
Graph Rhythm Network: Beyond Energy Modeling
for Deep Graph Neural Networks

Yufei Jin and Xingquan Zhu
Department of Electrical Engineering and Computer Science, Florida Atlantic University

Boca Raton, FL 33431, USA
{yjin2021, xzhu3}@fau.edu

Abstract—Graph neural networks (GNN) have been commonly
used for learning and classifying objects with correlated relation-
ships. To date, many GNN architectures exist, but majority of
them only work well on shallow networks due to the oversmooth-
ing phenomenon, where node features become similar to each
other, as the layer increases. In this paper, we point out that the
key to create an informative deep GNN is to have an adaptive
feature updating rate control for each node, where the updating
rate should take each node’s locality into consideration through
shared trainable weight parameters. Accordingly, we advocate a
new graph rhythm modeling as a generalized mechanism to the
Dirichlet energy based approaches. Instead of merely modeling
difference between nodes, like Dirichlet energy based approach
does, graph rhythm focuses on omni-directional relationship
mapping between each node and its neighbors. Such a mechanism
provides a more general ways of capturing patterns between
nodes (i.e. graph rhythm) for effective graph neural network
learning. Experiments and comparisons, demonstrate the per-
formance gain and show that GRN can help create GNNs with
deep layers, without suffering from performance deterioration or
having better performance than shallow networks.

Index Terms—Graph rhythm, graph neural network, over-
smoothing, graph embedding

I. INTRODUCTION

Graph neural networks (GNN) have been commonly used
in many machine learning tasks involving networked objects,
such as network node classification, link prediction, chemical
compound classification [1], and recently graph distribution
learning [2], etc.. To take network topology into consideration
for learning, a series of works, such as Graph Convolution
Network (GCN) [3], Graph Attention Network (GAT) [4], and
GraphSage model [5] have been proposed to solve respective
challenges. Despite of unique motivations, a key component
of these networks is to find proper aggregation mechanism
for feature updating. Aggregation is naturally required by
the permutation invariant properties of the graph data, but it
often results in performance deterioration for deep layers. As
layer increases, embedding features learned from the network
tend to collapse to similar values, indicating node/topology
information loss through aggregation operation, a phenomenon
commonly referred to as oversmoothing [6].

A. Deep GNN vs. Oversmoothing

Existing methods alleviating oversmoothing in graph neural
networks largely fall into five main categories [6]: residual-
based, random-masked based, diffusion-based, transformer-
based, and energy-based approaches. Early works include a

series of dropping mechanisms attempting to mask part of
node features and/or graph topology. A representative work
is DropMessage [7], which alleviates oversmoothing up to
several layers but unsuccessful for deeper layers. This part
of work also does not show clear evidence of performance
gain with layer increases.

To tackle oversmoothing, Residual-based Message Passing
Neural Network (MPNN) is commonly used as a graph neural
network backbone. Transformer-based approaches introduce
attention-mechanism or learn new topology induced from
features. Such an attention mechanism typically introduces
high computation costs and complexities, and there is limited
evidence showing that it can help train deep graph neural
networks. Diffusion-based models leverage continuous Or-
dinary/Partial Differential Equations (ODE/PDE) and their
discretizations, which often lead to residual-based MPNN
structures.

For message passing neural networks, a critical component
is its residual-based approach, an idea borrowed from com-
puter vision field which has shown to alleviate the oversmooth-
ing in deep neural networks, as demonstrated in GCNII [8].
The key idea behind the residual-based message passing is to
balance the updated feature by mixing information aggregated
from neighbors and the original features. Despite its success,
existing methods still do not show good performance as
layers become sufficiently large, such as over 10 layers or
more, mainly because learning fails to gain additional benefits
from deep depth structures. This is mainly attributed to the
challenge of solving a double-sided problem: Simply trying to
learn unique embedding features for each node (i.e. pushing
nodes away from each other) does not necessarily deliver
good solutions to resolve the oversmoothing problem because
such unique embedding features may not faithfully represent
topology/content features of each node (i.e. a node expressive
power issue), and therefore result in poor performance in
downstream tasks [9].

