
Published as a conference paper at ICLR 2026

UNDERSTANDING TRANSFORMERS FOR TIME SERIES:
RANK STRUCTURE, FLOW-OF-RANKS, AND
COMPRESSIBILITY

Annan Yu,1,† Danielle C. Maddix,2,‡ Boran Han,2 Xiyuan Zhang,2
Abdul Fatir Ansari,2 Oleksandr Shchur,2 Christos Faloutsos,3
Andrew Gordon Wilson,4 Michael W. Mahoney,4 Yuyang Wang2

1 Center for Applied Mathematics, Cornell University
2 Amazon Web Services 3 Amazon Selling Partner Services
4 Amazon Supply Chain Optimization Technologies
† Work done during an internship at AWS.
‡ Correspondence to: Danielle C. Maddix <dmmaddix@amazon.com>.

ABSTRACT

Transformers are widely used across data modalities, and yet the principles dis-
tilled from text models often transfer imperfectly to models trained to other modal-
ities. In this paper, we analyze Transformers through the lens of rank structure.
Our focus is on the time series setting, where the structural properties of the data
differ remarkably from those of text or vision. We show that time-series embed-
dings, unlike text or vision, exhibit sharply decaying singular value spectra: small
patch sizes and smooth continuous mappings concentrate the data into low-rank
subspaces. From this, we prove that the associated Q/K/V projections admit
accurate low-rank approximations, and that attention layers become compressible
in proportion to the decay of the embedding spectrum. We introduce the concept
of flow-of-ranks, a phenomenon by which nonlinear mixing across depth inflates
the rank, explaining why early layers are most amenable to compression and why
ranks grow with depth. Guided by these theoretical and empirical results, we use
these insights to compress Chronos, a large time series foundation model, achiev-
ing a reduction of 65% in inference time and 81% in memory, without loss of
accuracy. Our findings provide principled guidance for allocating width, depth,
and heads in time series foundation models, and for exploiting their inherent com-
pressibility.

1 INTRODUCTION

Transformers, originally designed for language (Lewis et al., 2020; Achiam et al., 2023), are now
widely deployed, e.g., time series (Ansari et al., 2024a; Das et al., 2024; Shi et al., 2025; Wolff et al.,
2025), images (Liu et al., 2021; Dosovitskiy et al., 2020), molecules (Maziarka et al., 2020; Leon
et al., 2024), and DNA sequences (Ji et al., 2021; Le et al., 2021; Nguyen et al., 2024). A common
approach to apply Transformers to these other data modalities is to directly transfer architectural
parameters (e.g., width, heads, depth) from text-based models, on the assumption that what works
for text should generalize. However, this assumption is fragile. As an example, we show that time
series differ fundamentally from language in how signals are tokenized and embedded. This leads
to the more general question: how well do community insights on pretraining and hyperparameter
tuning, based largely on Transformers applied to text data, port to Transformers applied to other data
modalities? Understanding the answer to this question is particularly important when Transformers
are applied in domains where data are less abundant than in the text domain.

Here, we address this question in the context of time-series data and time-series forecasting. A priori,
the answer to this question is not obvious: time series data have similarities with text data (e.g., they
have obvious sequential properties), but they also have many differences (e.g., it is not clear that they
are well-modelable by a discrete set of tokens). The question, however, is timely: time series data

1

dmmaddix@amazon.com

Published as a conference paper at ICLR 2026

EmbeddingInput
Embedded

Input Output
Inter-

mediate
Output

Inter-
mediate
Output

Layer
Input

Layer
Output

Flow of Ranks (section 4)

Ti
m

e
Se

rie
s

La
ng

ua
ge

Vi
si

on

Lo
w

-R
an

k
H

ig
h-

R
an

k

Time-Series Embedding is Low-Rank (section 2)

Attention Layers on Low-Rank Inputs can be Low-Rank Approximated (section 3)

Figure 1: Overview of our results. We show that the embedded inputs of Transformers trained with
time-series data have much lower ranks than those of other modalities, including Vision Transform-
ers and Transformers trained with language data (see section 2); we prove that attention matrices on
low-rank inputs are well-approximated by low-rank matrices (see section 3); and we introduce and
demonstrate a concept called flow-of-ranks, describing how attention matrices in earlier layers are
more compressible than those in later layers (see section 4).

are ubiquitous in many domains, including scientific (Abhishek et al., 2012; Zhang & Gilpin, 2025;
Lai et al., 2025), industrial (Hong et al., 2016), and financial applications (Zhang et al., 2001), where
they facilitate critical tasks, e.g., forecasting (Hyndman & Athanasopoulos, 2018), imputation (Yoon
et al., 2018), and anomaly detection (Blázquez-Garcı́a et al., 2021). In addition, there has been
recent growing interest in developing so-called time series foundation models (TSFMs) (Brown
et al., 2020; Radford et al., 2021; Ansari et al., 2024a). These models are large pretrained models,
designed with the hope of providing a foundation (Bommasani et al., 2021), to be adaptable to a
wide range of domains and time series tasks. As with other models that aim to provide such a
“foundation,” TSFMs are appealing because they reduce the need for task-specific architectures and
parameter computation, thereby enabling the transfer to new settings with relatively little effort.

In this paper, we develop a framework for analyzing design decisions in Transformers; see Figure 1
for an overview and Appendix A for related work. Our view is that these decisions are guided
by an understanding of the structural properties of the data modality, which are then inherited by
properties of the model. Our framework enables a detailed linear algebraic analysis of the attention
layers within a Transformer, which consist of three linear transformations to form the queries, keys,
and values. Our approach is general, and we apply it to the time series domain. Lastly, we show that
we can use our approach as a practical tool for compressing TSFMs. We summarize the flow of our
paper and our main contributions as follows:

1. Data modality and rank structure. We compare Transformers trained to different data modali-
ties through the lens of numerical rank, and we demonstrate that time-series data lead to a partic-
ularly low-rank structure, at the level of inputs. To the best of our knowledge, our work is the first
to directly study which data modality features make Transformer models well-approximated via a
truncated singular value decomposition (SVD), and why. We also show how standard time-series
embeddings preserve low-rank structure in the hidden space, which differs from large-vocabulary
text and other modalities. (See section 2.)

2. From low-rank inputs to low-rank attention. Next, we provide the first general theoretical
results that connect low-rank embeddings to low-rank attention matrices, and we make clear how
width and the number of heads control the quality of low-rank approximations. While these
results apply generally to any low-rank embeddings, we illustrate them in the case of time series.
In addition, our results are sharp: we show that high-rank embedded inputs, which appear in data
modalities such as text and vision, lead to incompressible attention matrices. (See section 3.)

3. Flow-of-ranks. We introduce the “flow-of-ranks” concept to describe how the numerical rank
changes across layers in a deep Transformer. This extends our earlier analysis from a single
attention layer to the setting of a deep Transformer, where nonlinear activations, residual mixing,
and normalization gradually increase the rank of a representation. We note that “flow-of-ranks”
explains why early layers are often better approximated by SVD than later ones. (See section 4.)

2

Published as a conference paper at ICLR 2026

Table 1: Comparison of embedding strategies and patch sizes across TSFMs.

Model Chronos WaveToken TOTEM Time-MOE Chronos-Bolt TimesFM
Strategy Quantization Quantization Quantization Continuous Continuous Continuous
Patch Size 1 1 1 1 16 32

4. Compressibility of real-world TSFMs. Finally, we illustrate one application of our insights:
compressing a real-world TSFM. We demonstrate that the same set of hyperparameters (i.e.,
width, depth, and number of heads) more severely over-parameterizes TSFMs than it does LLMs.
This leads us to develop two complementary compression strategies: compressing a pretrained
model and pretraining a model that is compressed by design. In particular, we show that by
compressing a Chronos model, we can reduce the inference time by 65.4% and memory usage
by 81.4%, at no cost of predictive performance. Overall, our results demonstrate and explain
why state-of-the-art TSFMs are highly compressible, in practice, compared to (language-trained)
LLMs of the same size. (See section 5.)

Additional supporting material may be found in the appendices.

2 DATA MODALITY AND RANK STRUCTURE OF EMBEDDING

In this section, we investigate the structure of time-series embeddings and compare them to embed-
dings from other data modalities. Our goal is to understand, from both a theoretical and empirical
perspective, why time-series inputs often look low-rank after embedding.

We consider univariate time series. In particular, let x = (x1, . . . , xT) ∈ R1×T be a univariate input
of length T . Note that, unlike other data modalities, the input x is a rank-1 matrix.1 The first step in a
TSFM is to map x into a high-dimensional sequence via an embedding function Φ : R1×T → Rd×L,
where d denotes the hidden dimension of the model and L denotes the new sequence length, possibly
different from T due to patching. This embedding is typically constructed by applying a trainable
function ϕ : Rk → Rd to disjoint patches of size k. Assuming L = T/k is an integer, this gives:

Φ(x) = (ϕ(x1, . . . , xk),ϕ(xk+1, . . . , x2k), . . . ,ϕ(x(L−1)k+1, . . . , xLk = xT)).

These patch embedding functions ϕ fall into two main categories (see Figure 8 in Appendix B):
• A quantization-based embedding partitions the input space Rk into V disjoint regions, Rk =⊎V

i=1 Ri. Each region Ri is mapped to a unique trainable vector ui ∈ Rd, so that ϕ(x) =∑V
i=1 1{x∈Ri}ui. This approach is used in several TSFMs, e.g., Chronos (Ansari et al., 2024a),

WaveToken (Masserano et al., 2025), and TOTEM (Talukder et al., 2024).
• A continuous embedding uses a parameterized function, typically a neural network ϕ(·;θ), to

map patches directly. This strategy is also used in many TSFMs, e.g., Chronos-Bolt (Ansari et al.,
2024b), Moirai (Woo et al., 2024), TimesFM (Das et al., 2024), and Time-MoE (Shi et al., 2025).

Table 1 summarizes the design choices for these prominent TSFMs.

In most TSFMs, the patch size is significantly smaller than the hidden dimension (i.e., k ≪ d),
meaning ϕ maps from a low-dimensional space to a higher-dimensional one. Intuitively, if ϕ is
well-behaved, it should embed the low-dimensional space Rk into a corresponding low-dimensional
submanifold ϕ(Rk) ⊂ Rd. To formalize this notion of dimensionality, we use singular values. Let
U be a linear operator between some Hilbert spaces and σ1 ≥ · · · ≥ σn ≥ 0 be its singular values,
where 1 ≤ n ≤ ∞. While the algebraic rank of an object U, i.e., the number of its non-zero singular
values, is a strict measure, real-world data is noisy; therefore, we use the more practical concept of
numerical rank. For a tolerance ε > 0, the ε-rank of U denotes the number of its singular values
that are significant relative to the largest one:

rankε(U) = |{j | σj(U)/σ1(U) > ε}|. (1)
1In the case of a few-variate time series, x becomes a few-rank matrix, making the analysis in the paper

directly generalizable by viewing the number of variates as another patch dimension. We note that in some
time-series applications with a large number of input variables, the embedded inputs may not be low-rank, and
our analysis may not directly apply in such cases.

3

Published as a conference paper at ICLR 2026

A low numerical rank implies U is well-approximated by an operator Ũ with rank(Ũ) = rankε(U).

Our central hypothesis is that for a large corpus of input patches {x(i)}Ni=1, the resulting embedded
matrix, via quantization or a continuous embedding, U =

[
ϕ(x(1)) · · · ϕ(x(N))

]
has a low nu-

merical rank, which is smaller than the ambient dimension d. To test this hypothesis, we sample
thousands of patches from diverse signals (e.g., sinusoids, exponential functions, and white noise),
and we compute the singular value decay of their embeddings. For contrast, we perform the same
analysis on a tabular foundation model (TFM) (Mitra) (Zhang & Robinson, 2025) using 1000 syn-
thetic tables, a T5 LLM processing text from Dickens’ A Tale of Two Cities, and a ViT processing
1000 randomly sampled images from CIFAR-10.

σ
j
(X

)/
σ
1
(X

)

j

SVD of Input Embedding

(a)

2
nd

si
ng

ul
ar

ve
ct

or

1st singular vector

(b) (c)

token
ID

Embedding of Chronos Embedding of T5

Figure 2: (a): Singular values of the embedded input matrices from many different TSFMs, a
TFM, a ViT, and an LLM. (b,c): Embedding space of Chronos and a T5 LLM, respectively,
visualized by projecting them onto the leading two singular vectors of the embedding matrix.

As shown in Figure 2(a), the singular values of TSFM embeddings decay dramatically faster than
those from the tabular and language models, which confirms their significantly lower numerical
rank. Figure 2(b,c) visualize the embedding spaces of Chronos (quantized) and T5 (language
tokens) by projecting them onto their top two singular vectors. The Chronos embedding, mapping a
quantized real line, reveals a clear low-dimensional structure, whereas the T5 embedding, likely due
to its vocabulary properties, appears far less well-structured.

One may wonder: why is it that Chronos-Bolt (k = 16) produces a lower-rank embedding than
Chronos (k = 1)? This seeming surprise arises from their different embedding mechanisms. A
quantization-based model like Chronos initially maps adjacent values to random, unstructured vec-
tors; it must learn the geometry of the real line during training. In contrast, a continuous embedding
like Chronos-Bolt uses a smooth neural network ϕ(·;θ). This architectural choice imposes smooth-
ness from the start, ensuring that even a randomly initialized model maps the low-dimensional patch
space Rk to a low-dimensional submanifold in Rd (see Appendix H).

Although understanding a quantization-based embedding requires looking into the training dynam-
ics, which is beyond the scope of this paper, we theoretically analyze how a continuous embedding
preserves low-rank structures. The following theorem formalizes this intuition.

Theorem 1. Given any hidden dimension d > 1, let ϕ : [−1, 1] → Rd be a function that embeds
[−1, 1] into Rd. Given L arbitrary points x1, . . . , xL sampled from [−1, 1], define

Ξ =

 ϕ1(x)
...

ϕd(x)

 ∈ Rd×[−1,1], Ψ =

ϕ1(x1) · · · ϕ1(xL)
...

. . .
...

ϕd(x1) · · · ϕd(xL)

 ∈ Rd×L.

Let s1 ≥ · · · ≥ sd ≥ 0 and σ1 ≥ · · · ≥ σd ≥ 0 be the singular values of the quasimatrix Ξ and
matrix Ψ, respectively. Then, the following statement holds:

1. If, for some V > 0, ν ≥ 1, and every 1 ≤ i ≤ d, we have ϕi and its derivative through ϕ
(ν)
i are

absolutely continuous on [−1, 1] and ϕ
(ν)
i is of bounded variation V , then we have

sj+1≤
4V

√
d

πν(j−1−ν)ν
=O(j−ν

√
d), σj+1≤

2V
√
dL

πν(j−1−ν)ν
=O(j−ν

√
dL), ν+1<j≤d−1.

4

Published as a conference paper at ICLR 2026

2. If, for some M > 0 and every 1 ≤ i ≤ d, ϕi has an analytic continuation to the Bernstein ellipse
of radius ρ > 1 (see Trefethen (2019)), whose infinity norm is no greater than M , then we have

sj+1≤
4M

√
dρ−j+1

ρ− 1
=O(ρ−j

√
d), σj+1≤

2M
√
dLρ−j+1

ρ− 1
=O(ρ−j

√
dL), 0≤j≤d− 1.

