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ABSTRACT

General virtual agents need to handle multimodal observations, master complex
action spaces, and self-improve in dynamic, open-domain environments. However,
existing environments are often domain-specific and require complex setups, which
limits agent development and evaluation in real-world settings. As a result, current
evaluations lack in-depth analyses that decompose fundamental agent capabilities.
We introduce AgentStudio, a trinity of environments, tools, and benchmarks to
address these issues. AgentStudio provides a lightweight, interactive environment
with highly generic observation and action spaces, e.g., video observations and
GUI/API actions. It integrates tools for creating online benchmark tasks, annotating
GUI elements, and labeling actions in videos. Based on our environment and tools,
we curate an online task suite that benchmarks both GUI interactions and function
calling with efficient auto-evaluation. We also reorganize existing datasets and
collect new ones using our tools to establish three datasets: GroundUI, IDMBench,
and CriticBench. These datasets evaluate fundamental agent abilities, including
GUI grounding, learning from videos, and success detection, pointing to the
desiderata for robust, general, and open-ended virtual agents.

1 INTRODUCTION

Building general virtual agents that can utilize every software to enhance human productivity is a long-
standing research challenge in artificial intelligence (Shi et al., 2017). Such agents perceive computer
states as observations (e.g., screenshots) and take actions through human-computer interfaces (e.g.,
GUI, keyboard, and mouse) or function calling (e.g., APIs) in response to natural language instructions.
Fueled by advancements in large language models (LLMs) (Brown et al., 2020; Chowdhery et al.,
2022; OpenAI, 2023), there has been impressive progress in virtual agents (Zheng et al., 2023;
Zhang et al., 2024; Tan et al., 2024). However, deploying these agents in real-world settings requires
satisfying three key desiderata: (1) achieving general grounding by interacting with both GUIs
and APIs and handling complex observations like videos; (2) possessing extensive digital world
knowledge to complete tasks across diverse applications; and (3) self-improving and generalizing
to unseen situations through trial and error in open-ended environments. For example, an agent
exporting charts from a spreadsheet and adding them to a video needs to interact precisely with GUI
elements in both the spreadsheet and the video editor. Using API actions can speed up the process,
and video observations can help monitor and make adjustments. The agent needs knowledge of these
applications, e.g., understanding their workflows, to effectively perform the task. If the video editor’s
layout is out of distribution, the agent should learn how to use it by interacting with the environment.

Therefore, the environments of virtual agents must (1) model various observation and action spaces
to support all possible tasks, (2) provide online interactions for learning through trial and error, and
(3) systematically benchmark agents’ abilities to satisfy the three desiderata. However, many existing
virtual agent benchmarks are static datasets (Deng et al., 2023; Rawles et al., 2023; Kapoor et al.,
2024) or only consider domain-specific actions (e.g., web operations) (Zhou et al., 2023; Koh et al.,
2024), which do not encompass the full range of tasks humans can perform. Recent environments
have advanced toward more realistic settings (Xie et al., 2024; Rawles et al., 2024), but they still do
not include video observations or allow taking actions through both GUIs and APIs. Moreover, they
typically use success rates as the only metric, which may result in overoptimizing agent frameworks
for specific tasks rather than real-world performance. Additionally, setting up these environments or
customizing tasks within them is often non-trivial. As a result, current environments and benchmarks
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Figure 1: AgentStudio focuses on three desiderata for general virtual agents. For general grounding
in any software, it provides universal observation and action spaces, a GUI annotation tool, and the
GroundUI dataset for enhancing and evaluating GUI grounding. To leverage digital knowledge, our
tools enable recording human trajectories and annotating videos on real-world devices, which can be
used to create datasets like IDMBench to evaluate agents’ abilities to learn from videos. To support
open-ended learning, AgentStudio offers interactive environments with language feedback, tools for
task creation, and CriticBench to benchmark the ability for success detection. The overall agent
performance is measured through an online task suite developed using our task creation tool.

struggle to reliably evaluate agent performance in real-world scenarios. They are also difficult to
expand to cover a broader range of tasks and provide detailed analyses of fundamental agent abilities.

AgentStudio provides an interactive, realistic, and lightweight environment with generic observation
and action spaces, enabling agents to interact with arbitrary software (Figure 1). The observation
space incorporates multiple modalities, ranging from screen recordings (videos) and screenshots
(images) to code execution results (text). Agents can act through human-computer interfaces (e.g.,
keyboard-mouse operations) to control third-party applications, and perform function calling to
interact with APIs. These features expand the task space to massively open-domain and real-world
tasks typically performed by humans. The interactive nature of online environments allows agents to
learn through trial and error, which is enhanced by the language feedback on failure reasons provided
by our environment. We also integrate various tools for customizing and validating benchmark
tasks, annotating GUI elements with bounding boxes, and labeling actions for actionless videos. Our
implementation is designed to be lightweight, ensuring ease of installation, usage, and reproducibility.

Using AgentStudio environment and tools, we introduce an online task-completion benchmark and
three datasets to evaluate fundamental agent abilities in real-world settings. The benchmark suite
consists of 205 real-world tasks across various applications such as VS Code, Google Workspace,
and Office suites. Solving these tasks requires agents to process complex observations, interact with
GUIs, and perform function calling. We curate the benchmark through a three-stage process: (1)
creating basic tasks and their auto-evaluators for single-application scenarios, (2) compositionally
expanding tasks to cross-application workflows, and (3) manually validating task configurations and
auto-evaluators. To improve evaluation efficiency, we implement over 100 functions for automatic
environment resetting and evaluation. The three datasets, GroundUI, IDMBench, and CriticBench,
focus on UI grounding, labeling actions in videos, and success detection, respectively. GroundUI
includes 18K single-step instruction-screenshot pairs across various devices, with ambiguous or
incorrect instructions recaptioned. Agents must generate precise UI element coordinates to complete
these instructions. The other two datasets are based on multi-step agent trajectories. In IDMBench,
models need to label actions in a video clip, reflecting their ability to leverage knowledge from video
demonstrations. CriticBench evaluates models’ ability to determine if a task has been successfully
completed based on the trajectory, which is crucial for efficient evaluation and open-ended learning.
Overall, these benchmarks are designed to be accessible and extensible, demonstrating the potential
of AgentStudio for agent evaluation and in-depth analysis in real-world scenarios.

Experimental results indicate that even state-of-the-art vision-language models (VLMs) like GPT-4o
experience significant performance declines in GUI and compositional tasks. For tasks that could be
completed using APIs, providing screenshot observations can lead to poorer performance compared
to text-only observations, as models might be misled into using GUI actions instead of APIs. Notably,
most existing models struggle with professional applications such as image editing software, whereas
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humans can solve 72.2% of those tasks. Evaluation results from the three datasets reveal that current
general-purpose VLMs struggle to accurately predict the exact coordinates of GUI elements in
screenshots. This inaccuracy accumulates over time, significantly reducing the success rate of multi-
step tasks. We also find that as screen resolution increases, the accuracy decreases, leading to higher
accuracy in mobile environments compared to web and desktop scenarios. Additionally, our findings
suggest that current models are not yet effective in labeling actions in videos and struggle to reliably
evaluate whether a trajectory is successful. Therefore, future work could enhance these abilities and
refine agent frameworks to better utilize them.

2 AGENTSTUDIO ENVIRONMENT

Each computer task can be modeled as a partially observable Markov decision process (POMDP)
(S,A,O, T ,R,F ,U), with state space S, action space A, observation space O, transition function
T , reward function R, feedback space F , and instruction space U . AgentStudio offers an interactive
and realistic environment with comprehensive observation space O and action space A. The transition
function T reflects the real-time dynamics of computer environments. The environment supports
both scalar rewards from R and language feedback from F to facilitate open-ended LLM agents to
self-correct (Shinn et al., 2023; Wang et al., 2023). Additionally, it comes with tools for creating
benchmark tasks (S, A, O, and U), validating functional auto-evaluators (R and F), annotating
GUI elements, and labeling actions in videos. These features are designed according to the three
desiderata for general virtual agents (Figure 1), aiming to promote research on agents that can handle
real-time video observations, utilize both APIs and GUIs for improved efficiency, learn from video
demonstrations, and adapt through environment interactions.

Universal observation and action spaces. AgentStudio features a comprehensive observation
space O and action space A that mirror the complexity of real-world human-computer interactions.
Specifically, the observation space is defined as a union of text, image, and video modalities,
i.e., O = OText ∪ OImage ∪ OVideo. This allows the agent to receive observations that include
screen recording videos, screenshots, and code execution results. Agents can also leverage tools to
obtain additional observations that are not directly visible to human users, such as HTML code and
accessibility trees. The video observation facilitates research on agents’ ability to process complex,
multimodal observations and solve tasks requiring real-time video understanding. The action space is
similarly expansive, defined as a union of GUI interactions and API calls, i.e., A = AGUI ∪ AAPI.
This encompasses both high-level function calling (AAPI) and low-level operations like keyboard
and mouse controls (AGUI). Agents can execute code via a Python kernel to call APIs, import
tools, and manipulate human-computer interfaces. This universal action space enables agents to
control arbitrary software: they can call APIs for applications with accessible internals (e.g., terminal
commands and Google Workspace) to enhance efficiency and accuracy, or automate operations
via human-computer interfaces when API access is unavailable (e.g., third-party applications). In
contrast, most environments use domain-specific observation and action spaces, such as a screenshot
(OImage) or HTML snippet (OText) for each web operation (AAPI), as shown in Figure 2.