Another line of works focus on defining a measure to reflect
the extent of oversmoothing over layers and try to preserve the
measure to some threshold. A popular measure for this line
of works is called Dirichlet energy, which is the summation
of nodes distance towards its one-hop neighbors. EGNN [10],
for example, selects the coefficient for the residual component
based on the lower bound of the energy. G2-gating [11],
directly uses a tanh() mapping to control feature updating

rate through Dirichlet energy. It is observed that G2-gating
achieves both deep layers without oversmoothing and can
actually benefits from such deep structures with performance
gain.

From the existing studies, there is a gap between alleviating
oversmoothing vs. achieving additional performance gain from
deep layers. In this paper, we intend to close the gap by
delivering a solution to not only alleviate oversmoothing but
also achieve better performance from deep layers.

B. Motivation and Contributions

In summary, existing research has demonstrated that deep
graph structures often do not work better than a simple shallow
version even if the Dirichlet energy is well preserved. This
suggests that simply alleviating oversmoothing is insufficient,
and there is a need to ensure embedding features can faithfully
preserve content and topology information (i.e. node expres-
sive power) for performance gain.

Motivated by the above observations, we propose to learn
deep graph neural networks without performance degradation
as layers become very deep. Our main theme is to establish
a graph rhythm measure, which replaces Dirichlet energy, for
feature updating. A unique strength of graph rhythm stems
from its omni-directional relationship mapping nature, which
is capable of modeling much boarder node relationships than
Dirichlet energy, which is only limited to modeling node
differences. Combining graph rhythm and residual message
passing, a graph rhythm network (GRN) is proposed. Empirical
comparisons demonstrate GRN’s performance in creating very
deep GNNs (e.g. networks with over 100 layers).

II. PROBLEM DEFINITION & PRELIMINARY

A. Symbols and Notations

A graph, denoted by G = (V,E,X, Y), consists of a
node set V with n nodes, an edge set E, a feature matrix
X ∈ Rn×m with m features for each node vi, and a label
set Y with labels being assigned to some nodes in V . Denote
A ∈ In×n the adjacency matrix of the graph G, with A[i, j]=1
if an edge exists between vi and vj , or 0 otherwise. For a
node vi ∈ V , we denote xi ∈ R1×m as vi’s feature vector.
∆vi denotes the set of 1-hop neighbors of node vi, and ∆x

vi
denotes the feature value set for vi’s 1-hop neighbors. Denote
FΘ(X,A) as an arbitrary graph coupled function or graph
neural networks, e.g., Graph Convolution, Graph Attention, or
GraphSage. Denote l the lth layer of the graph learning model
on the graph, and X l ∈ Rn×c denotes the node embeddings
learned at the lth layer.

For ease of representation, we use X to represent both orig-
inal feature space and the learned embedding feature space,
because original node features are considered the initiative
values of embedding features. In our derivations, we consider
that original feature space dimension m and the embedding
feature space c are equal (with c = m), because we can employ
a projection layer with weight parameters W0 ∈ Rm×c to
convert original node features to X0, as shown in Fig. 1.

B. Problem Definition

Given a graph G and a graph enabled neural network (i.e.,
a Graph-coupled function FΘ(·)) [12], our goal is to propose
a generic design for creating deep graph neural networks
whose performance will not decrease as the layer l increases,
for at least l ≥ 20. This goal will help advance the graph
neural networks from shallow layers to be very deep, e.g. the
performance of most existing GNNs, such as GCN or dropout-
GCN [13], will deteriorate significantly as layer l increases.

In our research, we propose a graph rhythm as a new way of
information aggregation between each node and its neighbors.
By combing graph rhythm with message passing neural net-
works (MPNN), our proposed design can deliver GNNs with
over 100 layers, but still achieve noticeable performance gain
with peak performance at 64 layers.

