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Abstract

Detecting text generated by modern large lan-
guage models is thought to be hard, as both
LLMs and humans can exhibit a wide range of
complex behaviors. However, we find that a
score based on contrasting two closely related
language models is highly accurate at separating
human-generated and machine-generated text.
Based on this mechanism, we propose a novel
LLM detector that only requires simple calcu-
lations using a pair of pre-trained LLMs. The
method, called Binoculars, achieves state-of-the-
art accuracy without any training data. It is ca-
pable of spotting machine text from a range of
modern LLMs without any model-specific mod-
ifications. We comprehensively evaluate Binoc-
ulars on a number of text sources and in var-
ied situations. Over a wide range of document
types, Binoculars detects over 90% of generated
samples from ChatGPT (and other LLMs) at a
false positive rate of 0.01%, despite not being
trained on any ChatGPT data. Code available at
https://github.com/ahans30/Binoculars.

1. Introduction

We present a method to detect LLM-generated text that
works in the zero-shot setting in which no training exam-
ples are used from the LLM source. Even with this strict
limitation, our scheme still out-performs all open-source
methods for ChatGPT detection and is competitive with or
better than commercial APIs, despite these competitors us-
ing training samples from ChatGPT ( , ;
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s ). At the same time, because of the zero-
shot nature of our detector, the very same detector can spot
multiple different LLMs with high accuracy—something
that all existing solutions fail to do.

The ability to detect LLMs in the zero-shot setting ad-
dresses issues of growing importance. Prior research on
combating academic plagiarism ( ) has fixated
strongly on ChatGPT because of its simple and accessible
interface. But more sophisticated actors use LLM APIs to
operate bots, create fake product reviews, and spread misin-
formation on social media platforms at a large scale. These
actors have a wide range of LLMs available to them beyond
just ChatGPT, making zero-shot, model-agnostic detection
critical for social media moderation and platform integrity
assurance ( s ; , ). Our
zero-shot capability is a departure from existing detectors
that rely on model-specific training data and often fail to
transfer to new models.

Our proposed detector, called Binoculars, works by view-
ing text through two lenses. First, we compute the log per-
plexity of the text in question using an “observer” LLM. We
then compute next-token predictions using a “performer”
LLM and compute their perplexity according to the ob-
server. We call this metric cross-perplexity. We observe
that perplexity per cross-perplexity is a surprisingly power-
ful signal to detect LLM-text. We first motivate this simple
observation, and then show that it is sufficient to build a
strong zero-shot detector, which we extensively stress-test
in a number of text domains.

2. The LLM Detection Landscape

Successful efforts to spot machine-generated text show
promise on early models whose generation output is not
convincingly human. However, with the rise of trans-
former models for language modeling ( ,

s ), primitive mechanisms to detect machine-
generated text are rendered useless. While one approach is
to record ( s ) or watermark all generated
text ( s ), these preemptive detection
approaches can only be implemented with full control over
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Figure 1. Detection of Machine-Generated Text from ChatGPT. Our detection approach using Binoculars is highly accurate at sep-
arating machine-generated and human-written samples from News, Creative Writing and Student Essay datasets with a false positive
rate of 0.01%. Binoculars, based on open-source Falcon models with no finetuning, outperforms commercial detection systems, such as
GPTZero, as well as open-source detectors — even though both of these baselines are specifically tuned to detect ChatGPT (Verma et al.,
2023; Tian, 2023a). Our approach operates entirely in a zero-shot setting and has not been tuned on ChatGPT specifically.

the generative model.

Instead, the recent spread of machine-generated text, espe-
cially via ChatGPT, has led to a flurry of work on post-hoc
detection approaches that can be used to detect machine
text without cooperation from model owners. These de-
tectors can be separated into two main groups. The first
is trained detection models, where a pretrained language
model backbone is finetuned for the binary classification
task of detection (Solaiman et al., 2019; Zellers et al., 2019;
Yuetal,, 2023; Zhan et al., 2023), including techniques like
adversarial training (Hu et al., 2023) and abstention (Tian
et al.,, 2023). Alternatively, instead of finetuning the whole
backbone, a linear classifier can be fit on top of frozen
learned features, which allows for the inclusion of com-
mercial API outputs (Verma et al., 2023).

The second category of approaches comprises statistical
signatures that are characteristic of machine-generated text.
These approaches have the advantage of requiring none or
little training data and they can easily be adapted to newer
model families (Pu et al., 2022). Examples include de-
tectors based on perplexity (Tian, 2023b; Vasilatos et al.,
2023; Wang et al., 2023), perplexity curvature (Mitchell
et al., 2023), log rank (Su et al., 2023), intrinsic dimen-
sionality of generated text (Tulchinskii et al., 2023), and
n-gram analysis (Yang et al., 2023a). Our coverage of the
landscape is non-exhaustive, and we refer to recent sur-
veys Ghosal et al. (2023); Tang et al. (2023); Dhaini et al.
(2023); Guo et al. (2023) for additional details.

From a theoretical perspective, Varshney et al. (2020),
Helm et al. (2023), and Sadasivan et al. (2023) all dis-

cuss the limits of detection. These works generally agree
that fully general-purpose models of language would be,
by definition, impossible to detect. However, Chakraborty
et al. (2023) note that even models that are arbitrarily close
to this optimum are technically detectable given a sufficient
number of samples. In practice, the relative success of de-
tection approaches, such as the one we propose and analyze
in this work, provides constructive evidence that current
language models are imperfect representations of human
writing — and thereby detectable. Finally, the robustness of
detectors to attacks attempting to circumvent detection can
provide stronger practical limits on reliability in the worst
case (Bhat & Parthasarathy, 2020; Wolff & Wolff, 2022;
Liyanage & Buscaldi, 2023).

