

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SELECTIVE EXPERT GUIDANCE FOR EFFECTIVE AND DIVERSE EXPLORATION IN REINFORCEMENT LEARN- ING OF LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has become a widely adopted technique for enhancing the reasoning ability of Large Language Models (LLMs). However, the effectiveness of RLVR strongly depends on the capability of base models. This issue arises because it requires the model to have sufficient capability to perform high-quality exploration, which involves both effectiveness and diversity. Unfortunately, existing methods address this issue by imitating expert trajectories, which improve effectiveness but neglect diversity. To address this, we argue that the expert only needs to **provide guidance at critical decision points** rather than the entire reasoning path. Based on this insight, we propose **MENTOR**: Mixed-policy Expert Navigation for Token-level Optimization of Reasoning, a framework that provides expert guidance only at critical decision points to perform effective and diverse exploration in RLVR. Extensive experiments show that MENTOR enables models capture the essence of expert strategies rather than surface imitation, thereby performing high-quality exploration and achieving superior overall performance. Our code is available online¹.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has become a widely adopted technique for enhancing the reasoning ability of Large Language Models (LLMs). It has significantly improved models' performance in solving challenging mathematics and programming problems, as evidenced by models such as OpenAI-01 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-1.5 (Team et al., 2025). These improvements are largely attributed to the models' ability to generate detailed chains of thought (CoT) before giving final answers (Wei et al., 2022), which is termed test-time scaling (Muennighoff et al., 2025).

However, the effectiveness of RLVR strongly depends on the capability of base models. It has been observed that when applied to models with limited parameters, RLVR fails to reproduce the remarkable gains observed on powerful base models (Guo et al., 2025).

This issue arises because RLVR requires the model to have sufficient capability to perform high-quality exploration, which involves both **effectiveness** and **diversity**. Specifically, when the task is overly challenging for the model, it often struggle to discover any correct reasoning trajectory (Yue et al., 2025), resulting in ineffective exploration that hinders training (Yu et al., 2025). Furthermore, even when correct solutions are found, limited diversity of reasoning trajectories often leads the model to rapidly converge to a narrow set of solutions (Song et al., 2025), which reflected in entropy collapse (Cui et al., 2025) and ultimately traps it in suboptimal solutions (Song et al., 2025).

Unfortunately, existing methods address this issue by imitating expert trajectories, which **improve effectiveness but neglect diversity**. While such imitation reduces ineffective exploration (Yan et al., 2025; Zhang et al., 2025a;b; Liu et al., 2025; Li et al., 2025), it forces the model to follow to fixed expert trajectories, thereby restricting the diversity of exploration and accelerating entropy collapse (Yan et al., 2025). In addition, the reduction of diversity is further accelerated by gradient

¹<https://anonymous.4open.science/r/mentor-F9C4/>

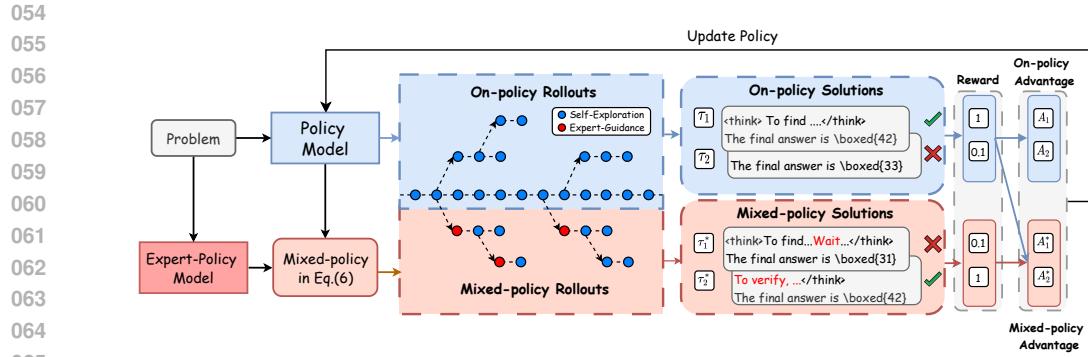


Figure 1: Illustration of MENTOR framework. By providing expert guidance only at critical decision points, MENTOR steers reasoning trajectories while preserving the policy’s own exploration, thereby avoiding the constraints of fixed expert trajectories and achieving more effective and diverse exploration in RL training.

imbalance (Huang et al., 2025), which drives the model to quickly overfit expert trajectories, especially when expert reasoning patterns diverge substantially from those of the policy model (Zhang et al., 2025a). Although some works attempt to mitigate it by reweighting tokens in expert trajectories (Yan et al., 2025; Zhang et al., 2025a), the relief remains superficial, as the exploration space is still fundamentally restricted by the fixed expert trajectories.

To achieve better exploration, we argue that the expert only needs to **provide guidance at critical decision points** rather than the entire reasoning trajectory. Expert guidance is indeed essential for steering the model toward correct solutions, but blindly imitating full expert trajectories restricts the exploration space. Since tokens contribute unequally to reasoning trajectories (Wang et al., 2025), introducing guidance at critical decision points enables the model to best leverage expert knowledge while preserving exploration diversity. Based on this insight, we propose **MENTOR**: Mixed-policy Expert Navigation for Token-level Optimization of Reasoning, a framework that injects expert guidance only at critical decision points to perform effective and diverse exploration. Extensive experiments show that MENTOR enables models capture the essence of expert strategies rather than surface imitation, thereby sustaining high-quality exploration and achieving superior overall performance.

