Note that this approach assumes the knowledge of test
distribution of groups, hence we expect this to improve the average accuracy but not the necessarily the worst group
accuracy.

• Bias B̂ + Unf Prior: We still use the uniform prior for q̂(z) but instead of the extrapolated bias B⋆, we use the
learned bias B̂ (equation 9). This ablation helps us to understand whether extrapolated bias B⋆ are crucial for CRM to
generalize to compositional shifts.

• Bias B̂+ Emp Prior: Here we change both aspects of CRM as we use the learned bias B̂ and empirical prior from the
test dataset for q̂(z).

Table 13 presents the results of the ablation study. We find that extrapolated bias is crucial for CRM as the worst group
accuracy with learned bias is much worse! Further, using empirical prior instead of the uniform prior leads to improvement
in average accuracy at the cost of worst group accuracy.

47

Compositional Risk Minimization

Dataset Ablation Average Acc Balanced Acc Worst Group Acc

CRM 87.1 (0.7) 87.8 (0.1) 78.7 (1.6)

Waterbirds
Bias B⋆ + Emp Prior 91.6 (0.2) 87.4 (0.3) 75.2 (1.3)

Bias B̂ + Unf Prior 81.2 (0.6) 82.7 (0.2) 55.7 (1.0)

Bias B̂ + Emp Prior 84.3 (0.6) 81.6 (0.3) 51.3 (1.0)

CRM 91.1 (0.2) 89.2 (0.3) 81.8 (1.2)

CelebA
Bias B⋆ + Emp Prior 94.3 (0.1) 75.8 (0.4) 34.1 (1.0)

Bias B̂ + Unf Prior 83.6 (0.1) 84.7 (0.2) 58.9 (0.4)

Bias B̂ + Emp Prior 90.9 (0.1) 77.2 (0.3) 35.4 (0.7)

CRM 87.6 (0.2) 84.7 (0.1) 73.4 (0.7)

MetaShift
Bias B⋆ + Emp Prior 89.2 (0.2) 84.0 (0.4) 65.1 (1.4)

Bias B̂ + Unf Prior 87.2 (0.3) 82.9 (0.4) 58.7 (0.6)

Bias B̂ + Emp Prior 88.1 (0.1) 82.1 (0.1) 56.1 (0.4)

CRM 74.3 (0.3) 76.1 (0.3) 58.7 (1.4)

MultiNLI
Bias B⋆ + Emp Prior 74.7 (0.3) 72.3 (0.4) 41.4 (1.5)

Bias B̂ + Unf Prior 72.5 (0.6) 74.0 (0.4) 30.4 (2.6)

Bias B̂ + Emp Prior 73.2 (0.5) 70.8 (0.1) 22.2 (0.9)

CRM 83.7 (0.1) 78.4 (0.0) 67.9 (0.5)

CivilComments
Bias B⋆ + Emp Prior 87.0 (0.1) 74.0 (0.2) 48.1 (0.6)

Bias B̂ + Unf Prior 76.9 (0.3) 77.8 (0.1) 52.4 (0.7)

Bias B̂ + Emp Prior 83.5 (0.2) 77.9 (0.1) 62.3 (0.8)

CRM 84.7 (0.3) 84.7 (0.3) 40.3 (4.3)

NICO++
Bias B⋆ + Emp Prior 85.0 (0.0) 85.0 (0.0) 41.0 (4.9)

Bias B̂ + Unf Prior 85.0 (0.0) 85.0 (0.0) 31.0 (1.0)

Bias B̂ + Emp Prior 85.0 (0.0) 85.0 (0.0) 27.7 (3.9)

Table 13. Ablation study with CRM. We consider the average performance over the different compositional shift scenarios for each
benchmark, and report the mean (standard error) over 3 random seeds on the test dataset. CRM corresponds to the usual implementation
with extrapolated bias B⋆ and uniform prior for q̂(z). CRM obtains better worst group accuracy than all the ablations, highlighting the
importance of both extrapolated bias and uniform prior! Extrapolated bias is critical for generalization to compositional shifts as the
performance with learned bias is much worse.

G.5. Results for the Original Benchmarks

We present results for the original benchmarks (Dtrain,Dval,Dtrain) in Table 14, which corresponds to the standard subpop-
ulation shift case for these benchmarks. For Waterbirds, CelebA, MetaShift, and MultiNLI, subpopulation shift implies
all the groups z = (y, a) are present in both the train and test dataset (Ztrain = Ztest = Z×), however, the groups sizes
change from train to test, inducing a spurious correaltion between class labels y and attributes a. For the NICO++ dataset,
we have a total of 360 groups in the test dataset but only 337 of them are present in the train dataset. But still this is not
a compositional shift as the validation dataset contains all the 360 groups. We find that CRM is still competitive to the
baselines for the standard subpopulation shift scenario of each benchmark!

