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Abstract001

With the help of in-context learning (ICL),002
large language models (LLMs) have achieved003
impressive performance across various tasks.004
However, the function of descriptive instruc-005
tions during ICL remains under-explored. In006
this work, we propose an ensemble prompt007
framework to describe the selection criteria008
of multiple in-context examples, and prelim-009
inary experiments on machine translation (MT)010
across six translation directions confirm that011
this framework boosts ICL performance. But012
to our surprise, LLMs might not care what the013
descriptions actually say, and the performance014
gain is primarily caused by the ensemble for-015
mat, since it could lead to improvement even016
with random descriptive nouns. We further ap-017
ply this new ensemble framework on a range of018
commonsense, math, logical reasoning and hal-019
lucination tasks with three LLMs and achieve020
promising results, suggesting again that design-021
ing a proper prompt format would be much022
more effective and efficient than paying effort023
into specific descriptions. Our code will be024
publicly available once this paper is published.025

1 Introduction026

In-context learning (ICL) boosts the performance027

of large language models (LLMs) across numerous028

natural language processing (NLP) tasks, where029

LLMs are presented with in-context examples con-030

taining input and ground truth output (Brown et al.,031

2020; Dong et al., 2023). Many works have verified032

the vital role of in-context examples in ICL (Wang033

et al., 2023; Wei et al., 2023). However, Min et al.034

(2022) find that ground truth labels might not be035

the key to ICL performance on classification tasks.036

The selection of in-context examples has been037

proven significant to the performance of ICL (Ru-038

bin et al., 2022) and there have been various works039

on in-context example selection (Agrawal et al.,040

2023; Li et al., 2023; Ye et al., 2023). Besides di-041

verse approaches of selecting examples, no existing042

Figure 1: Template and Alpaca’s example of Ensemble.

work has tried to explicitly tell LLMs in what way 043

those specific examples are selected. We hypothe- 044

size that if LLMs are prompted with instructions 045

describing the properties of selected in-context ex- 046

amples, they might learn better from these exam- 047

ples, since instruction following is one of LLMs’ 048

most important qualities nowadays (Ouyang et al., 049

2022; Peng et al., 2023; Zhang et al., 2024). 050

Recently, Tang et al. (2024) prompt LLMs with 051

examples selected based on both word-level and 052

syntax-level criteria for machine translation (MT) 053

for better ICL performance. This inspires us to tell 054

LLMs where different in-context examples come 055

from when they are selected by multiple methods. 056

In our experiments on MT, we first select in- 057

context examples based on lexical and syntactic 058

similarity for each test input separately. Then we 059

combine both to construct the complete set of exam- 060

ples, with half word-level examples and half syntax- 061

level examples. Further, we devise a novel ensem- 062

ble prompt framework (as shown in the left part 063

"Prompt Template" of Figure 1), adding example- 064

level instructions to describe that the following 065

examples are with similar words or similar syntax. 066

Experimental results on MT demonstrate that 067

adding such ensemble prompt framework does 068

improve LLMs’ performance over conventional 069

prompts. Meanwhile, we find that when the 070

example-level descriptions do not correspond to 071
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the source of in-context examples or are completely072

