
Geometric Resampling in Nearly Linear Time for Follow-the-Perturbed-Leader
with Best-of-Both-Worlds Guarantee in Bandit Problems

Botao Chen * 1 Jongyeong Lee * 2 Junya Honda 1 3

Abstract
This paper studies the complexity and optimal-
ity of Follow-the-Perturbed-Leader (FTPL) pol-
icy in the K-armed bandit problems. FTPL is
a promising policy that achieves the Best-of-
Both-Worlds (BOBW) guarantee without solv-
ing an optimization problem unlike Follow-the-
Regularized-Leader (FTRL). However, FTPL
needs a procedure called geometric resampling to
estimate the loss, which needs O

(
K2
)

per-round
average complexity, usually worse than that of
FTRL. To address this issue, we propose a novel
technique, which we call Conditional Geomet-
ric Resampling (CGR), for unbiased loss estima-
tion applicable to general perturbation distribu-
tions. CGR reduces the average complexity to
O(K logK) without sacrificing the regret bounds.
We also propose a biased version of CGR that can
control the worst-case complexity while keeping
the BOBW guarantee for a certain perturbation
distribution. We confirm through experiments that
CGR does not only significantly improve the aver-
age and worst-case runtime but also achieve better
regret thanks to the stable loss estimation.

1. Introduction
The multi-armed bandit (MAB) is a sequential decision-
making problem under uncertainty, which describes a model
of a gambler playing slot machines. It has been widely
applied in practical scenarios, such as online advertising,
clinical trials, recommendation systems. In this problem,
the player chooses an arm It out of K arms in each round
t ∈ [T ] = {1, 2, . . . , T} for time horizon T . The loss vector
ℓt = (ℓt,1, ℓt,2, . . . , ℓt,K)

⊤ ∈ [0, 1]
K is determined by the

*Equal contribution 1Kyoto University, Kyoto, Japan 2Seoul
National University, Seoul, Korea 3RIKEN AIP, Tokyo, Japan. Cor-
respondence to: Botao Chen <chen.botao.63r@st.kyoto-u.ac.jp>,
Jongyeong Lee <jongyeong@snu.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

environment and the player can only observe the incurred
loss ℓt,It from the chosen arm. The player’s objective is
to minimize his/her cumulative losses over all rounds. The
performance of the player is measured by the pseudo-regret,
which describes the gap between the cumulative loss of the
player and of the optimal arm fixed in hindsight.

Stochastic setting (Lai & Robbins, 1985; Auer et al., 2002a)
and adversarial setting (Auer et al., 2002b; Audibert &
Bubeck, 2009) are two fundamental formulations of the
environment to determine loss vectors. In the stochastic
setting, the losses ℓt,i from arm i are i.i.d. from an unknown
but fixed distribution over [0, 1] with expectation µi. The
suboptimality gap is expressed by ∆i = µi − µi∗ for the
optimal arm i∗ ∈ argmini∈[K]µi. The optimal (problem-
dependent) regret bound given these gaps is known to be∑

i:∆i>0 O( log T
∆i

) (Lai & Robbins, 1985), which can be
achieved by several policies such as UCB (Auer et al.,
2002a; Cappé et al., 2013) and Thompson sampling (Kauf-
mann et al., 2012; Agrawal & Goyal, 2013; Riou & Honda,
2020), some of which further improve the regret bound by
incorporating the dependence on the loss distribution itself.

In the adversarial setting, the loss vectors ℓt are not assumed
to follow any specific distribution, and the environment
may choose them based on the history of the decisions.
For this setting, the optimal regret bound O(

√
KT ) (Auer

et al., 2002b) is achieved by some policies, including a
family of policies called the Follow-the-Regularized-Leader
(FTRL) with appropriate regularization functions (Audibert
& Bubeck, 2009; Zimmert & Lattimore, 2019).

In reality, the environment to determine the loss is often
unknown, and thus it becomes necessary to develop a pol-
icy that is optimal in both stochastic and adversarial set-
tings at the same time. The Tsallis-INF policy (Zimmert &
Seldin, 2021) is an FTRL-based policy that can overcome
this difficulty. Tsallis-INF achieves O(

√
KT ) regret in the

adversarial setting and
∑

i ̸=i∗ O( log T
∆i

) regret in the stochas-
tic setting, which is called a Best-of-Both-Worlds (BOBW,
Bubeck & Slivkins, 2012) guarantee. It has also been shown
that FTRL framework can achieve BOBW for the problems
beyond the classic bandit problems, such as partial mon-
itoring (Tsuchiya et al., 2023b;c) and combinatorial-semi
bandits (Zimmert et al., 2019; Ito, 2021).

1



GR in Nearly Linear Time for FTPL with BOBW Guarantee in Bandit Problems

One limitation of FTRL is that the arm-selection probabil-
ity wt is required to be explicitly computed and stored in
each round, which requires to solve an optimization prob-
lem involving a regularizer. This becomes problematic in
some complex settings, and the framework of Follow-the-
Perturbed-Leader (FTPL) is a promising candidate to over-
come this limitation. FTPL greedily chooses an arm with
the minimum cumulative estimated loss with some random
perturbation and does not require to solve an optimization
problem nor store the vector wt. These properties have
made FTPL effective across various online learning and ban-
dit problems, including combinatorial semi-bandits (Neu &
Bartók, 2016), online learning with non-linear losses (Dudı́k
et al., 2020), and MDP bandits (Dai et al., 2022), though the
regret guarantees of FTPL are often somewhat weaker than
FTRL (see Appendix A for more details of FTPL literature).

From the theoretical viewpoint, FTPL has also been studied
for the standard MAB in terms of the duality between FTRL
and FTPL, and Kim & Tewari (2019) raised an open prob-
lem that FTPL achieving O(

√
KT ) regret (if exists) would

have perturbations following Fréchet-type distributions. As
a solution to this conjecture, it has recently been proved
that FTPL with Fréchet perturbation with α = 2 achieves
the BOBW guarantee (Honda et al., 2023), which was later
extended to more general Fréchet-type distributions with
some mild conditions (Lee et al., 2024).

From the practical viewpoint, however, the advantage of
FTPL for the standard MAB has been somewhat limited
compared with the clear computational advantage of FTPL
for complex problems. The reason is that FTPL and FTRL
generally need an unbiased (or low-bias) estimator for the
loss vector ℓt for each round. In FTRL, the Importance-
Weighted (IW) estimator is often used, which is an unbiased
estimator for ℓt using the inverse of the arm-selection prob-
ability w−1

t,i . On the other hand in FTPL, wt is not explicitly
computed and the IW estimator becomes unavailable.

To address this problem, Neu & Bartók (2016) proposed
a technique called Geometric Resampling (GR) to obtain
an unbiased estimator for w−1

t,i , but its computational cost
is O(K2) per round in average. On the other hand, wt for
Tsallis-INF (i.e., FTRL with Tsallis-entropy regularizer) can
be efficiently computed by, e.g., Newton’s method, whose
computational cost per iteration is O(K). Though the re-
quired number of iterations to keep the theoretical guarantee
is formally unknown, it is empirically known that O(1) it-
erations is sufficient. Therefore, the entire computational
cost of Tsallis-INF per round becomes O(K) in practice,
which becomes more efficient than FTPL with O(K2) cost.
In addition, very recently Zimmert & Marinov (2024) pro-
posed TS-Prod policy, which is related to the first-order
approximation of online mirror descent and Tsallis-INF.
TS-Prod provably achieves the BOBW guarantee with a

simple update rule without iterations, though its empirical
performance is worse than Tsallis-INF.

Contribution of the Paper This paper proposes a novel
technique which we call Conditional Geometric Resampling
(CGR), which gives unbiased or low-bias estimators for
w−1

t,i in FTPL. The idea behind the technique is that, while
the original GR “faithfully” simulates the arm-selection
procedure of FTPL by resampling the perturbation until ter-
mination, CGR resamples the perturbation only from those
satisfying a necessary condition for termination. By appro-
priately choosing this necessary condition we can signifi-
cantly reduce the required number of resampling Mt while
keeping the complexity of resampling once to be O(K).

We propose three variants of CGR (CGR I, II-unbiased,
II-biased), all of which achieve the quasi-linear average
complexity of O(K logK) without sacrificing the regret
of the original GR with O(K2) complexity. These variants
differ in the detailed guarantees and requirements, which are
summarized in Table 1. In summary, while the complexity
guarantee of CGR II is stronger than CGR I, CGR II requires
that the cumulative distribution F (x) and its inverse are
computable. Furthermore, CGR significantly improves the
regret from FTPL with GR empirically thanks to the reduced
variance of the estimators as we will see in Section 5.