With an understanding of how much work exists on LLM
detection, a crucial question arises: How do we appropri-
ately and thoroughly evaluate detectors? Many works fo-
cus on accuracy on balanced test sets and/or AUC of their
proposed classifiers, but these metrics are not well-suited
for the high-stakes question of detection. Ultimately, only
detectors with low false positive rates across a wide distri-
bution of human-written text, truly reduce harm. Further,
Liang et al. (2023) note that detectors are often only eval-
uated on relatively easy datasets that are reflective of their
training data. Their performance on out-of-domain sam-
ples is often abysmal. For example, TOEFL essays written
by non-native English speakers were wrongly marked as
machine-generated 48-76% of the time by commercial de-
tectors (Liang et al., 2023).

In Section 3, we motivate our approach and discuss why
detecting language model text, especially in the ChatGPT
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world, is difficult. In this work, our emphasis is di-
rected toward baselines that function within post-hoc, out-
of-domain (zero-shot), and black-box detection scenarios.
We use the state-of-the-art open source detector Ghost-
buster ( , ), the commercially deployed
GPTZero', DetectGPT ( , ) and its effi-
cient version Fast-DetectGPT ( , ) and finally
DNA-GPT ( , ) to compare detection per-
formance across various datasets in Section 4. In Section 5,
we evaluate the reliability of Binoculars in various settings
that constitute edge cases and crucial deployment behav-
iors that a detector based on Binoculars has to take into
account. Please see appendix for more details.

3. Binoculars: How it works

Our approach, Binoculars, is so named as we look at in-
puts through the lenses of two different language models.
It is well known that perplexity — a common baseline for
machine/human classification — is insufficient on its own,
leading prior work to disfavor approaches based on statis-
tical signatures. However, we propose using a ratio of per-
plexity measurement and cross-perplexity, a notion of how
surprising the next token predictions of one model are to
another model. This two-model mechanism is the basis for
our general and accurate detector, and we show that this
mechanism is able to detect a number of LLMs, even when
they are unrelated to the two models used by Binoculars.

3.1. Background & Notation

A string of characters s can be parsed into tokens and rep-
resented as a list of token indices & by a tokenizer 7. Let
x; denote the token ID of the ¢-th token, which refers to an
entry in the LLMs vocabulary V' = {1,2...,n}. Given a
token sequence as input, a language model M predicts the
next token by outputting a probability distribution over the
vocabulary:

M(T(s)) = M(7) =Y

1
Y;; = P(vj|zo.—1) forall j € V. M

We abbreviate M(T'(s)) as M (s) where the tokenizer is
implicitly the one used in training M. We define log PPL,
the log-perplexity, as the average negative log-likelihood of
all tokens in the given sequence. Formally, let

= _7210g T4

where 7 =T(s), Y = M(x),

and L = number of tokens in s.

log PPL (s
2

"https://gptzero.me/

Intuitively, log-perplexity measures how ‘“surprising” a
string is to a language model. As mentioned above, per-
plexity has been used to detect LLMs, as humans produce
more surprising text than LLMs. This is reasonable, as
log PPL is also the loss function used to train generative
LLMs, and models are likely to score their own outputs
as unsurprising. Our method also measures how surpris-
ing the output of one model is to another. We define the
cross-perplexity, which takes two models and a string as its
arguments. Let log X-PPL o, a1, (s) measure the average
per-token cross-entropy between the outputs of two mod-
els, M7 and M , when operating on the tokenization of
s.

L
log X-PPL vy, m, () = Z i - log (Ma(s);) .

3)
Note that - denotes the dot product between two vector-
valued quantities.

h \

3.2. What makes detection hard? A primer on the
capybara problem.

Why do we require measurements of both perplexity and
cross-perplexity? Unsurprisingly, LLMs tend to generate
text that is unsurprising to an LLM. Meanwhile, because
humans differ from machines, human text has higher per-
plexity according to an LLM observer. For this reason, it is
tempting to use raw perplexity for LLM detection, as high
perplexity is a strong sign of a human author.

Unfortunately, this intuition breaks when hand-crafted
prompts are involved. Prompts have a strong influence over
downstream text, and prompts are typically unknown to the
detector. On the one hand, the prompt “1, 2, 3,” might re-
sult in the very low perplexity completion “4, 5, 6.” On
the other hand, the prompt “Can you write a few sentences
about a capybara that is an astrophysicist?” will yield a
response that seems more surprising. In the presence of
a prompt, the response may be unsurprising (low perplex-
ity). But in the absence of the prompt, a response contain-
ing the curious words “capybara” and “astrophysicist” in
the same sentence will have high perplexity, resulting in
the false determination that the text was written by a hu-
man, see the example in Table 1. Clearly, certain contexts
will result in high perplexity and others low perplexity, re-
gardless of whether the author is human or machine. We
refer to this dilemma as “the capybara problem” — in the
absence of the prompt, LLM detection seems difficult and
naive perplexity-based detection fails.