nonsense, LLMs still benefit from the prompt.073

These surprising results indicate that in fact LLMs074

might not care what the descriptions say and are075

more sensitive to the prompt format. In other076

words, a proper format can be much more effective077

than well-designed descriptions in ICL.078

To further verify the superiority of the ensemble079

framework, we present empirical evaluations on080

commonsense, math, logical reasoning and halluci-081

nation benchmarks (including nine datasets in total)082

across three small-scale LLMs (Alpaca, Llama3083

and Mistral) and one large-scale LLM (GPT-3.5).084

The novel prompt framework is able to achieve085

promising results even with the descriptive nouns086

in the prompt being random nouns, further suggest-087

ing that a proper prompt format would be much088

more effective and efficient compared with labori-089

ous design of detailed and specific descriptions.090

There are a few studies very related to our091

work. Min et al. (2022) find that the labels of in-092

context examples do not need to be correct for093

classification tasks. Wei et al. (2023) find that094

larger language models successfully learn from in-095

context examples even when the labels are flipped096

or semantically-unrelated. Our work is different097

from the above in that we focus on the meaning of098

descriptions rather than labels in ICL and our find-099

ing is that the format of prompts is more important100

than carefully designed descriptions.101

Our contributions can be summarized as follows:102

• For the first time, we specifically analyze the103

effect of prompt descriptions on ICL perfor-104

mance and find that LLMs might not care105

what users actually say in descriptions, while106

they are more sensitive to the prompt format.107

• We present a simple yet effective prompt108

framework that is proven feasible on MT109

through comprehensive experiments across110

six translation directions. Promising experi-111

mental results on three LLMs further verify112

the superiority of the novel framework on a113

range of commonsense, math, logical reason-114

ing and hallucination tasks.115

2 Prompting LLMs for MT116

Primarily, we focus on MT, a typical generation117

task. Recently, various approaches of selecting118

in-context examples have been proposed for MT119

(Agrawal et al., 2023; Kumar et al., 2023; Tang120

et al., 2024). However, no existing work has tried 121

to make LLMs aware of in what way those specific 122

in-context examples are selected. 123

We assume that LLMs would perform better 124

when they are told the reasons for selecting those 125

examples. Tang et al. (2024) select examples based 126

on a combination of word-level and syntax-level 127

criteria, which inspires us to present an ensemble 128

prompt framework to make LLMs clearly know the 129

reasons behind example selection. In addition, to 130

have a comprehensive idea of whether LLMs really 131

know what is said in the descriptions, we design 132

some prompt variants that are less meaningful or 133

completely nonsense. 134

2.1 In-context Example Selection for MT 135

For word-level examples, we simply select them 136

using BM25 (Bassani, 2023). For syntax-level ex- 137

amples, we use the top-k polynomial algorithm 138

proposed by Tang et al. (2024) to convert depen- 139

dency trees into polynomials and compute syntactic 140

similarity based on the Manhattan distances (Craw, 141

2017) between polynomial terms. For brevity, we 142

denote the syntax-level algorithm by "Polynomial". 143

To combine word-level and syntax-level exam- 144

ples, we simply concatenate them. For example, 145

the first and the remaining half of examples are 146

selected by BM25 and Polynomial respectively. 147

2.2 A New Ensemble Prompt Framework 148

To maintain consistency, all our MT experiments 149

use four in-context examples. 150

First of all, we use the most regular prompt with- 151

out any example-level descriptions as baseline (re- 152

ferred to as Vanilla), which is shown in Figure 2. 153

Figure 2: Template and Alpaca’s example of Vanilla.

In the template, "Task-level Instruction" instructs 154

the model to do the current task (MT here). "Exam- 155

ple Ai" and "Example Bi" denote the i-th example 156

from selection approach A (e.g., BM25) and B 157

(e.g., Polynomial) respectively, all containing both 158

source language inputs and target language trans- 159

lations. "Test Input" refers to the source language 160
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input of the test sample, which requires the LLM161

to translate it into the target language.162

Then, we add example-level descriptions for ex-163

amples from different selection approaches and ex-164

plicitly instruct the LLM to translate the test input.165

This prompt framework is referred to as Ensemble166

and is shown in Figure 1 as presented in Section167

1. "Noun A" and "Noun B" describe the examples168

from selection A and B respectively. For exam-169

ple, the two nouns can be "words" and "syntax" to170

properly describe examples selected by BM25 and171

Polynomial respectively. In this way, we can con-172

veniently control the example-level descriptions to173

tell the LLM why those examples are used.174

2.3 Experimental Setup175

Language ISO Code Dataset #Pairs (M)

German DE Europarl 1.8
French FR Europarl 1.9
Russian RU ParaCrawl 5.4

Table 1: Data statistics.