We refer interested readers to Townsend & Trefethen (2015) for the precise definition of a quasima-
trix (informally, it is a “matrix” in which one of the dimensions is discrete as usual but the other is
continuous). Theorem 1 guarantees that for univariate patches (k = 1), a smooth embedding func-
tion yields singular values with guaranteed decay rates: polynomial decay of order ν for functions
with ν continuous derivatives, and exponential decay for analytic functions.

See Appendix B for a proof of Theorem 1 using classic univariate polynomial approximation tech-
niques. Using this result, we can directly explain the low-rank structure observed in models like
Time-MoE (see Figure 2 and Corollary 2). While multivariate polynomial approximation results
enable us to extend Theorem 1, the size of the polynomial basis up to a fixed degree increases ex-
ponentially with k, which makes it less practically relevant for a larger patch size k. Instead, for
Chronos-Bolt, where k = 16, we seek an ad hoc result that works when the embedding ϕ(·;θ) is an
MLP (see Appendix C for a proof of Theorem 2 below).
Theorem 2. Consider the input embedding defined by a two-layer residual MLP:

Φ(X) = W3X+W2 ω(W1X), X∈Rk×L, W1∈Rdf×k, W2∈Rd×df , W3∈Rd×k,

where k denotes the patch size, L denotes the number of patches, df denotes the hidden-layer
dimension in an MLP, d > k denotes the hidden dimension of the Transformer, and ω denotes any
activation function satisfying that |ω(x)| ≤ |x| for every x ∈ R. Then, for any ε > 0, we have

|{j |σj(Φ(X)) > ε∥W2∥2∥W1X∥2}| ≤ min{d, (1 + ε−2)k}.

Theorem 2 states that the numerical rank of the continuous embedding is bounded by a quan-
tity dependent linearly on the patch size k, not the much larger ambient dimension d. The term
∥W2∥2∥W1X∥2 reflects the natural scaling of σ1(Φ(X)) in the definition of rankε. In practice, we
have k ≪ d, meaning that MLP embeds an input patch into a low-dimensional subspace in Rd.

To illustrate this theorem, we pretrain 6 Chronos-Bolt models of different patch sizes, and we com-
pute the singular values of their embeddings. Figure 3(a) shows that the numerical rank of the
embedding increases with the patch size k. We also perform an in-depth analysis, where for each
pair of embedded inputs ϕ(x(i)) and ϕ(x(j)) ∈ Rd, we compute the angle between them as follows:

θ(ϕ(x(i)),ϕ(x(j))) = |ϕ(x(i))⊤ϕ(x(j))|/(∥ϕ(x(i))∥2∥ϕ(x(j))∥2) ∈ [0, π/2]. (2)

The larger the θ, the more linearly independent the two vectors are. We illustrate this in Figure 3(b),
where brighter the heatmaps correspond to higher rank matrices. We see that the embedded input,
Φ(X) from Chronos-Bolt, which is a subset of Rd = R768, spans a subspace of significantly smaller
dimension, i.e., the image of Rk = R16 under ϕ.

3 FROM LOW-RANK INPUTS TO LOW-RANK ATTENTION MATRICES

Let U ∈ Rd×L be an input embedded in the hidden space. Recall that in section 2 we showed that for
TSFMs, U often has a low numerical rank. This immediately implies U can be expressed in a low-
rank format: U ≈ U1U2, where U1 ∈ Rd×d̃ and U2 ∈ Rd̃×L for some d̃ ≪ d. This yields faster
matrix-matrix products with U, but a limitation is that this representation requires an expensive
rank-revealing matrix factorization (Damle et al., 2024), which adds overhead, particularly during
backpropagation. If so, how do we leverage the low-rank structure of TSFM embeddings?

From basic linear algebra, it is known that for a linear operator T : Rd → Rd to act on an r-
dimensional subspace, one only needs to specify the operator in r directions, in which case the
operator can then be well-approximated by a low-rank matrix T̃ whose rank scales with r instead of
the full width d (Damle et al., 2024; Ipsen & Saibaba, 2024). An attention layer, defined by

Attention(U;WQ,WK ,WV)=WV U softmax

(
U⊤W⊤

QW
⊤
KU

√
d

)
, WQ,WK ,WV ∈ Rd×d,

5

Published as a conference paper at ICLR 2026

σ
j
(Φ

(X
))
/
σ
1
(Φ

(X
))

j

(a)

SVD of Chronos-Bolt’s Embedding Embedding of Sine Waves

j

θ
(ϕ

(x
(
i
)),

ϕ
(x

(
j
)))

Embedding of White Noises

θ
(ϕ

(x
(
i
)),

ϕ
(x

(
j
)))

Random Vectors in R16

i

j

θ
(v

(
i
)
,
v
(
j
)
)

(b)

Random Vectors in R768

i

θ
(v

(
i
)
,
v
(
j
)
)

Figure 3: (a): Singular values of the embedded input matrices from Chronos-Bolt models pre-
trained with different patch sizes k. (b): Angles between Chronos-Bolt’s embedded vectors in
Rd = R768 defined in eq. (2), where the patches x(i) are from a sinusoidal wave and Gaussian white
noises, respectively. We also plot the angles between i.i.d. random Gaussian vectors in Rk = R16

and Rd = R768 for comparison.

while nonlinear, contains three linear transformations: namely, the queries, the keys, and the values.
In this section, we establish Theorem 3, which supports the low-rank representations of WQ, WK ,
and WV given a low-rank U (see Appendix D for the proof).
Theorem 3. Let C > 0 be a constant. Let Ξ = [x1 · · · xN] ∈ Rd×N be given for some
d,N ≥ 1, xj ∈ Rd, and ∥xj∥2 ≤ C for all 1 ≤ j ≤ N . Let WQ,WK ,WV ∈ Rd×d be matrices
such that ∥W⊤

QWK∥2 ≤ C
√
d, and ∥WV ∥2 ≤ C

√
d. The following two statements hold:

1. (Attention matrices are compressible on low-rank inputs.) For any d̃ < d such that
σd̃+1 := σd̃+1(Ξ) ≤ 1, there exist W̃Q,W̃K ,W̃V ∈ Rd×d with rank(W̃Q) = rank(W̃K) =

rank(W̃V) = d̃, ∥W̃⊤
QW̃K∥2 ≤ ∥W⊤

QWK∥2, and ∥W̃V ∥2 ≤ ∥WV ∥2, such that given any
matrix U ∈ Rd×L for any L ≥ 1, where each column of U is a column of Ξ, we have that∥∥∥Attention(U;WQ,WK ,WV)− Attention(U;W̃Q,W̃K ,W̃V)

∥∥∥
F
≤ O

(√
d σd̃+1

)
, (3)

where the constant in the O-notation only depends on C.

2. (Attention matrices are incompressible on high-rank inputs.) The upper bound in eq. (3) is
tight up to a factor of

√
d. That is, fix some d ≥ 1, L ≥ d and 1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σd > 0.

There exist U ∈ Rd×L with σj(U) = σj for all 1 ≤ j ≤ d, and WQ,WK ∈ Rd×d such that for
any d̃ < d, any orthogonal matrix WV ∈ Rd×d, and any rank-d̃ matrix W̃V ∈ Rd×d, we have∥∥∥Attention(U;WQ,WK ,WV)− Attention(U;WQ,WK ,W̃V)

∥∥∥
F
≥ 1

4
σd̃+1. (4)

Note that Theorem 3 is a purely numerical statement that holds for any low-rank embedding Ξ.
It applies to time series because our analysis in section 2 reveals the low-rank nature of Ξ, but it
nonetheless works for other modalities provided that Ξ is low-rank. The first statement of Theorem 3
says, at a high level, that if the inputs U come from a low-rank vocabulary Ξ, i.e., σd̃+1 is small,
then one only needs low-rank attention matrices W̃Q,W̃K ,W̃V on U. Here, it is important that
we fix the low-rank embedded space Ξ and prove a uniform bound eq. (3) that holds for all input U,
so that our low-rank approximation W̃Q,W̃K ,W̃V is not input-dependent. Since TSFMs have a
low-rank vocabulary Ξ (see section 2), high-rank attention matrices in TSFMs can be approximated
by low-rank ones. See Appendix J for a numerical experiment. We emphasize that this low-rank
property does not depend on the temporal simplicity of a particular time series (e.g., being constant),
but rather on the intrinsic low-dimensionality of the input embedding space Ξ itself, which makes U
low-rank-sufficient for any time-series input. For other data modalities than time-series, e.g., TFMs,
ViTs, and LLMs (see Figure 2), where U has a higher rank, the second statement of Theorem 3
suggests that the attention matrices are less compressible, as we will show in section 5.

6

Published as a conference paper at ICLR 2026

To illustrate the concepts in Theorem 3 on TSFMs, we take pretrained Chronos models and T5
LLMs of different hidden dimensions d. These two models have the same Transformer size and
architecture, and differ only in the pretraining data modality. For each model and a fixed ε > 0, we
compute the averaged ε-rank of all query projection matrices WQ from the model. Figure 4(a,b)
show that as the size of WQ increases, the matrix WQ stays low-rank in a Chronos model, and
its rank scales almost linearly with d in a T5 LLM. For Chronos models, where the vocabulary is
embedded in a low-rank subspace, low-rank attention matrices suffice to capture most information
in the inputs. This empirical observation goes beyond Theorem 3, which proves the sufficiency of
low-rank WQ/K/V , but it does not guarantee their appearance via training. Figure 4(a) shows that
training, while independent from expressiveness, gives rise to low-rank weights (see Appendix G for
more insights). This provides motivation for pretraining a compressed model and for compressing a
pretrained one (see section 5). In Appendix G, we show an analysis of the distribution of the singular
values of attention matrices, in pretrained foundation models and also during training.

ra
nk

ε
(W

Q
)

d

(a)

Rank of WQ (Chronos)
ra

nk
ε
(W

Q
)

d

Rank of WQ (T5)

(b)

ra
nk

ε
(W

Q
)

rank of input embedding

Rank of WQ (Chronos)

(c)

Figure 4: The averaged ε-rank of query projection matrices WQ in pretrained Chronos models and
T5 LLMs. In (a,b), we vary the hidden dimension d. The light blue curves are contours of the
ratio between the horizontal and the vertical axes in the semilog-x scale. In (c), we fix the hidden
dimension d = 512 and change the rank of the fixed input embedding Ξ (see Appendix I).

To further corroborate the role of the rank d̃ in Theorem 3, we pretrain Chronos models with a fixed
vocabulary. We increase the (algebraic) rank of Ξ from 1 to 32 (see Appendix I), where we observe
that the numerical ranks of attention matrices increase with rank(Ξ) (see Figure 4(c)).

While our discussion in this section assumes a single head in the attention layer, in Appendix E we
extend the result to the multi-head case. From the standpoint of representation complexity, Theo-
rem 3 applies equally to multi-head attention, and it is independent of the number of heads (see The-
orem 5 in Appendix D). In practice, however, we observe that the WQ/K/V matrices in pretrained
multi-head layers tend to have higher numerical ranks (see Figure 9). This effect can be understood
through the lens of numerical linear algebra, via a concept called “sketching” (see Appendix E). It
helps explain why additional heads can improve robustness and training stability, even though the
underlying complexity result is head-agnostic (see Theorem 6 in Appendix E).

4 FLOW-OF-RANKS: MOVING THROUGH A TRANSFORMER

Our prior discussions in section 3 focused on compressing a single attention layer, but a Transformer
in a TSFM has many layers. While we showed that the input into the first attention layer is low-
rank (see section 2), one may wonder: what about the inputs into a later layer? If you apply a
linear transformation to a low-rank input, then it at most preserves, if not decreases, the rank of the
input; however, each layer in a Transformer is generally nonlinear. Here, we demonstrate that these
nonlinear layers can increase the rank of the input.

We refer to the phenomenon of the increasing rank of the input as it goes deeper into the layers
of a model as the flow-of-ranks. Our contribution here is twofold: we quantify this rank growth
across layers in a deep Transformer by proving Theorem 4 and then show what that means to Trans-
formers applied to time-series data. To see the “flow-of-ranks” in practice, we show the numerical
ranks of attention matrices per layer in a Chronos model and a T5 LLM in Figure 5(a,b). The
numerical ranks of attention matrices become higher for deeper layers because of the flow-of-ranks
(see Figure 5(c)). For a T5 LLM, only with a large ε do we observe an increase in the ε-rank,
because the ε-rank with a small ε is already saturated (i.e., close to the matrix’s dimension) to cap-

7

Published as a conference paper at ICLR 2026

ture the high-rank vocabulary Ξ. To formalize this discussion, we prove how an attention layer
increases the small singular values of a low-rank input matrix. Conceptually, this “flow-of-ranks”
can be viewed as a mechanism by which the model lifts a low-dimensional but complex signal into
a higher-dimensional space where the underlying autocorrelation becomes simpler. This is analo-
gous to the Koopman operator framework, which similarly transforms nonlinear dynamics into a
higher-dimensional representation with approximately linear evolution.

ra
nk

ε
(W

Q
)

layer index

(a)

Rank of WQ (Chronos)

ra
nk

ε
(W

Q
)

layer index

(b)

Rank of WQ (T5)

j

σ
j
(U

)/
σ
1
(U

)

(c)

SVD of Inputs to Each Layer

Figure 5: (a,b): The ε-rank of every query projection WQ in the encoder of a Chronos model
and a T5 model of the same size, respectively. (c): Singular values of the input matrix to each
Chronos’ encoder layer, starting with a constant signal (x1, . . . , xT) = (0, . . . , 0).

Theorem 4. Given positive integers d ≤ L, let U ∈ Rd×L be an input matrix with singular values
1 = σ1 ≥ · · · ≥ σd > 0. Let D ≥ 1 be the number of layers of the model. Let h be the number of
heads and dh be the per-head dimension so that d = h× dh. The following statements hold:

1. Suppose
√
D ≥ 2e2h. For every 1 ≤ i ≤ h, let ∥W(i)

Q

⊤
W

(i)
K ∥2 ≤

√
dh, and ∥W(i)

V ∥2 ≤ 1 be
any attention matrices (see eq. (18) for the notation). For any 1 ≤ k ≤ d, we have

σk(Z)/σ1(Z) ≤ 2 min
1≤j≤k

(
σk−j+1 +

e2h√
D
σ⌊(j−1)/h⌋+1

)
, (5)

where Z = U+Y/
√
D and Y = MH-Attention(U;WQ,WK ,WV , h).

2. The upper bound above is tight. More precisely, given any d, L,N, h, and singular values 1 =
σ1 ≥ · · · ≥ σd > 0, there exist an input U ∈ Rd×L with singular values σ1, . . . , σd, and matrices
WQ, WK , and WV with ∥W(i)

V ∥2 ≤ 1, such that for any 1 ≤ k ≤ d, we have

σk(Z)/σ1(Z) ≥
1

4

(
σ(i−1)dh+⌈k/i⌉ +

1√
D
σ⌈k/i⌉

)
, (6)

for every i ≤ h such that ⌈k/i⌉ < dh.

See Appendix F for the proof of Theorem 4 and Appendix J for a numerical experiment. The matrix
Z can be interpreted as the output of a residual attention layer given input U, where the scaling factor
1/

√
D is commonly used in a Transformer to stabilize and accelerate training (De & Smith, 2020).