Interactive, realistic, and lightweight environments with language feedback. AgentStudio adopts
fully online interactive environments on real-world devices, where both screen recording and action
execution occur in real time. The transition function T : S × A → S ×O reflects these real-time
changes, capturing the complexity of real-world scenarios. For example, when the agent clicks an
icon, the observation may not display an immediate change, despite the application being in the
process of launching. In contrast, existing environments sidestep this challenge by adding a delay
when getting the observation after each action, which can miss dynamic interactions or delays in actual
scenarios. Our interactive environment allows agents to explore, learn from environment interactions,
and accumulate new skills over time. To enhance agent learning, the environment provides both a
binary reward signal R : S → {0, 1} and language feedback F : S → {failure reason, success} that
informs agents why a task may have failed. This promotes research on self-correction and open-ended
learning for LLM agents. Online environments offer more effective benchmarks than static datasets,
which can be exploited, rely on domain-specific action spaces, or cannot accept multiple valid
solutions. The real-world feature also enables agent evaluation and data collection on any task that a
human can perform. AgentStudio can operate in both local and remote modes. In remote mode, it
launches a Virtual Network Computing (VNC) remote desktop, supporting various VNC-compatible
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Figure 2: Comparison of observation and action spaces between web browser environments and
AgentStudio. AgentStudio provides the most generic observation and action spaces, which signifi-
cantly expands the task space, allowing for developing and evaluating agents in real-world settings.

operating systems (e.g., Windows, Linux, macOS) and devices (e.g., Docker containers, virtual
machines, physical machines), making it lightweight and flexible to set up and use.

3 AGENTSTUDIO TOOLS

To facilitate the development and evaluation of agents within the AgentStudio environment, we
provide three tools for creating in-the-wild benchmark tasks and developing high-quality datasets for
agent training and evaluation. These tools, combined with the realistic environment of AgentStudio,
contribute to the generation of rich, structured data for training and evaluating agents.

Benchmark task creation and validation. Users can create tasks by specifying S , A, O, and U , and
equip these tasks with functional auto-evaluators representing R and F . These tools enable manual
validation of task performance and evaluator correctness, i.e., ensuring the accuracy of R and F , as
well as the measurement of human success rates and operation times.

Step-level GUI element annotation. This pipeline allows users to capture screenshots o ∈ OImage,
annotate UI elements by drawing bounding boxes, and add step-level instructions u ∈ U . This
facilitates the creation of diverse datasets for training and evaluating single-step UI grounding models,
which map instructions and screenshots to precise mouse click coordinates.

Trajectory-level video-action recording and refinement. This is a two-step process including
action recording and video refining. During action recording, users can record the trajectory-level
instruction u ∈ U , the screen recording o1:T ∈ OVideo, and all keyboard and mouse operations
at ∈ AGUI, where t is a timestamp within a time horizon of length T . In the video refining phase,
an editor interface allows users to replay and trim the recorded video o1:T and process the action
sequence a1:T−1. Specifically, users can remove noisy mouse movements and aggregate atomic
actions (e.g., individual key presses) into higher-level actions (e.g., typing a string or executing a
shortcut). This is crucial for training IDMs that can infer action sequences from videos without
explicit action labels, enhancing the agent’s ability of learning from video demonstrations.

4 AGENTSTUDIO OVERALL BENCHMARK TASKS

To illustrate how AgentStudio facilitates agent evaluation in complex and real-world scenarios, we
introduce a benchmark suite consisting of 205 tasks. These tasks span API usages such as terminal
and Gmail and GUI software like VS Code in the AgentStudio environment. Solving these tasks
requires various fundamental agent abilities, including general grounding through complex action
space (AAPI ∪ AGUI) and compositional generalization over diverse instruction space U . The tasks
are designed to be easy to evaluate, circumventing common issues in current agent evaluations such
as unrealistic environments, complex setups, and vulnerability to hacks. Despite their conceptual
simplicity, these tasks present significant challenges to state-of-the-art VLMs.
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4.1 BENCHMARK CONSTRUCTION

Each task in our benchmark can be formulated as a tuple (u, s0,R,F), where u ∈ U is the natural
language task instruction, s0 ∈ S is the task-specific initial state, R automatically evaluates the
final state and returns a binary reward, and F provides the language feedback if the task fails. For
example, for the instruction u “Create a one-hour event Team Meeting in Google Calendar at 5pm
today”, s0 is obtained by removing any existing event with the same name, and R evaluates success
by checking via API calls whether the event was correctly created after the agent’s actions. If the task
fails, F provides feedback on which success conditions are not satisfied for the final state. We source
instructions from the Internet and previous work (Guo et al., 2023; Li et al., 2024; Xie et al., 2024)
and construct the benchmark suite compositionally through the following three stages.

OS
9.3%

Email
6.3%

Calendar
5.4%

Docs
3.4%

VS
Code
9.8%

OS
9.3%

Docs
7.3%

Spread-
sheet
7.3%

Slides
7.3%

Image
Editor
5.4%

Mix
29.3%

Single-API

Single-GUI

Compositional

Figure 3: Task composition.

Stage I: Crafting the minimal evaluators and action
spaces. We begin by organizing basic instructions into
50 single-API tasks and 95 single-GUI tasks, each focus-
ing on API or GUI operations within a single applica-
tion. We implement over 100 auto-evaluators for R and
F . Single-API tasks consist of tasks that can be accom-
plished through direct function calling, with the observa-
tion space O = OText. Single-GUI tasks involve common
daily applications where agents are additionally provided
with screenshots, i.e., O = OText ∪ OImage. In both cases,
we provide the agent with a minimal while generic action
space A = AAPI∪AGUI, including basic keyboard, mouse,
and terminal operations. We leave higher-level actions like
skill libraries to future research on agent frameworks.

Stage II: Compositional task expansion. By compo-
sitionally extending the instructions and auto-evaluators
from Stage I, we generate 60 more challenging tasks to
benchmark compositional generalization. This category covers cross-application tasks requiring
interactions with multiple GUIs, multiple APIs, or both. For example, agents may need to navigate
the operating system and multiple applications, like VS Code and a document, to complete a task.

Stage III: Manual validation and difficulty measure. To verify the correctness of the auto-
evaluators (R and F), we use AgentStudio to collect human trajectories, evaluator outcomes, and
task completion times. Therefore, we can identify and correct potential issues and mitigate false
evaluations. The task completion times serve as empirical measures of task difficulty.

4.2 EVALUATION

Model Single-API Single-GUI Compositional TotalOS Google OS Office VS Code GIMP
Claude 3.5 Sonnet 94.7 74.2 94.7 0.0 5.0 0.0 25.0 36.6

GPT-4o 100.0 54.8 94.7 4.4 15.0 0.0 23.3 35.6
Gemini 1.5 Pro 68.4 16.1 63.2 0.0 5.0 0.0 5.0 16.6

Gemini 1.5 Flash 52.6 12.9 47.4 0.0 0.0 0.0 6.7 13.2
Humans 73.7 83.9 73.7 51.1 85.0 54.6 80.0 72.2

Table 1: Success rates (%) on AgentStudio overall benchmark tasks. Existing models can perform
well in simple command-line tasks but struggle with complex API calls, GUI operations, and cross-
application tasks that require both GUI operations and API calls.

Table 1 compares model performances on our benchmark tasks. While state-of-the-art models like
GPT-4o perform well on simpler operating system tasks (Single-API OS) that only involve OText, they
struggle to reliably solve tasks that require complex API calls (e.g., Google Workspace). To evaluate
the impact of the observation space, we apply identical instructions and action spaces in Single-API
OS and Single-GUI OS, but Single-GUI OS tasks include additional screenshot observations, i.e.,
O = OText ∪ OImage. Even though the tasks remain identical, the performance on the Single-GUI OS
task declines for some models, as they are misled into using keyboard/mouse operations instead of
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efficient API calls. Specifically, GPT-4o and Claude 3.5 Sonnet maintain comparable success rates
across both setups, as they consistently favor API calls even when presented with screenshots. In
contrast, Gemini models exhibit a performance drop, as they are prone to relying on GUI interactions.
This emphasizes the limitations of current models and the need for agents to determine when to
use APIs instead of GUI actions. Also, most existing models struggle with professional software
applications, such as Office suites, code editor (VS Code), and image editor (GIMP). Furthermore,
compositional tasks that span multiple applications or require a combination of GUI operations and
API calls remain challenging for current models, despite being moderately difficult for humans. We
manually review the trajectories and categorize five failure modes: (1) False Finish: The model
incorrectly marked the task as complete but failed the auto-evaluation. (2) Parse Error: The model
generated unparseable actions. (3) Step Limit: The model exceeded the allowed steps. (4) Time
Limit: The model surpassed the time limit. (5) Repetition Limit: The model repeated the same
action many times. Table 2 presents the distribution of failure modes for each model, and Table
3 shows the proportion of tasks actively marked as completed by each model. Gemini 1.5 Flash
and Claude 3.5 Sonnet exhibit relatively low trigger rates for Step, Time, and Repetition Limits,
indicating their capability to actively mark termination. In contrast, GPT-4o’s active finish rate is
significantly lower than the other models, suggesting that it tends to continue task execution until a
certain limit or error is triggered. For most GUI tasks, existing models struggle to accurately click on
GUI elements, as further demonstrated by our fine-grained evaluation in Section 5. When executing
actions through code, existing models fail to handle dynamic real-time environments with appropriate
sleep delays, and they struggle to determine when new observations are needed, leading to difficulties
in completing complex tasks. Further results and detailed analysis are provided in Appendix F.

Model False
Finish

Parse
Error

Step
Limit

Time
Limit

Repetition
Limit

Gemini 1.5 Pro 70.8 2.9 11.7 9.4 5.3
Gemini 1.5 Flash 62.9 35.4 0.0 0.0 1.7
Claude 3.5 Sonnet 96.2 2.3 0.8 0.8 0.0

GPT-4o 31.8 48.5 4.5 8.3 6.8

Table 2: Distribution of failure modes for each model (%).

Model Active
Finish

Gemini 1.5 Pro 74.1
Gemini 1.5 Flash 67.8
Claude 3.5 Sonnet 97.6

GPT-4o 28.8

Table 3: Active finish rate (%).