2.3.1 Datasets176

We perform evaluation on the devtest set of177

FLORES-101 (Goyal et al., 2022), which contains178

1012 sentences with translations in 101 languages.179

We experiment between English and three common180

languages: German, French and Russian. We use181

Europarl (Koehn, 2005) for German and French182

and ParaCrawl (Bañón et al., 2020) for Russian as183

example database, from which we select in-context184

examples. Detailed statistics are in Table 1.185

2.3.2 Evaluation Metrics186

We report COMET (Rei et al., 2020) scores from187

wmt20-comet-da 1, which is considered a superior188

metric for MT today (Kocmi et al., 2021).189

2.3.3 Language Models190

We experiment with two LLMs commonly used191

in MT: XGLM7.5B (Lin et al., 2022) and Alpaca192

(Taori et al., 2023). XGLM is a multilingual lan-193

guage model with 7.5B parameters supporting 30194

languages. Alpaca is a 7B LLM fine-tuned from195

LLaMA (Touvron et al., 2023a).196

2.3.4 Example Selection197

To maintain consistency, all our MT experiments198

use 4 in-context examples. We evaluate different199

1https://huggingface.co/Unbabel/wmt20-comet-da

ways of selecting examples for comparison. Note 200

that if all 4 examples are selected by the same 201

method, the first two are considered examples from 202

A and the last two are considered from B in the 203

Ensemble template in Figure 1. 204

Random: The 4 examples are randomly sam- 205

pled from the example database. We report the 206

average result of three different random seeds. 207

BM25: We retrieve the top-4 matching examples 208

for each test input using BM25 (Bassani, 2023). 209

Polynomial: It is rather time-consuming to re- 210

trieve examples from databases containing millions 211

of data using the Polynomial algorithm. Following 212

Tang et al. (2024), we instead re-rank the top-100 213

examples retrieved by BM25 using Polynomial and 214

the top-4 are used as final in-context examples. 215

BM25 + Polynomial: To combine examples 216

with both lexical and syntactic similarity, we simply 217

concatenate examples from BM25 and Polynomial. 218

Specifically, the first two examples are from BM25 219

and the remaining two are from Polynomial. 220

Polynomial + BM25: The first two examples 221

are from Polynomial and the remaining two are 222

from BM25. 223

2.3.5 Prompts 224

We design various prompts to explore whether 225

LLMs can benefit from explicit descriptions of 226

examples and whether they really understand the 227

meaning of descriptions. 228

Vanilla: The normal prompt without any 229

example-level descriptions shown in Figure 2. 230

Ensemble (Word + Syntax): The Ensemble 231

prompt shown in Figure 1, with Noun A and Noun 232

B being "words" and "syntax" respectively, which 233

semantically corresponds to BM25 + Polynomial 234

examples but is converse to Polynomial + BM25. 235

Ensemble (Syntax + Word): Noun A and Noun 236

B are "syntax" and "words" respectively, which se- 237

mantically matches Polynomial + BM25 examples 238

but mismatches BM25 + Polynomial. 239

Different Ensemble (Word + Syntax): Noun A 240

and Noun B are still "words" and "syntax" respec- 241

tively but the qualifier "similar" is replaced with 242

"different". This prompt aims to find out whether 243

LLMs know the meaning of "different/similar" and 244

care the semantics of descriptions. 245

Ensemble (Word + Semantics): Noun A and 246

Noun B are "words" and "semantics" respectively. 247

Ensemble (Random + Random): For each in- 248

put, Noun A and Noun B are different random En- 249

3



Figure 3: Main results on XGLM and Alpaca, showing the performance gain of different prompts over the vanilla
prompt, averaged over all six translation directions. Each cluster presents the results of a selection of in-context
examples and each bar in it presents the result of a prompt. "Ens.", "W.", "Syn.", "Sem.", "Diff.", "Rand.", "Poly."
refer to "Ensemble", "Word", "Syntax", "Semantics", "Different", "Random", "Polynomial" respectively.

glish nouns sampled using Wonderwords2, aiming250

to explore LLMs’ understanding of descriptions.251

Detailed templates and examples of the above252

prompts are shown in Appendix A.1.253

2.4 Main Results254

To give a quick view of LLMs’ MT performance,255

Table 2 shows the COMET scores of Vanilla base-256

lines averaged over six translation directions.257

Selection XGLM Alpaca

Random 54.07 55.42
BM25 55.00 56.27
Polynomial 55.52 56.13
BM25 + Polynomial 56.17 56.18
Polynomial + BM25 56.18 55.49

Table 2: Results of Vanilla baselines.

Main results are shown in Figure 3. For conve-258

nient comparison, we present the performance gain259

of different Ensemble prompts over Vanilla with260

different selections of in-context examples and the261

results are averaged over six translation directions.262

As can be seen from the results, those "correct"263

prompts, exactly corresponding to the selection of264

in-context examples (e.g., Ensemble (Word + Syn-265

tax) with BM25 + Polynomial examples and En-266

semble (Syntax + Word) with Polynomial + BM25267

examples), do bring some help as expected. How-268

ever, when the prompt does not correspond to the269

selection of examples (is "incorrect"), the per-270

formance improves as well and sometimes even271

more than those "correct" cases. For example, on272

XGLM with BM25 + Polynomial examples, En-273

semble (Syntax + Word) improves more than En-274

semble (Word + Syntax), even though the former275

is completely reversed. On Alpaca with BM25 +276

Polynomial examples, Ensemble (Word + Seman-277

tics) improves more than Ensemble (Word + Syn-278

tax), albeit the examples with similar syntax do279

2https://github.com/mrmaxguns/wonderwordsmodule

not necessarily bear similar semantics. More in- 280

terestingly, Different Ensemble (Word + Syntax), 281

telling the LLM that the in-context examples are 282

with different properties, is able to beat "correct" 283

prompts sometimes (e.g., on XGLM with BM25 + 284

Polynomial examples and Alpaca with Polynomial 285

+ BM25 examples). 286

Surprisingly, no matter how in-context exam- 287

ples are selected and whether the prompts are "cor- 288

rect", Ensemble prompts bring improvement in 289

most cases. Even Ensemble (Random + Random), 290

in which example-level descriptions are with ran- 291

dom nouns and could be completely nonsense (like 292

"examples with similar nobody"), brings improve- 293

ment in most cases, especially obtaining the most 294

gain on Alpaca with Polynomial + BM25 examples 295

compared with other prompts, correct or incorrect. 296

These results indicate that LLMs might not really 297

take the example-level descriptions into consider- 298

ation during ICL. In other words, they might not 299

necessarily care what users say in the descriptions. 300

Compared with proper descriptions, it seems 301

the format of prompts matters more. For exam- 302

ple, on Alpaca with Random examples, no matter 303

what the example-level descriptions say, all Ensem- 304

ble prompts bring nearly equal improvement over 305

Vanilla. This indicates that Ensemble is a superior 306

format compared with Vanilla in this case. 307

To sum up, the experimental results on MT sug- 308

gest that a proper prompt format leads to better ICL 309

performance of LLMs while a careful design of 310

descriptions might be less effective. 311

2.5 Ablation Study 312

To better understand how the Ensemble format 313

brings improvement, we perform ablation experi- 314

ments over the organization of the prompt: 315

Ensemble (Random + Random): The Ensem- 316

ble prompt with random nouns in the example-level 317

descriptions as described in Section 2.3. 318
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Single (Random): Organized based on Figure319