3.3. Our Detection Score
Binoculars solves the capybara problem by providing a

*This requires that M; and M share a tokenizer.
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unexpected of creatures.” — GPT 4

“Dr. Capy Cosmos, a capybara unlike any other, astounded the scientific community with his groundbreak-
ing research in astrophysics. With his keen sense of observation and unparalleled ability to interpret cosmic
data, he uncovered new insights into the mysteries of black holes and the origins of the universe. As he
peered through telescopes with his large, round eyes, fellow researchers often remarked that it seemed
as if the stars themselves whispered their secrets directly to him. Dr. Cosmos not only became a beacon
of inspiration to aspiring scientists but also proved that intellect and innovation can be found in the most

Table 1. This quote is LLM output from ChatGPT (GPT-4) when prompted with “Can you write a few sentences about a capybara that
is an astrophysicist?” The Falcon LLM assigns this sample a high perplexity (2.20), well above the mean for both human and machine
data. Despite this problem, our detector correctly assigns a Binoculars score of 0.73, which is well below the global threshold of
0.901, resulting in a correct classification with high confidence. For reference, DetectGPT wrongly assigns a score of 0.14, which is
below its threshold of 0.17, and classifies the text as human. GPTZero assigns a 49.71% score that this text is generated by Al

mechanism for estimating the baseline perplexity induced
by the prompt. By comparing the perplexity of the ob-
served text to this expected baseline, we observe a surpris-
ing LLM text signature.

Motivation. LLM-generated text may exhibit a high per-
plexity score depending on the prompt specified which
yields a simple perplexity-based detector ineffective (see
the “Capybara Problem” in Table 1). To calibrate for
prompts that yield high-perplexity generation, we use
cross-perplexity introduced Equation (3) as a normalizing
factor that intuitively encodes the perplexity level of next-
token predictions from two models.

Rather than examining raw perplexity scores, we instead
propose measuring whether the tokens that appear in a
string are surprising relative to the baseline perplexity of
an LLM acting on the same string. A string might have
properties that result in high perplexity when completed by
any agent, machine or human. Yet, we expect the next-
token choices of humans to be even higher perplexity than
those of a machine. By normalizing the observed perplex-
ity by the expected perplexity of a machine acting on the
same text, we can arrive at a detection metric that is fairly
invariant to the prompt; see Table

We propose the Binoculars score B as a sort of normaliza-
tion or reorientation of perplexity. In particular, we look at
the ratio of perplexity to cross-perplexity.

_ logPPLa, (s)
~ log X-PPLaq, A, (8)

“4)

B/\/h,/\/lz (S)

Here, the numerator is simply the perplexity, which mea-
sures how surprising a string is to M. The denomina-
tor measures how surprising the token predictions of Mo
are when observed by M. Intuitively, we expect a human
to diverge from M; more than M diverges from My,
provided the LLMs M; and M are more similar to each
other than they are to a human.

The Binoculars score is a general mechanism that captures
a statistical signature of machine text. In the sections be-
low, we show that for most obvious choices of M and
Mo, Binoculars separates machine and human text bet-
ter than perplexity alone—and it is capable of detecting
generic machine text generated by a third model altogether.

Interestingly, we can draw some connection to other
approaches that contrast two language models, such as
contrastive decoding ( s ), which aims to
generate high-quality text completions by generating text
that roughly maximizes the difference between a weak
and a strong model. Speculative decoding is similar (

s ; , ), it uses a weaker
model to plan completions. Both approaches function best
when pairing a strong model with a very weak secondary
model. However, as we show below, our approach works
best for two models that are very close to each other
in performance. In the remainder of this work, we use
the open-source models Falcon-7b model (M;) and the
Falcon-7b-instruct (M) ( , ). The
full set of combinations of scoring models used can be
found in Table 3 in the appendix.

4. Accurate Zero-Shot Detection

In this section, we evaluate Binoculars as a zero-shot LLM
detector in multiple domains. In our experiments, we focus
on the problem setting of detecting machine-generated text
from a modern LLM, as generated in common use cases
without consideration for the detection mechanism.

4.1. Datasets

We start our experiments with several datasets described
in the LLM detection literature. The most recent baseline
to which we compare is Ghostbuster. ( ),
who propose this method, also introduce three datasets that
we include in our study: Writing Prompts, News, and Stu-
dent Essay. These are balanced datasets with equal num-
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Figure 2. Impact of Document Size on Detection Performance. The plot displays the TPR at 0.01% FPR across varying document
sizes by prefixing sample documents. The x-axis represents the number of tokens of the observed document, while the y-axis indicates
the corresponding detection performance, highlighting the Binoculars ability to detect with a low number of tokens.

bers of human samples and machine samples. The machine
samples are written by ChatGPT.’

We also generate several datasets of our own to evaluate
our capability in detecting other language models aside
from ChatGPT. Drawing samples of human-written text
from CCNews (Hamborg et al., 2017), PubMed (Sen et al.,
2008), and CNN (Hermann et al., 2015), we generate corre-
sponding, machine-generated completions using LLaMA-
2-7B and Falcon-7B (see details in Appendix A.l.1). Fur-
ther, we use the Orca dataset (LLian et al., 2023), which
provides several million instruction prompts with their
machine-generated completions from GPT-3 and GPT-4.

4.2. Metrics

Since detectors are binary classifiers, the standard suite of
binary classification metrics is relevant. It is often consid-
ered comprehensive to look at ROC curves and only report
under the curve (AUC) as a performance metric. In fact,
Verma et al. (2023) and Mitchell et al. (2023) only report
performance as measured by AUC and F1 scores. We ar-
gue that these metrics alone are inadequate when evaluating
LLM detection performance.

In LLM detection, the most concerning harms often arise
from false positives, i.e., instances when human text is
wrongly labeled as machine-generated. For this reason,
we focus on true-positive rates (TPR) at low false-positive
rates (FPR), and adopt a standard FPR threshold of 0.01%.*
We also note that AUC scores are often uncorrelated with

3In the following we will always use ChatGPT as short-hand
for the chat versions of GPT-3.5-(turbo).