C. Preliminary: Oversmoothing

Oversmoothing problem is a main challenge preventing a
graph neural network architecture from being deep. Due to
oversmoothing, the learned node embeddings tend to collapse
to the same point (or a ball with small radius), as the
number of layers increase for popular MPNN models. Several
theorems, such as subspace theorem [14], ODE theorem [12],
etc., have been proposed to explain this phenomenon. Among
them, Dirichlet energy is a core concept commonly used to
explicitly quantify oversmoothing. Many methods, therefore,
propose to tackle oversmoothing by taking Dirichlet energy
into consideration during modeling process, either implicitly
or explicitly.

1) Dirichlet Energy: Dirichlet energy measures total dis-
tance between a central node vi and its 1-hop neighbors:

εDE(x
l) =

1

n

n∑
i=1

∑
xb∈∆x

vi

∥xl
i − xl

b∥22 (1)

Oversmoothing occurs when εDE(x
l) decays exponentially as

the layer increases l [12].
a) local vs. global: When using Dirichlet energy to guide

embedding learning, most existing methods employ a local
energy based mechanisms, as defined in Eq. (2).

εDE(x
l
i) =

∑
xb∈∆x

vi

∥xl
i − xl

b∥22 (2)

Being local, node feature updating only accounts for each node
vi’s own energy, instead of considering energy of other nodes.
For example, in G2-gating [11], coefficient of the updated
node is controlled by the Dirichlet energy. This helps G2-
gating prevents all nodes locally converging to its smooth
version (aggregation of its neighbors). Nevertheless, since
local Dirichlet energy only accounts for node differences, as
the local Dirichlet energy increases, the mapping through the
tanh() will monotonically increase and will only push the
central node away from the smooth version but cannot consider
more complexity relationships between nodes. As a result, G2-
gating still falls short to leverage local energy for updating.

Fig. 1. The framework of the proposed graph rhythm network (GRN). From left to right: 1⃝ given a graph denoted by adjacency matrix A and feature matrix
X , W0 is first used to project each node’s feature to a new embedding dimension c; At any layer l, 2⃝ each node aggregate information from neighbors; 3⃝
the aggregated information is used to calculate updating coefficient τ for each node; 4⃝ and 5⃝ carry out message passing to learn embedding for next layer
Xl+1; 6⃝ iteratively repeating the process to the next layer; and 7⃝ using learned embedding features for downstream tasks.

The limitation of lacking global view and new measure
mechanism are the major hurdle preventing existing GNNs
architectures from achieving very deep layers with better per-
formance. Nodes in a graph have complex relationships (long-
term and/or short-term relation). Instead of simply relying on
node difference, like Dirichlet energy does, we need a more
generalized form to model node relationships and an adaptive
mechanism to learn to capture richer patterns. Our research
provides direct answers to these questions.

III. METHOD

In this section, we first introduce technical details of the
message passing neural networks (MPNN), which will serve
as the basis for us to create graph rhythm as a new way of
modeling node relationships. The remaining subsections will
detail the proposed graph rhythm network (GRN).

A. Message Passing Neural Network (MPNN)

Residual message passing can be considered as a dis-
cretization of an ODE and is often used to help create deep
neural networks [12] [11]. In the context of graph learning,
assume X l and X l+1 are embedding features learned from two
consecutive layers l to l + 1, respectively, a general message
passing scheme can be described as follows:

X l+1 = τ ⊙FW (A,X l) + (1− τ)⊙X l (3)

where τ ∈ Rn×c is a multi-rate coefficient controlling the
update rate of each each node (total n nodes) w.r.t. each
feature (total c features). FW (A,X l) is any graph coupled
function involved with adjacency matrix A and current feature
X l with W ∈ Rc×c denoting learnable weight parameters. For
example, for GCN [3], the FW (·) function can be summarized
as FW (A,X l) = AXW .

1) Feature Updating Rate (τ): G2-gating proposed by [11]
alleviates oversmoothing through computing coefficient τ by
graph gradient (which is essentially Dirichlet energy for a
local node). Its intuitive idea is to forecast next step Dirichlet

energy before updating and stop the new updates if the forecast
Dirichlet energy diminished.