2. Problem Setup
In this section, we formulate the problem and introduce the
framework of FTPL with geometric resampling. At each
round t ∈ [T ] = {1, 2, . . . , T}, the environment determines
a loss vector ℓt = (ℓt,1, ℓt,2, . . . , ℓt,K)⊤ ∈ [0, 1]K . The
player then pulls an arm It ∈ [K], and observes the incurred
loss ℓt,It associated with the chosen arm.

The loss vector is determined in either a stochastic or
adversarial way. In the stochastic setting, loss vectors
ℓ1, ℓ2, . . . , ℓT ∈ [0, 1]K are i.i.d. from an unknown but fixed
distribution P over [0, 1]K . The expected loss from arm i
is denoted by µi = Eℓ∼P [ℓt,i] ∈ [0, 1]. The suboptimality
gap of arm i is ∆i = µi − µi∗ , where i∗ ∈ argmini∈[K]µi

represents the optimal arm. In this paper, we assume that i∗

is unique in the stochastic setting. In adversarial setting, the
loss ℓt is determined adversarially, which may depend on
the history of the chosen arm {Is}t−1

s=1.

We measure the performance of the player in terms of the
pseudo-regret R(T ) defined as

R(T ) = E

[
T∑

t=1

(ℓt,It − ℓt,i∗)

]
, i∗ ∈ argmin

i∈[K]

E

[
T∑

t=1

ℓt,i

]
.

2.1. Follow-the-Perturbed-Leader

We consider the Follow-the-Perturbed-Leader (FTPL) pol-
icy, whose entire procedure is in Algorithm 1. At ev-
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Table 1. Comparison on the number of resampling Mt, computational requirements on the CDF of the perturbation and regret bounds
between original geometric resampling (GR) and conditional geometric resampling (CGR). Note that Neu & Bartók (2016) considers
combinatorial semi-bandits and the result here is the one when applied to the MAB. The last column is the regret guarantee under
appropriate choice of perturbation distribution, which is exponential distribution E1 with unit scale for Neu & Bartók (2016), Fréchet-type
distributions with some conditions in Lee et al. (2024, Theorem 2) for GR, CGR I, CGR II-unbiased, and the Fréchet distribution F2 with
shape 2 for CGR II-biased.

Algorithms E[Mt] E
[
Mt

∣∣∣L̂t

]
E
[
Mt

∣∣∣L̂t, It
]

Worst-case Mt Computational Requirement Regret Bounds

GR O(K) O(K) Unbounded Unbounded None BOBW

GR (Neu & Bartók, 2016) O(K) O(K) O(
√
KT ) (under E1)

⌈√
KT

⌉
(under E1) None Adversarial

CGR I O(logK) O(logK) Unbounded Unbounded None BOBW

CGR II-unbiased O(logK) O(logK) O(K) (under F2) Unbounded Explicit F (x) and F−1(x) BOBW

CGR II-biased O(logK) O(logK) O(K) (under F2) ⌈(K ∨ 4) log t⌉ (under F2) Explicit F (x) and F−1(x) BOBW

Algorithm 1 Follow-the-Perturbed-Leader

1: Input: Learning rate ηt
2: Set L̂1 := 0
3: for t = 1, 2, . . . , T do
4: Sample rt = (rt,1, rt,2, . . . , rt,K) i.i.d. from D
5: Pull arm It = argmini∈[K]{L̂t,i − rt,i/ηt} and ob-

serve ℓt,It

6: Compute an estimator ŵ−1
t,It

for w−1
t,It

by geometric
resampling

7: Set ℓ̂t := ℓt,Itŵ
−1
t,It

eIt and L̂t+1 := L̂t + ℓ̂t
8: end for

ery round t, FTPL keeps the estimated cumulative loss
L̂t ∈ RK specified later and draws a perturbation vec-
tor rt = (rt,1, rt,2, . . . , rt,K) ∈ RK from some distri-
bution. Then, it pulls the arm minimizing the perturbed
loss L̂t,i − rt,i/ηt, where ηt is the learning rate. Unless
specified otherwise, we assume that the components of
rt = (rt,1, rt,2, · · · , rt,K) are i.i.d. from a common dis-
tribution D over R, whose density function and cumulative
distribution function (CDF) are denoted respectively by f(x)
and F (x). In particular, when D is supported on [ν,∞) for
some finite ν > −∞, we assume ν = 0 without loss of
generality by considering the location shift of D.

Given L̂t, the probability of pulling arm i is given by

wt,i = Pr∼D

[
i = argmin

j∈[K]

{L̂t,j − rt,j/ηt}

]

=

∫
R
f(z + ηtLt,i)

∏
j ̸=i

F (z + ηtLt,j) dz. (1)

When D is supported over [0,∞) we can write

wt,i =

∫ ∞

0

f(z + ηtLt,i)
∏
j ̸=i

F (z + ηtLt,j) dz.

Algorithm 2 Geometric Resampling

1: Input:
Chosen arm It, cumulative loss L̂t, learning rate ηt

2: Set m := 0
3: repeat
4: m := m+ 1
5: Sample r′t = (r′t,1, r

′
t,2, . . . , r

′
t,K) i.i.d. from D

6: until It = argmini∈[K]{L̂t,i − r′t,i/ηt}

7: Set ŵ−1
t,It

:= m

Here the gap of a vector from its minimum is expressed
by underlines, for example, Lt = Lt − 1mini∈[K] Lt,i ∈
[0,∞)K , where 1 is the all-one vector.

2.2. Geometric Resampling

Since the loss in every round is partially observable, both
FTRL and FTPL generally use an estimator ℓ̂t for loss vector
ℓt. The estimator of the cumulative loss Lt =

∑t−1
s=1 ℓs is

then obtained as L̂t =
∑t−1

s=1 ℓ̂t.

In many policies for the adversarial setting like FTRL, the
Importance-Weighted (IW) estimator ℓ̂t = (ℓt,It/wt,It) eIt
is employed as an unbiased estimator for ℓt, where ei is a
unit vector with the i-th component set to one. However,
as we can see from (1), wt,It is not explicitly computed in
FTPL unlike FTRL. To address this limitation, FTPL instead
uses an estimator ŵ−1

t,i for w−1
t,i by the technique called

Geometric Resampling (GR) described in Algorithm 2.

In GR employed in Neu & Bartók (2016) and Honda et al.
(2023), another perturbation vector r′t is repeatedly drawn
from the same distribution D until argmini∈[K]{L̂t,i −
r′t,i/ηt} = It is satisfied, that is, resampling from D is
repeated until the arm that would be pulled under the pertur-
bation r′t coincides with the actually pulled arm It.

Here the chosen arm It is determined prior to the initia-
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tion of the GR process. Since the stopping condition is
satisfied with probability wt,It in each iteration, the number
of resampling follows geometric distribution with success
probability wt,It , whose expectation is 1/wt,It . Letting

ŵ−1
t,It

be the number m of resampling, we observe that ŵ−1
t,It

serves as an unbiased estimator for w−1
t,It

.

Denote the number of resampling taken by geometric re-

sampling at round t as Mt, which is equal to ŵ−1
t,It

in the
original GR explained here. Then, the expectation of Mt

given L̂t is expressed as

E[Mt|L̂t] =
∑
i∈[K]

P[It = i|L̂t]E[Mt|L̂t, It = i]

=
∑
i∈[K]

wt,i ·
1

wt,i
= K.

Since generating a perturbation vector rt from D needs
K random number generations, the expected complexity
per round becomes O(K2). From the viewpoint of the
worst-case complexity, it is known that O(

√
KT logK) re-

gret is achievable even if we terminate the resampling after
O(

√
KT ) repetitions, which leads to O(

√
K3T ) worst-case

complexity (Neu & Bartók, 2016). On the other hand, the
per-round complexity of FTRL is usually O(K) if the opti-
mization stops within O(1) iterations. Though FTPL is still
efficient for moderate size of K (Honda et al., 2023) thanks
to its optimization-free nature, the worse dependence on K
motivates us to develop a more efficient version of FTPL.

3. Proposed Algorithms
In this section, we introduce a family of algorithms which
we call Conditional Geometric Resampling (CGR). This
family is designed as an improvement over the original GR,
providing an estimator for w−1

t,i with better computational
efficiency. In the following, we write σt,i to denote the
number of arms (including i itself) whose cumulative losses
do not exceed L̂t,i, that is, L̂t,i is the σt,i-th smallest among
{Lt,j}j∈[K] where σt,i = σt,j can happen when L̂t,i =

L̂t,j . For example, a current best arm î∗t ∈ argminj L̂t,j is
an arm i such that σt,i = 1. For notational simplicity, we
omit the subscript t in σt,i when the context is clear.