“The smallest threshold we can comprehensively evaluate to
sufficient statistical significance with our compute resources.

TRPQFPR when the FPR is below 1% (Table 4). When
evaluating F1-Score, we purely use the “out-of-domain”
threshold. (see Appendix A.1.2 for details).

4.3. Benchmark Performance

Using a handful of datasets, we compare the AUC
and TPR of Binoculars to Ghostbuster (Verma et al.,
2023), GPTZero (Tian, 20232), the commercially deployed
GPTZero, and DetectGPT (using LLaMA-2-13B to score
curvature) (Mitchell et al., 2023). We highlight that these
comparisons on machine samples from ChatGPT are in fa-
vor of GPTZero and Ghostbuster, as these detectors have
been tuned to detect ChatGPT output, and comparisons us-
ing samples from LLaMA models are in favor of Detect-
GPT for the same reason.

Ghostbuster Datasets. The Ghostbuster detector is a re-
cent detector tuned to detect output from ChatGPT. Us-
ing the same three datasets introduced and examined in the
original work by Verma et al. (2023), we compare TPR at
0.01% FPR in Figure | (and F1-Score in Figure 9 in Ap-
pendix) to show that Binoculars outperforms Ghostbuster
in the “out-of-domain” setting. A desirable property for de-
tectors is that with more information they get stronger. Fig-
ure 2 shows that both Binoculars and Ghostbuster have this
property, and that the advantages of Binoculars are even
clearer in the few-token regime.

Open-Source Language Models. We show that our de-
tector is capable of detecting the output of several LLMs,
such as LLaMA as shown in Figure 3 and Falcon as
shown in Figure 12 in the appendix. Here we also observe
that Ghostbuster is indeed only capable of detecting Chat-

GPT, and it fails to reliably detect LLaMA generated text.
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The detailed ROC plots in Figure
across thresholds for all methods.

compare performance

5. Reliability in the Wild

How well does Binoculars work when faced with scenarios
encountered in the wild? The key takeaway that we want to
highlight throughout this section is that the score underly-
ing Binoculars, i.e. Equation (4) is a machine-text detector.
Intuitively, this means that is predicts how likely it is that
the given piece of text could have been generated by a sim-
ilar language model. This has a number of crucial implica-
tions regarding memorized samples, text from non-native
speakers, modified prompting strategies, and edge cases,
all of which we comprehensively evaluate in this section.

5.1. Varied Text Sources

We start our investigation by exploring detector perfor-
mance in additional settings outside of the English lan-
guage. To this end we investigate the Multi-generator,
Multi-domain, and Multi-lingual (M4) detection datasets
( , ). These samples come from Arxiv, Red-
dit, Wikihow, and Wikipedia sources, and include examples
in varied languages, such as Urdu, Russian, Bulgarian, and
Arabic. Machine text samples in this dataset are generated
via ChatGPT. In Figure 4, we show the precision and recall
of Binoculars and four other baselines, showing that our
method generalizes across domains and languages. These
baselines, released with the M4 Datasets, include fine-
tuned RoBERTa ( , ) classifier ( ,

; s ), Logistic Regression over Gi-
ant Language Model Test Room (LR GLTR) (

, ) which generates features assuming predictions
are sampled from a specific token distribution, Stylistic (

, ) which employs syntactic features at charac-
ter, word, and sentence level, News Landscape classifiers
(NELA) ( , ) which generates and leverages
semantic and structural features for veracity classification.
We reprint this result from the benchmark for reference.
Results with more source models appear in Figure

5.2. Other languages

When evaluating Binoculars on languages that are not well
represented in Common Crawl data (standard LLM pre-
training data), we find that false-positive rates remain low,
which is highly desirable from a harm reduction perspec-
tive. However, machine text in these low-resource lan-
guages is often classified as human. Figure 6 shows that
we indeed have reasonable precision but poor recall in these
settings. While this ordering of scores is a win for harm-
lessness, why is multilingual text detection limited?

Due to the limited capability of Falcon models (powering

Binoculars) in generating text in these low-resource lan-
guages in our experiments, we hypothesize that a stronger
multilingual pair of models would lead to a version of
Binoculars that could spot ChatGPT-generated text in these
languages more effectively.

False-positive rates on non-native speakers’ writing A
significant concern about LLM detection algorithms, as
raised by ( ), is that LLM detectors are
inadvertently biased against non-native English speakers
(ESL) classifying their writing as machine-generated ex-
ceedingly often. To test this, we analyze essays from Es-
sayForum, a web page for ESL students to improve their
academic writing ( , ). This dataset con-
tains both the original essays, as well as grammar-corrected
versions. We compare the distribution of Binoculars scores
across the original and the grammar-corrected samples. In-
terestingly, and in stark comparison to commercial detec-
tors examined by ( ) on a similar dataset,
Binoculars attains equal accuracy at 99.67% for both cor-
rected and uncorrected essay datasets (see Figure 7). We
also point out that the Binoculars score distribution on
ESL’s text highly overlaps with that of grammar-corrected
versions of the same essays, showing that detection through
Binoculars is insensitive to this type of shift.

5.3. Memorization

One common feature of perplexity-based detection is that
highly memorized examples are classified as machine-
generated. For example, famous quotes that appear many
times in the training data likely have low perplexity accord-
ing to an observer model that has overfit to these strings. By
looking at several examples, we examine how Binoculars
performs on this type of data.