48

Compositional Risk Minimization

Dataset Method Average Acc Balanced Acc Worst Group Acc

Waterbirds

ERM 87.3 (0.3) 84.0 (0.0) 62.3 (1.2)

G-DRO 91.7 (0.3) 91.0 (0.0) 87.3 (0.3)

LC 92.0 (0.0) 91.0 (0.0) 88.7 (0.3)

sLA 92.3 (0.3) 91.0 (0.0) 89.7 (0.3)

IRM 87.3 (0.3) 86.0 (0.0) 72.3 (1.2)

VREx 92.0 (0.0) 90.7 (0.3) 84.3 (0.7)

Mixup 85.0 (0.0) 86.0 (0.0) 69.7 (0.9)

CRM 91.3 (0.9) 91.0 (0.0) 86.0 (0.6)

CelebA

ERM 95.7 (0.3) 84.0 (0.0) 52.0 (1.0)

G-DRO 92.0 (0.6) 93.0 (0.0) 91.0 (0.6)

LC 92.0 (0.6) 92.0 (0.0) 90.0 (0.6)

sLA 92.3 (0.3) 91.7 (0.3) 86.7 (1.9)

IRM 87.0 (2.5) 85.3 (1.2) 67.7 (3.5)

VREx 92.0 (0.0) 92.0 (0.0) 89.0 (0.6)

Mixup 95.0 (0.0) 86.7 (0.3) 62.0 (1.0)

CRM 93.0 (0.0) 92.0 (0.0) 89.0 (0.6)

MetaShift

ERM 90.0 (0.0) 84.0 (0.0) 63.0 (0.0)

G-DRO 90.3 (0.3) 88.3 (0.3) 80.7 (1.3)

LC 89.7 (0.3) 87.7 (0.3) 80.0 (1.2)

sLA 90.0 (0.6) 87.7 (0.3) 80.0 (1.2)

IRM 90.7 (0.3) 85.3 (0.9) 69.3 (2.4)

VREx 90.0 (0.0) 86.7 (0.3) 75.3 (2.2)

Mixup 90.7 (0.3) 85.3 (0.7) 68.3 (2.7)

CRM 88.3 (0.7) 85.7 (0.3) 74.7 (1.5)

MultiNLI

ERM 81.7 (0.3) 80.7 (0.3) 68.0 (1.7)

G-DRO 80.7 (0.3) 78.0 (0.0) 57.0 (2.3)

LC 82.0 (0.0) 82.0 (0.0) 74.3 (1.2)

sLA 82.0 (0.0) 82.0 (0.0) 71.7 (0.3)

IRM 75.7 (0.3) 74.3 (0.3) 54.3 (2.4)

VREx 79.0 (0.0) 79.0 (0.0) 69.7 (0.3)

Mixup 81.3 (0.3) 80.0 (0.0) 63.7 (2.9)

CRM 81.7 (0.3) 81.7 (0.3) 74.7 (1.3)

CivilComments

ERM 80.3 (0.3) 79.0 (0.0) 61.0 (2.5)

G-DRO 79.7 (0.3) 79.0 (0.0) 64.7 (1.5)

LC 80.7 (0.3) 79.7 (0.3) 67.3 (0.3)

sLA 80.3 (0.3) 79.0 (0.0) 66.3 (0.9)

IRM 80.3 (0.7) 79.0 (0.0) 60.3 (1.5)

VREx 80.3 (0.7) 79.0 (0.0) 63.3 (1.5)

Mixup 80.0 (0.6) 79.0 (0.0) 61.3 (1.5)

CRM 83.3 (0.3) 78.0 (0.0) 70.0 (0.6)

NICO++

ERM 85.3 (0.3) 85.0 (0.0) 35.3 (2.3)

G-DRO 83.7 (0.3) 83.3 (0.3) 33.7 (1.2)

LC 85.0 (0.0) 85.0 (0.0) 35.3 (2.3)

sLA 85.0 (0.0) 85.0 (0.0) 35.3 (2.3)

IRM 63.7 (0.3) 62.7 (0.3) 0.0 (0.0)

VREx 86.0 (0.0) 86.0 (0.0) 38.0 (5.0)

Mixup 85.0 (0.0) 84.7 (0.3) 33.0 (0.0)

CRM 85.0 (0.0) 84.7 (0.3) 39.0 (3.2)

Table 14. Results for the standard subpopulation shift case for each benchmark. Here we do not transform the datasets for compositional
shifts, hence all the groups are present in both the train and the test dataset (except the NICO++ benchmark). CRM is still competitive
with the baselines for this scenario where no groups were discarded additionally.