The upper bound in eq. (5) provides a guarantee that the rank of the output cannot be arbitrarily large
if the input is low-rank. In this bound, there are two terms balancing each other: σk−j+1, which
increases as j increases, and σ⌊(j−1)/h⌋+1, which decreases as j increases. Without knowing the
precise distribution of the singular values, the j which minimizes eq. (5) cannot be determined. To
understand why the upper bound is tight, we prove a corollary in a simplified one-layer setting.

Corollary 1. Using the notations in Theorem 4 and assuming D = 1, we have σk(Z) ≤
O(h)σ⌊(k+1)/(h+1)⌋+1. In addition, the lower bound eq. (6) satisfies that σk(Z) ≥ O(1)σ⌈k/h⌉
for every k ≤ d− dh. The constants in both O-notations are universal.

The corollary states that when U goes through an attention layer, the kth singular value of the output
Z can be increased to at most the order of magnitude of the ⌊k/h⌋th singular value of U. The lower
bound suggests that this can be achieved by some inputs, which proves the sharpness of the upper
bound. Interestingly, this result says that the number of heads h plays an important role in increasing
the ranks of an input matrix. The term to note here is not the O(h) factor multiplied to the upper

8

Published as a conference paper at ICLR 2026

0 2 4 6 8 10
0

100

200

300

400

500

600

700 eps=10 0.5

eps=10 1.0

eps=10 1.5

eps=10 2.0

ra
nk

ε
(W

Q
)

layer index

(a)

Rank of WQ (Moirai)

0 2 4 6 8 10
0

100

200

300

400

500

600 eps=10 0.5

eps=10 1.0

eps=10 1.5

eps=10 2.0

ra
nk

ε
(W

Q
)

layer index

(b)

Rank of WQ (WaveToken)

0 2 4 6 8 10
0

100

200

300

400

500

600

700 eps=10 0.5

eps=10 1.0

eps=10 1.5

eps=10 2.0

ra
nk

ε
(W

Q
)

layer index

(b)

Rank of WQ (VisionTS)

Figure 6: Flow-of-ranks is also observed for many TSFMs other than Chronos, including Moirai-
1.0-R-base (Woo et al., 2024), WaveToken (base) (Masserano et al., 2025), and VisionTS (Chen
et al., 2025). The hidden dimension d in all three models are 768.

bound but the division by h+1 in the subindex ⌊(k+1)/(h+1)⌋+1. When h is large and the singular
values decay fast, σ⌊(k+1)/(h+1)⌋+1(U) can be significantly larger than σk(U) (see Figure 17).

In Figure 6, we also verify the flow-of-ranks in many TSFMs beyond Chronos. In general, we
observe that the rank of an attention weight matrix in many TSFMs grows as a function of the layer
index. The three models compared in Figure 6 also have distinct input space dimensions, with that
of VisionTS significantly larger than those of Moirai and WaveToken, which is also reflected by the
overall larger numerical ranks of the weight matrices of VisionTS.

5 USING THESE INSIGHTS: HOW TO COMPRESS A TSFM?

In this section, we apply our theoretical framework to compress large TSFMs. We pursue two
approaches: first, motivated by the observation that attention matrices in many pretrained TSFMs are
already low rank, we apply truncated SVD to each attention matrix of a pretrained model. Second,
to achieve stronger compression, we design architectures that parameterize attention matrices in low
rank from the start and pretrain them from scratch, using a layer-dependent hyperparameter schedule
that accounts for the “flow-of-ranks.” We present results on compressing Chronos, and we provide
more results on another TSFM in Appendix K to support the broad applicability of our methods.
Unlike LoRA’s low-rank fine-tuning updates, we factorize our attention weights themselves, yielding
inference-time efficiency and enabling pretraining with a compressed backbone.

Compressing a Pretrained Model. In Figure 4, we see that attention matrices in a large pretrained
model usually do not have a full numerical rank. That means we can well-approximate a large
matrix with a low-rank one. More precisely, let W ∈ Rd×d be an attention matrix and let W =∑d

j=1 σjuiv
⊤
i be the singular value decomposition (SVD) of W. Then, for a fixed ε > 0, the

truncated SVD satisfies a relative error bound:
∥∥∥W −

∑rankε(W)
j=1 σjuiv

⊤
i

∥∥∥
2
≤ ε∥W∥2 (see eq. (1)).

For a fixed ε > 0, we apply the truncated SVD to every attention matrix of the pretrained Chronos
model without fine-tuning, which reduces the number of parameters. We compute the WQL and
MASE losses (see Ansari et al. (2024a)) and their geometric means relative to the original model. A
score below 1 means the reduced model performs better while it performs worse otherwise.

Table 2 shows that we can compress the attention matrices up to around 23.7% of the original size
without any loss of performance. Reducing the size further takes away key information in attention
matrices and results in a rapid performance deterioration, leading us to the next compression method.

Pretraining a Compressed Model. Table 2 shows a hard limit of compression: compressing the size
to below about 20% makes the performance significantly worse. If one is given enough budget, a
more robust method to obtain a smaller TSFM is by pretraining a compressed model. We parameter-
ize a d×d attention matrix by a rank-d̃ representation. Driven by “flow-of-ranks” from section 4, we
choose to let d̃ be layer-dependent. In the ith layer of the model, we use a d̃i = d̃(i) = ⌈d̃0(1+ i)α⌉,
where d̃0 > 0 and α ≥ 0 are two hyperparameters. This design is motivated by the fact that the
numerical rank of an input to a layer increases as the layer index, and we need attention matrices of
higher ranks to capture them (see Theorem 3). In Figure 7, we see how pretraining a compressed
model allows us to expand the time–accuracy Pareto frontier of TSFMs, which show that pretrain-

9

Published as a conference paper at ICLR 2026

Table 2: Results of compressing a pretrained Chronos or T5 model. We apply truncated SVD with
a specific ε, which results in a model whose attention matrices are compressed to the “Ratio” of the
original size. We compare the performance scores relative to the original pretrained model, where
“LPPL” stands for the logarithm of the perplexity. Overlap is obtained by selecting the top-10 tokens
from the original model and the compressed one, and computing their Jaccard overlap.

Ratio
Chronos T5

In-Domain ↓ Zero-Shot ↓ Overlap ↑ LPPL ↓ Overlap ↑WQL MASE WQL MASE

0.073 4.409 4.095 3.562 3.435 0.308 3.313 0.227
0.151 1.991 2.412 1.566 1.576 0.717 2.530 0.301
0.237 1.053 1.005 1.030 1.011 0.883 1.652 0.345
0.393 1.009 1.024 0.990 0.994 0.979 1.544 0.568
0.569 1.003 0.952 0.945 0.995 0.997 1.290 0.730
0.755 1.007 1.021 1.027 1.000 0.999 1.085 0.871
0.889 1.000 0.960 1.016 1.001 0.999 1.028 0.954
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

compress-to ratio

Jaccard overlapre
la

tiv
e

sc
or

e

ing a compressed model is more robust than compressing a pretrained one. In fact, in Table 3
of Appendix K, we show that pretraining a compressed Chronos-Bolt allows us to outperform even
traditional local methods on both time and accuracy.

d̃0 α Size Ratio Inference Embedding From Scratch Reuse Embedding
In-Domain Zero-Shot In-Domain Zero-Shot

Time Space WQL ↓ MASE ↓ WQL ↓ MASE ↓ WQL ↓ MASE ↓ WQL ↓ MASE ↓
3 0.27 0.075 0.346 0.186 1.034 0.988 0.966 0.982 1.031 1.047 1.087 1.084
5 0.35 0.150 0.398 0.312 1.048 0.982 1.080 1.055 1.025 0.930 0.936 0.960
7 0.40 0.250 0.494 0.440 1.021 0.949 0.996 1.019 0.999 1.007 0.949 0.943
64 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

M
A

SE

inference time

W
Q

L

inference time
Figure 7: Results of pretraining a compressed Chronos model. We compare the performance scores
relative to the original pretrained model. We show prediction losses for both models whose em-
bedding matrix is randomly initialized and models whose embedding matrix is inherited from the
original pretrained model. The last row is the baseline.

To show the generality of our analysis in this paper, we also pretrain compressed Moirai-1.0-R-base
models. We show the results in Table 4 of Appendix K. It clearly shows the benefit of the flow-
of-ranks design: given a fixed compression ratio, a model with a different reduced rank per layer
performs significantly better than one whose rank remains layer-independent.

6 CONCLUSION

We have developed a data/modality-dependent framework via the lens of rank structure for analyz-
ing the structure of and design decisions for Transformers, and we have applied it to Chronos and
Chronos-Bolt, two popular TSFMs. Our results highlight how properties of the model depend on
and interact with properties of the input data, and they lead to concrete principles for the design of
models, parameters, and hyperparameters. We illustrate our proof-of-principle results by showing
the compressibility of TSFMs in comparison to Transformers trained on text data.

ACKNOWLEDGMENTS

The authors would like to thank Yongjun He, Junming Yin, Dmitry Efimov, and Boris Oreshkin for
many fruitful discussions on this work.

10

Published as a conference paper at ICLR 2026

REFERENCES

Kumar Abhishek, Maheshwari Prasad Singh, Saswata Ghosh, and Abhishek Anand. Weather fore-
casting model using artificial neural network. Procedia Technology, 4:311–318, 2012.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024a.

Abdul Fatir Ansari, Caner Turkmen, Oleksandr Shchur, and Lorenzo Stella.
Fast and accurate zero-shot forecasting with Chronos-Bolt and Autogluon,
2024b. URL https://aws.amazon.com/blogs/machine-learning/
fast-and-accurate-zero-shot-forecasting-with-chronos-bolt-and-autogluon/.

Ane Blázquez-Garcı́a, Angel Conde, Usue Mori, and Jose A Lozano. A review on outlier/anomaly
detection in time series data. ACM computing surveys (CSUR), 54(3):1–33, 2021.

Rishi Bommasani et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecast-
ing. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 6989–6997,
2023.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
fying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu. Vi-
sionTS: Visual masked autoencoders are free-lunch zero-shot time series forecasters. PMLR,
2025.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. International Conferences on Learning Representations, 2021.

Anil Damle, Silke Glas, Alex Townsend, and Annan Yu. How to reveal the rank of a matrix? arXiv
preprint arXiv:2405.04330, 2024.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Soham De and Samuel L. Smith. Batch normalization biases residual blocks towards the identity
function in deep networks. In Neural Information Processing Systems Foundation, 2020.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

11

https://aws.amazon.com/blogs/machine-learning/fast-and-accurate-zero-shot-forecasting-with-chronos-bolt-and-autogluon/
https://aws.amazon.com/blogs/machine-learning/fast-and-accurate-zero-shot-forecasting-with-chronos-bolt-and-autogluon/

Published as a conference paper at ICLR 2026

P. Drineas and M. W. Mahoney. RandNLA: Randomized numerical linear algebra. Communications
of the ACM, 59:80–90, 2016.

Shibo Feng, Peilin Zhao, Liu Liu, Pengcheng Wu, and Zhiqi Shen. Hdt: Hierarchical discrete
transformer for multivariate time series forecasting. arXiv preprint arXiv:2502.08302, 2025.

Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):
1–28, 1985.

Leon Götz, Marcel Kollovieh, Stephan Günnemann, and Leo Schwinn. Byte pair encoding for
efficient time series forecasting. arXiv preprint arXiv:2505.14411, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Haokun Gui, Xiucheng Li, and Xinyang Chen. Vector quantization pretraining for eeg time series
with random projection and phase alignment. In International Conference on Machine Learning,
pp. 16731–16750. PMLR, 2024.

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J Hyndman.
Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

Ilse CF Ipsen and Arvind K Saibaba. Stable rank and intrinsic dimension of real and complex
matrices. arXiv preprint arXiv:2407.21594, 2024.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics,
37(15):2112–2120, 2021.

Jeffrey Lai, Anthony Bao, and William Gilpin. Panda: A pretrained forecast model for universal
representation of chaotic dynamics. arXiv preprint arXiv:2505.13755, 2025.

Nguyen Quoc Khanh Le, Quang-Thai Ho, Trinh-Trung-Duong Nguyen, and Yu-Yen Ou. A trans-
former architecture based on bert and 2d convolutional neural network to identify dna enhancers
from sequence information. Briefings in bioinformatics, 22(5):bbab005, 2021.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Miguelangel Leon, Yuriy Perezhohin, Fernando Peres, Aleš Popovič, and Mauro Castelli. Compar-
ing smiles and selfies tokenization for enhanced chemical language modeling. Scientific Reports,
14(1):25016, 2024.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020.

12

Published as a conference paper at ICLR 2026

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International journal of forecasting, 37(4):
1748–1764, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Spyros Makridakis and Michele Hibon. Arma models and the box–jenkins methodology. Journal
of forecasting, 16(3):147–163, 1997.

Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1–73, 2021.

Luca Masserano, Abdul Fatir Ansari, Boran Han, Xiyuan Zhang, Christos Faloutsos, Michael W
Mahoney, Andrew Gordon Wilson, Youngsuk Park, Syama Rangapuram, Danielle C Maddix,
et al. Enhancing foundation models for time series forecasting via wavelet-based tokenization. In
International Conference on Machine Learning. PMLR, 2025.

Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław
Jastrzebski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020.

Eric Nguyen, Michael Poli, Matthew G Durrant, Brian Kang, Dhruva Katrekar, David B Li, Liam J
Bartie, Armin W Thomas, Samuel H King, Garyk Brixi, et al. Sequence modeling and design
from molecular to genome scale with evo. Science, 386(6723):eado9336, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–
1191, 2020.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-moe:
Billion-scale time series foundation models with mixture of experts. International Conference on
Learning Representations, 2025.

Sabera Talukder, Yisong Yue, and Georgia Gkioxari. Totem: Tokenized time series embeddings for
general time series analysis. arXiv preprint arXiv:2402.16412, 2024.

Alex Townsend and Lloyd N Trefethen. Continuous analogues of matrix factorizations. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2173):20140585,
2015.

Lloyd N Trefethen. Approximation theory and approximation practice, extended edition. SIAM,
2019.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Andrew Gordon Wilson. Deep learning is not so mysterious or different. PMLR, 2025.

13

Published as a conference paper at ICLR 2026

Malcolm L Wolff, Shenghao Yang, Kari Torkkola, and Michael W Mahoney. Using pre-trained
LLMs for multivariate time series forecasting. arXiv preprint arXiv:2501.06386, 2025.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. 2024.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 14138–14148, 2021.

Jinsung Yoon, William R Zame, and Mihaela Van Der Schaar. Estimating missing data in temporal
data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical
Engineering, 66(5):1477–1490, 2018.

Annan Yu, Arnur Nigmetov, Dmitriy Morozov, Michael W Mahoney, and N Benjamin Erichson. Ro-
bustifying state-space models for long sequences via approximate diagonalization. arXiv preprint
arXiv:2310.01698, 2023.

Annan Yu, Michael W Mahoney, and N Benjamin Erichson. Hope for a robust parameterization of
long-memory state space models. arXiv preprint arXiv:2405.13975, 2024.

Michael Yuanjie Zhang, Jeffrey R Russell, and Ruey S Tsay. A nonlinear autoregressive conditional
duration model with applications to financial transaction data. Journal of Econometrics, 104(1):
179–207, 2001.

Xiyuan Zhang and Danielle Maddix Robinson. Mitra: Mixed synthetic priors for enhanc-
ing tabular foundation models, 2025. URL https://www.amazon.science/blog/
mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models.