See Table 5 in Appendix for all famous texts evalu-
ated in this study. First, we ask about the US Constitu-
tion — a document that is largely memorized by modern
LLMs. This example has a Binoculars score of 0.76, well
into the machine range. Of the 11 famous texts we study,
this was the lowest score (most machine-y). Three of the
11 fall on the machine-side of our threshold. It is impor-
tant to note that while this behavior may be surprising, and
does require careful consideration in deployment, it is fully
consistent with a machine-text detector. Memorized text is
both text written by human writers, and text that is likely to
be generated by an LLM. Classification of memorized text
as machine generated may be acceptable or even desirable
in some applications (e.g., plagiarism detection), or unde-
sirable in others (e.g., removal of LLM-generated text from
a training corpus).
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using the OOD threshold for detection. We use the mean of out-of-domain performance metrics reported by Wang et al. (2023)

Table 2. Excerpts from LLaMA-2-13B-chat generations using an Open-Orca sample prompt with varying system prompts. For the full

modifications to the prompts to generate these stylized outputs, see Appendix A.6.

Write an article based on this “Use an adjustable jump. Create your jump with cinder blocks and plywood. Use natural outdoor obstacles

Prompt as jumps. Set down a treat on the far side of the jump. Practice at the lowest level until your dog is comfortable. Raise the bar gradually.
Use the same method to teach your dog to jump through hoops.”
A well-trained dog is not only a delight to be around, but it also provides a sense of pride and accomplishment to the owner. One
Default captivating and useful skill that you may want to teach your dog is jumping. Whether you’re doing it for fun, agility competitions, or
simply to keep your furry companion physically engaged, teaching your dog how to jump can be a bonding and rewarding experience.
Carl Sagan Ah, my dear friend, we stand at the precipice of a most wondrous adventure, an odyssey of the canine kind. Our quest, to teach our loyal

companions, those furry wonders of nature, to soar through the air with grace and agility. The tool at our disposal, the adjustable jump.

Non-Robotic

Hey there, fellow dog lovers! Are you looking for a fun and challenging way to keep your furry friend active and engaged? Look no
further than an adjustable jump! Not only is it a great way to provide your dog with physical exercise, but it’s also a great way to bond
with your pup.

Pirate

Arrrr, me hearties! Ye landlubbers be wantin’ yer pooch ta learn ta jump, eh? Well, fear not! I be here ta help ye teach yer furry first mate
ta jump over obstacles like a proper salty sea dog! First things first, ye need ta create the jump. Now, I know what ye be thinkin’: "Cinder
blocks and plywood? That be a bit...rugged, don’t ye think?” But never fear, me hearties!

5.4. Modified Prompting Strategies

The Open Orca dataset contains machine generations from
both GPT-3 and GPT-4 for a wide range of tasks (L.ian
et al., 2023). This serves as a diverse test bed for measur-
ing Binoculars on both of these modern high-performing
LLMs. Impressively, Binoculars detects 92% of GPT-
3 samples and 89.57% of GPT-4 samples when using
the global threshold (from reference datasets). Note, we
only report accuracy since this is over a set of machine-

generated text only. This dataset also allows us to explore
how sensitive Binoculars is to modifying prompts.

Simple detection schemes are sometimes fooled by simple
changes to prompting strategies, which can produce styl-
ized text that deviates from the standard output distribution.
With this in mind, we use LLaMA-2-13B-chat and prompts
designed to tweak the style of the output. Specifically,
we prompt LLaMA2-13B-chat with three different system
prompts by appending to the standard system prompt a re-
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Figure 5. Performance of Binoculars on samples
from various generative models.
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Figure 6. Binoculars operates at high precision in Bulgarian and
Urdu, but with low recall in all four languages.
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Figure 7. The distribution of Binoculars scores remains un-
changed when the English grammar is corrected in essays com-
posed by non-native speakers. Both original and corrected essays
are unambiguously classified as human-written.

quest to write in Carl Sagan’s voice or without any mechan-
ical or robotic sounding words or like a pirate.

In general, we find that these stylistic changes do not sig-
nificantly impact the accuracy of Binoculars. The biggest
impact we observe arises when asking for pirate-sounding
output, and this only decreases the sensitivity (increases the
false negative rate) by 1%; see Figure 8. Table 6 records
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System Prompt for LLaMA-2-13B-Chat

Figure 8. Detection with modified system prompts.

generations based on a sample prompt employing the spec-
ified prompting strategies.

Next, we also want to test whether arbitrary mistakes, hash-
codes, or other kinds of random (and random seeming)
strings bias our model towards false positives. To test
the impact of randomness, we generate random sequences
of tokens from the Falcon tokenizer, and score them with
Binoculars as usual. We plot a histogram of this distri-
bution in Figure 14. We find that Binoculars confidently
scores this as human, with a mean score around 1.35 for
Falcon (humans have a mean of around 1). This is ex-
pected, as trained LLMs are strong models of language and
exceedingly unlikely to ever generate these completely ran-
dom sequences. In particular, the generation of these ran-
dom sequences is even less likely than the generation of
perfect human-written text by chance.

6. Discussion and Limitations

We present Binoculars, a method for detecting LLM out-
put in the zero-shot case in which no data is available from
the generation model. We speculate that this transferabil-
ity arises from the similarity between modern LLMs, as
they all use nearly identical transformer components and
are likely trained in large part on Common Crawl (com-
moncrawl.org) data from similar time periods. As the num-
ber of open source LLMs rapidly increases, the ability to
detect multiple LLMs with a single detector is a major ad-
vantage of Binoculars, for example when used for platform
moderation. Our study has a number of limitations. Due to
limited GPU memory, we do not perform broader studies
with larger (30B+) open-source models. Further, we focus
on the problem setting of detecting machine-generated text
in normal use, and we do not consider explicit efforts to by-
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pass detection. Finally, there are other non-conversational
text domains, such as source code, which we do not inves-
tigate in this study.