49

Compositional Risk Minimization

G.6. CRM’s Analysis with Varying Group Size

100 90 80 70 60 50 40 30 20 10
Percentage of Total Groups at Training

0.7

0.8

0.9

1.0
Test Acc.

(a) m = 2 , d = 10

100 90 80 70 60 50 40 30 20 10
Percentage of Total Groups at Training

0.80

0.85

0.90

0.95

1.00
Test Acc.

(b) m = 2 , d = 20

100 90 80 70 60 50 40 30 20 10
Percentage of Total Groups at Training

0.80

0.85

0.90

0.95

1.00 Test Acc.

(c) m = 2 , d = 30

100 90 80 70 60 50 40 30 20 10
Percentage of Total Groups at Training

0.80

0.85

0.90

0.95

Test Acc.

(d) m = 2 , d = 40

100 90 80 70 60 50 40 30 20 10
Percentage of Total Groups at Training

0.80

0.85

0.90

0.95

Test Acc.

(e) m = 2 , d = 50

Figure 8. Varying Group Size Analysis (m = 2 attributes). We analyze the rate of growth of total groups required to achieve cartesian-
product extrapolation. For each scenario, we evaluate CRM’s generalization capabilities as we discard more groups from the training
dataset. X-axis denotes the percentage of total groups available for training, and y-axis denotes the test average accuracy (mean &
standard error over 3 random seeds) obtained by CRM. We find that observing at least 20% of total train groups is sufficient for good
generalization.

Setup. We conduct experiments to understand the rate of growth of total groups required in order to achieve Cartesian-
Product extrapolation, as we vary the total number of attributes (m) and the total number of categories (d) for each attribute.
Given attributes z = (z1, z2, · · · , zm), we sample data sample data from the following (additive) energy function.

E(x, z) =

m∑
i=1

||x− µ(zi)||2

where x, µ(zi) ∈ Rn for all i ∈ {1, · · · ,m}. Note that the energy function can be rewritten as follows:

E(x, z) =
1

2
(x− µ(z))TΣ−1(x− µ(z)) + C(z1, z2)

with µ(z) = 1
m

∑m
i=1 µ(zi) and Σ−1 = 2mIn. Hence, the resulting distribution is essentially a multi-variate gaussian

distribution p(x|z) = 1

Z(z)
exp

(
− E(x, z)

)
= N

(
x|µ(z),Σ

)
.

To generate data from a particular configuration (d,m, n) we first sample d ∗m orthogonal vectors to get mean vectors
for the different realizations of each attribute, i.e, {µ(zi = k) | i ∈ [1,m] & k ∈ [1, d]}. Then we sample x from the
resulting normal distribution x ∼ N

(
µ(z),Σ

)
to create a dataset with uniform support over all the dm groups. We fix the

data dimension as n = 100 and have the following two setups.

• m = 2 Attribute Case. We fix m = 2 and vary d in the following range, [10, 20, 30, 40, 50]. This results in groups with
sizes [100, 400, 900, 1600, 2500].

• m > 2 Attribute Case. We fix d = 2 and vary m in the following range, [7, 8, 9]. This results in groups with sizes
[128, 256, 512].

For both these setups, we analyze how the performance of CRM degrades as we discard more groups from the training
dataset. Note that the test dataset contains samples from all the groups and there are no group imbalances. Hence, average
accuracy in itself is a good indicator of generalization performance.

50

Compositional Risk Minimization

100 60 40 20 10 5 3
Percentage of Total Groups at Training

0.6

0.7

0.8

Test Acc.

(a) m = 7 , d = 2

100 60 40 20 10 5 3
Percentage of Total Groups at Training

0.70

0.75

0.80
Test Acc.

(b) m = 8 , d = 2

100 60 40 20 10 5 3
Percentage of Total Groups at Training

0.74

0.75

0.76

0.77

0.78
Test Acc.

(c) m = 9 , d = 2

Figure 9. Varying Group Size Analysis (m > 2 attributes). We analyze the rate of growth of total groups required to achieve cartesian-
product extrapolation. For each scenario, we evaluate CRM’s generalization capabilities as we discard more groups from the training
dataset. X-axis (log scale) denotes the percentage of total groups available for training, and y-axis denotes the test average accuracy (mean
& standard error over 3 random seeds) obtained by CRM. We find that observing at least 10% of total train groups is sufficient for good
generalization.

Results. Figure 8 and Figure 9 presents the results for the m = 2 and m > 2 attribute case respectively. For m = 2
attribute case, we find that CRM trained with 20% of the total groups (0.2d2) still shows good generalization for predicting
z1 (∼ 90% test accuracy), and the drop in test accuracy as compared to the oracle case of no groups dropped is within 10%.
Similarly, for m > 2 attribute case, we find that CRM trained with 10% of the total groups (0.1 × 2m) still shows good
generalization for predicting z1, and the drop in test accuracy as compared to the oracle case is within 10%.

51