3.1. General Idea

Before explaining the specific procedures of the proposed
algorithms, we first give the intuition behind them. When
we run the original GR, some possible values of r′t clearly vi-
olates the condition for termination. For example, when the
pulled arm It is not the current best arm î∗t ∈ argmini L̂t,i,
then the resampled perturbation must satisfy r′t,It ≥ r′

t,̂i∗t
so

that the condition for termination

It = argmini∈[K]{L̂t,i − r′t,i/ηt} (2)

is satisfied since L̂t,It ≥ L̂t,̂i∗t
. Thus it is somewhat “waste-

ful” to sample r′ satisfying r′t,It < r′
t,̂i∗t

and it becomes suffi-
cient to resample r′ only from those satisfying r′t,It ≥ r′

t,̂i∗t
.

Now let us formalize this idea. Let At be an arbitrary
necessary condition for termination given in (2), which may
depend on L̂t and It. For example, the above discussion
corresponds to At = {r′t,It ≥ r′

t,̂i∗t
}. Then, we can easily

derive the following property, whose proof is shown in
Appendix B.1.
Lemma 1. Consider resampling of r′t from D conditioned
on At until (2) is satisfied. Then, the number Mt of resam-
pling satisfies

E[Mt|L̂t, It] =
P[At|L̂t, It]

wt,It

.

By this lemma we can use Mt/P[At|L̂t, It] as an unbiased
estimator of w−1

t,It
. In addition, we can reduce the number

of resampling if we take At such that P[At|L̂t, It] is small.

Here note that we can trivially minimize P[At|L̂t, It] by
taking the termination condition (2) itself as At. Still, such
a choice makes it difficult to compute P[At|L̂t, It] and to
resample r′t from the conditional distribution given At. In
the following algorithms, we construct necessary conditions
At such that P[At|L̂t, It] is small and easily computed,
while the resampling from the conditional distribution given
At is also efficient.

3.2. Conditional Geometric Resampling

Based on the above idea, we propose three variants of con-
ditional geometric resampling called CGR I (Algorithms 3),
CGR II-unbiased and CGR II-biased (Algorithms 4). Here,
CGR II-unbiased and II-biased consider resampling from
the same conditional distribution, and thus we will discuss
them together. In the algorithm description, blue parts are
the ones different from the original GR.

CGR I This version corresponds to the case where we
sample r′t conditioned on At =

{
r′t,It = maxi:σi≤σIt

r′t,i
}

,
that is, the event that r′t,It is the largest among the arms
whose cumulative estimated losses are no worse than arm It.
By the symmetric nature of the i.i.d. perturbations, sampling
from this conditional distribution can be realized by simple
operations as shown in Algorithm 3, which only needs the
extra value-swapping operation in addition to the original
GR. This fact and other properties of CGR I are formalized
as follows.
Lemma 2. The sample r′t obtained by Algorithm 3 fol-
lows the conditional distribution of D given At ={
r′t,It = maxi:σt,i≤σt,It

r′t,i
}

. In addition,

Pr′t∼D[At|L̂t, It] = 1/σt,It
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Algorithm 3 Conditional Geometric Resampling I

1: Input: Chosen arm It, cumulative loss L̂t, learning rate
ηt

2: Set m := 0
3: repeat
4: m := m+ 1
5: Sample r′t = (r′t,1, r

′
t,2, . . . , r

′
t,K) i.i.d. from D

6: Swap the values of r′t,i′ and r′t,It , where
i′ = argmaxi:σi≤σIt

r′t,i

7: until It = argmini∈[K]{L̂t,i − r′t,i/ηt}

8: Set ŵ−1
t,It

:= mσIt

and the number Mt of resampling satisfies

Er′t∼D|At
[Mt|L̂t] ≤ logK + 1.

The proof of this lemma is shown in Appendix B.2. Com-

bined with Lemma 1, this result suggests ŵ−1
t,It

= MtσIt

given by CGR I is an unbiased estimator for w−1
t,It

. Moreover,
the expected number of resampling per round is bounded by
logK + 1, which is independent of L̂t.

Remark 1. In CGR I we only use the symmetry of the
distribution of rt ∈ RK . As a result, the unbiasedness and
Lemma 2 are still valid even if the components of rt ∈
RK are not independent as far as the joint distribution is
symmetric, though the regret bounds discussed in this paper
are for independent perturbations.

CGR II In this version we assume that D is supported
over [0,∞). CGR II corresponds to the case where we
sample r′t from D conditioned on

At =

{
r′t,It = max

i:σi≤σIt

r′t,i, r
′
t,It ≥ ηtL̂t,It

}
, (3)

that is, we impose the extra condition rt,It ≥ ηtL̂t,It
in

addition to the condition in CGR I. We also set the maximum
number of resampling Gt ∈ N ∪ {∞}, where we refer to
the versions Gt = ∞ by CGR II-unbiased and Gt < ∞ by
CGR II-biased. The complete procedure of CGR II is given
in Algorithm 4, which is explained below.

Let Dm be the distribution of the maximum of m i.i.d. sam-
ples from D, whose CDF is Fm(x) = (F (x))m. In CGR II
we initially sample r′t,It conditioned on At, which follows
DσIt

truncated over [ηtL̂t,It
,∞) with CDF given by

FIt(x; ηtL̂t,It
) =

FσIt (x)− FσIt (ηtL̂t,It
)

1− FσIt (ηtL̂t,It
)

,

x ≥ ηtL̂t,It
. (4)

Algorithm 4 Conditional Geometric Resampling II

1: Input: Chosen arm It, cumulative loss L̂t, learning rate
ηt, maximum number of resampling Gt ∈ N ∪ {∞}

2: Set m := 0
3: repeat
4: m := m+ 1
5: Sample

{
r′t,i | σi > σIt

}
i.i.d. from D

6: Sample r′t,It from DσIt
truncated over [ηtL̂t,It

,∞),
whose CDF is (4)

7: Sample
{
r′t,i | σi ≤ σIt , i ̸= It

}
i.i.d. from D trun-

cated over
[
0, r′t,It

]
, whose CDF is (5)

8: until It = argmini∈[K]{L̂t,i − r′t,i/ηt} or m ≥ Gt

9: Set ŵ−1
t,It

:= mσIt/
(
1− FσIt (ηtL̂t,It

)
)

Next, we sample
{
r′t,i | σi ≤ σIt , i ̸= It

}
i.i.d. from D trun-

cated over
[
0, r′t,It

)
, whose CDF is given by

Fi(x; r
′
t,It) = F (x)/F (r′t,It), x ∈ [0, r′t,It ]. (5)

Note that the computation of F (x) and F−1(x) is necessary
in this algorithm to generate samples from (4) and (5) by
the method of inverse transform sampling. We can show
that the samples generated by this procedure indeed follow
the conditional distribution given At.

Lemma 3. In CGR II, r′t follows the conditional distribution
of D given At in (3). In addition,

Pr′t∼D[At|L̂t, It] =
(
1− Fσt,It (ηtL̂t,It

)
)
/σt,It

and the number Mt of resampling satisfies

Er′t∼D|At
[Mt|L̂t] ≤ logK + 1.

Besides, if D is the Fréchet distribution with shape 2, then
Mt satisfies

Er′t∼D|At
[Mt|L̂t, It] ≤ K ∨ 4.

The proof of this lemma is shown in Appendix B.3. Com-
bined with Lemma 1, we see that

ŵ−1
t,It

= MtσIt/
(
1− FσIt (ηtL̂t,It

)
)

serves as an unbiased estimator for w−1
t,It

if Gt = ∞. In
addition, the last statement of this lemma shows that the
expected number of resampling is bounded by K ∨ 4 in the
worst case of L̂t and It regardless of the choice of Gt if D
is the Fréchet distribution with shape 2. We will show in
Section 4 that the choice Gt = (K ∨ 4) log t is sufficient to
guarantee the BOBW regret bound.
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3.3. Comparison between CGR I and CGR II

Now let us consider the complexity per round, which can
be expressed as

Mt × (complexity of resampling once).

The first factor is analyzed depending on the algorithms and
conditionings in Lemmas 2 and 3, which are summarized in
Table 1. The second factor is O(K) in both CGR I and II,
but its factor usually becomes slightly larger in CGR II due
to the computation of F and F−1. For this reason, while
CGR II always achieves smaller Mt than CGR I, the total
computational cost becomes higher in CGR II in most cases
as shown in the experiments in Section 5.

4. Regret Analysis
In this section, we first show that CGR I and II-unbiased
keep the regret bounds for the original GR as a direct conse-
quence of the unbiasedness of the estimators. We then show
that CGR II-biased also achieves a regret bound with the
same order as the unbiased ones.