5 AGENTSTUDIO FINE-GRAINED EVALUATION

To gain deeper insights into agent capabilities beyond the overall performance measured by online
benchmark tasks, we develop three datasets using AgentStudio: GroundUI, IDMBench, and Crit-
icBench. These datasets target the desiderata for general virtual agents, i.e., general UI grounding,
learning from videos, and success detection. Unlike benchmark tasks where success rates are often
zero, our datasets provide dense signals to guide research and mitigate overoptimizing specific tasks.

5.1 GROUNDUI: EVALUATING UI GROUNDING AND LOCALIZATION

Claude-3 Sonnet
Gemini-Pro GPT-4V

Qwen-VL
0

20

40

60

80

100
Location Match Click Type Match

Figure 4: Accuracy of location/type
match in the sample task.

Using AgentStudio, we confirm that accurately grounding
UI elements with precise coordinates is still a main chal-
lenge for virtual agents (Li et al., 2020). As illustrated in
Figure 4, we collect a sample task with over 200 screenshots
from various desktop operating systems using AgentStudio.
In this task, models are required to write code snippets
that include click types (such as left click or double click)
and the corresponding click locations. We find that current
VLMs consistently perform poorly in matching locations
accurately. Previous studies have also confirmed that while
current models can generate high-level plans in textual
form, they struggle to ground these plans into the correct
UI elements (Zheng et al., 2024). This grounding capability
is necessary because not all elements are readily accessible in text form (Koh et al., 2024). However,
existing benchmarks have varying formats and do not directly evaluate this ability across diverse
applications and platforms. More importantly, many instructions in these datasets are either incorrect
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or ambiguous (see examples in Appendix C.2), and some instructions are task-level rather than step-
level. These issues render existing datasets less reliable for benchmarking UI grounding. To address
these issues, we systematically reorganize existing datasets and incorporated AgentStudio-collected
data to create a more comprehensive and reliable evaluation.

Mind2Web
(test domain)

19.1%

Mind2Web
(test task)

8.0%
OmniACT

7.7%Mind2Web
(test website)

3.8%
ScreenSpot

1.4%

OmniACT
24.3%

ScreenSpot
3.3%AgentStudio

2.4%
MoTIF
26.5%

ScreenSpot
3.5%

Web

Desktop

Mobile

Figure 5: Source of GroundUI-1K data.

Dataset curation. We define a UI grounding task as a
tuple (u, o, bbox), where u ∈ U represents a single-
step instruction, o ∈ OImage is the screenshot, and
bbox = (x1, y1, x2, y2) denotes the bounding box of
the targeted UI element. Given u and o, the model is
expected to output an action a = (x, y), the normal-
ized coordinates to click within the range (0, 1). The
action is considered correct if the predicted point lies
within the bounding box. For example, if provided with
a screenshot o of a music player interface and the instruc-
tion u is “Click the Play button”, the predicted action
a should correspond to the bounding box of the Play
button. We collect screenshots from the test sets of
existing grounding datasets across web, desktop, and
mobile platforms, including MoTIF (Burns et al., 2022),
ScreenSpot (Cheng et al., 2024), OmniACT (Kapoor et al., 2024), along with additional screenshots
collected in our sample task. After carefully examining the datasets, we exclude data lacking anno-
tated bounding boxes. To recaption problematic instructions, we overlay the ground truth actions onto
each screenshot and use GPT-4o to generate detailed descriptions for the plotted GUI elements, which
proved to be reasonably reliable. This process results in GroundUI-18K, an 18K UI grounding dataset
for benchmarking. For efficient evaluation, we conduct experiments on a subset, GroundUI-1K,
which consists of 400, 300, and 300 samples for web, desktop, and mobile devices, respectively.

SeeClick GPT-4o CogVLM2
0

20

40

60 Raw Instructions
Recaptioned

Figure 6: Accuracy w/ and w/o
instruction recaptioning.

Model Web Desktop Mobile Total
SeeClick 64.3 44.3 73.7 61.1
CogAgent 25.3 15.7 35.7 25.5

CogVLM2-Llama3-chat-19B 2.5 2.7 5.3 3.4
MiniCPM-Llama3-V 2.5 0.0 0.3 2.7 0.9

Qwen-VL-Chat 0.0 0.0 0.0 0.0
Gemini 1.5 Pro 31.2 24.3 51.3 35.2

Claude 3.5 Sonnet 13.0 14.0 26.3 17.3
GPT-4o 7.5 8.3 26.3 13.4

Gemini 1.5 Flash 0.5 4.3 26.3 9.4

Table 4: Single-step GroundUI-1K accuracy of open (top) and
proprietary (bottom) VLMs.

Results. As presented in Table 4, SeeClick, a specialized UI grounding model, consistently achieves
the highest overall grounding accuracy across different platforms. However, due to multi-step error
accumulation, its performance still fails to meet the robustness required for practical deployment.
SeeClick is trained with large-scale grounding data, highlighting the importance of scaling up UI
grounding datasets. Among proprietary models, Gemini 1.5 Pro outperforms others like GPT-4o and
Claude 3.5 Sonnet. However, these general-purpose models still lag behind specialized models such
as SeeClick. The accuracy on mobile platforms is generally higher than that on web and desktop
platforms, which can be attributed to the comparatively lower screen resolution of mobile screenshots.
We also conduct ablation studies to assess the impact of instruction recaptioning on three models. As
illustrated in Figure 6 in Appendix A, the differences in performance suggest that the recaptioned
dataset provides a more reliable evaluation of UI grounding capabilities. Additional results, data
samples, and prompts are available in Appendix C.

5.2 IDMBENCH: EVALUATING LABELING ACTIONS FROM VIDEOS

Internet-scale data have significantly advanced language and vision models. However, virtual
agents have not similarly benefited due to the lack of large-scale action datasets, because annotating
computer operations is both time-consuming and expensive. While numerous tutorial videos exist
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on the Internet, they lack the action labels necessary for training. Leveraging IDMs (Baker et al.,
2022), which estimate pIDM(a1:T−1|o1:T ), allows us to label pseudo actions in videos, unlocking
the knowledge embedded in Internet-scale videos. Unfortunately, no benchmark currently exists to
evaluate this ability. Therefore, we evaluate VLMs as IDMs to promote research on enabling virtual
agents to learn from videos and generalize across diverse scenarios.

Dataset curation. Our benchmark introduces two settings: IDM-Single and IDM-Multiple. IDM-
Single focuses on single-step action labeling, where the task is to identify an action at ∈ AGUI at
timestep t given the observations before and after it, denoted as ot and ot+1. Although useful for
benchmarking, selecting appropriate pairs of video frames in real-world scenarios is challenging
because the effect of an action may not immediately appear after execution. Therefore, we propose
IDM-Multiple to evaluate multi-step action labeling in a more realistic scenario. This setting
requires the model to predict pIDM(a1:T−1|o1:T ), meaning it must label all actions performed within
a trajectory of T observations ot for t ∈ [1, T ], without being informed of the number of actions.
We collect trajectories from Mind2Web (M2W) (Deng et al., 2023), Android in the Wild (AITW)
(Rawles et al., 2023), VisualWebArena (VWA) (Koh et al., 2024), and AgentStudio (AS). Notably,
we excluded AgentStudio-collected trajectories that involved code in actions due to the difficulty of
evaluating their correctness, as well as trajectories with fewer than two steps. As a result, we created
a dataset of 345 trajectories, with 100 from existing environments and 45 from AgentStudio. The
IDM-Single dataset is derived from these trajectories by extracting individual transitions (o, a, o′).
For simplicity, we formulate each task as a multi-choice question and incorporate the action space A
into the prompt as the answer choices. For example, in Mind2Web, the action space includes actions
like clicking, typing, and scrolling. More details can be found in Appendix D.

Model IDM-Single IDM-Multiple
M2W AITW VWA AS Total M2W AITW VWA AS Total

Claude 3.5 Sonnet 73.0 56.0 50.0 72.0 61.4 18.0 8.0 7.0 22.2 12.5
GPT-4o 70.0 56.0 45.0 78.0 60.0 13.0 8.0 2.0 20.0 9.3

Gemini 1.5 Pro 62.0 51.0 46.0 48.0 52.3 0.0 0.0 1.0 2.2 0.6
Gemini 1.5 Flash 65.0 34.0 31.0 60.0 45.7 0.0 0.0 0.0 0.0 0.0
Qwen-VL-Chat 37.0 20.0 5.0 20.0 20.6 0.0 0.0 0.0 0.0 0.0

Table 5: Accuracy on IDMBench. Model performance drops significantly in IDM-Multiple.

Results. Table 5 presents the accuracy on IDMBench for various VLMs across four environments
with different action spaces. Among the tested models, Claude 3.5 Sonnet and GPT-4o consistently
outperform the others in both settings. Tasks involving more complex action spaces present greater
challenges. For example, the action space of M2W is less complex than that of AITW, leading to
higher accuracy. In IDM-Multiple, accuracy is calculated based on the exact match of the action
sequences, which explains the notable decline in model performance, as any deviation from the
expected sequence can lead to failure. Since models in IDM-Multiple can generate action sequences
of variable lengths, Table 9 in Appendix A further evaluates the effort required to convert the predicted
action sequence to the ground truth, using edit distance as a metric. Notably, two Gemini models
sometimes fail to stop correctly and generate extremely long action sequences in IDM-Multiple.
To mitigate this, we used a different prompt for IDM-Multiple experiments with these two models,
instructing them to generate fewer than ten actions. However, Gemini 1.5 Flash still produced long
sequences, resulting in the highest edit distance in IDM-Multiple. Overall, current models are still
unable to accurately label actions from videos and are therefore not yet capable of learning from
real-world tutorial videos. The discrepancy between performance in IDM-Single and IDM-Multiple
also indicates that more effort is needed to improve action labeling in realistic settings.