Impact Statement

Language model detection may be a key technology to re-
duce harm, whether to monitor machine-generated text on
internet platforms and social media, filter training data, or
identify responses in chat applications. Nevertheless, care
has to be taken so that detection mechanisms actually re-
duce harm, instead of proliferating or increasing it. We pro-
vide an extensive reliability investigation of the proposed
Binoculars mechanisms in Section 5, and believe that this
is a significant step forward in terms of reliability, for ex-
ample when considering domains such as text written by
non-native speakers. Yet, we note that this analysis is only a
first step in the process of deploying LLLM detection strate-
gies and does not absolve developers of such applications
from carefully verifying the impact on their systems. We
especially caution that the existence of LLM detectors does
not imply that using them is worthwhile in all scenarios.

Also, we explicitly highlight that we consider the task of
detecting “naturally” occurring machine-generated text, as
generated by LLMs in common use cases. We understand
that no detector is perfect and we do not guarantee any per-
formance in settings where a motivated adversary tries to
fool our system. We also note that our detector does not
provide an explanation or interpretation of its predictions
for any given sample and thus is black-box in nature. We
present a thorough evaluation across a wide variety of test
sources, but we maintain that directed attempts to bypass
our classifier might be possible, as is often the case for sys-
tems that rely on neural networks.
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A. Appendix
A.1. Experimental Details
A.1.1. DATASET GENERATION

Using human-written samples from CC News, CNN and Pubmed datasets, we prompt LLaMA-2-13B and Falcon-7B to
generate corresponding machine text. To do so, we peel off the first 50 tokens of each human sample and use it as a prompt
to generate up to 512 tokens of machine output. We then remove the human prompt from the generation and only use the
purely machine-generated text in our machine-text datasets.

A.1.2. OUT OF DOMAIN THRESHOLD TUNING

As motivated in section 4.2, we evaluate detectors True-Positive-Rate while operating under ultra-low False-Positive Rate
(TRP@ 0.01%FPR). This metric, like AUC, is threshold-agnostic that captures the discrimination power at the desired low
False-Positive Rate of the respective method. When presenting F1-Score (fig. 9), Recall and Precision (fig. 4, 5, 6), and
False Negative Rate (fig. 8) we use a purely “out-of-domain” tuned threshold to separate machine and human text.

We set the threshold using the combination of training splits from all of our reference datasets: News, Creative Writing,
and Student Essay datasets from ( ), which are generated using ChatGPT. We also compare detectors
on LL.aMA-2-13B and Falcon-7B generated text with prompts from CC News, CNN, and PubMed datasets. All of these
datasets have an equal number of human and machine-generated text samples. We optimize using accuracy and fix our
threshold globally using these datasets. For all datasets, we use prefix of 512 tokens for each document, unless explicitly
mentioned otherwise.

In order to meet the “out-of-domain” claim when evaluating News, Creative Writing, and Student Essay datasets by Ghost-
buster paper ( , ) we do not include them in the threshold determination and only use tune threshold on
from CC News, CNN, and PubMed (generated via LLaMA and Falcon).

A.1.3. BASELINE DETAILS

As described in the section |, we choose baselines with emphasis on post-hoc, out-of-domain (zero-shot), and black-box

detection scenarios. These open source detector Ghostbuster ( , ), the commercially deployed GPTZero’,

DetectGPT ( , ) and its efficient version Fast-DetectGPT ( , ) and DNA-GPT ( ,
) to compare detection performance across various datasets in Section 4.

We use out-of-domain version of all of these baselines (applicable only for Ghostbuster) for a fair comparison with our
method. If a threshold is provided with original work, we use it for hard prediction otherwise we optimize threshold
identical to our method on same datasets for fair and identical comparison.

For DetectGPT, we use LLaMA-2-13B for scoring and TS model ( , ) for mask filling for all datasets (even
ones generated using LLaMA-2-13B). For Fast-DetectGPT, as described in original work, we use GPT-J-6B and GPT-Neo-
2.7B for reference and scoring models respectively for all datasets. We use gpt-3.5-turbo-instruct AP1 (March 2024) for
suffix prediction in DNA-GPT implementation. GPTZero, a closed sourced API, was queried in September 2023 for our
experiments.

A.2. Benchmark Performance

ChatGPT Text Detection. Fl-scores on ChatGPT dataset released by ( , ). The numbers for Zero-Shot
baseline method are taken from the same work.

A.3. Ablation Studies

Comparison to Other Scoring Model Pairs.

String Length. Is there a correlation between Binoculars score and sequence length? Such correlations may create a bias
towards incorrect results for certain lengths. In Figure 10, we show the joint distribution of token sequence length and
Binocular score. Sequence length offers little information about class membership.

Shttps://gptzero.me/
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Figure 9. F1 scores for detection of ChatGPT-generated text indicate that several detectors perform similarly. We discuss below how this
metric can be a poor indicator of performance at low FPR.

Score Components. Perplexity is used by many detecting formulations in isolation. We show in Figure 11 that both
perplexity and cross-perplexity are not effective detectors in isolation. Table 4 show the results where we compute PPL
and X-PPL with different model families viz. LLaMA-2 and Falcon.