4.1. Regret Bounds

As we demonstrated in the last section, CGR I and II-
unbiased still provide the unbiased estimator for w−1

t,i , and
thus for ℓt,i. We can directly apply this property to the
BOBW analysis by Honda et al. (2023) and Lee et al. (2024)
for Fréchet-type perturbations which we state below for
completeness.
Proposition 4. FTPL with CGR I and II-unbiased with
learning rate ηt = c/

√
t for c > 0 satisfies

R(T ) ≤

{
O
(√

KT
)

in adversarial bandits,

O
(∑

i ̸=i∗
log T
∆i

)
in stochastic bandits,

if the perturbation distribution D is Fréchet-type and satis-
fies the conditions in Lee et al. (2024, Theorem 2).

This proposition is straightforward and we omit the proof.
This is because the proofs of Honda et al. (2023) and Lee
et al. (2024) only use the variance bound given in (6) below
for the property of the unbiased loss estimator as far as the
loss estimator ℓ̂t is nonnegative, where the nonnegativity
trivially holds for CGR I and II-unbiased.
Remark 2. To be more precise, FTPL with CGR I and
II-unbiased can attain a slightly better regret guarantee than
the one with the original GR. This is because the variance

of the estimator ŵ−1
t,It

becomes

Var[ŵ−1
t,It

|L̂t, It]

=


1

w2
t,It

− 1
wt,It

(original GR),
1

w2
t,It

− 1
P(At)wt,It

(CGR I, II-unbiased),
(6)

which is smaller in CGR I and II-unbiased. Though the
improvement is hidden in the big-O notation, it explains the
better empirical performance of CGR given in Section 5.

Remark 3. In particular, CGR II slightly improves the dom-
inant term of the adversarial regret by 0.4

√
KT compared

with the existing bound for GR. This fact is formalized in
Theorem 10 in Appendix D.

In CGR II-biased, where the maximum number of resam-
pling Gt is finite, the estimator for w−1

t,i becomes biased.
Here, we provide the regret analysis of CGR II-biased and
show that it can also achieve the BOBW result, as stated in
the following theorem.

Theorem 5. FTPL with CGR II-biased with learning rate
ηt = c/

√
t for c > 0 and maximum number of resampling

Gt = (K ∨ 4) log t satisfies that

R(T ) ≤

{
O
(√

KT
)

in adversarial bandits,

O
(∑

i ̸=i∗
log T
∆i

)
in stochastic bandits,

if D is the Fréchet distribution with shape 2.

This result shows that FTPL with CGR II-biased reduces
both the worst-case and average complexities while pre-
serving the same order of the regret bound when using the
Fréchet perturbation with shape 2. Here note that the GR
by Neu & Bartók (2016) achieves O(

√
KT logK) regret

for the adversarial setting with the maximum number of re-
sampling Gt = O(

√
KT ). Therefore our result shows that

the BOBW guarantee is achievable by significantly better
maximum number of resampling in most cases.

Remark 4. Our choice Gt = O(K log t) is slightly worse
than Gt = O(

√
KT ) in Neu & Bartók (2016) if T ≈ K, but

it is just because their goal is to bound the bias by O(
√
KT )

rather than O(log T ). In fact, by following the same argu-
ment as Theorem 5 we can see that Gt = O(K log(T/K))
is enough to achieve O(

√
KT ) bias, which is no worse than

Gt = O(
√
KT ) whenever K ≤ T .

4.2. Proof Sketch for Biased Estimator

In this section we give a sketch of a proof of Theorem 5.
The complete proof is given in Appendix C. We begin with
the following regret decomposition similar to Neu & Bartók
(2016, Lemma 5).

Lemma 6. The expected regret of FTPL with CGR II satis-
fies

R(T ) ≤
T∑

t=1

E
[〈

ℓ̂t, wt − ei∗
〉]

+

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt
.
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The restriction on the maximum number of resampling al-

ways reduces the expected value of ŵ−1
t,i = Mt/P(At|·)

compared to the case Gt = ∞. By using this fact we can
show that the first term on the RHS can be directly bounded
by the one with the unbiased estimator in Honda et al. (2023).
Therefore, it becomes sufficient to consider the second term,
which is bounded as follows.

Lemma 7. When D is the Fréchet distribution with shape 2
and Gt = (K ∨ 4) log t, FTPL with CGR II-biased satisfies

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt
 ≤ log T.

This lemma shows that the additional regret introduced by
the bias is at most logarithmic in T independent of K.

The key to this proof is bounding wt,i/P(At|·) from below
by a constant independent of L̂t. When we consider the
Fréchet perturbation we can derive simple bounds on wt,i

and P(At|·) in terms of σIt and ηtL̂t,It
. From these bounds

we can show wt,i/P(At|·) ≥ 1/(K ∨ 4) by considering the
worst case of σIt and ηtL̂t,It

. We expect that this result can
be generalized to more general Fréchet-type distributions
by using bounds on wt for various cases in Lee et al. (2024).
Still, it requires heavy case-by-case analysis and we leave it
to future work.

5. Experiments
In this section we give results of experiments on the num-
ber of resampling of geometric resampling and compare
the regret and computational efficiency with existing poli-
cies. All of the figures are the results of 100 trials, with
shaded areas representing confidence intervals computed
using standard deviations. The experiments were conducted
on an AMD EPYC 7763 CPU, implemented in Python 3.9
using the NumPy library. The code is available at: https:
//github.com/BotaoChen123/FTPL-CGR1.

Environments Following Zimmert & Seldin (2021), we
consider the stochastically constrained adversarial setting
and the stochastic setting. Since we observed the same
tendency between them, we only give the results for the
former setting here and the results for the stochastic setting
is given in the appendix. The details of the instances as well
as the additional results are given in Appendix E.

Policies We compare FTPL with three variants of
conditional geometric resampling (CGR I, CGR II-
unbiased, CGR II-biased) with FTPL with geometric re-
sampling, which we will respectively write FTPL CGR I,

1Adapted from the code of Tsuchiya et al. (2023a) available at
https://github.com/tsuchhiii/bobw-variance/
tree/master.

FTPL CGR II-U, FTPL CGR II-B, and FTPL GR. In all
the experiments we used Fréchet distribution with shape
α = 2 for the perturbation of FTPL.

We also compare the performance with Tsallis-INF and TS-
Prod. Tsallis-INF is FTRL with Tsallis-entropy regularizer.
In our experiments, wt in this policy was computed by
Newton’s method. For the loss estimator of Tsallis-INF, we
consider Importance-Weighted (IW) estimator and Reduced-
Variance estimator (RV, Zimmert & Seldin, 2021), the latter
of which has better regret bounds than the former. We
denote Tsallis-INF with these estimators respectively as
T-INF IW and T-INF RV.

We used the same learning rate for T-INF as that of Zimmert
& Seldin (2021) (ηt = c/

√
t with c = 2 for IW and c = 4

for RV). Since FTPL in this paper and those in Lee et al.
(2024); Honda et al. (2023) are designed to mimic T-INF IW,
we use the same learning rate for FTPL as that of T-INF IW.

TS-Prod is a variant of Prod (Cesa-Bianchi et al., 2007),
serving as an approximation of T-INF. Unlike T-INF, TS-
Prod requires only a one-step update rather than solving an
optimization problem, resulting in more efficient computa-
tion with a complexity of O(K). We used the same learning
rate for TS-Prod as that of Zimmert & Marinov (2024).

Number of Resampling Figure 1 shows the number of
resampling at each round for adversarial setting on a log
scale. From this figure we see that the number of resampling
is significantly and stably kept small under all the variants of
FTPL CGR. In particular, the medians of FTPL CGR II-U
and FTPL CGR II-B are one, that is, resampling terminates
within only one trial for more than half of the rounds.

Furthermore, as observed from the outliers, the number of re-
sampling of FTPL GR is somewhat unstable and sometimes
prohibitively large (recall that the plot is in log scale), while
FTPL CGR effectively controls the maximum number of
resampling. In addition, the actual maximum number of
resampling under FTPL CGR II-B was much smaller than
the theoretical guarantee of Gt = (K ∨ 4) log t, which is
for example Gt ≈ 295 for K = 32 and t = 10000. For this
reason the behaviors of FTPL CGR II-U and FTPL CGR II-
B were empirically indistinguishable. To avoid redundancy,
we present only the results for FTPL CGR II-U in the fig-
ures of runtime and regret performance, simply referring to
it as FTPL CGR II.