5.3 CRITICBENCH: EVALUATING SUCCESS DETECTION

Although we have implemented auto-evaluators to assess functional correctness in our online bench-
mark, evaluating the success of all tasks in this manner is neither scalable nor feasible due to the
massive diversity and open-ended nature of computer tasks. Therefore, a general critic model would
significantly reduce the burden of creating online benchmark tasks. Such a model also enables agents
to self-correct and engage in open-ended learning to master software when human demonstrations are
limited. We argue that training a general critic is easier than training general agents. Unfortunately,
no existing benchmarks measure this success detection ability in current VLMs for computer tasks.
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Dataset curation. We represent each data point as a triplet (u, τ, y), where u ∈ U denotes the
trajectory-level task instruction, τ is the corresponding trajectory consisting of multiple transitions
(o, a, o′), and y ∈ {0, 1} is the binary outcome indicating the success or failure of τ . Given the
instruction u and the trajectory τ , the model is required to predict y. Similar to IDMBench, we collect
trajectories on different devices from M2W (Deng et al., 2023), AITW (Rawles et al., 2023), VWA
(Koh et al., 2024), and AS. Since most human trajectories are successful, we balanced the dataset by
generating failure cases from partial trajectories. For example, we can create a failure trajectory by
extracting the first few steps of a successful one. We curate a subset of 350 trajectories, with 300
trajectories from existing environments and 50 from AgentStudio.

Model Observation-Action Pairs Observations Only
Web Desktop Mobile Total Web Desktop Mobile Total

Gemini 1.5 Pro 72.5 84.2 52.5 69.7 61.1 88.1 48.1 62.9
Gemini 1.5 Flash 65.6 85.2 57.8 67.3 64.1 75.0 52.5 63.1

GPT-4o 68.0 91.5 41.7 66.5 61.4 85.7 39.4 60.8
Claude 3.5 Sonnet 68.4 92.9 36.6 65.6 64.6 87.3 47.5 64.2

Qwen-VL-Chat 55.6 55.1 64.4 58.5 63.2 73.4 67.6 66.2

Table 6: F1 score on CriticBench. More metrics can be found in Table 10 in Appendix A.

Results. Table 6 presents the F1 scores for predicting the outcome y using current VLMs that accept
multi-image inputs. Additional metrics, including accuracy, precision, and recall, are provided in
Table 10. These results indicate that existing models perform similarly on this task, with no significant
discrepancy between open and proprietary models. Furthermore, unlike the benchmark results in
GroundUI, where all models perform better on mobile environments, success detection on mobile
environments does not appear to be easier than on other platforms. We also observe that incorporating
action information offers some benefits, but the effects are limited, as illustrated in the right part of
Table 6. In summary, while current VLMs show promise, their performance is still far from effective
for self-improvement and open-ended learning. This benchmark provides a standard for measuring
the success detection capabilities of current VLMs, facilitating further research in their prediction
accuracy. Additional examples and prompts are provided in Appendix E.

6 RELATED WORK

Environment Domain Obs. Space Action Space Inter-
active

Data & Task
Tools

Language
Feedback

Light-
weight

Decompose
Abilities

World of Bits Local Web T/I/V K/M ✓ ✗ ✗ ✓ ✗
WebShop Local Web T/I Web Ops ✓ ✗ ✗ ✗ ✗
Mind2Web Web Dataset T/I Web Ops ✗ ✗ ✗ ✓ ✗
WebArena Local Web T Web Ops ✓ ✗ ✗ ✗ ✗
VisualWebArena Local Web T/I Web Ops ✓ ✗ ✗ ✗ ✗
AndroidEnv Mobile Emulator T/I/V Touchscreen ✓ ✗ ✗ ✗ ✗
AITW Mobile Dataset T/I Touchscreen ✗ ✗ ✗ ✗ ✗
AndroidWorld Mobile Emulator T/I/V Touchscreen ✓ ✗ ✗ ✗ ✗
OmniACT Desktop Dataset T/I K/M ✗ ✗ ✗ ✓ ✗
OSWorld Desktop T/I K/M ✓ ✗ ✗ ✗ ✗
AgentStudio Desktop T/I/V K/M/Code ✓ ✓ ✓ ✓ ✓

Table 7: AgentStudio supports online interactions with real-world operating systems using the most
generic observation (text (T), image (I), and video (V)) and action spaces (keyboard (K), mouse
(M), and code) among the listed environments. It offers benefits such as user-friendly GUI/video
annotation and task customization, lightweight installation, lightweight installation, and fine-grained
datasets that decompose fundamental agent abilities.

Environments for virtual agents. Table 7 presents a comparison of our environment with other
existing ones. Numerous efforts have been made to develop simulators for creating virtual agents
that can automate computer tasks. For example, World of Bits (Shi et al., 2017) offered a minimalist
web simulator, while AndroidEnv (Toyama et al., 2021) provided an emulator wrapper for Android
devices. Early attempts in these environments primarily used deep reinforcement learning (Liu et al.,
2018; Gur et al., 2018; Jia et al., 2018; Gur et al., 2021; Humphreys et al., 2022), which struggled
to generalize beyond the environments. With novel capabilities like code as policies (Liang et al.,
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2023) and tool use (Schick et al., 2024; Qin et al., 2023) of LLM-based virtual agents (Gur et al.,
2023b; Kim et al., 2023; Zheng et al., 2023; Gur et al., 2023a), these simplified environments have
been gradually solved. To build more realistic and complex settings, WebShop (Yao et al., 2022)
introduced a web shopping environment. However, its tasks and observation/action spaces were
browser-specific, i.e., O = OText ∪ OImage and A = AAPI. Similar limitations apply to recent web
environments like WebArena (Zhou et al., 2023) and VisualWebArena (Koh et al., 2024), where the
action spaces are limited to web operations such as element clicking and URL navigation. Meanwhile,
AndroidWorld (Rawles et al., 2024) focused specifically on Android devices. OSWorld (Xie et al.,
2024) is a recent extension of WebArena to desktop environments focusing on GUI interactions,
with O = OText ∪ OImage and A = AGUI. In contrast, our environment supports video observations
and both API and GUI actions, i.e., O = OText ∪ OImage ∪ OVideo and A = AGUI ∪ AAPI. This
setting expands the task space and reveals new challenges for virtual agents, such as deciding when
to use API or GUI actions to maximize efficiency and handling real-time dynamics. Additionally,
we provide a more lightweight implementation, along with tools for benchmark task customization,
open-domain GUI annotation, and video action annotation in real-world environments.

Benchmarks for virtual agents. Most environments above introduced accompanying benchmark
tasks with functional auto-evaluation as the reward function R. However, their task space is limited
by the observation and action spaces of the environments. Also, most of them focused only on
overall success rates, failing to promote research efforts towards fundamental agent capabilities. In
contrast, our generic environment allows for any task humans can perform. While we source part
of instructions from existing benchmarks, we add new tasks targeting the unique challenges posed
by our environment, e.g., dealing with complex observation and action spaces. We also conduct
rigorous checks on our auto-evaluators R, fix errors in tasks within existing environments, and offer
a simplified task structure and evaluation process. Additionally, we provide language feedback F
on task failures for LLM agents. In addition to benchmark tasks in online environments, there are
also static datasets designed to evaluate overall agent performance. AITW (Rawles et al., 2023) is a
large-scale dataset focused on Android operations. Mind2Web (Deng et al., 2023) and WebLINX
(Lù et al., 2024) evaluate web agents. Some benchmarks specifically measure agent performance
in interacting with APIs (Xu et al., 2023; Liu et al., 2023; Mialon et al., 2023; Yao et al., 2024).
More recent static benchmarks have also been developed for desktop environments (Cheng et al.,
2024; Niu et al., 2024; Kapoor et al., 2024; Zhang et al., 2024; Wu et al., 2024). Unlike functional
auto-evaluators in online environments, these datasets only accept a single successful trajectory,
which limits their effectiveness in evaluating overall task completion, as done in existing benchmarks.
We believe that static datasets are more appropriate for benchmarking specific agent abilities. While
diverse datasets exist, a systematic approach is lacking to target fundamental agent abilities beyond
measuring success rates. Although several GUI grounding-specific datasets similar to our GroundUI
exist (Li et al., 2020; Burns et al., 2022), a unified format can significantly facilitate benchmarking
across diverse applications and devices. As for IDMBench and CriticBench, no similar benchmarks
currently exist. More detailed rationale of our datasets can be found in Appendix B.

7 DISCUSSION

Conclusion. AgentStudio provides a comprehensive solution for general virtual agents by offering
interactive real-world environments, holistic tools, online benchmark tasks, and datasets for specific
agent capabilities. Our design choices follow the desiderata for such agents: general grounding to
interact with any software, digital world knowledge from Internet-scale video tutorials, and open-
ended learning for self-improvement and generalization to new situations. We hope this work offers
practical insights and promotes the evaluation and development of next-generation virtual agents.

Limitations and future work. We acknowledge certain limitations in our work. First, despite
rigorous examinations, there might still be cases where auto-evaluators make incorrect judgments
due to real-world complexity, a common issue of existing real-world benchmarks. Developing a
general critic performing well on our CriticBench could alleviate this issue. Second, the GroundUI
datasets might still have problematic instructions due to the automatic recaptioning process using
GPT-4o. Third, our datasets are designed for easy evaluation but might be vulnerable to hacks.
Continually updating them can mitigate issues like data leakage. Finally, although our implementation
is compatible with real-world devices, our results for online benchmark tasks are obtained within an
Ubuntu Docker environment, a tradeoff between reproducibility and real-world complexity.
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REPRODUCIBILITY STATEMENT

All resources, such as code and datasets, are publicly available in the supplementary materials to
ensure reproducibility.