Yuanzhao Zhang and William Gilpin. Zero-shot forecasting of chaotic systems. International Con-
ference on Learning Representations, 2025.

14

https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models
https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models

Published as a conference paper at ICLR 2026

A RELATED WORK

A.1 TIME-SERIES MODELING

Time series data are ubiquitous in many domains, including scientific (Abhishek et al., 2012; Zhang
& Gilpin, 2025; Lai et al., 2025), industrial (Hong et al., 2016), and financial applications (Zhang
et al., 2001), where they facilitate critical tasks, such as forecasting (Hyndman & Athanasopou-
los, 2018), imputation (Yoon et al., 2018), and anomaly detection (Blázquez-Garcı́a et al., 2021).
Classical time-series forecasting (Hyndman & Athanasopoulos, 2018) has deep roots in traditional
methods such as ARIMA (Makridakis & Hibon, 1997) and exponential smoothing (Gardner Jr,
1985). Many modern approaches involve deep learning; for example, sequence models such as
DeepAR (Salinas et al., 2020) popularized probabilistic forecasting at scale, while Lim et al. (2021)
combined the attention mechanism with interpretability for multi-horizon tasks. There are other neu-
ral forecasters without attention, such as N-BEATS (Oreshkin et al., 2019) and N-HiTS (Challu et al.,
2023). An evolving modern alternative that targets long contexts efficiently is the recently developed
state-space models (Gu et al., 2021) and Mamba (Gu & Dao, 2023). These neural-network-based
methods are usually considered task-specific — that is, given a task, one trains a model to obtain a
specific set of weights tailored to that task.

A.2 TIME-SERIES FOUNDATION MODELS

Recent work pretrains general-purpose time series models across domains and tasks. Examples
include TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024a), Moirai (Woo et al., 2024), and
Time MOE (Shi et al., 2025). These models differ in tokenization choices, training corpora, and
zero-shot protocols, but they share the goal of one model that transfers across datasets and horizons.

A.3 TIME-SERIES TOKENIZATION AND EMBEDDING

Designing the input representation is the key to leveraging the high flexibility and expressive power
of large Transformers. Patching turns small motifs into tokens, as in Nie et al. (2022) and Das
et al. (2024). Discrete tokenization via quantization has been explored by Ansari et al. (2024a)
and Talukder et al. (2024), and other discrete designs include HDT (Feng et al., 2025) and vector-
quantized methods (Gui et al., 2024). Another line of research is by using frequency-based tokeniz-
ers, such as WaveToken (Masserano et al., 2025). Lately, traditional language embedding strategies
such as Byte-Pair Encoding are also considered (Götz et al., 2025).

A.4 LOW-RANK STRUCTURES IN DEEP LEARNING

Low-rank structure shows up in the deep learning community as both an inductive bias (Martin
& Mahoney, 2021; Wilson, 2025; Yu et al., 2024) and a compression tool (Sharma et al., 2023;
Gu et al., 2022; Yu et al., 2023). There is also a line of research that looks into parameter-efficient
finetuning called LoRA (Hu et al., 2022), which learns low-rank updates to weight matrices. We note
that LoRA is different from our low-rank model compression strategy because LoRA essentially
learns a high-rank-plus-low-rank expression of the weight matrices, and does not facilitate storage
or inference of a model. Earlier work reduced cost via matrix or tensor factorizations, especially in
the CNN community (Denton et al., 2014; Jaderberg et al., 2014; Lebedev et al., 2014). These ideas
motivate studying when low-rank operators suffice for sequence models, while our paper provides
clean justifications for why low-rank operators suffice for a time-series foundation model.

A.5 LOW-RANK STRUCTURES IN TRANSFORMERS

Low-rank structure in Transformers and attention has been extensively exploited for both effi-
ciency and interpretability. A first line of work directly approximates the quadratic self-attention
matrix with low-rank kernels: Linformer (Wang et al., 2020) projects keys and values to a low-
dimensional subspace, yielding self-attention with linear complexity in sequence length, while
Nyströmformer (Xiong et al., 2021) uses a Nyström approximation of the softmax kernel based
on a small set of landmark tokens. Random-feature methods such as Performer (Choromanski et al.,
2021) further view softmax attention as a kernel and approximate it with low-rank random feature

15

Published as a conference paper at ICLR 2026

maps, obtaining linear-time and memory. Scatterbrain (Chen et al., 2021) analyzes when sparse ver-
sus low-rank attention yields better approximations and proposes a unified sparse+low-rank estima-
tor that attains lower error than either component alone. Complementary approaches parameterize
the weight matrices themselves in low rank: LoRA (Hu et al., 2022) learns low-rank updates on top
of frozen full-rank weights for parameter-efficient fine-tuning of large language models, and Sharma
et al. (2023) perform layer-selective rank reduction to probe and improve the reasoning behavior of
Transformers. These works treat low rank primarily as an architectural or algorithmic assumption
used to accelerate or regularize attention. By contrast, our analysis starts from the observed low
numerical rank of time-series embeddings, proves when attention matrices over such embeddings
are provably compressible, and then uses this data-driven perspective to design TSFMs whose atten-
tion layers are low rank by construction and compressible, which accelerates both pretraining and
inference.

16

Published as a conference paper at ICLR 2026

B PROOF OF THEOREM 1 AND COROLLARY 2

Before we go into the proofs of Theorem 1 and Corollary 2, we present a figure to illustrate the differ-
ences between the quantization-based embedding and continuous embedding discussed in Section 2.

Quantization-based Embedding Continuous Embedding

Figure 8: A comparison of the quantization-based embeddings and continuous embeddings. In a
quantization-based one, we discretize the input domain into a number of regions and map each of
them to a trainable vector. In a continuous embedding, we use a trainable function (usually an MLP)
to map each element into the hidden space Rd. The red parts in the figure highlight the trainable
components.

The proof of Theorem 1 relies on classic polynomial approximation results. Intuitively, if a function
ϕ is well-approximated by a low-degree polynomial, then the low-degree polynomial can be repre-
sented with a small basis, spanning a low-dimensional subspace. We now formalize this notion by
providing the proof.

Proof of Theorem 1. Fix some 1 ≤ j ≤ d. Let Pi,j be the best degree-(j − 1) polynomial approxi-
mation of ϕi in the infinity norm, and let

δj = max
1≤i≤d

∥ϕi − Pi,j∥L∞([−1,1]).

Since Pi,j is a polynomial of degree ≤ j − 1, we can write it into

Pi,j(x) =

j−1∑
k=0

ai,k Tk(x),

where Tk is the degree-k Chebyshev polynomial. Then, we can write Ξ into

Ξ=

 P1,j(x)
...

Pd,j(x)

+
 (ϕ1−P1,j)(x)

...
(ϕd−Pd,j)(x)


︸ ︷︷ ︸

Ej

=

a1,0 · · · a1,j−1

...
. . .

...
ad,0 · · · ad,j−1


 T0(x)

...
Tj−1(x)


︸ ︷︷ ︸

Ξj

+Ej .

Since Ξj is a quasimatrix of rank at most j, by (Townsend & Trefethen, 2015, Thm. 4.2), we have
that

sj+1 ≤ ∥Ej∥F =

√√√√ d∑
i=1

∥ϕi − Pi,j∥2L2([−1,1]) ≤ 2

√√√√ d∑
i=1

∥ϕi − Pi,j∥2L∞([−1,1]) ≤ 2
√
d δj . (7)

17

Published as a conference paper at ICLR 2026

Similarly, note that

Ψ =

P1,j(x1) · · · P1,j(xL)
...

. . .
...

Pd,j(x1) · · · Pd,j(xL)

+

(ϕ1 − P1,j)(x1) · · · (ϕ1 − P1,j)(xL)
...

. . .
...

(ϕd − Pd,j)(x1) · · · (ϕd − Pd,j)(xL)


︸ ︷︷ ︸

Fj

=

a1,0 · · · a1,j−1

...
. . .

...
ad,0 · · · ad,j−1


 T0(x1) · · · T0(xL)

...
. . .

...
Tj−1(x1) · · · Tj−1(x1)


︸ ︷︷ ︸

Ψj

+Fj .

Since the rank of Ψj is at most j, by the Eckart–Young inequality, we have that

σj+1 ≤ ∥Fj∥2 ≤ ∥Fj∥F ≤
√
dLδj . (8)

From (Trefethen, 2019, Thm. 7.2 & 8.2), we have that

δj ≤
2V

πν(j − 1− ν)ν
and δj ≤

2Mρ−j+1

ρ− 1
(9)

when ϕi satisfies the condition in the first and the second statement of the theorem, respectively.
Hence, the two statement are proved by combining eq. (7), (8), and (9).

The activation function swishβ used in Time MOE is analytic, and its domain of analyticity increases
as β → 0+. Hence, we can use Theorem 1 to prove that Time MOE’s embedding is low-rank.
Corollary 2. The embedding used in Time-MoE, defined by ϕi(x) = swishβ(wix) · (vix) =
(wivix

2)/(1 + e−βx), where we assume |wivi| ≤ 1 and β > 0, satisfies that

σj+1 = O
(√

dL(β + β−1)(1 + π/(2β))−j+1
)
,

where σj+1 is defined in Theorem 1 for any Ψ and the constant in the O-notation is universal.

Proof. The function ϕi(z) is a meromorphic function with poles at {z | exp(−βz) = −1} = {(2k+
1)πi/β | k ∈ Z}. Set ρ = 1 + π/(2β). Then, within the Bernstein ellipse Eρ of radius ρ, we have
that

Re
(
e−βx

)
> −c ⇒ |ϕi(x)| ≤

|x|2

1− c
= O(1 + β−2), x ∈ Eρ,

where 0 < c < 1 is a universal constant and the constant in the O-notation is also universal. The
corollary follows from Theorem 1.

18

Published as a conference paper at ICLR 2026

C PROOF OF THEOREM 2

The intuition in Theorem 2 is that if the MLP does not have a nonlinear activation function, then
the linear MLP clearly maps a low-rank matrix to a low-rank matrix. While a nonlinear activation
function complicates things, a contractive function does not increase the Frobenius norm of a matrix,
which is equivalent to the ℓ2-norm of all singular values.

Proof of Theorem 2. Since X is a rank-k matrix, the rank of W1X is at most k. Hence, the Frobe-
nius norm of the matrix satisfies that

∥W1X∥2F =

k∑
j=1

σj(W1X)2 ≤ k σ1(W1X)2.

Given that |ω(x)| ≤ |x| for every x ∈ R, we have

k σ1(W1X)2 ≥ ∥W1X∥2F ≥ ∥ω(W1X)∥2F =

min(df ,L)∑
j=1

σj(ω(W1X))2.

Using the singular value inequalities, we have that

min(df ,L)∑
j=1

σj(W2 ω(W1X))2 ≤ σ1(W2)
2

min(df ,L)∑
j=1

σj(ω(W1X))2

≤ k σ1(W2)
2 σ1(W1X)2 = k∥W2∥22∥W1X∥22.

This is, we can control the number of large singular values of W2 ω(W1X) by

|{j |σj(W2 ω(W1X)) > ε∥W2∥2∥W1X∥2}| ≤ ε−2k.

Moreover, the rank of the matrix W3X is at most k. Using the singular value inequality that

σi+j−1(A+B) ≤ σi(A) + σj(B), A,B ∈ Rd×L, i+ j − 1 ≤ min(d, L),

we have

σk+j(ϕ(X)) ≤ σk+1(W3X) + σj(W2 ω(W1X)) = σj(W2 ω(W1X)), j ≤ min(d, L)− k.

This gives us

|{j |σj(ϕ(X)) > ε∥W2∥2∥W1X∥2}| ≤ |{j |σj(W2 ω(W1X)) > ε∥W2∥2∥W1X∥2}|+ k

≤ (1 + ε−2)k,

which proves the result.

19

Published as a conference paper at ICLR 2026

D PROOF OF THEOREM 3

To prove the upper bound in Theorem 3, we will prove a stronger result concerning not only a
single-head attention but also a multi-head one.

Theorem 5. Let C > 0 be a constant. Let Ξ = [x1 · · · xN] ∈ Rd×N be an embedding matrix,
where d is the hidden dimension, N is the vocabulary size, xj ∈ Rd, and ∥xj∥2 ≤ C for all
1 ≤ j ≤ N . Let WQ,WK ,WV ∈ Rd×d be multi-head attention matrices with h heads, such that
∥(W(i)

Q)⊤W
(i)
K ∥2 ≤ C

√
dh, and ∥W(i)

V ∥2 ≤ C
√
dh for every 1 ≤ i ≤ h. For any d̃ < d such

that σd̃+1 := σd̃+1(Ξ) ≤ 1, there exists a stable low-rank approximation W̃Q,W̃K ,W̃V ∈ Rd×d

with rank(W̃Q) = rank(W̃K) = rank(W̃V) = d̃, ∥W̃⊤
QW̃K∥2 ≤ ∥W⊤

QWK∥2, and ∥W̃V ∥2 ≤
∥WV ∥2, such that given any input matrix U ∈ Rd×L for any L ≥ 1, where each column of U is a
column of Ξ, we have that the low-rank attention matrices uniformly approximate the original one:∥∥∥MH-Attention(U;WQ,WK ,WV , h)−MH-Attention(U;W̃Q,W̃K ,W̃V)

∥∥∥
F
≤O

(√
d σd̃+1

)
,

(10)
where the constant in the O-notation only depends on C.

Proof. Fix a d̃ < d. For the sake of simplicity, we assume, without loss of generality, that C = 1.
Let

Ξ = Ud̃Sd̃V
⊤
d̃
, Ud̃ ∈ Rd×d̃, Sd̃ ∈ Rd̃×d̃, Vd̃ ∈ RN×d̃

be the truncated SVD of Ξ. Let Qd̃ = Sd̃V
⊤
d̃
∈ Rd̃×N . Therefore, we have

∥Ξ−Ud̃Qd̃∥2 ≤ σd̃+1(Ξ).

Define W̃Q,W̃K , and W̃V by

W̃Q = WQUd̃U
⊤
d̃
∈ Rd×d, W̃K = WKUd̃U

⊤
d̃
∈ Rd×d, W̃V = WV Ud̃U

⊤
d̃
∈ Rd×d.

Since Ud̃ has orthonormal columns, we have that ∥Ud̃∥2 = ∥U⊤
d̃
∥2 = 1. By the sub-multiplicity of

the spectral norm, we have that

∥W̃⊤
QW̃K∥2 ≤ ∥W⊤

QWK∥2, ∥W̃V ∥2 ≤ ∥WV ∥2,

which proves the stability of the low-rank representation. Let QU ∈ Rd̃×L be the matrix defined by
the condition that the ith column of QU is the jth column of Qd̃ if and only if the ith column of U
is the jth column of Ξ, and let

∆U = Ud̃QU −U.

Since every column of ∆U is a column of Ξ−Ud̃Qd̃, its norm is no greater than σd̃+1(Ξ), i.e.,

∥∆U (:, j)∥2 ≤ σd̃+1(Ξ), 1 ≤ j ≤ L,

∥∆U∥2 ≤ ∥∆U∥F ≤
√
Lσd̃+1(Ξ).