Regret Comparison Figure 3 is the comparison of the re-
gret of FTPL with those of FTPL GR, T-INF and TS-Prod.
As can be seen from this result, the regret of FTPL CGR I
is slightly better than FTPL GR. Furthermore, the regret of
FTPL CGR II is close to T-INF IW, and even better in some
settings, despite the fact that FTPL CGR is also based on
the IW estimator. As discussed in Remark 2, this improved
regret of FTPL CGR seems to be thanks to the reduced
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Figure 1. Number of resampling for adversarial setting, K = 32.
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Figure 2. Runtime (sec) for adversarial setting and different K.
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Figure 3. Pseudo regret in adversarial setting.

variance of the loss estimator. On the other hand, the regret
of FTPL CGR II is still worse than T-INF RV. Therefore
it is still an important future work to devise a counterpart
of RV estimator for FTPL. The regret of TS-Prod is the
worst among all compared algorithms, seemingly due to the
approximation error introduced by its update rule.

Computational Efficiency Figure 2 shows the runtime
for arm selection over 10000 rounds of FTPL, T-INF and
TS-Prod for varying K from 2 to 128. When K is small
enough, both of FTPL GR and FTPL CGR run much
faster than T-INF. However, as K increases, the runtime of
FTPL GR sharply grows, while those of FTPL CGR, T-
INF and TS-Prod are kept small. In particular, the runtime
of FTPL CGR and TS-Prod is much smaller than T-INF
thanks to its optimization-free nature. Additionally, the
runtime of FTPL CGR slightly exceeds TS-Prod when K
is large, seemingly due to the additional logK factor in its
complexity.

One interesting observation is that the runtime of
FTPL CGR I is consistently better than FTPL CGR II
despite its larger number of resampling shown in Figure 1.
This comes from the fact that the conditioning procedure of
CGR I only needs swapping of the maximum and is very
fast.

6. Conclusion
In this paper, we proposed Conditional Geometric Resam-
pling (CGR), which is a technique to give unbiased or
small-bias estimators for w−1

t,i . The most important con-
tribution is that, CGR is the first algorithm to enable FTPL
to achieve BOBW with average complexity of O(K logK)
without sacrificing the regret. For the second version of
CGR with perturbations following Fréchet distribution with
shape α = 2, we provided a bound of O(K) for the expected
number of resampling given the chosen arm, and proved the
BOBW property of CGR II-biased with the maximum num-
ber of resampling ⌈(K ∨ 4) log t⌉. We empirically demon-
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strated that CGR not only significantly improves runtime
efficiency, but also improves the regret from FTPL with the
original geometric resampling.
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A. Details of FTPL Literature
While originally proposed by Hannan (1957), FTPL gained significant attention for its computational efficiency and
simplicity after Kalai & Vempala (2005) introduced it in the context of linear optimization. These properties have made
FTPL effective across various online learning and bandit settings, including combinatorial semi-bandits (Neu & Bartók,
2016), online learning with non-linear losses (Dudı́k et al., 2020), and MDP bandits (Dai et al., 2022). Although variants
of FTPL have been developed to improve computational efficiency by avoiding direct optimization, many either sacrifice
theoretical performance compared to FTRLs or become computationally expensive when only partial information is available.
For example, an earlier efficient FTPL algorithm was shown to suffer O(T 2/3) regret (Awerbuch & Kleinberg, 2004), while
another achieving O(

√
KT logK) regret required O(T 2) numerical operations per round (Poland, 2005). This inefficiency

in bandit settings comes from the nature of FTPL, which avoids explicit optimizations to compute importance weights in
closed form. To address this issue, Neu & Bartók (2016) proposed GR in the line of combinatorial semi-bandits, whose
reduction to MAB achieves O(

√
KT logK) regret with O(K2) numerical operations per round. Further refinements by

Honda et al. (2023) and Lee et al. (2024) showed that FTPL with GR can achieve optimal O(
√
KT ) regret and even BOBW

guarantees for MAB problems when using appropriately chosen perturbation distributions. However, in standard MAB
problems, GR often incurs a higher computational cost than FTRL algorithms, despite FTRL requiring the solution of a
convex optimization problem each round. This observation contrasts with combinatorial bandit settings, where GR was
initially introduced, and motivates the design of a more efficient resampling method for FTPL.

B. Proofs of Lemmas on Number of Resampling
In this section, we provide the proofs for Lemmas 1, 2 and 3.

For convenience of describing the conditions in the proof, we define an indicator function as

χt,i(r
′
t) =

{
1, if i = argminj∈[K]{L̂t − r′t/ηt},
0, otherwise.

Then, the condition (2) for termination in GR or CGR is equivalent to χt,It(r
′
t) = 1, which we simply write as χt(r

′
t) = 1.

B.1. Proof of Lemma 1

Lemma 1 (restated) Consider resampling of r′t from D conditioned on At until (2) is satisfied. Then, the number Mt of
resampling satisfies

Er′t∼D|At
[Mt|L̂t, It] =

P[At|L̂t, It]

wt,It

.

Proof. Consider the arm-selection probability wt,It with the condition At. wt,It can be expressed as

wt,It = P[χt(r
′
t) = 1|L̂t, It]

= P[χt(r
′
t) = 1|At, L̂t, It]P[At|L̂t, It] + P[χt(r

′
t) = 1|Ac

t , L̂t, It]P[Ac
t |L̂t, It]. (7)

Note that At is an arbitrary necessary condition for χt(r
′
t) = 1, which implies that

P[χt(r
′
t) = 1|Ac

t , L̂t, It] = 0.

Therefore, from (7) we have
wt,It = P[χt(r

′
t) = 1|At, L̂t, It]P[At|L̂t, It]. (8)

Now we consider the expected number of resampling Mt. Recall that r′t is sampled from D conditioned on At until (2) is
satisfied, that is, χt(r

′
t) = 1. Then Mt follows geometric distribution with probability mass function

P[Mt = m|L̂t, It] =
(
1− P[χt(r

′
t) = 1|At, L̂t, It]

)m−1

P[χt(r
′
t) = 1|At, L̂t, It].
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Therefore, the expected number of resampling given L̂t and It is expressed as

Er′t∼D|At
[Mt|L̂t, It] = P[χt(r

′
t) = 1|At, L̂t, It]

∞∑
n=1

n
(
1− P[χt(r

′
t) = 1|At, L̂t, It]

)n−1

= P[χt(r
′
t) = 1|At, L̂t, It]/

(
P[χt(r

′
t) = 1|At, L̂t, It]

)2
= 1/P[χt(r

′
t) = 1|At, L̂t, It]. (9)

Combining (8) and (9), we obtain

Er′t∼D|At
[Mt|L̂t, It] =

P[At|L̂t, It]

wt,It

.

B.2. Proof of Lemma 2

Lemma 2 (restated) The sample r′t obtained by Algorithm 3 follows the conditional distribution of D given At ={
r′t,It = maxi:σi≤σIt

r′t,i
}

. In addition,

Pr′t∼D[At|L̂t, It] = 1/σIt

and the number Mt of resampling satisfies

Er′t∼D|At
[Mt|L̂t] ≤ logK + 1.

Proof. Let P∗[·] denote the probability distribution of r′t after the value-swapping operation. We have

P∗
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣L̂t, It

]
=

∑
j:σj≤σIt

P
[⋂

i:σi≤σIt ,i/∈{j,It}

{
r′t,i ≤ ai

}
, r′t,j ≤ aIt , r

′
t,It ≤ aj , r

′
t,j = max

i:σi≤σIt

r′t,i

∣∣∣∣L̂t, It

]

=
∑

j:σj≤σIt

P
[⋂

i:σi≤σIt ,i/∈{j,It}

{
r′t,i ≤ ai

}
, r′t,j ≤ aIt , r

′
t,It ≤ aj

∣∣∣∣r′t,j = max
i:σi≤σIt

r′t,i, L̂t, It

]
P
[
r′t,j = max

i:σi≤σIt

r′t,i

∣∣∣∣L̂t, It

]
(10)

By the symmetry of r′t ∈ [0,∞)K , we have

P
[
r′t,j = max

i:σi≤σIt

r′t,i

∣∣∣∣L̂t, It

]
= P

[
r′t,It = max

i:σi≤σIt

r′t,i

∣∣∣∣L̂t, It

]
. (11)

for any j suth that σj ≤ σIt . Then we have

1 = P

 ⋃
j:σj≤σIt

{r′t,j = max
i:σi≤σIt

r′t,i}

∣∣∣∣∣∣L̂t, It


=

∑
j:σj≤σIt

P
[
r′t,j = max

i:σi≤σIt

r′t,i

∣∣∣∣L̂t, It

]

= σItP
[
r′t,It = max

i:σi≤σIt

r′t,i

∣∣∣∣L̂t, It

]
,
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which means that (11) is equal to 1/σIt . Therefore, from (10) we have

P∗
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣L̂t, It

]
=

1

σIt

∑
j:σj≤σIt

P
[⋂

i:σi≤σIt ,i/∈{j,It}

{
r′t,i ≤ ai

}
, r′t,j ≤ aIt , r

′
t,It ≤ aj

∣∣∣∣r′t,j = max
i:σi≤σIt

r′t,i, L̂t, It

]
. (12)

By symmetry, each probability term on RHS of (12) is equal. Therefore, we have

P∗
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣L̂t, It

]
= P

[⋂
i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣At, L̂t, It

]
,

which means that CGR I samples r′t from the conditional distribution of D given At =
{
r′t,It = maxi:σi≤σIt

r′t,i
}

.