1, but the second description is removed. There is320

only one example-level description above the four321

examples, where Noun A is a random noun.322

Single (Example): Organized based on Figure323

1, but the second description is removed. There is324

only one example-level description above the four325

examples, being "Examples:" only, without any326

further descriptions. This prompt only informs the327

LLM that the following four instances are examples328

and does not describe their properties.329

Vanilla (Translate): Organized based on Figure330

1, but both the two descriptions are removed. The331

only difference with Vanilla is the translation in-332

struction "Translate the following sentence:" before333

the test input. This prompt only informs the LLM334

to translate the test input and tells nothing about335

the in-context examples.336

Detailed templates and examples of the above337

prompts are shown in Appendix A.2.338

Figure 4: Ablation studies over the organization of
the prompt, showing the performance gain of differ-
ent prompts over Vanilla, averaged over all six transla-
tion directions. "Rand.", "Poly.", "Ens.", "Sgl.", "V.",
"Trans." refer to "Random", "Polynomial", "Ensemble",
"Single", "Vanilla", "Translate" respectively.

Results are presented in Figure 4, showing that339

removing one or two example-level descriptions or340

removing the random noun describing the property341

of in-context examples hurt the performance gain in342

most cases. On XGLM, only the original Ensemble343

format performs better than Vanilla. On Alpaca,344

Single (Random), Single (Example) and Vanilla345

(Translate) bring less improvement than Ensemble346

(Random + Random) in more than half of the cases.347

Ablation experiments suggest that in MT, our348

proposed Ensemble is a relatively superior prompt 349

format, performing better than other variants. 350

2.6 Analysis via Attention Weights 351

To have a better idea of the internal mechanism of 352

LLMs when prompted with different prompts, we 353

calculate the attention weights between different 354

prompt components. We focus on three compo- 355

nents: in-context examples (from A or B, denoted 356

by "Example-A" and "Example-B"), the target posi- 357

tion (denoted by "Target") where the model starts to 358

generate predictions (following Wang et al. (2023), 359

we use the final token in the input) and the two 360

descriptive nouns ("Noun-A" and "Noun-B"). We 361

obtain the attention weights averaged over all at- 362

tention heads from the attention matrix across all 363

the layers. All the results are averaged over all six 364

language directions. 365

Results comparing Ensemble (Word + Syntax) 366

(EWS) and Ensemble (Random + Random) (ERR) 367

on XGLM with BM25 + Polynomial examples are 368

presented in Figure 5 (for results on Alpaca, re- 369

fer to Appendix B). If the model really cares what 370

the descriptions say, its attention to meaningful de- 371

scriptive nouns (in EWS) should be much greater 372

than those meaningless (in ERR). However, in most 373

cases, EWS performs no higher than ERR, indicat- 374

ing that the model does not really care what the 375

descriptive nouns actually are. "Target to Noun-A" 376

is a special case, where EWS is high in shallow 377

layers. But in deeper layers, EWS falls behind and 378

ERR takes the lead. This shows that the model 379

might pay more attention to the meaningful noun 380

when understanding the context in shallow layers 381

but gradually forgets it when it comes to generation 382

in deeper layers. In a word, the attention weights 383

further confirm our claim that LLMs do not really 384

care what the descriptive nouns are in most cases. 385

2.7 Discussion 386

Above results show that LLMs benefit from our 387

Ensemble prompts in most cases. However, the 388

benefit comes from a proper format rather than the 389

meaningful descriptions (e.g., "similar words" and 390

"similar syntax"). This demonstrates that LLMs 391

might not care what users say in the descriptions 392

but is more sensitive to the format of prompts. In 393

other words, designing a proper prompt format 394

would be more efficient than paying a lot of effort 395

into looking for a perfect description. 396

In the next section, we apply Ensemble format 397

to more tasks to further verify its generalizability. 398
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Figure 5: Attention weights (×1e-4) on XGLM of all 32 layers with BM25 + Polynomial examples. EWS and ERR
denotes Ensemble (Word + Syntax) and Ensemble (Random + Random) respectively.