(11)

Next, we have
∥∆(i)

V ∥2 ≤ ∥∆(i)
U ∥2 ≤

√
dhL σd̃+1(Ξ),

∆
(i)
V := W

(i)
V U− W̃

(i)
V U = W

(i)
V U−W

(i)
V Ud̃U

⊤
d̃
U

= W
(i)
V U−W

(i)
V Ud̃U

⊤
d̃
Ud̃QU

= W
(i)
V U−W

(i)
V Ud̃QU = −W

(i)
V ∆U ,

where the first inequality comes from the sub-multiplicity of the spectral norm. Moreover, every
column of ∆(i)

V is a column of −W
(i)
V ∆U and must satisfy that

∥∆(i)
V (:, j)∥2 ≤

√
dh σd̃+1(Ξ), 1 ≤ j ≤ L. (12)

20

Published as a conference paper at ICLR 2026

Similarly, we have that

∥∆(i)
Q ∥2 ≤

√
dh L(2σd̃+1(Ξ) + σd̃+1(Ξ)2),

∆
(i)
Q := U⊤(W

(i)
Q)⊤W

(i)
K U−U⊤(W̃

(i)
Q)⊤W̃

(i)
K U

= U⊤(W
(i)
Q)⊤W

(i)
K U−U⊤Ud̃U

⊤
d̃
(W

(i)
Q)⊤W

(i)
K Ud̃U

⊤
d̃
U

= U⊤(W
(i)
Q)⊤W

(i)
K U−Q⊤

XU⊤
d̃
(W

(i)
Q)⊤W

(i)
K Ud̃QU

= −∆⊤
U (W

(i)
Q)⊤W

(i)
K U−U⊤(W

(i)
Q)⊤W

(i)
K ∆U−∆⊤

U (W
(i)
Q)⊤W

(i)
K ∆U ,

where the inequality is obtained by recalling that ∥U∥2 ≤
√
L and ∥∆U∥2 ≤

√
L σd̃+1(Ξ).

Moreover, since we have ∥U(:, j)∥2 ≤ 1 and ∥∆U (:, j)∥2 ≤ σd̃+1(Ξ) for all 1 ≤ j ≤ N , every

entry of ∆(i)
Q satisfies that

∥∆(i)
Q (t, j)∥2 ≤

√
dh(2σd̃+1(Ξ) + σd̃+1(Ξ)2), 1 ≤ t ≤ L, 1 ≤ j ≤ L. (13)

For each fixed 1 ≤ i ≤ h, define the notations

G(i) =
U⊤(W

(i)
Q)⊤W

(i)
K U

√
dh

,

g
(i)
j = G(:, j),

G̃(i) =
U⊤(W̃

(i)
Q)⊤W̃KU
√
dh

,

g̃
(i)
j = G̃(:, j).

For simplicity, we drop the superscripts (i) on G, G̃, g, and g̃. Since we assumed ∥uj∥2 ≤ 1 for all
1 ≤ j ≤ N and ∥(W(i)

Q)⊤W
(i)
K ∥2 ≤

√
dh, we have that

∥gj∥max ≤ 1, ∥g̃j∥max ≤ 1, 1 ≤ j ≤ L.

Denote by gtj and g̃tj the tth entry of gj and g̃j , respectively. For every fixed 1 ≤ j ≤ L and
1 ≤ t ≤ L, we have

| softmax(gj)t − softmax(g̃j)t︸ ︷︷ ︸
dt
j

| =

∣∣∣∣∣ exp(gtj)∑L
k=1 exp(gkj)

−
exp(g̃tj)∑L

k=1 exp(g̃kj)

∣∣∣∣∣
=

∣∣∣∑L
k=1

(
exp(gtj)exp(g̃kj)− exp(g̃tj)exp(gkj)

)∣∣∣∣∣∣(∑L
k=1 exp(gkj)

)(∑L
k=1 exp(g̃kj)

)∣∣∣ ≤
Lmaxk

∣∣exp(gtj)exp(g̃kj)− exp(g̃tj)exp(gkj)
∣∣

L2 exp(−2)

=
Lmaxk

∣∣exp(gtj)(exp(gkj)+(exp(g̃kj)−exp(gkj)))− (exp(gtj)+(exp(g̃tj)−exp(gtj)))exp(gkj)
∣∣

L2 exp(−2)

≤
maxk

(
exp(1)

(
|exp(gkj)−exp(g̃kj)|+|exp(gtj)−exp(g̃tj)|

)
+|exp(gkj)−exp(g̃kj)||exp(gtj)−exp(g̃tj)|

)
L exp(−2)

≤
2 exp(1)(2σd̃+1(Ξ) + σd̃+1(Ξ)2) + (2σd̃+1(Ξ) + σd̃+1(Ξ)2)2

Lexp(−2)︸ ︷︷ ︸
DQ

,

(14)
where the last inequality follows from eq. (13). Hence, for each fixed 1 ≤ j ≤ L and 1 ≤ i ≤ h, we
have that∥∥∥W(i)

V U softmax(g(i)
j)− W̃

(i)
V U softmax(g̃(i)

j)
∥∥∥
2

=

∥∥∥∥∥
L∑

i=1

(
W

(i)
V U(:, i) softmax(gtj)− W̃

(i)
V U(:, i) softmax(g̃tj)

)∥∥∥∥∥
2

≤
√
L max

1≤t≤L

∥∥∥(W(i)
V U(:, t) softmax(gtj)− (W

(i)
V U(:, t)−∆

(i)
V (:, t)) (softmax(gtj)− dtj)

)∥∥∥
2

≤
√
L max

1≤t≤L

(
∥∆(i)

V (:, t)∥2|softmax(g̃tj)|+ ∥W(i)
V U(:, t)∥2 DQ

)
≤

√
L
(√

dh σd̃+1Θ(1/L) +
√
dh O

((
σd̃+1 + σ2

d̃+1

)
/L
))

= O
(√

dh σd̃+1/
√
L
)
,

21

Published as a conference paper at ICLR 2026

where the last inequality follows from eq. (12) and (14). Since W
(i)
V U softmax(g(i)

j) −
W̃

(i)
V U softmax(g̃(i)

j) is the jth column of

Attention(U;W
(i)
Q ,W

(i)
K ,W

(i)
V)− Attention(U;W̃

(i)
Q ,W̃

(i)
K ,W̃

(i)
V),

we have that

∥MH-Attention(U;WQ,WK ,WV , h)− Attention(U;W̃Q,W̃K ,W̃V , h)∥F

=

√√√√ h∑
i=1

∥Attention(U;W
(i)
Q ,W

(i)
K ,W

(i)
V)− Attention(U;W̃

(i)
Q ,W̃

(i)
K ,W̃

(i)
V)∥2F

≤

√√√√ h∑
i=1

L∑
j=1

∥∥∥W(i)
V U softmax(g(i)

j)− W̃
(i)
V U softmax(g̃(i)

j)
∥∥∥2
2

=
√
hLO

(√
dh σd̃+1/

√
L
)
= O

(√
d σd̃+1

)
.

The proof is complete.

Theorem 5 immediately proves the upper bound in Theorem 3. The lower bound needs a separate
argument.

Proof of Theorem 3. The upper bound follows immediately from Theorem 5 by setting h = 1. To
prove the lower bound, let U′ ∈ Rd×d̃ and U ∈ Rd×L be such that

U = [U′ 0] , U′ = diag(σ1, . . . , σd) ∈ Rd×d, 0 ∈ Rd×(L−d).

Clearly, the singular values of U are σ1, . . . , σd. Define WQ and WK such that

W⊤
QWK = log(4d)σ−2

d

√
d Id.

Then, we have

T :=
U⊤W⊤

QWKU
√
d

= log(4d)σ−2
d

[
diag(σ2

1 , . . . , σ
2
d) 0d×(L−d)

0(L−d)×d 0(L−d)×(L−d)

]
.

Let G = softmax(T) and let gj be the jth column of G. Then, for every 1 ≤ j ≤ d, we have

gj =
[
g1j , . . . , g

L
j

]⊤
, gij =


1

(L− 1) + exp
(
log(4d)σ−2

d σ2
j

) ≤ 1

4d
, i ̸= j,

exp
(
log(4d)σ−2

d σ2
j

)
(L− 1) + exp

(
log(4d)σ−2

d σ2
j

) ≥ 1

2
, i = j.

(15)

Write G into

G =

[
G11 G12

G21 G22

]
,

where

G11 = G′ ∈ Rd×d, G12 ∈ Rd×(L−d), G21 ∈ R(L−d)×d, G22 ∈ R(L−d)×(L−d),

and write G11 into the sum of its diagonal part and off-diagonal part:

G11 = Gdiag +Goff-diag,

where Gdiag is a diagonal matrix and Goff-diag is a matrix with zero diagonal entries. Then,
by eq. (15), we have

σd(Gdiag) = min
1≤j≤d

gjj ≥ 1

2
, ∥Goff-diag∥2 ≤ ∥Goff-diag∥F ≤ d

1

4d
=

1

4
.

22

Published as a conference paper at ICLR 2026

Hence, by Weyl’s inequality, we have

σd(G11) ≥ σd(Gdiag)− ∥Goff-diag∥2 ≥ 1

4
. (16)

Using the results above, we have

WV U softmax

(
U⊤W⊤

QWKU
√
d

)
− W̃V U softmax

(
U⊤W⊤

QWKU
√
d

)

= (WV U− W̃V U)G =
[
WV U

′ − W̃V U
′ 0d×(L−d)

] [G11 G12

G21 G22

]
=
[(

WV U
′ − W̃V U

′
)
G11

(
WV U

′ − W̃V U
′
)
G12

]
,

but W̃V U
′ is a rank-d̃ matrix so we must have

∥WV U
′ − W̃V U

′∥2 ≥ σd̃+1(WV U
′) = σd̃+1. (17)

Hence, by the singular value inqualities, we have∥∥∥∥∥WV U softmax

(
U⊤W⊤

QWKU
√
d

)
− W̃V U softmax

(
U⊤W⊤

QWKU
√
d

)∥∥∥∥∥
2

≥
∥∥∥(WV U

′ − W̃V U
′
)
G11

∥∥∥
2
≥ σ1

(
WV U

′ − W̃V U
′
)
σd(G11) ≥

1

4
σd̃+1,

where the last inequality is obtained by combining eq. (16) and (17). The proof is complete.

23

Published as a conference paper at ICLR 2026

E COMPRESSING A MULTI-HEAD ATTENTION LAYER

Theorem 3 concerns the compressibility of a single-head attention layer. In practice, most TSFMs
use multi-head attention instead:2

MH-Attention(U;WQ,WK ,WV , h) =


Attention(U;W

(1)
Q ,W

(1)
K ,W

(1)
V)

...

Attention(U;W
(h)
Q ,W

(h)
K ,W

(h)
V)

 ,

WQ/K/V =
[
(W

(1)
Q/K/V)

⊤ · · · (W
(h)
Q/K/V)

⊤
]⊤

, W
(i)
Q/K/V ∈ Rdh×d, dh = d/h.

(18)

This leads to the following question: does the number of heads have an effect on the numerical ranks
of the attention matrices in trained Chronos models? The answer to this is positive, but there are
some important subtleties. If we look at the left panel of Figure 9, then we see that if we pretrain
Chronos models with fixed hidden dimension d = 1024 and only increase the number of heads,
the numerical rank of attention matrices increases. At first, it may seem that this happens because
a multi-head attention is less compressible than a single-head one, but this is not the case. It is
straightforward to show that Theorem 3 holds as well for multi-head attentions (see Theorem 5
in Appendix D). In particular, if Ξ has an algebraic rank of d̃, then all multi-head attention matrices
can be compressed to rank-d̃ without affecting the output.

1 2 4 8 32
0

100
200
300
400
500
600
700 ε=10−1.0

ε=10−1.5
ε=10−2.0
ε=10−2.5
ε=10−3.0

ra
nk

ε
(W

Q
)

h

Rank of WQ

1 2 3 8 320
25
50
75
100
125
150
175
200

ε=10−0.5
ε=10−1.0
ε=10−1.5
ε=10−2.0
ε=10−2.5
ε=10−3.0
ε=0

ra
nk

ε
(W

Q
)

h

Rank of per-head W
(i)
Q

0 200 400 600

0

200

400

600

0.00.5
0.8

1.2

[θ]π/2

i

j

θ
(w

(
i
)

Q
,
w

(
j
)

Q
)

Angles between Rows of WQ

Figure 9: The left panel shows the averaged ε-rank of query projection matrices WQ in pretrained
Chronos models with varying number of heads. The middle panel shows the averaged ε-rank of
query projection submatrices W(i)

Q for every head. The right panel shows the angle between every
pair of rows of WQ in the first layer of a 3-head pretrained Chronos model.

If Theorem 5 holds for multi-head attention, then why does a multi-head attention exhibit a higher
numerical rank? To understand this, we need to understand the mechanism of a low-rank weight
matrix. We use WQ for illustration, and the same analogous applies to WK and WV . Let WQ ∈
Rd×d be approximated by a rank-d̃ matrix, i.e., WQ ≈ W1W2, where W1 ∈ Rd×d̃ and W2 ∈
Rd̃×d. We view the action WQU, which maps every column of U from Rd into Rd, as a two-
step process. First, we multiply W2 to U to drop the columns of U from Rd to Rd̃. In numerical
linear algebra, this is known as “sketching,” (Drineas & Mahoney, 2016) i.e., W2 “sketches” a d̃-
dimensional subspace R(W2U) in RL, the row space of W2U, from a d-dimensional subspace
R(U) in RL.3 If σd̃+1(U) is small, then there exists a sketching matrix W2 so that R(W2U) ≈
R(U) ⊃ R(WQU); hence, we can apply a matrix W1 to lift the columns of W2U from Rd̃ back
to Rd and have W1(W2U) ≈ WQU.

If we apply a low-rank approximation to a multi-head attention matrix WQ, then we obtain:
W

(1)
Q
...

W
(h)
Q

 = WQ ≈ W1W2 =

W
(1)
1
...

W
(h)
1

W2 =

W
(1)
1 W2

...

W
(h)
1 W2

 , W
(i)
1 ∈ Rdh×d̃. (19)

2In eq. (18), the 1/
√
d normalization factor in an attention is changed into 1/

√
dh.

3In numerical linear algebra (NLA), sketching is usually considered as an operation on the column space.
To adapt it to our framework, we sketch the row space instead. This is achieved by taking the transpose of the
matrix U and sketching its column space as usually done in NLA.

24

Published as a conference paper at ICLR 2026

When we apply WQ to U, for each head 1 ≤ i ≤ h, W2 sketches a d̃-dimensional subspace from
the row space of U while W

(i)
1 forms dh rows from this d̃-dimensional space. This makes the

problem clear: in an “optimal” low-rank approximation of WQ, the sketching matrix W2 is shared
across all heads. Since each head is independent from the others in a multi-head attention, there is
no guarantee that, in a pretrained model, the sketching matrices will be shared. In the right panel
of Figure 9, we visualize the angles (see eq. (2)) between every pair of rows of WQ. If W2 is shared
across all heads, then all rows of WQ should exhibit some linear dependency. We only see low-rank
structures within each head W

(i)
Q (i.e., the dark dh × dh blocks along the diagonal). This shows that

instead of eq. (19), WQ from a pretrained Chronos model looks more like
W

(1)
Q
...

W
(h)
Q

 = WQ ≈

W
(1)
1 W

(1)
2

...