Combining this fact with Lemma 1, for CGR I we have

Er′t∼D|At
[Mt|L̂t, It] =

1

σItwt,It

.

Then, the expected number of resampling given L̂t in CGR I is bounded by

Er′t∼D|At
[Mt|L̂t] =

K∑
i=1

P[It = i|L̂t]Er′t∼D|At
[Mt|L̂t, It = i]

=

K∑
i=1

wt,i ·
1

σiwt,i

≤ 1 +

∫ K

1

1

x
dx

= logK + 1.

B.3. Proof of Lemma 3

Lemma 3 (restated) In CGR II, r′t follows the conditional distribution of D given At in (3). In addition,

Pr′t∼D[At|L̂t, It] =
(
1− FσIt (ηtL̂t,It

)
)
/σIt

and the number Mt of resampling satisfies

Er′t∼D[Mt|L̂t] ≤ logK + 1.

Besides, if D is the Fréchet distribution with shape 2, then Mt satisfies

Er′t∼D|At
[Mt|L̂t, It] ≤ K ∨ 4.

Proof. Recall that DσIt
be the distribution of the maximum of σIt i.i.d. samples from D, whose cumulative distribution

function is given by

FσIt (x) = (F (x))σIt .

Then, the probability density function of DσIt
is expressed as

fσIt (x) =

{
σItf(x)F

σIt−1(x), x ∈ [0,∞) ,

0, otherwise.

13
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Since r′t,It is sampled from the truncated distribution of DσIt
with support

[
ηtL̂t,It

,∞
)

, it follows the probability density
function

fIt(x; ηtL̂t,It
) =

{
σItf(x)F

σIt−1(x)/
(
1− FσIt

(
ηtL̂t,It

))
, x ∈

[
ηtL̂t,It

,∞
)
,

0, otherwise.

For any i ̸= It that satisfies σi ≤ σIt , given r′t,It = aIt , r′t,i is sampled i.i.d. from the truncated distribution of D with
support [0, aIt ]. Therefore, it follows the probability density function

fi(x; aIt) =

{
f(x)/F (aIt), x ∈ [0, aIt ] ,

0, otherwise.

Given L̂t,It
, the joint probability density of r′t,i for i satisfying σi ≤ σIt is denoted by fK(·; ηtL̂t,It

). Then, for a =
(a1, a2, . . . , aK) we have

fK(a; ηtL̂t,It
) = fIt(aIt ; ηtL̂t,It

)
∏

i:σi≤σIt ,i̸=It

fi(ai; aIt)

=

{
σIt

∏
i:σi≤σIt

f(ai)/
(
1− FσIt

(
ηtL̂t,It

))
, if aIt = maxi:σi≤σIt

ai, aIt ≥ ηtL̂t,It
,

0, otherwise.

Let P∗[·] denote the probability distribution of r′t under the resampling method in CGR II. We have

P∗
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣L̂t, It

]
=

∫ ai

0

· · ·
∫ ai′

0︸ ︷︷ ︸
σIt integrals

fIt(zIt ; ηtL̂t,It) dzIt
∏

i:σi≤σIt ,i̸=It

fi(zi; zIt) dzi (13)

=
σIt

1− FσIt

(
ηtL̂t,It

) ∫ aIt

ηtL̂t,It

f(z)
∏

i:σi≤σIt ,i̸=It

F (ai ∧ z) dz

=
σIt

1− FσIt

(
ηtL̂t,It

)P[⋂
i:σi≤σIt

{
r′t,i ≤ ai

}
,At

∣∣∣∣L̂t, It

]
. (14)

Here, i′ in (13) is used as a distinct index from i, satisfying the constraint σi′ ≤ σIt . Now we consider the probability of
At =

{
r′t,It = maxi:σi≤σIt

r′t,i, r
′
t,It

≥ ηtL̂t,It

}
given L̂t and It, which is expressed as

P[At|L̂t, It] = P
[
r′t,It = max

i:σi≤σIt

r′t,i, r
′
t,It ≥ ηtL̂t,It

∣∣∣∣L̂t, It

]
=

∫ ∞

ηtL̂t,It

f(z)FσIt−1(z) dz

=

∫ ∞

ηtL̂t,It

FσIt−1(z) dF (z)

=
(
1− FσIt

(
ηtL̂t,It

))
/σIt . (15)

Combining (14) and (15), we have

P∗
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣L̂t, It

]
=

P
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}
,At

∣∣∣L̂t, It

]
P[At|L̂t, It]

= P
[⋂

i:σi≤σIt

{
r′t,i ≤ ai

}∣∣∣∣At, L̂t, It

]
,

which means that CGR II samples r′t from D conditioned on At =
{
r′t,It = maxi:σi≤σIt

r′t,i, r
′
t,It

≥ ηtL̂t,It

}
.

14
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The value of P[At|L̂t, It] is given in (15). According to Lemma 1, for CGR II, Mt satisfies

Er′t∼D|At
[Mt|L̂t, It] ≤

1− FσIt

(
ηtL̂t,It

)
σItwt,It

,

where the equality holds if and only if Gt = ∞.

Then, the expected number of resampling given L̂t in CGR II is bounded by

Er′t∼D|At
[Mt|L̂t] =

K∑
i=1

P[It = i|L̂t]Er′t∼D|At
[Mt|L̂t, It = i]

≤
K∑
i=1

wt,i ·
1− FσIt

(
ηtL̂t,It

)
σiwt,i

≤ 1 +

∫ K

1

1

x
dx

= logK + 1.

According to Lemma 1, we have Er′t∼D|At
[Mt|L̂t, It] = P[At|L̂t, It]/wt,It . Therefore, to prove Er′t∼D|At

[Mt|L̂t, It = i]

≤ K ∨ 4, we only need to show P[At|L̂t, It = i]/wt,i ≤ K ∨ 4. See the proof in Appendix C.2.

C. Proofs of regret analysis
In this section, we provide the proofs for Lemmas 6 and 7 on the bias and the regret of CGR II-biased.

C.1. Proof of Lemma 6

Before presenting the proof of Lemma 6, we first provide an explicit expression for the expectation of the loss estimates
generated by CGR II, similar to the approach used in Lemma 4 of Neu & Bartók (2016).

Lemma 8. For all i ∈ [K] and t such that wt,i > 0, the loss estimates of CGR II satisfies that

E
[
ℓ̂t,i

∣∣∣L̂t

]
=

1−

(
1− wt,i

P(At|L̂t, It = i)

)Gt
ℓt,i.

Proof. In CGR II, the probability of pulling an arm i, denoted by qt,i, is given as

qt,i = P
(
χt,i(r

′
t,i) = 1

∣∣∣L̂t

)
= P

(
χt,i(r

′
t,i) = 1

∣∣∣L̂t, It = i,At

)
P(At|L̂t, It = i) =

wt,i

P(At|L̂t, It = i)
,

where the last equality follows from (8). Let Mt,i denote the number of resampling for an arm i at round t. Then, we have

Er′t∼D|At
[Mt,i|L̂t] =

∞∑
k=1

k(1− qt,i)
k−1qt,i −

∞∑
k=Gt

(k −Gt)(1− qt,i)
k−1qt,i

=

∞∑
k=1

k(1− qt,i)
k−1qt,i − (1− qt,i)

Gt

∞∑
k=Gt

(k −Gt)(1− qt,i)
k−Gt−1qt,i

= (1− (1− qt,i)
Gt)

∞∑
k=1

k(1− qt,i)
k−1qt,i =

1− (1− qt,i)
Gt

qt,i
.

By definition of ℓ̂t,i, we have

E
[
ℓ̂t,i

∣∣∣L̂t

]
= qt,iℓt,iE

[
Mt,i

∣∣∣L̂t

]
= (1− (1− qt,i)

Gt,i)ℓt,i.

15
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Lemma 6 (restated) The expected regret of FTPL with CGR II satisfies

R(T ) ≤
T∑

t=1

E
[〈

ℓ̂t, wt − ei∗
〉]

+

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt
.