On the one hand, the method is effective on overcoming
oversmoothing problem. Directly connecting update rates to
the Dirichlet energy helps prevent nodes from falling into
aggregation of neighbors that are close to neighbors. In the
meantime, G2-gating additionally gains node expressive power
by extra-hop information hidden in the Dirichlet energy.

Leveraging Dirichlet energy to control feature updating rate,
on the other hand, is limited by its non-parametric form and
merely capturing the difference but not other relationships. In
general, for each node vi, its τ values with respect to each of
its neighbors τij(vj ∈ ∆vi) is controlled by the fixed mapping
defined in Eq. (4).

τij = tanh(εDE(x̃
l
i)) (4)

The energy term in Eq. (4) is calculated using Eq. (5), where
p ∈ R is a hyper-parameter.

εDE(x
l
i) =

∑
xb∈∆x

vi

|xl
i − xl

b|p (5)

An essential drawback of the coefficient controlling mecha-
nism defined in Eqs. (4) and (5) is that the mapping is mono-
tonically increasing with respect to the node difference. This
hinders the method from modeling complex situations beyond
node difference can modeling. For example, the updating rate
τij may be subject to a higher order function with respect
to the sum between node vi and its neighbors, which cannot
be captured by Dirichlet energy. In addition, without having
learnable parameters involved, a node cannot effectively de-
termine and express its preference from supervised signals.

B. Graph Rhythm

As we mentioned earlier, local Dirichlet Energy is too
strict and biased to account for all local nodes relation. The
updating rate τ should depend more than simply the difference
between central nodes and their neighbors but a generalized

and adaptive version. Alternatively, we propose a graph rhythm
measure, defined in Eq. (6), to replace local Dirichlet Energy.

εGR(x
l
i) =

∑
xb∈∆x

vi

|(xl
i||xl

b)Θ|p (6)

where Θ ∈ R2c×c denote learnable parameters and p ∈ R
is a hyper-parameter. We call Eq. (6) Graph Rhythm, which
represents a generalized measure capable of capturing complex
relationships between a central node vi and its neighbors vb
to adaptively control feature updating rate.

Denote the feature aggregation function FW (A,X l), one
layer updating using graph rhythm based graph neural net-
works can be summarized as follows:

X l+1 = τ ⊙FW (A,X l) + (1− τ)⊙X l (7)

X̃ = FW (A,X l) (8)

τij = tanh(
1

di

∑
xb∈∆x

vi

|(x̃l
i||x̃l

b)Θ|p) (9)

where di = |∆vi | denotes node degree of vi, || is the concate-
nation operation, Θ and W are learnable weight parameters.
Advantages: We note following four main advantages of the
graph rhythm:

• Generalizable and Shareable: Our measure can capture
complex relationships in addition to neighbor difference,
i.e, it adapts to a required relationship to τ driven by
data instead of a static node difference relationship.
Meanwhile, we maintain a shareable measure for all
nodes to allow scalability.

• Adaptable: To guide the learning of measure mapped
to τ , learnable parameters are involved in the measure
computation to obtain feedback from supervised signal.

• Locality: Empirically, we observed performance degrada-
tion without explicit accounting for spatial information.

• Permutation Invariant: To hold the general invariant
assumption for graph, our measure apply an aggregation
function to preserve permutation invariant to local neigh-
bors.

C. Graph Rhythm Omni-directional Relationship Mapping
We analyze the difference between local Dirichlet energy

vs. the proposed graph rhythm in terms of their relationship
mapping capabilities. To prove that graph rhythm is more gen-
eralizable in capturing complex node-neighbor relationship,
we compare the following two terms and show that Eq. (4)
(local Dirichlet Energy) can only capture node difference
relationship whereas Eq. (11) (graph rhythm) can leverage
learnable Θ parameters to capture complex relationships. For
simplicity, we use p = 1 in the analysis. It is easily to show
that same conclusion holds for p > 1:

τij = tanh(
1

di

∑
xb∈∆x

vi

|x̃l
ij − x̃l

bj |) (10)