W
(h)
1 W

(h)
2

 , W
(i)
1 ∈ Rdh×d̃, W

(i)
2 ∈ Rd̃×d, (20)

which leverages a head-dependent sketching W
(i)
2 . The rank of the right-hand side matrix

in eq. (20), which consists of h rank-d̃ submatrices, can be as large as hd̃. This finding explains
the phenomenon we observed at the beginning of this section, i.e., while the numerical rank d̃ of the
input stays the same, the rank of the attention matrices increases with the number of heads h. The
middle panel of Figure 9 confirms this numerically. We see that the numerical rank of the projec-
tion matrix W

(i)
Q in each head remains relatively constant for reasonably large ε as we increase the

number of heads.

Our observation in Figure 9 is empirical and explanatory: it says in a pretrained TSFM, the atten-
tion matrices WQ/K/V are essentially doing the head-dependent sketching (see eq. (20)). From a
methodological point of view, if we train a compressed model (i.e., the one that is paramaterized by
W1 and W2 instead of WQ) from scratch, should we adopt a parameter-efficient head-independent
sketching in eq. (19) or a head-dependent one, which requires more parameters? If we know the
numerical rank d̃ of Ξ so that σd̃+1(Ξ) is tiny, then from an approximation theory perspective, there
is little loss using eq. (19). The only problem is: we do not know d̃ a priori. If we choose d̃ small
enough that σd̃+1(Ξ) is still relatively large, then the following theorem (see Appendix E for the

proof) shows the benefit of using a head-dependent sketching W
(h)
2 in eq. (20).

Theorem 6. Fix some d = h × dh for two positive integers h and dh and L ≥ d. Let C ≥ 1 be
any stability bound. Let 1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σd > 0 be any fixed sequence. There exist an input
U ∈ Rd×L with σj(U) = σj for all 1 ≤ j ≤ d and three matrices WQ,WK ,WV ∈ Rd×d, such
that the following statements hold for any d̃ < dh:

1. Given any rank-d̃ matrix W̃V ∈ Rd×d with ∥W̃V ∥F ≤ C∥WV ∥F , we have∥∥∥MH-Attention(U;WQ,WK ,WV , h)− MH-Attention(U;WQ,WK ,W̃V , h)
∥∥∥
2
≥ 1

2
σd̃+1.

2. There exist low-rank matrices W̃Q,W̃K ,W̃V ∈ Rd×d with ∥W̃Q∥F ≤ ∥WQ∥F , ∥W̃K∥F ≤
∥WK∥F , and ∥W̃V ∥F ≤ ∥WV ∥F , such that

W̃Q/K/V =


W

(1)
Q/K/V,1W

(1)
Q/K/V,2

...

W
(h)
Q/K/V,1W

(h)
Q/K/V,2

 , W
(i)
Q/K/V,1∈Rdh×(d̃+1), W

(i)
Q/K/V,2∈R(d̃+1)×d,

where every row of W
(i)
Q/K/V,2, except the last row of W

(i)
K,2, contains at most dh non-zero

entries, and satisfies that∥∥∥MH-Attention(U;WQ,WK ,WV ,h)−MH-Attention(U;W̃Q,W̃K ,W̃V ,h)
∥∥∥
2
≤4

√
hσhd̃+1.

Theorem 6 highlights an “error-correcting” mechanism of the head-dependent low-rank design
in eq. (20) in the following sense: if we choose a d̃ where σd̃+1 is large, then the first statement

25

Published as a conference paper at ICLR 2026

shows that the shared sketching in eq. (19) inevitably limits the expressiveness of the reduced multi-
head attention layer. Using a head-dependent low-rank representation relaxes the error to the order
of σhd̃+1, which can be significantly smaller than σd̃+1 when the number of heads h is large and the
singular values decay fast. While using eq. (20) requires a larger number of parameters, Theorem 6
suggests the potential of a sparse parameterization of the sketching matrices W(i)

Q/K/V,2. We leave
this as a promising future direction.

E.1 PROOF OF THEOREM 6

We prove that a sparse but head-dependent sketching performs better in theory than a head-
independent sketching, especially when d̃ is lower than the numerical rank of the input matrix.
The intuition is that if d̃ is too small, then the sketching performed by a single sketching matrix
must be bad, but if we use head-dependent sketchings, then we can leverage multiple of them to still
obtain a lot from the input matrix.

Proof of Theorem 6. Set WV = Id. Interleave the singular values σ1, . . . , σd as follows:

σ(1) =
(
σ
(1)
1 , σ

(1)
2 . . . , σ

(1)
dh

)
=
(
σ1, σh+1, . . . , σ(dh−1)h+1

)
,

σ(2) =
(
σ
(2)
1 , σ

(2)
2 . . . , σ

(2)
dh

)
=
(
σ2, σh+2, . . . , σ(dh−1)h+2

)
,

...

σ(h) =
(
σ
(h)
1 , σ

(h)
2 . . . , σ

(h)
dh

)
= (σh, σ2h, . . . , σdh·h) .

Define the input matrix by

U =

[
diag(diag(σ(1)), . . . , diag(σ(h)))︸ ︷︷ ︸

UD

0d×(L−d)

]
.

For every 1 ≤ i ≤ h and 1 ≤ j ≤ dh, let v(i)
j ∈ Rdh be a unit vector satisfying that∥∥∥∥v(i)

j

⊤
v
(i′)
j′

∥∥∥∥
2

< 1, (i, j) ̸= (i′, j′).

Then, consider the following matrix:

WQ = WK =
[
v
(1)
1 /σ

(1)
1 · · · v

(1)
dh

/σ
(1)
dh

· · · v
(h)
1 /σ

(h)
1 · · · v

(h)
dh

/σ
(h)
dh

]
∈ Rdh×d.

Then, by our construction, the matrix U⊤W
⊤
QWKU satisfies that(

U⊤W
⊤
QWKU

)
(j, j) = 1,

∣∣∣(U⊤W
⊤
QWKU

)
(i, j)

∣∣∣ < 1, i ̸= j.

Set

ε = min

{
(1 + C)−1σd̃+1/2, min

1≤i≤h
σ
(i)

d̃+1

/
(2 ∥WV U∥2 + 2σ1) , 1

}
.

By choosing a sufficiently large α > 0, we guarantee that∥∥∥∥∥∥∥∥∥softmax

(
U⊤(αW

⊤
Q)(αWK)U
√
dh

)
︸ ︷︷ ︸

G

−
[

Id L−11d×(L−d)

0(L−d)×d L−11(L−d)×(L−d)

]
︸ ︷︷ ︸

G̃

∥∥∥∥∥∥∥∥∥
F

≤ ε. (21)

Let query and key matrices WQ and WK be defined in eq. (18) using submatrices W(i)
Q = αWQ

and W
(i)
K = αWK , respectively, for all 1 ≤ i ≤ h. We use these matrices WQ,WK ,WV , and U

to prove the two claims.

26

Published as a conference paper at ICLR 2026

Claim 1: No low-rank parameterization gets to an accuracy below σd̃+1. Let W̃V ∈ Rd×d be
any rank-d̃ matrix. We can write the approximation error as∥∥∥MH-Attention(U;WQ,WK ,WV , h)− MH-Attention(U;WQ,WK ,W̃V , h)

∥∥∥
2

=

∥∥∥∥∥∥∥∥


W
(1)
V UG
...

W
(h)
V UG

−


W̃

(1)
V UG
...

W̃
(h)
V UG


∥∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥∥∥


W
(1)
V UG̃
...

W
(h)
V UG̃

−


W̃

(1)
V UG̃
...

W
(h)
V UG̃


∥∥∥∥∥∥∥∥
2︸ ︷︷ ︸

Elead

−

∥∥∥∥∥∥∥∥


(W
(1)
V − W̃

(1)
V)U(G− G̃)
...

(W
(h)
V − W̃

(h)
V)U(G− G̃)


∥∥∥∥∥∥∥∥
2︸ ︷︷ ︸

Etrail

.

To control Etrail, we note that

Etrail ≤ max
1≤i≤h

∥∥∥(W(i)
V −W̃

(i)
V)U(G−G̃)

∥∥∥
2
≤ max

1≤i≤h

(∥∥∥W(i)
V

∥∥∥
2
+
∥∥∥W̃(i)

V

∥∥∥
2

)∥∥∥G−G̃
∥∥∥
2

≤ (1 + C)ε=
1

2
σd̃+1.

(22)

To control Elead, we note that
(W

(1)
V − W̃

(1)
V)UG̃

...

(W
(h)
V − W̃

(h)
V)UG̃

 =


(W

(1)
V − W̃

(1)
V)

[
UD L−1UD1d×(L−d)

]
...

(W
(h)
V − W̃

(h)
V)

[
UD L−1UD1d×(L−d)

]
 .

Hence, we have

Elead =

∥∥∥∥∥∥∥∥


(W
(1)
V − W̃

(1)
V)UG̃

...

(W
(h)
V − W̃

(h)
V)UG̃


∥∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥∥∥


(W
(1)
V − W̃

(1)
V)UD

...

(W
(h)
V − W̃

(h)
V)UD


∥∥∥∥∥∥∥∥
2

=
∥∥∥WV UD − W̃V UD

∥∥∥
2
≥ σd̃+1,

(23)

where the last inequality follows from the fact that the singular values of WV UD are exactly
σ1, . . . , σd and W̃V UD is a matrix whose rank is at most d̃. Combining eq. (22) and (23), we
have ∥∥∥MH-Attention(U;WQ,WK ,WV , h)− MH-Attention(U;WQ,WK ,W̃V , h)

∥∥∥
2

≥ Elead − Etrail ≥
1

2
σd̃+1.

Claim 2: A sparse parameterization gets to an accuracy below σhd̃+1. For every 1 ≤ i ≤ h,

define W
(i)
V,L ∈ Rdh×d̃ and W

(i)
V,R ∈ Rd̃×d as follows:

W
(i)
V,L =

[
Id̃

0(dh−d̃)×d̃

]
, W

(i)
V,R =

[
0d̃×dh(i−1) Id̃ 0d̃×((dh−d̃)+dh(h−i))

]
.

Then, we have

W
(i)
V,LW

(i)
V,RU =

[
0d̃×dh(i−1) diag

(
σ
(i)
1 , . . . , σ

(i)

d̃

)
0d̃×((dh−d̃)+dh(h−i))

0(dh−d̃)×dh(i−1) 0(dh−d̃)×d̃ 0(dh−d̃)×((dh−d̃)+dh(h−i))

]
,

while
W

(i)
V U =

[
0d̃×dh(i−1) diag

(
σ
(i)
1 , . . . , σ

(i)
dh

)
0d̃×dh(h−i)

]
.

27

Published as a conference paper at ICLR 2026

Hence, we have that
∥W(i)

V U−W
(i)
V,LW

(i)
V,RU∥2 = σ

(i)

d̃+1
. (24)

Similarly, let W(i)
Q,L,W

(i)
K,L ∈ Rdh×(d̃+1) and W

(i)
Q,R,W

(i)
K,R ∈ R(d̃+1)×d be given by

W
(i)
Q,L = W

(i)
K,L = α

[
v
(i)
1 /σ

(i)
1 · · · v

(i)

d̃
/σ

(i)

d̃
v
(i′)
1

]
, i′ = mod(i, h) + 1,

W
(i)
Q,R =



[
Id̃ 0d−d̃

01×d̃ [1/σd̃+1, 0, . . . , 0]

]
, i = 1,

[
0d̃×dh(i−1) Id̃ 0d̃×((dh−d̃)+dh(h−i))

[1/σ1, 0, . . . , 0] 01×d̃ 01×((dh−d̃)+dh(h−i))

]
, i > 1,

W
(i)
K,R =

[
0d̃×dh(i−1) Id̃ 0d̃×((dh−d̃)+dh(h−i))

[1/σ1, . . . , 1/σdh(i−1)] 01×d̃ [1/σdh(i−1)+d̃+1, . . . , 1/σd]

]
.

Note that since we have ∥v(i)
j ∥2 for every 1 ≤ i ≤ h and 1 ≤ j ≤ dh, we clearly have that

∥W(i)
Q,LW

(i)
Q,R∥F ≤ ∥αWQ∥F and ∥W(i)

K,LW
(i)
K,R∥F = ∥αWK∥F for every 1 ≤ i ≤ h. Hence,

we have ∥W̃Q∥F ≤ ∥WQ∥F and ∥W̃K∥F = ∥WK∥F . From now on, we only argue for the first
head, i.e., i = 1. The rest follows easily from symmetry. Set i = 1, we have

U⊤W
(1)
Q,R

⊤
W

(1)
Q,L

⊤
W

(1)
K,LW

(1)
K,RU︸ ︷︷ ︸

T̃(1)

 (j, k) = α2



v
(1)
j

⊤
v
(1)
k , 1 ≤ j ≤ d̃, 1 ≤ k ≤ d̃,

v
(1)
j

⊤
v
(2)
1 , 1 ≤ j ≤ d̃, d̃ < k ≤ d,

v
(2)
1

⊤
v
(1)
k , j = d̃+ 1, 1 ≤ k ≤ d̃,

v
(2)
1

⊤
v
(2)
1 , j = d̃+ 1, d̃ < k ≤ d,

0, otherwise.

That is, for 1 ≤ j ≤ d, the jth column of T̃(1) has exactly one entry that equals 1, which is the jth
element for 1 ≤ j ≤ d̃ and the (j + 1)st element for j > d̃. Moreover, for j > d, the jth column of
T̃(1) is zero. Hence, from the definition of α, we have∥∥∥softmax

(
T̃(1)

)
(1 : d̃, :)−G(1 : d̃, :)

∥∥∥
2
≤
∥∥∥softmax

(
T̃(1)

)
(1 : d̃, :)−G̃(1 : d̃, :)

∥∥∥
2
+
∥∥∥G̃−G

∥∥∥
2
≤2ε.

(25)
Combine eq. (24) and (25). We have∥∥∥W(1)

V UG−W
(1)
V,LW

(1)
V,RU softmax

(
T̃(1)

)∥∥∥
2

≤
∥∥∥W(1)

V UG−W
(1)
V,LW

(1)
V,RUG

∥∥∥
2
+
∥∥∥W(1)

V,LW
(1)
V,RUG−W

(1)
V,LW

(1)
V,RU softmax

(
T̃(1)

)∥∥∥
2

=
∥∥∥W(1)

V UG−W
(1)
V,LW

(1)
V,RUG

∥∥∥
2
+
∥∥∥W(1)

V,LW
(1)
V,RU

(
G− softmax

(
T̃(1)

))
(1 : d̃, :)

∥∥∥
2

≤
∥∥∥W(1)

V U−W
(1)
V,LW

(1)
V,RU

∥∥∥
2
∥G∥2+

(∥∥∥W(1)
V U

∥∥∥
2
+σ

(1)

d̃+1

)∥∥∥(G−softmax
(
T̃(1)

))
(1 : d̃, :)

∥∥∥
2

≤ σ
(1)

d̃+1
(2 + ε) + 2ε

∥∥∥W(1)
V,LW

(1)
V,RU

∥∥∥
2
≤ 4σ

(1)

d̃+1
≤ 4σhd̃+1,

where the first inequality follows from the triangle inequality, the first equation follows from the
sparsity of W

(1)
V,R, the second inequality follows from the sub-multiplicity of the spectral norm

and eq. (24), the third inequality follows from eq. (24) and eq. (25), the fifth inequality follows
from the definition of ε, and the last inequality follows from the definition of σ(1)

d̃+1
. Notably, this

inequality holds for every head 1 ≤ i ≤ h. Hence, we have∥∥∥MH-Attention(U;WQ,WK ,WV , h)− MH-Attention(U;WQ,WK ,W̃V , h)
∥∥∥
2

≤
√
h max

1≤i≤h

∥∥∥W(i)
V UG−W

(i)
V,LW

(i)
V,RU softmax

(
T̃(i)

)∥∥∥
2
≤ 4

√
h σhd̃+1.