A.4. Other famous texts

Two songs by Bob Dylan further demonstrate this behavior. Blowin’ In The Wind, a famous Dylan track has a much lower
Falcon perplexity than his unreleased song 7o Fall In Love With You (logPPL values are 1.11 and 3.30, respectively.) It
might be reasonable for famous songs to get classified as machine text and they are more likely output than less famous
songs. Binoculars, however, labels both of these samples confidently as human samples (with scores of 0.92, and 1.01,
respectively).

A.5. Identical Scoring Model

We inspect Binocular’s performance when we choose to use identical M; and M; models in equation (4). We use Falcon-
7B and Falcon-7B-Instruct models and compare the two performances with Binoculars Score over dataset by (Verma et al.,
2023) in Figure 13. We observe although the vanilla Binoculars score is best over 3 domains, using Falcon-7B as input
models is competitive.

A.6. Modified System Prompts

We test Binoculars’ and comparable baselines’ performances in Section 5.4 on multiple prompting strategies. We prompt
LLaMA-2-13B-chat with samples from the Open-Orca dataset. In addition to the default sample-specific prompt, we use
3 different versions in which we append instructions into the system prompt. These include instruction to write in the style
of Carl Sagan, in a non-robotic tone, and like a pirate. In Table 6 we mention the exact instruction appended to the default
system prompts.

A.7. Random Tokens

Next, we also want to test whether arbitrary mistakes, hashcodes, or other kinds of random (and random-seeming) strings
bias our model toward false positives. To test the impact of randomness, we generate random sequences of tokens from
the Falcon tokenizer and score them with Binoculars as usual. We plot a histogram of this distribution in Figure 14. We
find that Binoculars confidently scores this as human, with a mean score around 1.35 for Falcon (humans have a mean
of around 1). This is expected, as trained LLMs are strong models of language and exceedingly unlikely to ever generate
these completely random sequences of tokens in any situation. In particular, the generation of these random sequences is
even less likely than the generation of perfect human-written text by chance.

14



Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

2500, per label)

News (n

® Human
® Chatgpt

1.3

1.2

— < o
— — o

200G Jejnooulg

0.7

0.6

1000 1500 2000

500
Sequence Length (Falcon Tokenizer)

Figure 10. A closer look at the actual distribution of scores in terms of sequence length for the Ghostbuster news dataset.
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Table 3. Other combinations of scoring models, evaluated on our reference datasets as described in the main body.

PPL Scorer (M7)  X-Cross PPL Scorers (M}, M3) TPR at TPR at  F1-Score AUC
0.01% FPR  0.1% FPR
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 100.0000 100.0000 1.0000 1.0000
Llama-2-13B Llama-13B, Llama-2-13B 99.6539 99.6539 0.9982 0.9999
Llama-2-7B Llama-7B, Llama-2-7B 99.3079 99.3079 0.9965 0.9998
Llama-2-13B Llama-13B, Llama-2-13B 98.3549 98.3549 0.9913 0.9997
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 98.7200 99.1600 0.9953 0.9996
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 94.9200 99.4000 0.9963 0.9996
Llama-2-7B Llama-7B, Llama-2-7B 95.8441 97.5757 0.9922 0.9996
Llama-2-13B Llama-13B, Llama-2-13B 98.6400 99.0400 0.9953 0.9995
Llama-2-7B Llama-7B, Llama-2-7B 98.8000 99.2800 0.9959 0.9995
Llama-2-7B Llama-7B, Llama-2-7B 98.1600 98.6000 0.9937 0.9992
Llama-2-13B Llama-13B, Llama-2-13B 98.4000 98.7200 0.9943 0.9992
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 94.1125 97.9220 0.9926 0.9992
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 93.5000 93.5000 0.9875 0.9990
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 92.0000 92.0000 0.9918 0.9990
Llama-2-7B Llama-7B, Llama-2-7B 94.0000 94.0000 0.9850 0.9989
Llama-2-7B Llama-7B, Llama-2-7B 98.0000 98.0000 0.9956 0.9988
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 72.6957 72.7857 0.9908 0.9988
Llama-2-13B Llama-13B, Llama-2-13B 97.8750 97.8750 0.9931 0.9987
Llama-2-13B-Chat  Llama-2-13B, Llama-2-13B-Chat  71.3199 82.6799 0.9846 0.9986
Llama-2-13B Llama-13B, Llama-2-13B 97.5000 97.5000 0.9875 0.9985
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 97.5778 97.5778 0.9930 0.9983
Falcon-7B-Instruct  Falcon-7B, Falcon-7B-Instruct 23.3076 48.3732 0.9842 0.9975
Llama-2-13B Llama-13B, Llama-2-13B 0.3200 32.0800 0.9840 0.9968
Llama-2-13B-Chat  Llama-2-13B, Llama-2-13B-Chat  20.9172 60.0671 0.9763 0.9968
Llama-2-13B Llama-13B, Llama-2-13B 47.1476 69.2953 0.9747 0.9964
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Figure 11. Perplexity and Cross-perplexity are not strong detectors on their own.

A.8. Performer Model Ablation

In this experiment, we aimed to determine the highest-performing model (M2) to use in the Binoculars setup. In Ap-
pendix A.5, we demonstrated that using identical scoring models (Falcon-7B) is not the optimal choice, and Falcon-
7B-instruct as performer model yields a better detector. Therefore, we know that instruction tuning does help improve
Binoculars® performance. We fine-tuned Falcon-7B on the Alpaca instruction tuning dataset and used it as the performer
model. We benchmark Binoculars’ performance with performers trained at various steps: 0 (identical model case), 1, 10,
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Table 4. Over various datasets, we show that perplexity alone or cross-perplexity alone are poor predictors of human versus machine,
whereas Binoculars perform well even at low false-positive rates (FPR).