Proof. The overall proof is a simple reduction of the results in combinatorial semi-bandits (Neu & Bartók, 2016, Lemma 5)
to MAB. By definition, we have for any i ∈ [K]

E
[
wt,iℓ̂t,i

∣∣∣L̂t

]
= wt,iE

[
ℓ̂t,i

∣∣∣L̂t

]
= wt,i

1−

(
1− wt,i

P(At|L̂t, It = i)

)Gt,i
ℓt,i (by Lemma 8)

= wt,iℓt,i − wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt,i

ℓt,i

≥ wt,iℓt,i − wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt,i

. (16)

Then, by definition of R(T ), we have

R(T ) =

T∑
t=1

E[⟨ℓt, wt − ei∗⟩]

≤
T∑

t=1

E
[〈

ℓ̂t, wt

〉
− ⟨ℓt, ei∗⟩

]
+

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt,i
, (by (16))

which concludes the proof.

C.2. Proof of Lemma 7

Lemma 7 (restated) When D is the Fréchet distribution with shape 2 and Gt = (K ∨ 4) log t, FTPL with CGR II-biased
satisfies

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt
 ≤ log T.

Proof. For notational simplicity, we denote P(At|L̂t, It = i) by P(At,i) in this proof. Since (1− x)a ≤ e−ax, it suffices to
show that for any t ∈ N and i ∈ [K]

exp

(
− wt,i

P(At,i)
Gt

)
≤ 1

t
.

To this end, we address the term P(At,i)
wt,i

and set an appropriate Gt to establish a tight regret upper bound.

By definition of At,i, when σi denotes the number of arms such that L̂t,j ≤ L̂t,i it holds that

P(At,i) =

∫ ∞

λt,i

f(z)Fσi−1(z)dz.

When D is Fréchet distribution with shape 2, whose density and distribution functions are given as

f(x) =
2e−

1
x2

x3
, and F (x) = e−

1
x2 , (17)

16
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it holds that

P(At,i) =

∫ ∞

λt,i

2

z3
exp
(
−σi

z2

)
dz

=

∫ σi
λ2
t,i

0

1

σi
e−tdt (by t = σi/z

2)

=
1− exp

(
− σi

λ2
t,i

)
σi

. (18)

Now, let us consider the lower bound on wt,i. When z > 0 and λt,j ≥ λt,i, i.e., σj ≥ σi we have

1

(z + λt,j)
2
≤ 1

(z + λt,i)
2
.

On the other hand, when z ≥ λt,i and λt,j ≤ λt,i, we have

1

(z + λt,j)
2
<

1(
z+λt,i

2 + λt,j

)2 <
4

(z + λt,i)
2
.

Therefore, we obtain

wt,i =

∫ ∞

0

2

(z + λt,i)
3
exp

−
∑
j∈[K]

1

(z + λt,j)
2

dz

≥
∫ ∞

λt,i

2

(z + λt,i)
3
exp

−
∑
j∈[K]

1

(z + λt,j)
2

dz

≥
∫ ∞

λt,i

2

(z + λt,i)
3
exp

(
−4(σi − 1) +K − σi + 1

(z + λt,i)
2

)
dz

=
1− exp

(
− 3(σi−1)+K

4λ2
t,i

)
3(σi − 1) +K

. (19)

Let h(x) = (1− e−x)/x. Then, by combining (18) and (19), we obtain

P(At,i)

wt,i
≤

1− exp
(
− σi

λ2
t,i

)
σi

3(σi − 1) +K

1− exp
(
− 3(σi−1)+K

4λ2
t,i

)
≤ 4h(x)

h(y)
, (20)

where x = σi/λ
2
t,i and y = 3(σi−1)+K

4λ2
t,i

. Except the case σi = K = 2, we can see

y

x
=

3(σi − 1) +K

4σi
≤ K

4

and therefore

P(At,i)

wt,i
≤ sup

x,y>0:y≤Kx/4

4h(x)

h(y)

= sup
x>0

4h(x)

h(Kx/4)
,

17
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since h(y) is decreasing. For K ≤ 4, it is bounded from above by 4 since h(x) ≤ h(Kx/4) by x ≥ Kx/4. For K ≥ 4, we
have

sup
x>0

4h(x)

h(Kx/4)
= K sup

x>0

1− e−x

1− e−Kx/4
(21)

= K sup
x>0

(
1− e−x − e−Kx/4

1− e−Kx/4

)
≤ K.

Finally, when σi = K = 2, y/x = 5/8 holds. Since h(y) is decreasing, we again obtain

P(At,i)

wt,i
≤ sup

x>0

4h(x)

h(5x/8)
≤ 4.

Hence, for all t ∈ N and i ∈ [K], we obtain

P(At,i)

wt,i
≤ K ∨ 4.

This implies that for any Gt > 0∑
i

wt,i exp

(
− wt,i

P(At,i)
Gt

)
≤
∑
i

wt,i exp

(
− Gt

K ∨ 4

)
= exp

(
− Gt

K ∨ 4

)
. (by

∑
i wt,i = 1)

Therefore, setting Gt = (K ∨ 4) log t concludes the proof.

C.3. Proof of Theorem 5

Theorem 5 (restated) FTPL with CGR II-biased with learning rate ηt = c/
√
t for c > 0 and maximum number of

resampling Gt = (K ∨ 4) log t satisfies that

R(T ) ≤

O
(√

KT
)

in adversarial bandits,

O
(∑

i ̸=i∗
log T
∆i

)
in stochastic bandits,

if the perturbation distribution D is the Fréchet distribution with shape 2.

Proof. The regret of FTPL with CGR II-unbiased with Gt = (K ∨ 4) log t satisfies

R(T ) ≤
T∑

t=1

E
[〈

ℓ̂t, wt − ei∗
〉]

+

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt
 (by Lemma 6)

≤
T∑

t=1

E
[〈

ℓ̂t, wt − ei∗
〉]

+ log T. (by Lemma 7)

Let ℓ̂CGR
t and ℓ̂GR

t denote the IW estimators of CGR II-unbiased and GR, respectively. By construction, E[ℓ̂CGR
t ] ≤ E[ℓ̂GR

t ]
holds, allowing the first term on the RHS to be directly bounded by the results for GR in Honda et al. (2023). Further details
on adversarial regret can be found in Lemma 9 in Appendix D. For the stochastic setting, as the analysis remains identical to
the previous one, we refer readers to Honda et al. (2023, Theorem 2) for further details.

D. Improved regret analysis of CGR II
In this section, we formalize Remark 3 by presenting an improved analysis of the adversarial regret for FTPL with CGR II
when the perturbation D follows the Fréchet distribution with shape parameter 2, as detailed in the following Theorem 10.
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To understand how the transition from GR to CGR II affects the regret analysis, we first introduce the necessary notations
and summarize relevant prior results. With a slight abuse of notation, we define a function ϕi for i ∈ [K] by

ϕi(λ) =

∫ ∞

0

2

(z + λi)
3
exp

−
K∑
j=1

1

(z + λi)
2

dz.

When D is Fréchet distribution with shape 2, whose density and distribution functions are given in (17), one can see that
ϕi(ηtL̂t) = wt,i holds. Let ϕ = (ϕ1, . . . , ϕK) denote arm-selection probability vector. Then, the following result has been
established.

Lemma 9 (Overall results in Honda et al. (2023)). In adversarial setting, FTPL with GR, Fréchet distribution with shape 2,
and learning rate ηt = c/

√
t for c > 0 satisfies

R(T ) ≤
T∑

t=1

E
[〈

ℓ̂t, wt+1 − wt

〉]
︸ ︷︷ ︸

stability

+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1 − rt+1,i∗ ]︸ ︷︷ ︸

penalty

+

√
πK

c︸ ︷︷ ︸
dependent term only on D, η1

≤
T∑

t=1

E
[〈

ℓ̂t, wt+1 − wt

〉]
+

3.7

c

√
KT +

√
πK

c

≤
T∑

t=1

E
[〈

ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))
〉]

+ log(T + 1) +
3.7

c

√
KT +

√
πK

c
(22)

≤
(
12c

√
π +

3.7

c

)√
KT + log(T + 1) +

√
πK

c
,

whose dominant term can be optimized as R(T ) ≤ 17.8
√
KT +O(

√
K + log T ) when c = 0.42.

In the adversarial setting, the penalty term is bounded by 3.7
√
KT/c, independent of the value of the cumulative loss

estimator L̂t, as shown through worst-case analysis (see Honda et al., 2023, Lemma 9). In the derivation of (22), by
definition of ϕ, we have

wt − wt+1 = ϕ(ηtL̂t)− ϕ(ηt+1L̂t+1)

= ϕ(ηtL̂t)− ϕ(ηt+1(L̂t + ℓ̂t))

= ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t)) + ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t)),

which implies

∑
t=1

E
[〈

ℓ̂t, wt − wt+1

〉]
=

T∑
t=1

E
[〈

ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))
〉]

+

T∑
t=1

E
[〈

ℓ̂t, ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t))
〉]

.