The proof is complete.

28

Published as a conference paper at ICLR 2026

F PROOF OF THEOREM 4 AND COROLLARY 1

In this section, we prove the idea of flow-of-ranks. The upper bound is proved via a straightforward
application of singular value inequalities while the lower bound requires a careful construction.

Proof of Theorem 4. We prove the two statements separately.

The upper bound. Fix a head index 1 ≤ i ≤ h and let

Y(i) = W
(i)
V U softmax

(
T(i)

)
, T(i) =

U⊤W
(i)
Q

⊤
W

(i)
K U

√
dh

.

Then, every entry of T(i) has a magnitude no greater than 1 because every column of U has a 2-

norm no greater than 1 and ∥W(i)
Q

⊤
W

(i)
K ∥2 ≤

√
dh. Hence, every entry of softmax(T(i)) has a

magnitude between L−1e−2 and L−1e2. This means

σ1

(
softmax

(
T(i)

))
=
∥∥∥softmax

(
T(i)

)∥∥∥
2
≤
∥∥∥softmax

(
T(i)

)∥∥∥
F
≤ e2.

Moreover, since
∥∥∥W(i)

V

∥∥∥
2
≤ 1, we have that

σj

(
Y(i)

)
≤ e2σj(U), 1 ≤ j ≤ dh.

Fix some 1 ≤ j ≤ d and let jh = ⌊(j − 1)/h⌋ + 1. When we concatenate Y(i) to form Y, using
the singular value inequality that σi+j−1(A + B) ≤ σi(A) + σj(B) and defining YI to be the
concatenation of Y(i) for all i ∈ I, we have

σj (Y) ≤ σjh

(
Y(h)

)
+σj−jh+1

(
Y[h−1]

)
≤ σjh

(
Y(h)

)
+σjh

(
Y(h−1)

)
+σj−2jh+2

(
Y[h−2]

)
≤ · · · ≤

(
h∑

i=2

σjh

(
Y(i)

))
+σj−(h−1)(jh−1)

(
Y(1)

)
≤

h∑
i=1

σjh

(
Y(i)

)
≤ e2hσjh(U).

Hence, applying the same inequality again, we have that

σk(Z) = σk

(
U+

1√
N

Y

)
≤ σk−j+1 (U)+σj

(
1√
N

Y

)
≤ σk−j+1+

e2h√
N

σ⌊(j−1)/h⌋+1. (26)

Moreover, from the triangle inequality, we have

σ1(Z) ≥ σ1(U)− σ1

(
1√
N

Y

)
≥ σ1(U)− 1√

N
e2hσ1(U) ≥ 1

2
σ1(U). (27)

Combining eq. (26) and (27), we prove the theorem.

The lower bound. Let 1 = σ1 ≥ · · · ≥ σd > 0 be given. Define the input matrix to be

U =
[
diag(σ1, . . . , σd) 0d×(L−d)

]
.

For every 1 ≤ i ≤ h, let W(i)
V be

W
(i)
V =

[
Idh−1 0(dh−1)×(d−dh+1)

01×(dh−1) 01×(d−dh+1)

]
.

Set ε =
√
N σd/(5h). For every 1 ≤ i ≤ h, let P(i) ∈ RL×L be the matrix so that P(i)(1 :

dh, ((i−1)dh+1) : idh) = Idh
, P(i)(dh, k) = 1 for every 1 ≤ k < (i − 1)dh and every k > idh,

and is zero elsewhere. For a sufficiently large α > 0 determined later on, let

W
(i)
Q = α

[
diag(σ−1

1 , . . . , σ−1
dh

) 0dh×(d−dh)

]
,

W
(i)
K =

 0(dh−1)×(i−1)dh[
σ−1
1 · · · σ−1

(i−1)dh

] diag(σ−1
(i−1)dh+1, . . . , σ

−1
idh

)
0(dh−1)×(h−i)dh[
σ−1
idh+1 · · · σ−1

d

]
 .

29

Published as a conference paper at ICLR 2026

Then, we have

T(i) := U⊤W
(i)
Q

⊤
W

(i)
K U

=α
[
Idh

0dh×(L−dh)

]⊤[0(dh−1)×(i−1)dh

11×(i−1)dh

Idh

0(dh−1)×(h−i)dh

11×(h−i)dh

0dh×(L−d)

]
=αP(i).

Therefore, by picking α sufficiently large, we have

∥G(i)−G̃(i)∥2≤ϵ, G(i) :=softmax(T(i)), G̃(i)(j, k) =



1, k = j + (i− 1)dh,

1, j = dh and k ≤ (i− 1)dh,

1, j = dh and k > idh,

L−1, k > d,

0, otherwise.
(28)

Note that we have

W
(i)
V UG̃(i) =

[
diag(σ1, . . . , σhd−1) 0 0(dh−1)×(L−dh)

01×(dh−1) 0 01×(L−dh)

]

×

 0(dh−1)×(i−1)dh

11×(i−1)dh

Idh

0(dh−1)×(h−i)dh

11×(h−i)dh

L−11dh×(L−d)

0(L−dh)×(i−1)dh
0(L−dh)×dh

0(L−dh)×(h−i)dh
L−11(L−dh)×(L−d)



=

0dh×(i−1)dh
diag(σ1, . . . , σhd−1, 0) 0dh×(h−i)dh︸ ︷︷ ︸

Y
(i)
lead

[
L−1diag(σ1, . . . , σhd−1)1(dh−1)×(L−d)

01×(L−d)

]
︸ ︷︷ ︸

Y
(i)
trail

.
Note that the mulithead attention output is given by

Y = MH-Attention(U;WQ,WK ,WV , h) = [Ylead Ytrail] +E,

Ylead =
[
Y

(1)
lead

⊤
· · · Y

(h)
lead

⊤
]⊤

, Ytrail =
[
Y

(1)
trail

⊤
· · · Y

(h)
trail

⊤
]⊤

,

where

∥E∥2 ≤
h∑

i=1

∥W(i)
V UG̃(i) −W

(i)
V UG̃(i)∥2 ≤

h∑
i=1

∥W(i)
V U∥2∥G(i) − G̃(i)∥2 ≤ hε,

and the layer output is given by

Z = U+
1√
N

Y = [Zlead Ztrail] +
1√
N

E,

Zlead = diag(σ1, . . . , σd) +
1√
N

Ylead, Ztrail =
1√
N

Ytrail.

Since Zlead is a diagonal matrix with nonnegative entries, its singular values equal its diagonal en-
tries, which are

σ1+
1√
N
σ1 σ2+

1√
N
σ2 · · · σdh−1+

1√
N
σdh−1 σdh

σdh+1+
1√
N
σ1 σdh+2+

1√
N
σ2 · · · σdh+(dh−1)+

1√
N
σdh−1 σdh+dh

...
...

. . .
...

...
σ(h−1)dh+1+

1√
N
σ1 σ(h−1)dh+2+

1√
N
σ2 · · · σ(h−1)dh+(dh−1)+

1√
N
σdh−1 σ(h−1)dh+dh

.

(29)
Moreover, since Zlead is a submatrix of Z, the singular values of Z are no smaller than the singular
values of Zlead. Given 1 ≤ i ≤ h and 1 ≤ j ≤ dh, let ξi,j = σ(i−1)dh+j + 1{j ̸=dh}σj/

√
N be the

element in row i and column j in the array in eq. (29). Then, we have that

ξi,j ≤ ξi′,j′ , for any i ≥ i′ and j ≥ j′.

30

Published as a conference paper at ICLR 2026

Hence, ξi,j is no greater than the (i× j)th singular value of Zlead. That means for every 1 ≤ i ≤ h,
the kth singular value of Zlead satisfies

σk(Zlead) ≥ ξi,⌈k/i⌉ = σ(i−1)dh+⌈k/i⌉ +
1⌈k/i⌉̸=dh√

N
σ⌈k/i⌉.

Using Weyl’s inequality, we have

σk(Z) ≥ σk(Zlead)−
1√
N

σ1(E) ≥ σk(Zlead)−
hε√
N

≥
(
1− 1

5

)(
σ(i−1)dh+⌈k/i⌉ +

1⌈k/i⌉̸=dh√
N

σ⌈k/i⌉

)
.

Moreover, we have

σ1(Z) ≤ σ1(Zlead) + σ1(Ztrail) +
1√
N

σ1(E) ≤
(
1 +

1√
N

)
+

1√
N

∥Ytrail∥F +
1√
N

hε

≤ 2 +
1√
N

√
L× d× L−2 +

1

5
≤ 16

5
.

Combining the two inequalities above, we obtain the theorem.

The proof of Corollary 1 is a straightforward manipulation of the ceiling and floor operators.

Proof of Corollary 1. Set j = ⌊(hk + 1)/(h+ 1)⌋, we have

σk−j+1 = σk−⌊(hk+1)/(h+1)⌋+1 ≤ σ⌈k−(hk+1)/(h+1)+1⌉ = σ⌈(k+h)/(h+1)⌉,

and

σ⌊(j−1)/h⌋+1 = σ⌊(⌊(hk+1)/(h+1)⌋−1)/h⌋+1 ≤ σ⌊((hk+1)/(h+1)−1)/h⌋+1 = σ⌊(k+1)/(h+1)⌋+1.

The corollary follows from Theorem 4.

31

Published as a conference paper at ICLR 2026

G WATCHING THE WEIGHTS OF LARGE MODELS

The central claims made in this paper are heavily based on the low-rank structures of weight matrices
in large-scale time series foundation models. In this section, we provide more empirical analysis of
the singular values of these matrices.

G.1 COMPARING THE WEIGHTS OF TSFMS AND LLMS

For the first set of comparisons, we consider three models: T5, Chronos, and Chronos-Bolt. While
T5 is an LLM, Chronos and Chronos-Bolt are TSFMs. The three models we compare have the same
base size, and each model contains 12 encoder layers and 12 decoder layers. From each layer, we
take out a matrix W, which is either the query projection matrix WQ ∈ R768×768 or the first matrix
of the MLP layer WMLP ∈ R3072×768. We apply an SVD to the weight matrix W = UΣV⊤ and
construct a histogram out of all relative singular values in diag(Σ)/Σ1,1.

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

W
Q

T5

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Chronos

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Chronos-Bolt

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

W
M

L
P

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Figure 10: The distribution of all relative singular values in a weight matrix W in a T5, Chronos,
or Chronos-Bolt model. We use five progressively fainter face colors to indicate the range where the
relative singular values are in the (1e-5,1e-4], (1e-4,1e-3], (1e-3,1e-2], (1e-2,1e-1],
and (1e-1,1e0] ranges, respectively. Each model contains 12 encoder layers, and we arrange
the corresponding 12 weight matrices in row-major order. Note that all histograms are made on a
semilog-x scale.

From Figure 10, we make some observations that align with the major claims made in the main
manuscript:
1. The relative singular values decay faster for Chronos and Chronos-Bolt and they decay much

slower for T5. The reason is that TSFMs leverage low-rank embeddings and do not require
high-rank attention matrices, which is not the case for T5, which inevitably needs a high-rank
embedding.

2. In Chronos and Chronos-Bolt, when the layers get deeper, we generally have a higher-rank struc-
ture. This aligns with the flow-of-ranks idea: as an input is pushed through more nonlinear
attention and MLP layers, its rank gets higher, and we need higher-rank attention matrices.

3. The attention matrices are generally more compressible than MLP matrices. This is not sur-
prising, because the attention matrices in these models are square matrices, making low-rank
structures much easier to emerge than in a rectangular MLP matrix.

32

Published as a conference paper at ICLR 2026

G.2 WATCHING THE WEIGHTS OF TSFMS DURING TRAINING

Another mysterious finding that we used in the main manuscript is that the attention matrices in a
pretrained Chronos or Chronos-Bolt model all demonstrate low-rank structure; however, while The-
orem 3 only suggests that the attention matrices can be written in a low-rank form, it does not
preclude these matrices from having a high-rank form. To understand why the attention matrices
happen to exhibit a low-rank structure, we watch the training dynamics of these attention matrices,
where we pretrain a small Chronos model and record the six weight matrices in its six encoder layers
at a few different training steps. Unlike Figure 10, in Figure 11, we do not show the relative singular
values σj/σ1. The reason will be clear later.

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Step = 3

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Step = 436

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Step = 3138

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Step = 7314

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Step = 10000

10−4 10−2 100 10−4 10−2 100 10−4 10−2 100

Step = 50000

Figure 11: The distribution of all absolute singular values in a weight matrix WQ in a Chronos
model over training. The model contains 6 encoder layers, and we arrange the corresponding 6
weight matrices in row-major order. Note that all histograms are made on a semilog-x scale.

We note that the initialization of Chronos typically relies on a very small scaling factor. That is, the
weights are all initialized to be small. From Figure 11, we see that the weight matrices are eventually
learned to be larger: that is, by looking at the absolute singular values instead of the relative ones,
we see that the leading singular value, i.e., the norm of the weight matrix WQ, eventually gets
larger. When they get larger, we note that the low-rank structure evolves. This “learning the leading
singular direction” interpretation is more plausible than if the weight matrix WQ is initialized large,
because it has no incentive to “forget the residual ranks” when it does not need to.

G.3 WATCHING THE WEIGHTS IN A MULTIHEAD ATTENTION

In Figure 9, we showed the “correlation matrix” of a three-head attention matrix WQ. In Figure 12,
we show more of these matrices when a different number of heads h. For each number of heads
h, we can see clearly h low-rank blocks on the diagonal, corresponding to the in-head low-rank
attention.

One interesting observation we can make is that the off-diagonal parts of the heatmaps, while much
more yellowish than the diagonal parts, also have block structures. This is expected: if the rows in
each head are very colinear, then when you compare rows between two different heads, they should
share a similar angle. That is, we have a duality that not only holds for attention matrices but also

33

Published as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

h = 3

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

h = 6

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

0.0
0.4

0.8

1.2

[θ]
π/2

h = 12

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

h = 24

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

h = 48

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

0.0
0.4

0.8

1.2

[θ]
π/2

h = 96

Figure 12: We pretrain a Chronos model with a different number of heads h. As h changes, we
show the angle between every pair of rows of WQ in the first encoder layer.

holds in general: the darker a diagonal block is, the clearer the edges of off-diagonal blocks in the
same row of blocks will be.

The off-diagonal parts of attention matrices, while much more orthogonal than the rows within each
head, are still far from random. This means the heads themselves are also somewhat correlated,
which is not surprising given that the row spaces of query, key, and value matrices are subspaces of
the potentially low-dimensional row space of the input and that the models are trained with a single
objective. There are two forces pulling against each other: a head-dependent random initialization,
which “orthogonalizes” different heads, and a head-independent training objective that tries to align
these heads.

There is a third trend (and the second duality) that is also very interesting: darker diagonal blocks
seem to correspond to lighter off-diagonal blocks. There is one potential explanation for that: if the
diagonal blocks are very dark, that means each head only attends to a tiny bit of information of the
input. In order to obtain good results, other heads must incorporate the remaining bits of the input,
resulting in very different sketchings and larger angles. On the other hand, if the diagonal blocks
are brighter, that means it already contains a fair amount of information about the input, and lots of
the input information is shared across heads. Hence, they should be much more correlated during
training.