τij = tanh(
1

di

∑
xb∈∆x

vi

c∑
k=1

|Θjkx̃
l
ik +Θj(2k)x̃

l
bk|) (11)

Eq. (10) shows the mapping from Dirichlet Energy to τ , and
Eq. (11) denotes the computation from graph rhythm to τ . In
Eq. (11), if Θjk = 1 for k = j and 0 otherwise and Θj(2k) =
−1 for 2k = j and 0 otherwise, graph rhythm is reduced
to the Dirichlet energy form, implying that graph rhythm can
learn node difference relationship. Additionally, if Θjk and
Θj(2k) have the same sign (both positive or negative), Eq. (11)
can capture summation patterns, which cannot be captured by
Dirichlet energy. In addition, graph rhythm determines a scalar
feature updating rate by taking all features into consideration,
which can help utilize cross-feature correlation to determine
τ values.

D. GRN: Graph Rhythm Network

Since our proposed component is flexible to most standard
residual-based MPNN networks, we use a standard MPNN
setup in our experiment, followed by [11], for a consistent
comparison. The framework is displayed in Figure 1. In the
training stage, first, the feature space is masked with dropin
rate and encoded with linear layer, then, we stack deep layers
of our proposed GRN layers. In the end, we decode the hidden
feature space to class labels and has a dropout rate for better
regularization.

IV. EXPERIMENT

To examine the effectiveness of our proposed measure
Graph Rhythm, we apply the method to both homophilic
and heterophilic graphs and compare the performance with
the existing SOTA baselines. We use the same dataset and
splits from the previous baselines and therefore we report the
baseline results directly obtained from original papers.

For the homophlic graph, we report the best results for each
layer number in the range [2, 4, 8, 16, 32, 64, 128]. Each
result is randomly searched within a range of hyperparam-
eter settings and we report the best results. We choose the
commonly used Cora dataset for our homophlic settings to
verify the effective of GRN compared with G2-gating which
leverages Dirichlet energy and dropout-based methods. For the
aggregation function, we consistently apply Graph convolution
layer as the fixed neighbor aggregation. The statistics of Cora
dataset is shown in Table I (first row).

For the heterophilic graph, we report the best results for
fixed 10 splits for dataset Texas, Wisconsin, Film, Squirrel,
Chameleon, and Cornell [15], which covers small and middle
level graphs. Their statistics are reported in Table I.

TABLE I
A SUMMARY OF THE BENCHMARK DATASET STATISTICS.

Datasets Homophilic level # of Nodes # of Edges # of Classes

Cora 0.81 2708 5429 7
Texas 0.11 183 295 5
Wisconsin 0.21 251 466 5
Film 0.22 7600 26752 5
Squirrel 0.22 5201 198493 5
Chameleon 0.23 2277 31421 5
Cornell 0.3 183 280 5

TABLE II
RESULTS OF GRAPH RHYTHM NETWORK (GRN) ON HETEROPHILIC GRAPH COMPARED TO EXISTING BASELINES ON 10-SPLIT DATA WITH MEAN AND

STANDARD DEVIATION. FOR EACH DATASET, RED-COLORED TEXT DENOTES BEST RESULTS AND BLUE-COLORED TEXT DENOTES SECOND BEST RESULTS.