3 Generalizing the New Ensemble399

Prompt Framework to More Tasks400

To further verify our conclusion obtained from MT401

that our proposed Ensemble framework improves402

ICL even when the example-level descriptions are403

incorrect or meaningless, we perform the compari-404

son between Vanilla and Ensemble (Random + Ran-405

dom), which we would refer to as ERR, on more406

types of tasks across different language models.407

3.1 Experimental Setup408

3.1.1 Datasets409

We use a total of nine benchmarks, covering four410

task types: commonsense QA, logical reasoning,411

arithmetic reasoning, and hallucination detection.412

For commonsense QA, we adopt four datasets.413

The widely-used CSQA (Talmor et al., 2019) fea-414

tures commonsense questions about the world in-415

volving complex semantics requiring prior knowl-416

edge. StrategyQA (Geva et al., 2021) challenges417

models to infer implicit reasoning steps using a418

strategy to answer questions. We also choose two419

specialized evaluation sets from BIG-bench (Sri-420

vastava et al., 2023): Date Understanding, which421

asks models to infer the date from a context, and422

Sports Understanding, which involves assessing423

the plausibility of sentences related to sports.424

For logical reasoning task, we choose Logical425

Fallacy and Three Objects (a subset of Logical De-426

duction) from Big-bench (Srivastava et al., 2023).427

Logical Fallacy aims to test the model’s ability428

to identify whether there are fallacies in a given429

logical reasoning, and Three Objects requires the430

model to infer the order of a sequence of objects431

from a set of minimal conditions.432

To explore the performance of ERR on math433

word problems, we adopt the following two434

datasets: GSM8K (Cobbe et al., 2021), which con-435

sists of high quality free-response grade school436

math problems, and AQuA (Ling et al., 2017), con-437

taining the algebraic word problems in the form of438

multiple-choice questions. 439

In addition, to explore whether ERR could alle- 440

viate LLMs’ hallucination, we choose Known Un- 441

knowns from Big-bench (Srivastava et al., 2023). 442

Dataset Test Inputs

CSQA 1221
StrategyQA 1012
Date 365
Sports 996
Logical Fallacy 1012
Three Objects 296
Known Unknowns 42
GSM8K 1319
AQuA 254

Table 3: Number of test inputs for each dataset.

The number of test inputs for each dataset is 443

listed in Table 3. Details of splitting training set 444

(example database) and test set are in Appendix C. 445

3.1.2 Evaluation Metric 446

These nine datasets are either in the form of 447

multiple-choice questions or free-response ques- 448

tions with standard answers, so we use accuracy as 449

the metric for all of them. 450

3.1.3 Language Models 451

We evaluate three open source LLMs with around 452

7B parameters, including Alpaca (Taori et al., 453

2023), Llama3 (Grattafiori et al., 2024), and Mis- 454

tral (Jiang et al., 2023). To assess the effect of ERR 455

on more powerful models, we also evaluate GPT- 456

3.5 (Ouyang et al., 2022). We use Llama-3.1-8B, 457

Mistral-7B-Instruct-v0.2 and gpt-3.5-turbo-01253 458

for Llama3, Mistral and GPT-3.5 respectively. 459

3.1.4 Example Selection 460

Note that randomly selected examples combined 461

with ERR have already brought non-trivial improve- 462

ments to MT. Therefore, for each dataset discussed 463

in this section, we randomly select a uniform set 464

3https://openai.com/api/
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Figure 6: Results on nine datasets across three small-scale models. In the "Date" subplot, the score of Mistral under
the Vanilla prompt is too low to be a visible bar in the chart.

of examples (4-shot) for all test inputs without ap-465

plying any carefully designed selection method, in466

order to focus on and verify the simple yet effective467

and universal nature of ERR.468

3.1.5 Prompts469

We compare ERR with Vanilla across different470

datasets and LLMs. Given that these tasks usu-471

ally involve reasoning, on which chain-of-thought472

(CoT) is commonly utilized (Wei et al., 2022), we473

experiment both without CoT ("w/o CoT", which474

are identical to the original templates) and with475

CoT ("w/ CoT"). This allows us to examine both476

the orthogonality and compatibility with CoT of477

ERR , as well as assess its performance across var-478

ious models and tasks. Specifically, we evaluate479

Vanilla (w/o CoT), Vanilla (w/ CoT), ERR (w/o480

CoT), and ERR (w/ CoT). Due to space constraints,481

examples of prompt templates discussed in this482

section are provided in Appendix D.483

Figure 7: Results of the four types of tasks on GPT-3.5.

3.2 Results of Small-scale Models 484

Results across all nine datasets and three small- 485

scale models (Alpaca, Llama3 and Mistral) are 486

illustrated in Figure 6. 487

The results demonstrate that ERR (w/ CoT), 488

achieved by integrating CoT with our proposed 489

prompt framework, either significantly outperforms 490

or matches Vanilla (w/ CoT) in 25 out of 27 exper- 491

iments (covering 9 datasets and 3 models). The 492

exceptions are Alpaca on the Sports dataset and 493

Mistral on the AQuA dataset, where ERR (w/ CoT) 494

shows somewhat lower performance compared to 495

Vanilla (w/ CoT). When CoT is not incorporated, 496

ERR generally performs much better than or on 497

par with Vanilla, except for the Sports dataset with 498

Llama3, where ERR performs a little poorer. 499

Surprisingly, ERR (w/o CoT) sometimes even 500

surpasses Vanilla (w/ CoT), suggesting that the 501

ERR framework alone can offer more improve- 502

ments than CoT. This highlights the value of ERR 503

and reaffirms that the format plays a crucial role 504

in enhancing LLMs’ problem-solving capabilities. 505

In terms of models, the performance of ERR on 506

Alpaca is far less impressive than on Llama3 and 507

Mistral, which may be because Alpaca has strong 508

instruction-following capabilities and is more ro- 509

bust to different prompts. 510

In summary, without using any carefully de- 511

signed selection methods, directly filling the ran- 512

domly selected examples into the ERR framework 513

brings significant improvement to various reason- 514

ing tasks and even alleviates the hallucination of 515
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models in most cases, no matter how meaning-516