ETHIC STATEMENT

Autonomous agents that can control real-world digital devices have inherent risks, such as deleting
important files and sending spam emails. To mitigate these risks, our framework allows users to
examine and confirm each action before execution. Users should take extra caution when using these
agents to interact with real-world environments.
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A ADDITIONAL RESULTS

We provide complete results of GroundUI-1K (Table 8), the edit distance of IDM-Multiple (Table 9),
more metrics in CriticBench (Table 10), and application-wise results of the UI grounding sample task
collected with AgentStudio (Table 11). Figure 7 analyzes the relationship between element size and
accuracy. It suggests that larger element size may lead to higher grounding accuracy and explains
why current models tend to perform better in mobile settings compared to web and desktop scenarios.
In all experiments, we utilize the 001 version of the Gemini models and the 20240620 version of
Claude 3.5 Sonnet. For online benchmark tasks, we use GPT-4o (0806), while for other results, we
use GPT-4o (0513). The results presented in the paper were obtained using greedy decoding, with the
temperature set to 0. For non-GUI tasks, we limit the maximum number of execution steps to 1. For
GUI tasks, we limit the maximum number of execution steps to 30. For non-GUI tasks, we limit the
maximum execution time to 30 seconds. For GUI tasks, we limit the maximum execution time to 60
seconds. If the model performs repeated actions, i.e., executes the same action consecutively three
times, the task is considered a failure.

Model Web Desktop Mobile Total
Open Models

SeeClick 64.3 44.3 73.7 61.1
CogAgent 25.3 15.7 35.7 25.5

CogVLM2-Llama3-chat-19B 2.5 2.7 5.3 3.4
MiniCPM-Llama3-V 2.5 0.0 0.3 2.7 0.9

Qwen-VL-Chat 0.0 0.0 0.0 0.0
PaliGemma-3B-mix-448 0.0 0.0 0.0 0.0

PaliGemma-3B-896 0.0 0.0 0.0 0.0
Proprietary Models

Gemini 1.5 Pro 31.2 24.3 51.3 35.2
Claude 3.5 Sonnet (0620) 13.0 14.0 26.3 17.3

GPT-4o (0513) 7.5 8.3 26.3 13.4
GPT-4 Turbo (0409) 5.3 11.0 23.0 12.3

Gemini 1.5 Flash 0.5 4.3 26.3 9.4
Gemini 1.0 Pro 0.5 0.3 5.0 1.8

Table 8: Complete accuracy on GroundUI-1K.

Model Mind2Web AITW VWA AgentStudio Total
Claude 3.5 Sonnet 2.0 2.1 2.9 1.6 2.3

GPT-4o (0513) 2.1 2.2 3.5 2.0 2.5
Gemini 1.5 Pro 6.0 4.4 7.0 3.8 5.5
Qwen-VL-Chat 5.1 15.4 5.8 6.3 8.4

Gemini 1.5 Flash 294.5 7.2 7.2 7.8 90.6

Table 9: Edit Distance on IDM-Multiple (↓). The edit distance is the number of operations (insertion,
deletion, and replacement) needed to convert the predicted action sequences to the ground truth.
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Figure 7: The distribution of element areas between successful and failed clicks in AgentStudio
sample task. Tasks with smaller elements tend to fail.
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Model Observation-Action Pairs Only Observations
Web Desktop Mobile Total Web Desktop Mobile Total

Accuracy
Gemini 1.5 Pro 73.5 82.0 62.0 71.4 65.0 86.0 59.0 66.3

Gemini 1.5 Flash 68.5 82.0 65.0 69.4 67.0 72.0 62.0 66.3
Claude 3.5 Sonnet 70.0 92.0 55.0 68.9 66.0 86.0 58.0 66.6

GPT-4o (0513) 68.5 90.0 58.0 68.6 63.5 84.0 57.0 64.6
Qwen-VL-Chat 52.0 38.0 48.0 48.9 54.5 58.0 52.0 54.3

F1 Score
Gemini 1.5 Pro 72.5 84.2 52.5 69.7 61.1 88.1 48.1 62.9

Gemini 1.5 Flash 65.6 85.2 57.8 67.3 64.1 75.0 52.5 63.1
GPT-4o (0513) 68.0 91.5 41.7 66.5 61.4 85.7 39.4 60.8

Claude 3.5 Sonnet 68.4 92.9 36.6 65.6 64.6 87.3 47.5 64.2
Qwen-VL-Chat 55.6 55.1 64.4 58.5 63.2 73.4 67.6 66.2

Precision
Gemini 1.5 Pro 75.3 88.9 70.0 76.7 68.8 89.7 65.5 72.5

Claude 3.5 Sonnet 72.2 100.0 61.9 75.9 67.4 96.0 63.3 71.4
Gemini 1.5 Flash 72.3 83.9 72.7 74.8 70.2 80.8 70.0 72.1
GPT-4o (0513) 69.1 93.1 68.2 73.6 65.2 92.3 66.7 70.6
Qwen-VL-Chat 51.7 48.7 49.0 50.2 53.1 59.2 51.0 53.4

Recall
Qwen-VL-Chat 60.0 63.3 94.0 70.0 78.0 96.7 100.0 87.2
Gemini 1.5 Pro 70.0 80.0 42.0 63.9 55.0 86.7 38.0 55.6

Gemini 1.5 Flash 60.0 86.7 48.0 61.1 59.0 70.0 42.0 56.1
GPT-4o (0513) 67.0 90.0 30.0 60.6 58.0 80.0 28.0 53.3

Claude 3.5 Sonnet 65.0 86.7 26.0 57.8 62.0 80.0 38.0 58.3

Table 10: Accuracy, F1 score, precision, and recall on CriticBench.

Model Windows Linux MacOS
OS Games PowerPoint Word OS Browser Calculator Music iMovie

SeeClick 42.3 47.6 24.0 9.1 60.7 9.1 69.0 53.8 35.7
Claude-3 Sonnet 3.8 4.8 24.0 9.1 7.1 4.5 0.0 30.8 0.0
GPT-4V (1106) 11.5 23.8 20.0 9.1 14.3 4.5 3.4 11.5 3.6
Gemini-1.0 Pro 7.7 9.5 8.0 4.5 10.7 0.0 0.0 3.8 0.0
Qwen-VL-Chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11: Application-wise results on AgentStudio-collected GroundUI sample task.

B DESIDERATA FOR GENERAL VIRTUAL AGENTS

In this section, we elaborate on the three essential pillars for building next-generation virtual agents
that can generalize and self-improve. The rationale behind AgentStudio is to provide benchmarks cov-
ering the desiderata for such agents, as well as useful environments and tools to pave the way for the
emergence of general virtual agents. Specifically, we need online environments with generic observa-
tion/action spaces and real-world interactions (Section 2), tools that facilitate agent benchmarking and
data annotation (Section 3), and benchmarks that both measure overall agent performance (Section 4)
and decompose these desiderata (Section 5).

General UI grounding in the wild. Though UI grounding is a long-standing research problem and
is considered a relatively simple task, it is still one of the major issues of current virtual agents. It
has been validated that an oracle grounding can drastically improve agent performance (Zheng et al.,
2024). However, most existing benchmarks focused on the grounding tasks of mobile phones (Burns
et al., 2022; Rawles et al., 2023). Though there are some recent datasets of diverse trajectories in web
and desktop environments (Deng et al., 2023; Lù et al., 2024; Kapoor et al., 2024), they have different
formats and accessibility, which are not readily applicable for evaluating the grounding abilities of
new models. For example, a recording in these datasets often consists of a high-level instruction
and the corresponding human trajectory. However, for the grounding action at each step, the UI
element may not directly relate to the instruction. Also, we note that there are a lot of ambiguous
or incorrect instructions within those grounding-specific datasets, which can result in inaccurate
evaluation. Therefore, to facilitate research on UI grounding in the wild, it is necessary to curate a

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

diverse and cross-platform benchmark with clear instructions, as well as a scalable data pipeline for
both finetuning and benchmarking purposes. Additionally, many current online environments often
overlook incorporating videos in the agent observation modality, where agents can fail to capture
real-world dynamic changes and solve tasks that require monitoring the screen.

Learning from Internet-scale actionless videos. Internet-scale data have contributed to remarkable
success in language and vision. The development of virtual agents can also benefit from the wealth
of instruction videos available on the web, similar to MineCLIP (Fan et al., 2022) and VPT (Baker
et al., 2022). Compared to recording human trajectories, collecting videos is also cheaper and more
scalable. However, one of the main challenges for current agents to benefit from video data is the lack
of action labels in videos. Unfortunately, there is currently no relevant computer agent benchmark
and infrastructure to guide research in learning to act from videos (i.e., inverse dynamics models).
Such models can add pseudo action labels to video recordings to unlock the knowledge within
Internet-scale videos, enabling virtual agents to generalize.

Open-ended learning with universal critic. It is not scalable and feasible to examine whether a task
is successful through task-specific, hand-written rules, because computer tasks are massively diverse
and open-domain. Though it is challenging for current models to master these tasks, it may be easier
for models to do success detection first (i.e., discriminating trajectory outcomes as a critic model).
A general critic model allows agents to bootstrap via reinforcement learning or tree search. It can
also facilitate agent self-correction if the model can provide natural language feedback. Compared
to binary scalar rewards widely used in previous web environments and reinforcement learning
environments, natural language feedback is considered more helpful for language agents to fix their
own mistakes (Shinn et al., 2023). This ability is particularly significant for software where human
demonstrations are limited, but there exist no benchmarks measuring it.

C DETAILS OF GROUNDUI

C.1 DATA SAMPLE

Figure 8 is an example of the data in GoundUI datasets. We deliberately curated a host of existing
datasets for virtual agents across different platforms from diverse datasets. ScreenSpot (Cheng et al.,
2024) is a dataset with 610 screenshots. Based on these screenshots, 1,272 instructions are collected,
with 502/334/436 for mobile/desktop/web environments, respectively. In addition to ScreenSpot, we
collect 9,268 single-step data from Mind2Web test sets, 3804 from OmniACT test sets (Kapoor et al.,
2024), 3,455 from MoTIF test sets (Burns et al., 2022), 1,272 from ScreenSpot benchmark, and 227
annotated with AgentStudio tools. There are 18,026 data entries in total, comprising 13,522 unique
screenshots. After deliberately examining existing datasets, the data without UI elements annotated
in bounding boxes are filtered out.