34

Published as a conference paper at ICLR 2026

H VISUALIZATION OF TOKENIZERS

In section 2, we consider a large corpus of inputs. Here, we perform two case studies to look into
how each of the embeddings works. In particular, we select two time-series input data:

• A sinusoidal wave sin(t).
• A random Gaussian input, where each entry is i.i.d. N (0, 1).

Let X ∈ Rd×L be the embedded input. For each pair of vectors xi and xj of X, we compute the
their correlation:

θi,j = arccos

(
|x⊤

i xj |
∥xi∥2∥xj∥2

)
.

These correlation matrices are shown in Figure 13. There are two interesting observations to make:
first, for WaveToken, the correlation matrix given a sinusoidal input has clearly four blocks —
corresponding to the low-frequency wavelets and high-frequency ones. For Time MOE, the angles
are so much darker because we apply a continuous embedding on a one-dimensional input space,
leading to an ultimately low-rank structure.

ra
nd

om

Chronos Chronos-Bolt WaveToken Time MOE

si
nu

so
id

al

SVD of Random Input Embedding

σ
j
(X

)/
σ
1
(X

)

j

SVD of Sinusoidal Input Embedding

σ
j
(X

)/
σ
1
(X

)

j

Figure 13: The heat maps show the correlation matrix of the embedded input with a random context
or a sinusoidal one, using four different embedding strategies. The two line plots show the relative
singular values of the embedded matrix X.

We also observe that the numerical rank of the embedded input X is generally higher when the
context is random than sinusoidal. This is not surprising either, because the temporal relationship
within a random context is much more complex than that in a sinusoidal one.

35

Published as a conference paper at ICLR 2026

I MORE ON THE CHEBYSHEV EMBEDDING

In Figure 4, we show an experiment where we increase the rank of a fixed input embedding and
watch the numerical ranks of pretrained Chronos models with that embedding. Here, we further ex-
plain how we can control the rank of this fixed input embedding function using Chebyshev polyno-
mials. To motivate our design, we first consider how we can compute a rank-1 embedding function
Φ1 : R → Rd. In this case, what Φ1 needs to do is to map the real line linearly onto a one-
dimensional subspace of Rd. That is, we can set Φ1(x) = xu for some fixed unit vector u ∈ Rd.

Now, how can we use this idea to design a rank-k embedding Φk(x)? One way to do that is by
considering the following extension of Φk:

Φk : R → Rd, x 7→ f1(x)u1 + · · ·+ fk(x)uk.

As long as the functions f1, . . . , fk are linearly independent, the image of the real line, Φk(R),
is a subset of a k-dimensional subspace of Rd. The only question that remains is: how to choose
f1(x), . . . , fk(x). Perhaps the easiest way to choose such a basis is by making them monomials:
fj(x) = xj . However, the monomial basis often suffers from many numerical stability issues and is
not ideal for the embedding, e.g., for a large j, the set {x, . . . , xj} is very ill-conditioned. To choose
a well-conditioned basis, we use Chebyshev polynomials, which are orthogonal on [−1, 1]. That
is, we set fj(x) = Tj(x/xmax), where xmax is the maximum number considered in quantization,
which equals 15 in the case of Chronos. Given a set of points x1, . . . , xL to embed, we assemble
the embedded matrix X ∈ Rd×L as follows:

1. Sample orthonormal random column vectors u1, . . . ,uk ∈ Rd×1.
2. Compute row vectors f1, . . . , fk ∈ R1×L, where the ith entry of fj is Tj(xi/xmax).

3. Compute the outer product X =
∑k

j=1 ujfj .

We show the visualization of our Chebyshev embeddings in Figure 14, where as see that as we
increase the rank k, the embedding becomes more “complicated.”

0

500

1000

1500

2000

2500

3000

3500

4000

degree = 1

0

500

1000

1500

2000

2500

3000

3500

4000

degree = 2

0

500

1000

1500

2000

2500

3000

3500

4000

degree = 3

0

500

1000

1500

2000

2500

3000

3500

4000

degree = 8

0

500

1000

1500

2000

2500

3000

3500

4000

degree = 32

Figure 14: Visualization of the Chebyshev embeddings. For each embedding, we visualize the first
two dimensions out of the 768 in the hidden space. There are 4096 points embedded in the hidden
space, whose corresponding values in the input domain range from −15 to 15.

36

Published as a conference paper at ICLR 2026

J NUMERICAL EXPERIMENTS TO CORROBORATE OUR THEOREM

In this appendix, we provide numerical experiments, simulated in MATLAB R2024b, that verify the
theoretical statements we made in the main manuscript.

J.1 TWO NUMERICAL EXPERIMENTS ON THEOREM 3

To verify Theorem 3, we fix the hidden dimension to be d = 512 and the vocabulary size N = 4096.
We create a random embedded matrix X ∈ Rd×N with singular values s ∈ Rd ranging from e−5 to
e0 and uniformly distributed on a logarithmic scale. This matrix is computed by randomly sampling
an orthogonal matrix U ∈ Rd×d and a matrix V ∈ RN×d with orthonormal columns, via QR-
decomposing random matrices, and setting X = U diag(s) V⊤.

Next, we randomly sample three attention matrices WQ,WK ,WV , and for each reduced-order
d̃ = 1, . . . , d − 1, we use the constructive formulas given in the proof of Theorem 3 to compute
the reduced matrices W̃Q,W̃K ,W̃V . We set the input to be the entire vocabulary matrix X and
compute the output of the original attention layer, defined by WQ,WK ,WV , as well as that of
the reduced one, defined by W̃Q,W̃K ,W̃V . We evaluate the Frobenius norm of the difference
between the two outputs.

10
-4

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

50 100 300 1000

10
-8

2 10
-8

3 10
-8

5 10
-8

∥Y
−
Ỹ
∥ F

σd̃+1 d

Figure 15: The left panel shows the relationship between the reduced-order d̃ and the approxima-
tion error of a randomly sampled attention layer applied to a randomly sampled input matrix X with
controlled singular values σ1, . . . , σd. The reference line has a slope of 1 in the log-log plot. The
right panel shows the relationship between the dimension of the hidden space d and the approxima-
tion error of a fixed-degree reduced-order model. For each hidden space d, we randomly resample
the attention matrices and embedded matrix X, holding its leading singular values unchanged. The
reference line has a slope of 1/2 in the log-log plot.

Figure 15 shows two controlled experiments by changing a different variable. On the left, we change
the truncation degree d̃, which in turn controls the singular value σd̃+1. The reference line has a slope
of 1, revealing a linear relationship between ∥Y − Ỹ∥F and σd̃+1, as indicated in Theorem 3. On
the right, we change the size of the hidden space d, and the reference line has a slope of 1/2, which
verifies the

√
d factor in the statement of Theorem 3.

J.2 A NUMERICAL EXPERIMENT ON THEOREM 6

The essence of Theorem 6 is that a sparse multi-head sketching is more effective than a dense single-
head sketching. We use an experiment to verify that. In our setting, we set d = 2048 and L = 4096,
and we randomly sample an input matrix X ∈ Rd×L with exponentially decaying singular values,
as shown in the left panel of Figure 16. Our sampling method is the same as the one outlined in the
previous experiment.

37

Published as a conference paper at ICLR 2026

We set our reduced rank to d̃ = 4. If we just use a single head to sketch a rank-d̃ space from the row
space of X, then its accuracy is lower-bounded by σd̃+1, which is still a large number. To explore
the potential of sparse head-dependent sketching, we increase the number of heads from h = 1 to
128 and keep it an integral divisor of d. For each h, we use the sparse sketching; that is, we assemble
a random matrix

W2,h =
[
W

(1),⊤
2,h · · · W

(1),⊤
2,h

]⊤
, W

(i)
2,h ∈ Rd̃×d.

The matrix W2,h is sparse in the sense that it has exactly dh = d/h non-zero entries, whose posi-
tions are randomly chosen, and for each non-zero position, we sample its value i.i.d. from N (0, 1).
Note that given this sparse design, W2,h has the same number of non-zero entries for any h.

Now, our question is: what is the different between the row space of W2,hX and that of X? In other
words, how good is the sketching using W2,h? To this end, we clearly have that R(W2,hX) ⊂
R(X), where we use the notation R for the row space of a matrix. Hence, the remaining question
is how much in R(X) is not filled by R(W2,hX). This can be measured by projecting R(X) onto
R(W2,hX) and measure the loss by the projection:

d(R(X),R(W2,hX)) =
∥∥orth(X⊤W⊤

R,h) orth(X⊤W⊤
R,h)

⊤X⊤ −X⊤∥∥
2
. (30)

We show this distance in the right panel of Figure 16, and we relate this to the singular values of
X. In that sense, since the vertical rules in the left panel are almost evenly spaced, it shows that the
“effective rank” of R(W2,hX) grows proportionally with respect to h, indicating that the quality of
a sparse multi-head sketching is comparable to the quality of a dense multi-head sketching.

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
-2

10
-1

10
0

j

σ
j
(X

)/
σ
1
(X

)

d
(R

(X
),
R
(W

2
,h
X
))

number of heads h

Figure 16: On the left, we show the singular values of the input matrices. On the right, we compute
the “sketching error” defined in eq. (30), as we change the number of heads in a sparse sketching.
We map the sketching errors back to the singular value plot to indicate the index j such that our
sketching error achieves an error below σj+1.

J.3 A NUMERICAL EXPERIMENT ON THEOREM 4

Our final numerical experiment considers the flow-of-ranks. Theorem 4 suggests that a larger num-
ber of heads also facilitates the flow-of-rank, and this is hard to validate empirically with pretrained
Chronos models. In our targeted numerical experiment, we fix an input matrix X with predefined
exponentially decaying singular values, which is, again, randomly sampled from the product of a
random orthogonal matrix, a predefined diagonal matrix, and the transpose of a random matrix with
orthonormal columns (see the previous two subsections). Then, we randomly select WQ,WK ,WV

and compute the output of the attention mechanism defined by these three matrices together with a
number of heads parameter h. Figure 17 gives us that the output matrix

Y = MH-Attention(X;WQ,WK ,WV , h) +X

38

Published as a conference paper at ICLR 2026

is higher-rank as h increases.

100 200 300 400 500 600 700 800 900 1000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

j

σ
j
(Y

)/
σ
1
(Y

)

Figure 17: Relative singular values of the input matrix X and output matrices Y =
MH-Attention(X;WQ,WK ,WV , h) + X as we change the number of heads h. We see that the
numerical rank of Y increases with h.

39

Published as a conference paper at ICLR 2026

K ADDITIONAL EXPERIMENTS AND DISCUSSIONS

Pretraining a Compressed Chronos-Bolt and a Compressed Moirai. In addition to Chronos, we
also pretrain a compressed Chronos-Bolt model. To show the promise of compression, we start with
an already-small Chronos-Bolt (small) model, based on the T5 (small) architecture. The table and
figures in Table 3 can be read in the same way as those in Figure 7. In particular, we see that for both
MASE and WQL, the compressed Chronos-Bolt models completely form the Pareto frontier on our
evaluation benchmark. That is, given any local method or pretrained foundation model, there exists
a compressed Chronos-Bolt model that is simultaneously faster and more accurate.

Table 3: Results of pretraining a compressed Chronos-Bolt (small) model. We compare the perfor-
mance scores relative to the original pretrained model. The last row is the baseline.

d̃0 α
Inference In-Domain Zero-Shot

Time Space WQL ↓ MASE ↓ WQL ↓ MASE ↓
2 0.25 0.517 0.802 1.005 1.004 1.013 0.999
3 0.50 0.601 0.821 1.005 0.996 1.009 1.001
5 0.70 0.740 0.840 0.980 1.003 0.991 1.010
64 0.00 1.000 1.000 1.000 1.000 1.000 1.000

100 101 102 103

0.8

1.0

1.2

1.4

AutoARIMASCUM

AutoTheta

Chronos (Large)

Chronos-GPT2

AutoETS

Chronos (Base)

Moirai-1.0-R (Large)

Lag-Llama

Chronos (Small)

Moirai-1.0-R (Base)

Seasonal Naive

Naive

Chronos-Bolt (Small)
Chronos-Bolt (Base)

Chronos-Bolt (Mini)

M
A

SE

inference time
100 101 102 103

0.6

0.8

1.0

1.2
1.4

AutoARIMA

SCUM
AutoTheta

Chronos (Large)

Chronos-GPT2

AutoETS

Chronos (Base)

Moirai-1.0-R (Large)

Lag-Llama

Chronos (Small)

Moirai-1.0-R (Base)

Seasonal Naive

Naive

Chronos-Bolt (Small)Chronos-Bolt (Base)

Chronos-Bolt (Mini)

W
Q

L

inference time

While it is hard to find a rule of thumb that works for any task, we propose a guideline that should
work fine in most cases. Let D be the number of layers and d the hidden size. Set the per-layer
target rank

rℓ = r1 + (rD − r1)
(

ℓ−1
D−1

)α
, ℓ = 1, . . . , D,

where we can set rmin = the median numerical rank of a small sample of input embeddings (or
16 if unknown), rmax = d/2, and γ = 0.5. This design guarantees that rℓ grows smoothly and
monotonically from rmin to rmax (concave in depth), aligning capacity with the observed flow-of-
ranks while keeping early layers compact.

Table 4: Results of pretraining a compressed Moirai-1.0-R-base model. We compare the perfor-
mance scores relative to the original pretrained model. We show prediction losses when the flow-
of-ranks is or is not used. The last row is the baseline.

Size Ratio With Flow-of-ranks Without Flow-of-ranks
d̃0 α WQL ↓ MASE ↓ d̃0 α WQL ↓ MASE ↓

0.250 8 0.34 1.001 1.014 16 0.00 1.069 1.050
0.500 10 0.58 0.996 1.007 32 0.00 1.038 1.036
1.000 - - - - 64 0.00 1.000 1.000

40

Published as a conference paper at ICLR 2026

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used for polishing the writing and word choices of a few sections in the main text. They
are not used in the conceptualization and implementation of research.

41

	Introduction
	Data Modality and Rank Structure of Embedding
	From Low-rank Inputs to Low-rank Attention Matrices
	Flow-of-ranks: Moving through a Transformer
	Using these insights: How to Compress a TSFM?
	Conclusion
	Related Work
	Time-series Modeling
	Time-series Foundation Models
	Time-series Tokenization and Embedding
	Low-rank Structures in Deep Learning
	Low-rank Structures in Transformers

	Proof of thm.embedding and cor.MOEembedding
	Proof of thm.boltembedding
	Proof of thm.attentioncompression
	Compressing a multi-head attention layer
	Proof of thm.sparsebetter

	Proof of thm.flowofrank and cor.flowofranks
	Watching the Weights of Large Models
	Comparing the Weights of TSFMs and LLMs
	Watching the Weights of TSFMs During Training
	Watching the Weights in a Multihead Attention

	Visualization of Tokenizers
	More on the Chebyshev Embedding
	Numerical Experiments to Corroborate Our Theorem
	Two Numerical Experiments on thm.attentioncompression
	A Numerical Experiment on thm.sparsebetter
	A Numerical Experiment on thm.flowofrank

	Additional Experiments and Discussions
	The Use of Large Language Models (LLMs)