less and incorrect the example-level descriptions517

are. Moreover, ERR can work perfectly with CoT.518

Therefore, at least for relatively small models, this519

simple but effective trick is worth introducing into520

prompt engineering for various tasks.521

We also experiment with Llama2 (Touvron et al.,522

2023b) and the results are in Appendix E. The over-523

all trend is consistent with Llama3.524

3.3 Results of GPT-3.5525

As shown in Figure 7, ERR performs similarly to526

Vanilla across every dataset using GPT-3.5. Al-527

though the ERR format does not bring signifi-528

cant improvement to these tasks with GPT-3.5529

and Alpaca (as shown in Figure 6), the fact re-530

mains that the incorrect or meaningless example-531

level descriptions caused by random nouns do not532

have much negative impact on GPT-3.5, a suf-533

ficiently powerful model, or Alpaca, which has534

strong instruction-following capabilities. In some535

cases, it even slightly improves performance (e.g.,536

ERR (w/ CoT) outperforms Vanilla (w/ CoT) on537

AQuA and Known Unknowns). In other words,538

LLMs might not care what users actually say to de-539

scribe the provided examples while they are more540

sensitive to the format of prompts, which is in line541

with our findings obtained from MT.542

3.4 Discussion543

Based on the experiments conducted on both small-544

scale and large-scale models, we can conclude that545

ERR is a simple yet practical and universal prompt546

framework. It can enhance problem-solving ca-547

pabilities in small models and be applied to large548

models without the risk of performance degrada-549

tion due to the meaningless noise within it. In other550

words, there might be less need to meticulously551

select examples or design detailed descriptions. In-552

stead, you can uniformly and efficiently apply ERR553

to various tasks with different models.554

4 Related Work555

In-context Example Selection Rubin et al.556

(2022) suggest that LLMs’ ICL performance557

strongly depends on the selection of in-context ex-558

amples. In consequence, many works have been559

trying to explore ways of selecting better in-context560

examples in recent years. Li et al. (2023) train a561

unified in-context example retriever across a wide562

range of tasks. Ye et al. (2023) select examples563

based on both relevance and diversity, with the 564

help of determinantal point processes. Agrawal 565

et al. (2023) ensure n-gram coverage to select bet- 566

ter examples for MT. Kumar et al. (2023) train an 567

in-context example scorer for MT based on several 568

features. Tang et al. (2024) propose to combine 569

both word-level and syntax-level coverage when 570

selecting examples for MT. 571

Mechanism of In-context Learning With the 572

popularity of ICL, there have been numerous stud- 573

ies on analyzing the mechanism of ICL. One stream 574

of these studies focuses on explaining the essence 575

of ICL, relating ICL to gradient descent (Von Os- 576

wald et al., 2023), implicit Bayesian inference (Xie 577

et al., 2022), induction heads completing token se- 578

quences based on similar context (Olsson et al., 579

2022), generation maintaining coherency (Sia and 580

Duh, 2023), creation of task vectors based on in- 581

context examples (Hendel et al., 2023), etc. The 582

other stream focuses on the role of in-context exam- 583

ples, especially labels of these examples. Min et al. 584

(2022) find that ground truth labels are not neces- 585

sary and LLMs perform fairly well even with ran- 586

dom labels. Wang et al. (2023) find that label words 587

play the role of anchors that aggregating informa- 588

tion of the whole examples and serve as a reference 589

for LLMs’ final predictions. Wei et al. (2023) find 590

that larger language models can override seman- 591

tic priors and learn from in-context examples with 592

flipped labels or semantically-unrelated labels. 593

5 Conclusion 594

In this work, we analyze the effect of descriptive 595

instructions in prompts during ICL and propose an 596

Ensemble prompt framework describing the prop- 597

erties of in-context examples selected by different 598

methods. Experimental results on MT indicate that 599

while LLMs are sensitive to prompt formats, they 600

might not care the actual meaning of the descrip- 601

tions and the framework improves LLMs’ perfor- 602

mance even with meaningless descriptions com- 603

pared with the conventional prompt. We further 604

apply the Ensemble framework to four other NLP 605

tasks and find that it achieves promising results, es- 606

pecially on small-scale models. These results sug- 607

gest that rather than working hard on well-designed 608

descriptions, making use of a proper prompt format 609

would be more effective and efficient. 610
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Limitations611

First, since there are so many open-source LLMs in612

the world nowadays, it is impossible to experiment613

with all existing models and thus our work only614

employ several commonly-used LLMs. Second,615

since we do not have access to the pre-training or616

post-training process of LLMs (either open-source617

or close-source), our analysis of the mechanism of618

ICL could be somewhat superficial. The behavior619

of LLMs can be highly subject to their training620

data, which we have no access to. Lastly, although621

we reveal that ERR is a superior prompt format for622

several models, it could still be a local optimum623

and how to effectively search for a best prompt624

format for different models and tasks is still under-625

explored, which we leave for future work.626
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A Prompt Templates of MT Experiments 1045

Task-level Instruction

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"
Test Input

Instruction: Translate German into English.
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
German: Was sind diese vier?
English:

Prompt Template Prompt Example of Alpaca

Figure 8: Template and example of Vanilla.