C.2 RECAPTIONING AMBIGUOUS AND INCORRECT INSTRUCTIONS

Many existing UI grounding datasets consist of language instructions automatically inferred from non-
readable internal meta information and did not go through rigorous cleaning. Some of the instructions
are ambiguous, incorrect, or N/A, and not human-understandable. This makes the evaluation results
of agent grounding on these datasets inaccurate. Therefore, we recaption the instructions with the help
of GPT-4o. Figure 9, Figure 10, Figure 11, and Figure 12 demonstrate the examples of recaptioning
in mobile, desktop, and web environments. The recaptioning process on GroundUI-1K costs 1M
input tokens and 9K output tokens in total.
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Instruction

Screenshot

Click on "Click to add title".Click on "Search". Click on the blue 
plus (+) button.

Bounding 
Box

[487,217,1731,377][1040,539,1159,587] [972,2036,1125,2196]

Resolution [1920,1080][1280,720] [1170,2532]

Source agent_studiomind2web_test_domain screenspot

Platform desktopweb mobile

Figure 8: Data samples in GroundUI-1K/18K.

Raw 
Instruction

Click on the magnifying 
glass icon to search.

Screenshot

the item at the top

Recaptioned 
Instruction

the icon at the 
bottom left corner

Click on "Category"

the icon at the top

Click on the 
'Share' icon.

Figure 9: Examples of ambiguous instructions on mobile platforms sampled from MoTIF (Burns
et al., 2022). The recaptioned instructions on GroundUI-1K are shown under the raw instructions
from the original dataset.
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Raw 
Instruction

Click on "23" to view events for Saturday, September 23, 2023.

Screenshot

09/30

Recaptioned 
Instruction

Figure 10: Example of incorrect instructions on desktop platforms sampled from OmniACT (Kapoor
et al., 2024). The recaptioned instructions on GroundUI-1K are shown under the raw instructions
from the original dataset.

Raw 
Instruction

Click on "Music Hits" to explore songs you know and love.

Screenshot

remind_music_1

Recaptioned 
Instruction

Figure 11: Example of ambiguous instructions on desktop platforms sampled from OmniACT
(Kapoor et al., 2024). The recaptioned instructions on GroundUI-1K are shown under the raw
instructions from the original dataset.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Raw 
Instruction

Click on 'Add to cart'.

Screenshot

NA

Recaptioned 
Instruction

Figure 12: Example of incorrect instructions on web sampled from OmniACT (Deng et al., 2023).
The recaptioned instructions on GroundUI-1K are shown under the raw instructions from the original
dataset.
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C.3 PROMPTS FOR GROUNDUI

The prompts for GroundUI experiments are shown below. We match the model output with a regular
expression. We use the response from Claude 3.5 Sonnet for demonstration.

user

User
<datasets/gui_grounding/images/web_amc_screen1.png>

Please output the coordinate for the next action based on the instruction and screenshot. Your answer
should be of the following format: ‘(X, Y)’ (without quotes) where X, Y is the coordinates ranging from 0
to 1.
Instruction: Click on “Discounts”.
Answer:

assistant

Assistant
Based on the screenshot and the instruction to click on “Discounts”, the approximate coordinates would
be:
(0.85, 0.07)
This location corresponds to where the “Discounts” link appears in the top menu bar of the AMC website,
slightly right of center near the top of the image.

system

Evaluation
AgentStudio will parse the response into (0.85, 0.07). This coordinate will be multiplied by the screenshot
resolution to (1224.0, 63.0), which is outside the ground truth bounding box (1064, 99, 1148, 140) (left,
top, right, bottom). Therefore, this result is incorrect.
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D DETAILS OF IDMBENCH

D.1 DATA SAMPLE

Figure 13, Figure 14, and Figure 15 are three examples of IDM-Single dataset on different platforms.
Figure 16 and Figure 17 are two examples for IDM-Multiple dataset.

Operation

Observations

press home

Bounding 
Box

null

Metadata {"action_object_raw": null, "from": null, "repr": 
"press home", "text": null, "to": null, "value": null}

Instruction Search for "bose quietcomfort 35" on walmart.com, 
select the first entry, and add it to the cart.

Source aitw_webshopping

Platform mobile

Action 
Space

["scroll up", "status task complete", "click", 
"press enter", "scroll right", "scroll left", 

"type", "scroll down", "press back", "press home"]

Observation Next Observation

Figure 13: Data sample of pressing home button on mobile platform in IDM-Single dataset.
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Operation

Observations

click

Bounding 
Box

{"x": 0.903, "y": 0.915}

Metadata {"action_object_raw": null, "from": null, "repr": 
"click PLAY", "text": null, "to": null, "value": null}

Instruction Open Youtube and go to "Your channel"

Source aitw_googleapps

Platform mobile

Action 
Space

["scroll up", "status task complete", "click", 
"press enter", "scroll right", "scroll left", 

"type", "scroll down", "press back", "press home"]

Observation Next Observation

Figure 14: Data sample of touching (clicking) on mobile platform in IDM-Single dataset.
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Operation

Observations

TYPE

Bounding 
Box

{"height": 54, "width": 599, "x": 340.5, "y": 278}

Metadata {"action_object_raw": null, "from": null, "repr": "[textbox] City, ZIP, School, Address, 
Neighborhood -> TYPE: Yorkville, IL", "text": null, "to": null, "value": "Yorkville, IL"}

Instruction Search for single family homes in Yorkville, IL with 2 bedrooms 
and 1 bathroom for a budget between $100,000 and $200,000.

Source mind2web_data_test_domain

Platform web

Action 
Space ["CLICK", "SELECT", "TYPE"]

Observation Next Observation

Figure 15: Data sample on web in IDM-Single dataset.

Instruction

Trajectory

What's the latest video from GameSpot Reviews?

Success False

Source aitw_general

Platform mobile

Action 
Space

["scroll up", "status task complete", "click", "press enter", "scroll right", 
"scroll left", "type", "scroll down", "press back", "press home"]

click
[0.703,
0.8]

click
[0.592,
0.054]

type
[gamespot
reviews]

Figure 16: Data sample on mobile platform in IDM-Multiple dataset.
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Instruction

Trajectory

apply for a delivery driving job at Grand Rapids, MI, USA. Name: Nelson Freeman, Email: 
Nelsonfree@gmail.com, phone: 2034556656. Select \"yes\" for all options

Success False

Source mind2web_data_test_domain

Platform web

Action 
Space ["CLICK", "SELECT", "TYPE"]

CLICK
[0,0]

CLICK [32,108]

CLICK 
[64,660]

Figure 17: Data sample on web in IDM-Multiple dataset.
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D.2 PROMPTS FOR IDM-SINGLE

The prompt for IDM-Single:

user

User
<datasets/trajectory_lite/images/aitw_images/googleapps/
11660885229547098410_3.png>

<datasets/trajectory_lite/images/aitw_images/googleapps/
11660885229547098410_4.png>

Analyze the two sequential images provided. These images represent observations before and after
an action was taken. Your task is to identify which type of action was executed between these two
observations.
Available actions:
A. scroll up
B. status task complete
C. click
D. press enter
E. scroll right
F. scroll left
G. type
H. scroll down
I. press back
J. press home
After your analysis, conclude your response with the answer in this format:
Answer: X
Where X is the letter corresponding to the action you believe was taken, chosen from the options provided
above.
For example, if the options were:
A: Type
B: Click
C: Scroll
And you determined the action was “Click”, your response would end with:
Answer: B

assistant

Assistant
Analyzing the two images, we can observe the following changes:
1. In the first image, we see a partial list of settings including “Bluetooth”, “Apps & notifications”,
“Battery”, and “Display”.
2. In the second image, the list has moved upwards, revealing additional settings below “Display”, namely
“Sound” and “Storage”.
3. The top items from the first image (“Bluetooth” and “Apps & notifications”) are no longer visible in the
second image.
4. The battery icon and percentage (100%) remain constant between the two images.
5. The time (2:12) and status bar icons at the top of the screen remain the same.
These observations indicate that the screen content has moved upwards, revealing more options at the
bottom while hiding options that were previously at the top.
Given these changes, the action that was most likely taken between these two observations is scrolling
down on the settings menu.
Answer: H

system

Evaluation
AgentStudio will parse the response into H, which is the same as the ground truth action. Therefore, the
score is 1.0.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.3 PROMPTS FOR IDM-MULTIPLE

For IDM-Multiple, we prompt with up to six consecutive observations from the sampled trajectories.

user

User
<datasets/trajectory_lite/images/aitw_images/install/
803558926902382084_0.png>

<datasets/trajectory_lite/images/aitw_images/install/
803558926902382084_1.png>

<datasets/trajectory_lite/images/aitw_images/install/
803558926902382084_2.png>

<datasets/trajectory_lite/images/aitw_images/install/
803558926902382084_3.png>

<datasets/trajectory_lite/images/aitw_images/install/
803558926902382084_4.png>

<datasets/trajectory_lite/images/aitw_images/install/
803558926902382084_5.png>

Analyze the sequence of images provided. These images are snapshots taken from a video screen recording.
Your task is to identify the types of actions executed in order throughout this recording.
Available actions:
A. scroll up
B. status task complete
C. click
D. press enter
E. scroll right
F. scroll left
G. type
H. scroll down
I. press back
J. press home
After your analysis, conclude your response with the answer in this format:
Answer:
X
Y
Z
...
Where X, Y, Z, etc. are letters corresponding to the actions you believe were taken, chosen from the
options provided above.
For example, if the options were:
A: Type
B: Click
C: Scroll
And you determined the actions were “Type”, then “Scroll”, your response would end with:
Answer:
A
C
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assistant

Assistant
Based on analyzing the sequence of images, here’s my interpretation of the actions taken:
1. The first image shows the home screen.
2. The second image shows a search or app drawer opened.
3. The third image displays the Google Play Store page for the Contacts app.
4. The fourth image shows a search results page for “contacts” within an app store or system.
5. The fifth image displays search results for apps and games.
6. The last image shows search results for “YouTube Kids”.
Given this sequence, here’s my assessment of the actions taken:
1. The user clicked to open the app drawer or search (C)
2. They typed “contacts” to search (G)
3. They scrolled down to view more results (H)
4. They clicked on the Contacts app result (C)
5. They pressed back to return to the search (I)
6. They typed to modify the search query, likely changing it to “YouTube Kids” (G)
Answer:
C
G
H
C
I
G

system

Evaluation
AgentStudio will parse the response into (C, G, H, C, I, G). The correct action sequence is (C, C, C, C, G).
Each letter represents an available action in the action space. Therefore, the model generates an incorrect
action sequence. The predicted action sequence requires at least three times of modification (delete, insert,
or replace) to become the correct one. Therefore, the score is 0.0, and the edit distance is 3.
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E DETAILS OF CRITICBENCH

Figure 18 and Figure 19 are two examples from CriticBench.