Texas Wisconsin Film Squirrel Chameleon Cornell

GGCN [16] 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 55.17 ± 1.58 71.14 ± 1.84 85.68 ± 6.63
GPRGNN [17] 78.38 ± 4.36 82.94 ± 4.21 34.63 ± 1.22 31.61 ± 1.24 46.58 ± 1.71 80.27 ± 8.11
H2GCN [18] 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 36.48 ± 1.86 60.11 ± 2.15 82.70 ± 5.28
FAGCN [19] 82.43 ± 6.89 82.94 ± 7.95 35.94 ± 1.78 42.59 ± 0.79 55.22 ± 3.19 79.19 ± 7.99
F2GAT [20] 82.70 ± 5.95 87.06 ± 4.13 36.65 ± 1.13 47.32 ± 2.43 67.81 ± 2.05 83.51 ± 6.70
MixHop [21] 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 43.80 ± 1.48 60.50 ± 2.53 73.51 ± 6.34
GCNII [8] 77.57 ± 8.30 81.57 ± 4.30 37.44 ± 1.30 38.47 ± 1.58 63.86 ± 3.04 77.86 ± 3.79
Geom-GCN [15] 66.76 ± 2.72 64.51 ± 6.36 31.59 ± 1.15 38.15 ± 0.92 60.00 ± 2.81 60.54 ± 3.67
PairNorm [22] 60.27 ± 4.34 48.43 ± 6.14 27.40 ± 1.12 50.44 ± 2.04 62.74 ± 2.82 58.92 ± 3.15
LINKX [23] 74.60 ± 8.37 75.49 ± 4.52 32.14 ± 1.55 52.28 ± 1.55 65.22 ± 1.38 77.84 ± 8.51
GloGNN [24] 84.32 ± 5.15 87.06 ± 5.53 37.35 ± 1.30 57.54 ± 1.39 69.78 ± 2.42 83.51 ± 4.26
GraphSAGE [5] 82.43 ± 6.14 81.18 ± 6.54 34.23 ± 0.99 41.61 ± 0.74 58.73 ± 1.68 75.95 ± 5.01
ResGatedGCN [25] 80.00 ± 5.57 81.57 ± 5.35 35.94 ± 1.13 37.60 ± 1.80 49.82 ± 2.71 73.51 ± 4.95
GCN [3] 55.14 ± 12.53 51.76 ± 6.36 27.31 ± 1.12 28.91 ± 1.10 55.22 ± 2.80 60.54 ± 5.30
GAT [4] 76.22 ± 11.19 69.41 ± 11.10 27.44 ± 0.89 36.77 ± 1.96 38.16 ± 1.58 61.89 ± 8.05
MLP 81.08 ± 4.75 85.29 ± 3.31 36.53 ± 0.70 28.77 ± 1.56 46.21 ± 2.99 81.89 ± 6.40
G2-GraphSAGE [11] 87.57 ± 3.86 87.84 ± 3.49 37.14 ± 1.01 64.26 ± 2.38 71.40 ± 2.38 86.22 ± 4.90
GRN: Graph Rhythm Network 89.73 ± 2.13 88.4 ± 3.36 37.2 ± 0.62 64.92 ± 2.32 71.73 ± 1.15 86.22 ± 2.0

TABLE III
AN EXAMPLE OF OUR LEARNED GRAPHRHYTHM MEASURE ON CORA

DATASET FOR A 4 HIDDEN DIMENSION EMBEDDING, WE SHOW TWO OF
THE FEATURES WITH MIXED PATTERN. CENTER IS THE TARGET NODE

WEIGHT AND NEIGHBOR IS THE NEIGHBOR NODE WEIGHT.

Feature 1

center -1.69E-02 -1.38E-03 2.75E-02 -5.04E-04
neighbor -6.57E-03 -2.11E-02 2.62E-02 -2.13E-02

Feature 2

center -1.12E-02 4.44E-02 1.05E-02 -5.51E-02
neighbor 2.04E+00 2.36E-03 3.29E-03 9.82E-04

TABLE IV
AVERAGE NUMBER OF LAYERS AND POWER P FOR EACH HETEROPHILIC

DATASET OVER 10 SPLITS

Dataset Texas Wisconsin Chameleon Film Squirrel Cornell

Layers (l) 9 12.5 16 20 27 31

p 3.68 3.47 3.37 2.54 2.65 3.31

A. Dataset & Experiment Setup

Following [11], we test how our proposed model is af-
fected by the increasing number of layers on a fixed split
Cora dataset, and compare its performance with plain GCN,
GCN with DropEdge, G2-gating that successfully leverages
Dirichlet energy as two deep-architecture baselines. Following
[11] and [16], we test how our model behaves on the het-
erophilic setting and select the same six heterophilic graphs
first proposed by [15]. All six datasets have 10 fixed splits
that have already been reported with many baselines. For each
experiment, we use a 20-trials random hyperparamter search
with the following range:

• hidden dimension size: [32, 64, 128, 256, 512]
• Dropout & Dropin: [0, 1]
• layer number: [5, 50]
• learning rate: [1E-3, 1E-2]
• weight decay: [1E-8, 1E-2]
• power coefficient p: [1, 5]

For the graph-coupled function Fθ(·), we choose GraphSage
aggregation for the heterophilic graphs, as they show best

performance gain in most cases. For Cora dataset, we use
GCN aggregation, same as the G2-gating paper for consistent
comparison. All experiements are run under NVIDIA V100
card with 32 CPU and 4 GPUs.

B. Results & Analysis

1) Layer-wise Energy Preserving and Accuracy: From
Fig 2, it is observed that GRN preserves global Dirichlet
energy through layers even though it doesn’t control Dirichlet
energy directly like G2-gating, confirming that our adaptive
and generalized measure works in alleviating oversmoothing.

Fig 3 shows that GRN successfully alleviates oversmoothing
and doesn’t fall into uniform embeddings even after 128
layers, similarly for G2-GCN, noticing that such alleviation
doesn’t rely on Dirichlet energy measure, which answers our
question that Dirichlet energy is not necessary condition to
alleviate oversmoothing. In contrast, Dropout-GCN has de-
graded performance significantly after 32 layers. Meanwhile,
GRN shows a clear performance increasing trend through
layer increase, with its peak performance at 64 layers and
outperforms all other cases, suggesting the effectiveness of
GRN gaining expressive power with deep layers.

2) Overall Performance: Table II shows the results of
GRN compared with existing baselines (reported by original
authors on same dataset and split). The red color indicates best
performance and blue color indicates second best performance,
our results shows better performance on Texas, Wisconsin,
Squirrel, and Chameleon dataset and is on par for Film and
Cornell dataset. Meanwhile, we observe that for each split our
methods converge to several fixed accuracy and has a lower
variance in general, suggesting the robustness of GRN possibly
brought by the learned measure that holds across splits.

3) Omni-directional Relationship Mapping: Table III
shows one learned measure on Cora dataset with GRN. We can
observe that in additional to a difference pattern between the
target and its neighbors similar to Dirichlet energy, our learned
measure also contains a summation pattern that provides a dif-
ferent updating direction. This empirically shows our proposed
measure can capture complex node-neighbor relationships.

4) Parameters: Table IV reports the average number of
layers and average power p for each dataset over 10 splits.
The power p is observed to be stable around 3, suggesting a
common measure complexity for these datasets. The average
number of layers increase with the homophilic level increases.
One possible reason for this phenomenon is the complexity of
graph increases with the homophilic level approaches to 0.5.

Fig. 2. Layer-wise Dirichlet energy for GRN and GCN. We use GCN as a
baseline comparison to show that GRN preserves the Dirichlet energy even
after 128 layers, showing that our proposed measure can control global
Dirichlet energy without leveraging local Dirichlet energy.

Fig. 3. Different model performance with the increasing number of layers
for Cora dataset. We apply 10 random hyperparameter search trials for each
choice of layers in the range [2,4,6,8,16,32,64,128] and report the best results
for each method. GRN is our proposed method with GCN as backbone; G2-
GCN is the existing STOA framework with GCN as aggregation; Dropout-
GCN is the GCN model with Dropout to alleviate oversmoothing. GCN is
simply graph convolution networks.

V. CONCLUSION

In this paper, we propose to study how to learn very deep
graph neural networks without compromising the downstream
task performance. We argue that existing Dirichlet energy
based approaches are only limited to characterize node dif-
ference, and the key to deliver informative deep graph neural
networks is to properly model complex relationships between
neighboring nodes to adaptively customize feature updating
for each node. We propose graph rhythm, a new measure
capable of learning omni-directional node relationships beyond
Dirichlet energy can model. By integrating graph rhythm with
residual message passing, a graph rhythm network (GRN) is
proposed and shows superb performance as layer increases.
Empirically, GRN is either better or on par with the existing
STOA on both homophilic and heterophilic networks.