Instruction: Translate German into English.
Examples with similar words:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar syntax:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar words:

Example 𝐴!
Example 𝐴"

Examples with similar syntax:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 9: Template and example of Ensemble (Word +
Syntax).

A.1 Main Experiments 1046

Templates and prompt examples of Vanilla, Ensem- 1047

ble (Word + Syntax), Ensemble (Syntax + Word), 1048

Different Ensemble (Word + Syntax), Ensemble 1049

(Word + Semantics) and Ensemble (Random + Ran- 1050

dom) are shown in Figure 8-13. 1051
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Instruction: Translate German into English.
Examples with similar syntax:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar words:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar syntax:

Example 𝐴!
Example 𝐴"

Examples with similar words:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 10: Template and example of Ensemble (Syntax
+ Word).

Instruction: Translate German into English.
Examples with different words:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with different syntax:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with different words:

Example 𝐴!
Example 𝐴"

Examples with different syntax:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 11: Template and example of Different Ensemble
(Word + Syntax).

Instruction: Translate German into English.
Examples with similar words:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar semantics:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar words:

Example 𝐴!
Example 𝐴"

Examples with similar semantics:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 12: Template and example of Ensemble (Word +
Semantics).

Instruction: Translate German into English.
Examples with similar tennis:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar arch-rival:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar Noun 𝐴:

Example 𝐴!
Example 𝐴"

Examples with similar Noun 𝐵:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 13: Template and example of Ensemble (Random
+ Random).

Instruction: Translate German into English.
Examples with similar tennis:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar Noun 𝐴:

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 14: Template and example of Single (Random).

Instruction: Translate German into English.
Examples:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples:

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 15: Template and example of Single (Example).

Instruction: Translate German into English.
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 16: Template and example of Vanilla (Translate).