Instruction

Trajectory

Find symptoms of sleep apnea

Success True

Source mind2web_data_test_domain

Platform web

Action 
Space ["CLICK", "SELECT", "TYPE"]

CLICK 
[1230,19]

TYPE [sleep apnea symptoms]

CLICK 
[770,75]

Figure 18: Data sample on web in CriticBench dataset.

Instruction

Trajectory

What's the news in Suriname?

Success True

Source aitw_general

Platform mobile

Action 
Space

["scroll up", "status task complete", "click", "press enter", "scroll right", 
"scroll left", "type", "scroll down", "press back", "press home"]

press home click [0.355,0.898] type [the news in 
Suriname]

click [0.2,0.133]

Figure 19: Data sample on mobile platform in CriticBench dataset.
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E.1 PROMPTS FOR CRITICBENCH WITH OBSERVATION-ACTION PAIRS

user

User
<datasets/trajectory_lite/images/aitw_images/general/
15667803399207554024_0.png>

press home

<datasets/trajectory_lite/images/aitw_images/general/
15667803399207554024_1.png>

click NAV BAR CIRCLE

<datasets/trajectory_lite/images/aitw_images/general/
15667803399207554024_2.png>

type the news in Suriname

<datasets/trajectory_lite/images/aitw_images/general/
15667803399207554024_3.png>

click MAGNIFYING GLASS
Analyze the sequence of images provided. These images are snapshots taken from a video screen
recording. Your task is to evaluate whether the given instruction has been successfully completed based
on the provided trajectory. This trajectory is depicted through a series of actions and the corresponding
observations before and after each action.
Instruction: What’s the news in Suriname?
Action space: scroll up, status task complete, click, press enter, scroll right, scroll left, type, scroll down,
press back, press home
Carefully examine the sequence of actions and their results. Determine if the final state successfully fulfills
the given instruction.
Conclude your analysis with one of these two responses:
If the trajectory successfully completes the instruction:
Answer: True
If the trajectory fails to complete the instruction:
Answer: False

assistant

Assistant
Let’s analyze the sequence of images and actions:
1. The first image shows the Google Drive app interface.
2. The second image displays the Android home screen.
3. The third image shows the Google search bar with recent searches and trending topics.
4. The fourth image shows the Google search bar with “the news in Suriname” typed in, along with search
suggestions related to Suriname news.
Based on this sequence, we can see that:
1. The user navigated from Google Drive to the home screen.
2. They then accessed the Google search bar.
3. They typed “the news in Suriname” into the search bar.
However, the sequence ends before actually searching for or displaying any news from Suriname. The user
has only typed the query, but hasn’t pressed enter or clicked on any search results to view the actual news.
Therefore, while the user has taken steps towards finding news in Suriname, they haven’t actually accessed
or viewed any news content yet.
Conclusion:
Answer: False
The trajectory does not fully complete the instruction of finding out what the news in Suriname is. It only
reaches the point of typing the search query, without actually retrieving or displaying any news content.

system

Evaluation
AgentStudio will parse the response to get the answer “False”. However, the given trajectory successfully
completes the instruction. Therefore, the score is 0.0.
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E.2 PROMPTS FOR CRITICBENCH WITH OBSERVATIONS ONLY

user

User
<datasets/trajectory_lite/images/aitw_images/general/
5055803312245834626_8.png>

<datasets/trajectory_lite/images/aitw_images/general/
5055803312245834626_9.png>

<datasets/trajectory_lite/images/aitw_images/general/
5055803312245834626_10.png>

<datasets/trajectory_lite/images/aitw_images/general/
5055803312245834626_11.png>

<datasets/trajectory_lite/images/aitw_images/general/
5055803312245834626_12.png>

Analyze the sequence of images provided. These images are snapshots taken from a video screen
recording. Your task is to evaluate whether the given instruction has been successfully completed based on
the provided images.
Instruction: Check the settings for the Amazon Alexa app
Carefully examine the sequence of images. Determine if the final state successfully fulfills the given
instruction.
Conclude your analysis with one of these two responses:
If the trajectory successfully completes the instruction:
Answer: True
If the trajectory fails to complete the instruction:
Answer: False

assistant

Assistant
After carefully examining the sequence of images provided, I can conclude:
Answer: False
Reasoning:
1. The images show a smartphone home screen with a pink gradient background.
2. The date, time, and weather are displayed at the top.
3. There are several app icons visible at the bottom of the screen, including Google Play, Messages, Clock,
Chrome, and Gmail.
4. A Google search bar is present at the bottom.
5. In some images, there’s a “My apps” menu partially visible.
However, throughout the sequence, there is no indication that the Amazon Alexa app is opened or that its
settings are being checked. The instruction was to “Check the settings for the Amazon Alexa app,” but the
images do not show any interaction with the Alexa app or its settings. Therefore, the given instruction has
not been successfully completed based on the provided images.

system

Evaluation
AgentStudio will parse the response to get the answer “False”. However, the given trajectory successfully
completes the instruction. Therefore, the score is 0.0.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

F DETAILS OF AGENTSTUDIO BENCHMARK TASKS

F.1 SYSTEM PROMPT

system

System
You are a world-class programmer who can complete any instruction by executing Python code. Now
you are operating a real computer-based environment, and you may be given a screenshot of the current
computer screen. The only way to interact with the environment is to write Python code.
You are given a task instruction in the form of a string and you need to write Python code to complete it.
You are using Jupyter Notebook to execute the code and shell commands, so generate code/shell commands
step by step with multiple blocks. You can use Jupyter internal operators “%” and “!”. The generated
code/shell commands should be wrapped between “‘‘‘python\n” and “\n‘‘‘”. Your response should
include and only include one code block. You will get the execution result of the code.
You can interact with the Notebook multiple rounds. Thus, if you are not sure about the code, you can
submit the code to see the result and modify the code if needed. When you think the instruction is
completed and the code is correct, end the code block with ‘exit()‘.
For simplicity, you can use the following code snippets:
You are probably given a screenshot of the current computer screen. You can only use the Jupyter Notebook
to interact with the environment. We have provided the initial code to access the mouse and keyboard:

from agent_studio.envs.desktop_env import Mouse, Keyboard
mouse = Mouse()
keyboard = Keyboard()

You can use the ‘mouse’ and ‘keyboard’ objects to interact with the environment.
‘mouse.click(x:int,y:int,button:str,clicks:int,interval:float)’ can be
used to click the ”button” at the specified position “click” times with a specific interval. You can choose
“button” from “left”, “right”, and middle. ‘keyboard.type(text:str,interval:float)’ can
be used to type the specified text with a specific interval. ‘keyboard.hotkey(keys:list[str])’
can be used to press hotkeys.
If your task needs to access the Google service, you can use the ‘credentials.json’ file in the ‘./a-
gent studio/config’ directory. Also, there are six token files, ‘docs token.json’, ‘drive token.json’,
‘gmail token.json’, ‘sheets token.json’, ‘slides token.json’, ‘calendar token.json’ and ‘forms token.json’,
in the ‘./agent studio/config’ directory, and you can use any of them to access the corresponding Google
service. E.g. you can use the following code to access the Google Drive API:

import json
from google.oauth2 import credentials
from googleapiclient.discovery import build

token_path="agent_studio/config/docs_token.json"
with open(token_path, "r") as f:

token = json.loads(f.read())
creds = credentials.Credentials.from_authorized_user_info(

token, ["https://www.googleapis.com/auth/drive",]
)
service = build("drive", "v3", credentials=creds)
service.files().get_media(fileId=xxxxxxx)

Also, you should assume the timezone is UTC+0 if there’s no further specification.

F.2 PROMPTS FOR TASKS WITH TEXT OBSERVATIONS ONLY

system

System
<SYSTEM PROMPT in Appendix F.1>

user

User
The task instruction: <TASK SPECIFIC INSTRUCTION>
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assistant

Assistant
Action: <PYTHON CODE 1>

user

User
Observation: <PYTHON EXECUTION RESULT 1>

assistant

Assistant
Action: <PYTHON CODE 2>

user

User
Observation: <PYTHON EXECUTION RESULT 2>

F.3 PROMPTS FOR TASKS WITH TEXT AND VISUAL OBSERVATIONS

system

System
<SYSTEM PROMPT in Appendix F.1>

user

User
The task instruction: <TASK SPECIFIC INSTRUCTION>

assistant

Assistant
Action: <PYTHON CODE 1>

user

User
Observation: <PYTHON EXECUTION RESULT 1>

assistant

Assistant
Action: <PYTHON CODE 2>

user

User
Observation: (<SCREENSHOT>, <PYTHON EXECUTION RESULT 2>)
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F.4 EXAMPLE TASK CONFIGURATION

Key Value
Task ID 08aced46-45a2-48d7-993b-ed3fb5b32302

Instruction Give the slide 2 a right aligned title, ”Note”.
Visual True

Max Steps 30
Max Time 60.0

Evaluation Procedure Compare between ref.pptx and target.pptx
Reset Procedure 1. Create folder structure, 2. Copy file, 3. Open PPTX file

Cleanup Procedure 1. Delete folder structure, 2.Kill LibreOffice process

Table 12: Task configuration with simplified evaluation/reset/cleanup procedures.