ACKNOWLEDGEMENTS

This study is supported by the U.S. National Science
Foundation under grant Nos. IIS-2236579, IIS-2302786 and
IOS-2430224.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-
prehensive survey on graph neural networks,” IEEE Trans. on Neural
Networks and Learning Sys., vol. 32, no. 1, pp. 4–24, 2021.

[2] Y. Jin, R. Gao, Y. He, and X. Zhu, “Gldl: Graph label distribution
learning,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, pp. 12965–12974, Mar. 2024.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Intl. Conf. on Learning Rep., 2017.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[5] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. of the 31st NeurIPS Conference,
NIPS’17, p. 1025–1035, 2017.

[6] Y. Jin and X. Zhu, “ATNPA: A unified view of oversmoothing alleviation
in graph neural networks,” ArXiv, 2024.

[7] T. Fang, Z. Xiao, C. Wang, J. Xu, X. Yang, and Y. Yang, “Dropmessage:
Unifying random dropping for graph neural networks,” Proc. of the AAAI
Conference, vol. 37, p. 4267–4275, June 2023.

[8] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph
convolutional networks,” in Proc. of ICML, vol. 119 of Proceedings of
Machine Learning Research, pp. 1725–1735, 13–18 Jul 2020.

[9] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmooth-
ing in graph neural networks,” arXiv:2303.10993, 2023.

[10] K. Zhou, X. Huang, D. Zha, R. Chen, L. Li, S.-H. Choi, and X. Hu,
“Dirichlet energy constrained learning for deep graph neural networks,”
Advances in neural information processing systems, 2021.

[11] T. K. Rusch, B. P. Chamberlain, M. W. Mahoney, et al., “Gradient gating
for deep multi-rate learning on graphs,” in ICLR, 2023.

[12] T. K. Rusch, B. P. Chamberlain, J. R. Rowbottom, S. Mishra, and M. M.
Bronstein, “Graph-coupled oscillator networks,” in ICML, 2022.

[13] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep
graph convolutional networks on node classification,” in ICLR, 2020.

[14] K. Oono and T. Suzuki, “Graph neural networks exponentially lose
expressive power for node classification,” in ICLR, 2020.

[15] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn:
Geometric graph convolutional networks,” in ICLR, 2020.

[16] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra, “Two sides
of the same coin: Heterophily and oversmoothing in graph convolutional
neural networks,” in ICDM, pp. 1287–1292, dec 2022.

[17] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal
generalized pagerank graph neural network,” in ICLR, 2021.

[18] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” in NeurIPS, vol. 33, pp. 7793–7804, 2020.

[19] D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency infor-
mation in graph convolutional networks,” in 35th AAAI Conference on
Artificial Intelligence, 2021, pp. 3950–3957, 2021.

[20] L. Wei, H. Zhao, and Z. He, “Designing the topology of graph neural
networks: A novel feature fusion perspective,” in Proc. of the ACM Web
Conference 2022, WWW ’22, ACM, Apr. 2022.

[21] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. V. Steeg, and A. Galstyan, “MixHop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,”
in Proc. of the ICML, vol. 97, pp. 21–29, 09–15 Jun 2019.

[22] L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,”
in ICLR, 2020.

[23] D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and
S.-N. Lim, “Large scale learning on non-homophilous graphs: new
benchmarks and strong simple methods,” in Proc. of the 35th Intl. Conf.
on Neural Info. Processing Systems, NIPS ’21, 2024.

[24] X. Li, R. Zhu, Y. Cheng, C. Shan, S. Luo, D. Li, and W. Qian, “Finding
global homophily in graph neural networks when meeting heterophily,”
in Proc. of the ICML, vol. 162, pp. 13242–13256, 17–23 Jul 2022.

[25] X. Bresson and T. Laurent, “Residual gated graph convnets,” ArXiv,
vol. abs/1711.07553, 2017.