True Positive Rate

Dataset Detector AUC @001%FPR @0.1%FPR @ 1%FPR @ 5% FPR
Falcon PPL 1.00 0.86 0.86 0.94 0.98
Falcon X-PPL 0.94 0.56 0.56 0.59 0.79
Writing  LLaMA PPL 0.99 0.86 0.86 0.92 0.98
Prompts LLaMA X-PPL 0.86 0.04 0.04 0.10 0.43
Binoculars-Falcon 1.00 0.93 0.93 0.96 1.00
Binoculars-LLaMA  1.00 0.95 0.95 0.98 1.00
Falcon PPL 0.99 0.65 0.77 0.90 0.95
Falcon X-PPL 0.85 0.04 0.12 0.29 0.53
News LLaMA PPL 0.98 0.67 0.71 0.89 0.95
LLaMA X-PPL 0.26 0.00 0.00 0.00 0.01
Binoculars-Falcon 1.00 0.95 0.99 1.00 1.00
Binoculars-LLaMA  1.00 0.99 0.99 1.00 1.00
Falcon PPL 1.00 0.78 0.78 0.88 0.99
Falcon X-PPL 0.93 0.25 0.25 0.38 0.70
Essay LLaMA PPL 0.99 0.42 0.42 0.90 0.98
LLaMA X-PPL 0.80 0.01 0.01 0.04 0.16
Binoculars-Falcon 1.00 0.98 0.98 0.99 1.00
Binoculars-LLaMA  1.00 0.99 0.99 1.00 1.00
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Figure 12. Comparison of Ghostbuster and Binoculars AUC on PubMed, CCNews and CNN datasets.

50, 100, 500, and finally using Falcon-7B-instruct (original formulation). We observed that the fully fine-tuned performer
(Falcon-7B-Instruct) achieved the best detection performance, and this performance increase was nearly monotonic with
instruction fine-tuning.

Experiment Details. We finetune pretrained Falcon-7B on alpaca instruction dataset with 5e-5 learning rate and 65K
tokens batch size (32 samples * 2048 block size) with cosine annealing ratio of 3% on 4 A5000 GPUs using FSDP
distributed training.
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Table 5. Case Studies of Text Samples likely to be memorized by LLMs.

True Positive Rate

Predicted
Cross PPL (Falcon

Human Sample PPL (Falcon 7B In- 7B, Falcon 7B In- Binoculars Score as

struct) struct) Human-

Written
US Constitution 0.6680 0.8789 0.7600 X
“I have a dream speech” 1.0000 1.2344 0.8101 X
Snippet from Cosmos series 2.3906 2.8281 0.8453 X
Blowin’ In the Wind (song) 1.1172 1.2188 0.9167
Oscar Wilde’s quote 2.9219 3.0781 0.9492
Snippet from White Night 2.6875 2.8125 0.9556
Wish You Were Here 2.5000 2.5938 0.9639
Snippet from Harry Potter book 2.5938 2.6875 0.9651
First chapter of A Tale of Two Cities  2.7188 2.7500 0.9886
Snippet from Crime and Punishment ~ 2.8750 2.9063 0.9892
To Fall In Love With You (song) 3.2969 3.2656 1.0096
News Creative Writing Student Essay
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Figure 13. AUC Curve Binoculars score using identical M; and M models using Falcon-7B and Falcon-7B-Instruct.
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Table 6. Instructions appended in system prompts for 3 different strategies.

107t

Prompting Strategy

Instruction appended to the default system prompt

Carl Sagan

Non-Robotic

Pirate

Write in the voice of Carl Sagan.

Write your response in a way that doesn’t sound pretentious or overly formal.
Don’t use robotic-sounding words like ‘logical’ and ‘execute.” Write in the casual
style of a normal person.

Write in the voice of a pirate.

A.9. Confidence estimates for Binoculars Peformance

10°

We report the standard error on our reported AUC and TPR @ 0.01% FPR in Figure 1 to provide confidence estimates
around these figures. We achieve this by creating 20 one-third-sized subsamples from the original set using stratified
bootstrapping, ensuring a 50-50 class mix.

A.10. Binoculars Peformance on GPT4 and Gemini-Pro

We evaluate Binoculars’ performance on state-of-the-art APIs as of March 2024. We randomly sample instruction and
system prompt pairs from the Open Orca dataset and use the GPT-4 and Gemini APIs to generate text. We observe a very

low false negative rate for Gemini, while it is considerably high for GPT-4.
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Figure 14. Random token sequences fall strictly on the human side of the Binoculars threshold.
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Figure 15. We Find that fully finetuned M3 (i.e., Falcon-7B-Instruct) achieves the best performance, while fine-tuning on the instruction
dataset (Alpaca) further enhances performance. This experiment complements the findings from Figure 13.

Table 7. Standard error for reported metrics from the main paper.
Dataset Name AUC TPR @ 0.01% FPR
News 2.12e-5 2.92e-3
Creative Writing 2.50e-4  2.15e-3
Student Essay 8.99¢-5 3.8%e-3

Table 8. False negative rate on samples generated by state-of-the-art generation API

API Name Version # Correct  # Total Source Acc. False Negative Rate
gemini-1.0-pro-latest March 2024 125 129 Open Orca  96.89% 3.10%
gpt-4 March 2024 54 129 Open Orca 41.86% 58.13%
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