F.5 EXAMPLE FAILED TRAJECTORY

Task ID: 0a2e43bf-b26c-4631-a966-af9dfa12c9e5

Instruction: Work out the monthly total sales in a new row called “Total” and then create a line chart
to show the results (x-axis be Months).

Model: GPT-4o (0806)

user

User
The task instruction: Work out the monthly total sales in a new row called “Total” and then create a line
chart to show the results (x-axis be Months).

assistant

Assistant
To complete this task, we need to perform the following steps:
1. Calculate the total sales for each month and add a new row called “Total”.
2. Create a line chart to display the monthly total sales.
Let’s proceed with the code to achieve this.

‘‘‘python
import pandas as pd
import matplotlib.pyplot as plt

# Load the Excel file
file_path = ’SalesRep.xlsx’
df = pd.read_excel(file_path, sheet_name=’Sheet1’)

# Calculate the total sales for each month
df.loc[’Total’] = df.sum(numeric_only=True)

# Plot the line chart
plt.figure(figsize=(10, 6))
plt.plot(df.columns[1:], df.loc[’Total’][1:], marker=’o’)
plt.title(’Monthly Total Sales’)
plt.xlabel(’Months’)
plt.ylabel(’Total Sales’)
plt.grid(True)
plt.show()
‘‘‘
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user

User
Observation:
Screenshot

Jupyter output

"error": "FileNotFoundError: [Errno 2] No such file or directory:
’SalesRep.xlsx’"
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assistant

Assistant
To calculate the monthly total sales and create a line chart, follow these steps:
1. Close the “Tip of the Day” dialog.
2. Add a new row for the total sales.
3. Use a formula to sum each month’s sales.
4. Create a line chart.
Let’s proceed with the steps using Python code to automate this process.

‘‘‘python
from agent_studio.envs.desktop_env import Mouse, Keyboard
import time

mouse = Mouse()
keyboard = Keyboard()

# Close the "Tip of the Day" dialog
mouse.click(x=600, y=400, button=’left’, clicks=1, interval=0.1)
time.sleep(1)

# Click on the cell to enter the total formula for January
mouse.click(x=200, y=300, button=’left’, clicks=1, interval=0.1)
keyboard.type(’=SUM(B2:B11)’, interval=0.1)
keyboard.hotkey([’Enter’])
time.sleep(1)

# Repeat for the other months
columns = [’C’, ’D’, ’E’, ’F’, ’G’, ’H’]
for i, col in enumerate(columns, start=3):

mouse.click(
x=200 + (i-2)*100,
y=300,
button=’left’,
clicks=1,
interval=0.1

)
keyboard.type(f’=SUM({col}2:{col}11)’, interval=0.1)
keyboard.hotkey([’Enter’])
time.sleep(1)

# Create a line chart
# Click on the Insert menu
mouse.click(x=50, y=50, button=’left’, clicks=1, interval=0.1)
time.sleep(1)

# Click on Chart
mouse.click(x=100, y=200, button=’left’, clicks=1, interval=0.1)
time.sleep(1)

# Follow the chart wizard steps to create a line chart
# This part may require manual adjustments depending on the interface

exit()
‘‘‘
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user

User
Observation:
Screenshot

Jupyter output:

{"error": "Jupyter timeout: "}

system

Exit because of: Agent outputs ‘exit()’

Evaluator
score: 0.0
feedback: “rule sheet data failed, sheet data matching failed”
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F.6 EXAMPLE SUCCESSFUL TRAJECTORY

Task ID: 3dcc6db1-7ca5-412d-b519-142724d41ef2

Instruction:
Open VSCode with the file “/home/ubuntu/agent studio/vscode workspace/README.md”.

Model: GPT-4o (0806)

user

User
The task instruction:
Open VSCode with the file “/home/ubuntu/agent studio/vscode workspace/README.md”.
Screenshot:

assistant

Assistant
To open VSCode with the specified file, I’ll execute the command to launch VSCode from the terminal.

‘‘‘python
!code /home/ubuntu/agent_studio/vscode_workspace/README.md
‘‘‘
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user

User
Screenshot:

Jupyter output

No output

assistant

Assistant
It looks like VSCode is open with the README.md file. If you need further assistance or want to perform
another action, let me know!

system

Exit because of: No valid action

Evaluator
score: 1.0
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F.7 ADDITIONAL EXAMPLES

Task ID 581aab2a-57d5-4384-841f-2f7655491859 1e2f5ea6-c448-48e9-a2d1-be6f5639b4b2
Observation Text Text & Screenshots
Instruction Delete the file ‘temporary.docx’ in the

‘/home/ubuntu/agent studio/tmp/docs/’ di-
rectory.

Delete the file ‘temporary.docx’ in the
‘/home/ubuntu/agent studio/tmp/docs/’ di-
rectory.

Response 1 To delete the file ‘temporary.docx’ in the
specified directory, I’ll execute the neces-
sary shell command.
!rm
/home/ubuntu/agent studio/tmp/
docs/temporary.docx

import os
# Define the file path
file path =
’/home/ubuntu/agent studio/
tmp/docs/temporary.docx’
# Check if the file exists
if os.path.exists(file path):

# Delete the file
os.remove(file path)
print(f"File ’file path’
has been deleted.")

else:
print(f"File ’file path’
does not exist.")

Action 1 !rm
/home/ubuntu/agent studio/tmp/
docs/temporary.docx

import os
# Define the file path
file path =
’/home/ubuntu/agent studio/
tmp/docs/temporary.docx’
# Check if the file exists
if os.path.exists(file path):

# Delete the file
os.remove(file path)
print(f"File ’file path’
has been deleted.")

else:
print(f"File ’file path’
does not exist.")

Response 2 It seems you have provided a screenshot of
a desktop environment. If you need assis-
tance with a task related to this environment,
please let me know how I can help!

The file ‘temporary.docx’ has been suc-
cessfully deleted from the ‘/home/ubuntu/a-
gent studio/tmp/docs/’ directory. If you
have any further tasks or need additional
assistance, feel free to ask!

Action 2 None None

Table 13: Additional comparisons between GUI and non-GUI online benchmark tasks.
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Instruction Update the content of ‘agenda.txt’ in
‘/home/ubuntu/agent studio/tmp/meetings/’ to ‘Updated Meeting Agenda’.

Non-visual from agent studio.envs.desktop env import Mouse, Keyboard
mouse = Mouse()
keyboard = Keyboard()
with open(

’/home/ubuntu/agent studio/tmp/meetings/agenda.txt’,
’w’

) as f:
f.write(’Updated Meeting Agenda’)
exit()

Visual from agent studio.envs.desktop env import Mouse, Keyboard
mouse = Mouse()
keyboard = Keyboard()
keyboard.hotkey([’super’])
keyboard.type(’
gedit /home/ubuntu/agent studio/tmp/meetings/
agenda.txt’

)
keyboard.hotkey([’enter’])
mouse.click(900, 500, ’left’, 1, 0.1)
keyboard.hotkey([’ctrl’, ’a’])
keyboard.type(’Updated Meeting Agenda’)
mouse.click(20, 20, ’left’, 1, 0.1)
mouse.click(15, 20, ’left’, 1, 0.1)
exit()

Table 14: Actions of Gemini 1.5 Pro in visual and non-visual tasks. When providing visual informa-
tion (screenshot), the Gemini model is more likely to be distracted by the visual information. It will
try to use keyboard and mouse operations to complete the task, no matter how easy the problem is
solved with the API.
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G DETAILS OF AGENTSTUDIO TOOLS

G.1 GUI ANNOTATION

To use the tool for GUI element annotation, first, click the “Capture” button to take a screenshot,
which will appear on the left side of the interface. After the screenshot is captured, input the
annotation instruction in the text box labeled “Enter instruction here.” Then, draw a bounding box
around the relevant area in the screenshot to match the instruction. Once the instruction and bounding
box are set, click “Save” to store the annotation. If users need to start over, click “Reset” to clear the
screenshot and instructions, then repeat the process as needed for more annotations.

(a) (b)

Figure 20: (a) Step 1: Capture a screenshot. (b) Step 2: Input instruction and draw the bounding box.

G.2 ACTION RECORDING

The trajectory recorder is a Command Line Interface (CLI) tool designed to capture mouse actions,
keyboard inputs, and screen recordings. As shown in Table 15, to use the tool, begin by selecting
a path where the recording will be saved and then input an instruction describing the task users
intend to complete. The recorder will initiate a 5-second countdown, after which users will hear a
chime signaling the start of the recording. Once users have completed the task, stop the recording by
pressing the ctrl+shift+o key combination.

$ as-traj-recorder
Please enter the folder path where you want to save the record
(Press Enter to use the default path: ˜/home/ubuntu):

Please input the instruction:
> Please help me open the autosave feature of VS Code and delay
AutoSave operations for 500 milliseconds in the VS Code setting.

recording will start in 5 seconds
You will hear a sound when recording starts
5
4
3
2
1
press ctrl+shift+o to stop recording

Table 15: Illustration of the trajectory recorder in use.
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Under review as a conference paper at ICLR 2025

G.3 VIDEO REFINEMENT

Figure 21 illustrates the user interface of our trajectory editor. Users can open a recording saved with
the tool in Appendix G.2 and view the keyboard or mouse operations in the right list view. Here,
users can leverage shortcuts to instantly modify the recorded operations, e.g., deleting an operation,
aggregating several operations, and changing operation information.

Figure 21: The interface for video refinement.

G.4 ONLINE BENCHMARK VISUALIZATION & HUMAN VALIDATION

Figure 22 shows the GUI of our online benchmark, where users can select and view task configurations,
execute the task, view the action execution results, and get feedback. Users can leverage this interface
to evaluate a task and calculate human completion time.

Figure 22: Online benchmark in GUI mode.
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