13



A.2 Ablations1052

Templates and prompt examples of Ensemble (Ran-1053

dom + Random), Single (Random), Single (Exam-1054

ple), Vanilla (Translate) are shown in Figure 13-16.1055

B Attention Weights on Alpaca1056

Figure 17 presents the attention weights on Alpaca.1057

For example-to-noun attention weights, ERR is1058

close to EWS. For target-to-noun attention weights,1059

EWS is higher in shallow layers but falls behind1060

ERR in deeper layers, especially in the last layer.1061

This demonstrates that Alpaca might pay more at-1062

tention to the meaningful words ("word" and "syn-1063

tax") when understanding the context in shallow1064

layers but gradually forgets them when it comes1065

to generation in the deeper layers. In short, EWS1066

performs no higher than ERR in most cases.1067

C Dataset Details for Reasoning Tasks1068

We list the details of splitting training set (example1069

database) and test set for our conducted reasoning1070

tasks, covering four types and nine datasets. We set1071

random seed for all possible shuffling and sampling1072

operations to 42. Note that we experiment with 4-1073

shot for all datasets.1074

C.1 Datasets Fetched from Exclusive Source1075

• CSQA (Talmor et al., 2019): https://www.1076

tau-nlp.org/commonsenseqa. We follow1077

the official split and select the training set1078

as our example database and the dev set as1079

our test set. Because the training set itself is1080

randomly divided from the whole dataset, we1081

directly select examples from it in order.1082

• GSM8K (Cobbe et al., 2021):1083

https://github.com/openai/1084

grade-school-math. We select the1085

test.jsonl as our test set and the1086

train.jsonl as our example database and1087

randomly sample four examples from it.1088

• AQuA (Ling et al., 2017): https://github.1089

com/google-deepmind/AQuA. We select1090

the test.json as our test set. Since the orig-1091

inal training set is relatively large, for simplic-1092

ity, we directly copy the four examples listed1093

in the supplementary materials of Wei et al.1094

(2022) and we ensure that these four examples1095

do not appear in the test set.1096

C.2 Datasets Fetched from The Big-bench 1097

For StrategyQA (Geva et al., 2021), Date, Sports, 1098

Logical Fallacy, Three Objects, and Known Un- 1099

knowns, we fetched them from the Big-bench 1100

(Srivastava et al., 2023). Each of them has a 1101

task.json. We randomly shuffle the task.json 1102

and split it to a training set and a test set. Then we 1103

select examples from the training set in order. 1104

Specifically, the principle for splitting the train- 1105

ing and test sets is as follows: If the total number 1106

of samples exceeds 1,012 a lot, we retain 1,012 1107

samples as the test set and use the remainder as 1108

the training set. Otherwise, we select four exam- 1109

ples for the training set and use the rest for testing. 1110

For the Sports and Logical Fallacy datasets, which 1111

have only two possible answers (similar to binary 1112

classification), we first separate the positive and 1113

negative examples, shuffle them individually, and 1114

then construct the test set and training set. The 1115

test set is composed of an equal number of positive 1116

and negative examples, with the remaining samples 1117

used as the training set. 1118

D Prompts for Reasoning Tasks Used in 1119

this Work 1120

Figure 18-26 show the examples of ERR (w/ CoT) 1121

prompt for respective datasets. Some tasks contain 1122

Answer Choices. In order to save space, the blank 1123

lines between the options are replaced with spaces 1124

in those figures. Each Figure has grey text for 1125

reasoning, cyan text for the parts of ERR that are 1126

unique to Vanilla, and italic words in the cyan text 1127

representing random nouns. Therefore, deleting 1128

the grey text gives ERR (w/o CoT), keeping the 1129

grey text but deleting the cyan text gives Vanilla (w/ 1130

CoT), and deleting both the cyan and grey text gives 1131

Vanilla (w/o CoT).4 The reasoning is generated by 1132

ChatGPT 5. Note the ChatGPT is not the same as 1133

GPT-3.5 we used for experiments. 1134

E Results of Llama2 1135

Results of Llama2-7B-chat-hf (Touvron et al., 1136

2023b) on the nine datasets are presented in Figure 1137

27. While ERR outperforms Vanilla with Llama2 1138

across most datasets, its performance on Logical 1139

Fallacy and Sports is notably poor. Llama2 almost 1140

4When changing "w/ CoT" to "w/o CoT", you may also
need to replace "So the answer is ..." with "The answer is ..."
for syntactical reasons.

5https://chatgpt.com/

14

https://www.tau-nlp.org/commonsenseqa
https://www.tau-nlp.org/commonsenseqa
https://www.tau-nlp.org/commonsenseqa
https://github.com/openai/grade-school-math
https://github.com/openai/grade-school-math
https://github.com/openai/grade-school-math
https://github.com/google-deepmind/AQuA
https://github.com/google-deepmind/AQuA
https://github.com/google-deepmind/AQuA


0
10
20
30
40
50
60
70
80
90
100

1 3 5 7 9 1113151719212325272931

Example-A to Noun-A

EWS ERR

0

5

10

15

20

25

1 3 5 7 9 1113151719212325272931

Example-B to Noun-A

EWS ERR

0

10

20

30

40

50

60

70

1 3 5 7 9 1113151719212325272931

Example-B to Noun-B

EWS ERR

0
2
4
6
8
10
12
14
16
18
20

1 3 5 7 9 1113151719212325272931

Target to Noun-A

EWS ERR

0

5

10

15

20

25

30

1 3 5 7 9 1113151719212325272931

Target to Noun-B

EWS ERR

Figure 17: Attention weights (×1e-4) on Alpaca of all 32 layers with BM25 + Polynomial examples. EWS and ERR
denotes Ensemble (Word + Syntax) and Ensemble (Random + Random) respectively.

Figure 18: Prompt for CSQA.
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Figure 19: Prompt for StrategyQA.

Figure 20: Prompt for Date.
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Figure 21: Prompt for Sports.

always responds with confused emojis for Logi-1141

cal Fallacy questions and outputs questions like1142

"plausible or implausible?" for Sports, leading to1143

predominantly incorrect answers. Further investi-1144

gation into these issues is left for future work.1145

F Computational Details1146

F.1 Hardware1147

Inference of LLMs runs on an NVIDIA A40 GPU1148

(with memory of 48 GB). Other experiments run1149

on Intel® Xeon® Gold 6348 CPU (with memory1150

of 256 GB).1151

F.2 Software1152

Our OS: Ubuntu 20.04.6 LTS. Our code: Python1153

only. Libraries and packages are specified in the1154

source code.1155

G Licenses1156

The licenses of the scientific artifacts we use are1157

shown in Table 4.1158

Artifact License

XGLM MIT
Alpaca Apache-2.0
Llama Llama Community License Agreement
Mistral Apache-2.0
COMET Apache-2.0
FLORES-101 CC-BY-SA-4.0
Europarl Unknown
ParaCrawl CC0
CSQA CC-BY-SA-4.0
StrategyQA MIT
BIG-bench Apache-2.0
GSM8K MIT
AQuA Apache-2.0

Table 4: Licenses of scientific artifacts we use.
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Figure 22: Prompt for Logical Fallacy.
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Figure 23: Prompt for Three Objects.
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Figure 24: Prompt for Known Unknowns.
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Figure 25: Prompt for GSM8K. For this dataset, we let LLMs first generate reasoning and then answer under the
"w/ CoT" setting.
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Figure 26: Prompt for AQuA.

Figure 27: Results of Llama2 on the nine datasets.
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