Here, the second term is also bounded by log(T + 1), regardless of the use of GR (see Lee et al., 2024, Lemma 8). Therefore,
the transition from GR to CGR II affects the upper bound of the stability term, particularly when accounting for the variance
of the IW estimator, which is related to the first term in (22). The following theorem, which formalizes Remark 3, shows
that using CGR II can further improve the dominant term.

Theorem 10 (Formal version of Remark 3). In adversarial setting, FTPL with CGR II, Fréchet distribution with shape 2,
and learning rate ηt = c/

√
t satisfies

R(T ) ≤
(
11.5c

√
π +

3.7

c

)√
KT + log(T + 1) +

√
πK

c
+

T∑
t=1

∑
i∈[K]

E

wt,i

(
1− wt,i

P(At|L̂t, It = i)

)Gt
,

whose dominant term can be optimized as R(T ) ≤ 17.37
√
KT +O(

√
K + log T ) when c = 0.43 and Gt ≥ (K ∨ 4) log t.
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Note that the optimized c of CGR II is greater than that of GR, as shown in Lemma 9, implying that FTPL with CGR
II-unbaised can further improve the additive constant term.

Before the proof, we define another function introduced in Honda et al. (2023) as

Ii,n(λ) =

∫ ∞

0

1

(z + λi)n
exp

−
K∑
j=1

1

(z + λj)2

dz > 0, (23)

which satisfies
ϕi(λ) = 2Ii,3(λ), ϕ′

i(λ) = −6Ii,4(λ) + 4Ii,6(λ). (24)

Then, the following result was established.
Lemma 11 (Lemma 5 in Honda et al. (2023)). If λi is the σi-th smallest among λ1, . . . , λK (ties are broken arbitrarily)
then

Ii,4(λ)

Ii,3(λ)
≤
√
π/σi

2
.

Proof of Theorem 10. As discussed above, it suffices to show

T∑
t=1

E
[〈

ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))
〉]

≤ 11.5c
√
πKT .

Here, Honda et al. (2023) showed that in their proof of Lemma 7 that

ϕi(ηtL̂t)− ϕi(ηt(L̂t + (ℓt,iŵ
−1
t,i )ei)) =

∫ ηtℓt,iŵ
−1
t,i

0

−ϕ′
i(ηtL̂t + xei)dx

≤ 6

∫ ηtℓt,iŵ
−1
t,i

0

Ii,4(ηtL̂t + xei)dx (by (24))

≤ 6

∫ ηtℓt,iŵ
−1
t,i

0

Ii,4(ηtL̂t)dx (monotonicity of Ii,4)

≤ 6ηtℓt,iIi,4(ηtL̂t)ŵ
−1
t,i .

Here, the monotonicity of Ii,4 in its i-th element might not appear trivial. From the definition of I in (23), one can interpret
this function as an arm-selection probability of FTPL when ri is of density of order (z + λi)

4 and rjs for j ̸= i follows the
Fréchet distribution with shape 2. Therefore, Ii,4 is monotonically decreasing with respect to the i-th argument.

Under CGR II, we obtain

E
[
ŵ−1

t,It

2
∣∣∣∣L̂t, It

]
= Var

[
ŵ−1

t,It

∣∣∣L̂t, It

]
+ E2

[
ŵ−1

t,It

∣∣∣L̂t, It

]
=

2

w2
t,It

− 1

wt,ItP(At)
.

Recall (20), which shows
P(At,i)

wt,i
≤ 4h(x)

h(y)
,

where h(x) = 1−e−x

x , x = σi

λ2
t,i

, and y = 3(σi−1)+K
4λ2

t,i
. One can see that for any i ∈ [K] and K ≥ 2

y

x
=

3(σi − 1) +K

4σi
≤ K

σi
.

Following the same arguments in (21), we have

P(At,i)

wt,i
≤ 4h(x)

h(y)
≤ sup

x>0

4h(x)

h(Kx/σi)
≤ 4K

σi
,
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which implies
1

P(At)
≥ σi

4Kwt,i
=⇒ E

[
ŵ−1

t,It

2
∣∣∣∣L̂t, It

]
≤
(
2− σi

4K

) 1

w2
t,It

.

Since ℓ̂t = (ℓt,iŵ
−1
t,i )ei when It = i, we obtain

E
[
ℓ̂t,i(ϕi(ηtL̂t)− ϕi(ηt(L̂t + ℓ̂t)))

∣∣∣L̂t

]
≤ E

[
χ[It = i]ℓt,iŵ

−1
t,i · 6ηtℓt,iIi,4(ηtL̂t)ŵ

−1
t,i

∣∣∣L̂t

]
≤ 6ηtE

[(
2− σi

4K

)
wt,i

ℓ2t,iIi,4(ηtL̂t,i)

w2
t,i

∣∣∣∣∣L̂t

]

= 3ηtE

[(
2− σi

4K

)ℓ2t,iIi,4(ηtL̂t,i)

Ii,3(ηtL̂t,i)

∣∣∣∣∣L̂t

]
(by (24))

≤ 3ηtE

[(
2− σi

4K

)Ii,4(ηtL̂t,i)

Ii,3(ηtL̂t,i)

∣∣∣∣∣L̂t

]
(∵ ℓt,i ∈ [0, 1])

≤ 3
√
π

2
ηtE
[(

2
√
σi

−
√
σi

4K

)∣∣∣∣L̂t

]
. (by Lemma 11)

Therefore,

E
[〈

ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))
〉]

≤ 3
√
π

2
ηt

K∑
i=1

(
2

√
σi

−
√
σi

4K

)

≤ 3
√
πηt

(
1 +

∫ K

1

x−1/2dx

)
− 3

√
π

2
ηt

(∫ K

0

x1/2

4K
dx

)

= 3
√
πηt(2

√
K − 1)−

√
πηt

√
K

4

≤ 23
√
π

4

√
Kηt.

By taking summation with ηt = c/
√
t, we have∑

t

E
[〈

ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))
〉]

≤ 23
√
πc

4

√
K
∑
t=1

1√
t

≤ 23
√
πc

2

√
KT,

which concludes the proof.

E. Details and Additional Results of Experiments
In this appendix, we firstly describe the details of stochastic setting and stochastically constrained adversarial setting (or
adversarial setting in short), and then provide results of additional experiments to complement those presented in Section 5.

E.1. Details of Settings

In our experiments for both settings, the losses of each arms follow the Bernoulli distributions, and we exclusively consider
the case where the suboptimality gap ∆ = 0.125. For the stochastic setting, which is implemented for the experiments
shown in Figures 4, 5, 6, 8c and 8d, the mean losses are decided as (1−∆)/2 for the single optimal arm and (1 + ∆)/2 for
the other suboptimal arms.

For stochastically constrained adversarial setting, which is implemented for the experiments shown in Figures 1, 2, 3, 8a and
8b, the mean losses for the single optimal arm and the suboptimal arms switch between (1−∆, 1) and (0,∆), with the
duration of each phase growing exponentially by a factor of 1.6 after every switch. Both settings are similar to those in
Zimmert & Seldin (2021).
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Figure 4. Number of resampling for stochastic setting, K = 32.
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Figure 5. Runtime (sec) for stochastic setting and different K.

E.2. Additional Results

Consistently with the experiments in Section 5, the results of 100 trials are shown in this appendix. Figures 4 and 5 show the
results of the number of resampling and runtime for stochastic setting. Figures 6 and 7 show the regret performance for
stochastic setting and that for adversarial setting, respectively. Note that we include the results both of FTPL CGR II-B and
FTPL CGR II-U to explicitly demonstrate their empirical indistinguishability, as discussed in Section 5.

The results for stochastic setting lead to the similar conclusions to those for the adversarial setting, that is, FTPL CGR
not only effectively controls the number of resampling and significantly improves the runtime, but also achieves the better
empirical regret performance, which seems to be due to the reduced variance of the loss estimator. In addition, Figure 8
provides a visualization of the average and maximum number of resampling at each round over 100 trials for both settings,
as a complement to the overview shown in Figures 1 and 4. We can see that, under all the variants of FTPL CGR, the
number of resampling at each round is stably controlled at a significantly low value, which is particularly pronounced for
FTPL CGR II. Another interesting observation from Figures 8a and 8c is that, for FTPL GR and FTPL CGR I, the average
number of resampling fluctuates within a range throughout the horizon, whereas that for FTPL CGR II tends to be gradually
reduced as the round progresses, seemingly due to the widening gap of the cumulative estimated losses between the arms.
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Figure 6. Pseudo regret in stochastic setting.
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Figure 7. Pseudo regret in adversarial setting.
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(a) Average, adversarial setting.
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Figure 8. Average or Maximum number of resampling at each round for K = 32.
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