Our contributions can be summarized as follows:

- We provide a formal analysis of RLVR and demonstrate that effective policy improvement critically depends on high-quality exploration, which requires not only discovering correct solutions but also maintaining sufficient diversity to prevent entropy collapse and avoid being trapped in suboptimal solutions.
- We are the first to propose leveraging expert knowledge only at critical decision points in RLVR training rather than imitating entire expert trajectories, thereby enabling models to achieve both effective and diverse exploration in RLVR.
- We conduct extensive experiments showing that MENTOR delivers consistent improvements on six challenging math benchmarks and out-of-domain tasks, with gains stable across diverse model families. Further analysis reveals that it mitigates entropy collapse in RLVR training and broadens the capability boundary of base models, and case studies demonstrate it can selectively absorb expert knowledge rather than superficial imitation.

2 WHAT IS HIGH-QUALITY EXPLORATION IN RLVR?

Exploration is fundamental to reinforcement learning, as it enables models to discover more rewarding strategies and thereby avoid being trapped in suboptimal behaviors. In this section, we investigate the necessary conditions of high-quality exploration in RLVR.

108
109

Let \mathcal{S} denote the space of all possible token sequences over the LLM’s vocabulary, and let π_θ denote a LLM with parameters θ . Given a question space $\mathcal{D} \subseteq \mathcal{S}$ and a input $q \in \mathcal{D}$, the model generates sequences τ autoregressively according to a conditional distribution $\pi_\theta(\cdot|q)$.

Definition 2.1 (Exploration Support Set). Given a probability threshold δ_p and a question q , define the exploration support of $\pi_\theta(\cdot|q)$ that excludes negligible-probability sequences:

$$\text{supp}(\pi_\theta(\cdot|q)) = \left\{ \tau \in \mathcal{S} \mid \pi_\theta(\tau|q) > \delta_p \right\}, \quad (1)$$

Although softmax guarantees that every sequence has strictly positive probability, a limited sampling budget makes extremely low-probability sequences practically unreachable. Therefore, $\text{supp}(\pi_\theta(\cdot|q))$ characterizes the effective exploration space of the model for a given question q .

Fine-tuning LLM π_θ using RL with a reward function $R(\cdot)$ involves repeatedly sampling sequences from the current policy, rewarding the LLM for correct sequences and penalizing for the wrong ones, in order to maximize the expected reward:

$$J(\theta) = \mathbb{E}_{q \sim \mathcal{D}, \tau \sim \pi_\theta(\cdot|q)} [R(q, \tau)]. \quad (2)$$

In practice, this objective is commonly optimized with **Group Relative Policy Optimization (GRPO)** (Shao et al., 2024), which has demonstrated strong performance across tasks and enables effective scaling in the RLVR paradigm. GRPO leverages the reward scores of G sampled solutions for a given question q to estimate advantages, thereby eliminating the need for an additional value model. Formally, let $\pi_{\theta_{\text{old}}}$ and π_θ denote the policy before and after the update, each representing a distribution over tokens at every position. Given a question q , a set of sampled solution sequences τ_i from $\pi_{\theta_{\text{old}}}$, and a reward function $R(\cdot)$, GRPO computes the advantage A_i by normalizing rewards within the group,

$$\begin{aligned} \mathcal{J}_{\text{GRPO}}(\theta) = & \mathbb{E}_{q \sim \mathcal{D}, \{\tau_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ & \left[\frac{1}{\sum_{i=1}^G |\tau_i|} \sum_{i=1}^G \sum_{t=1}^{|\tau_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} (r_{i,t}(\theta), 1 \pm \varepsilon_{\text{clip}}) \hat{A}_{i,t} \right) - \beta D_{\text{KL}}(\pi_\theta || \pi_{\text{ref}}) \right] \end{aligned} \quad (3)$$

where

$$r_{i,t}(\theta) = \frac{\pi_\theta(\tau_{i,t} \mid q, \tau_{i,<t})}{\pi_{\theta_{\text{old}}}(\tau_{i,t} \mid q, \tau_{i,<t})}, \quad \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (4)$$

2.2 THE NECESSARY CONDITIONS OF HIGH-QUALITY EXPLORATION IN RLVR

Definition 2.2 (Explorable Optimal Trajectory Subset). For a given question q , the optimal trajectory set within the exploration support $\text{supp}(\pi_\theta(\cdot|q))$ is defined as

$$\mathcal{T}^* = \{\tau \in \text{supp}(\pi_\theta(\cdot|q)) \mid R(q, \tau) = R_{\max}(q)\}, \quad (5)$$

where $R_{\max}(q) = \sup_{\tau \in \mathcal{S}} R(q, \tau)$ denotes the maximal achievable reward for question q .

Intuitively, \mathcal{T}^* is a subset of the globally optimal trajectories, representing the portion of optimal solutions that the model can actually sample during rollouts. Under the training objective in Eq. (2), the support of π_θ will progressively contract toward \mathcal{T}^* , eventually concentrating its probability mass on this set. This convergence yields the optimal policy π_{opt} , which maximizes the expected reward while maintaining the highest possible output diversity (see Appendix A.1.1 for proof).

Effectiveness issue. However, a key insight is that if the model lacks the ability to discover any optimal trajectory, then \mathcal{T}^* becomes empty, and the reinforcement learning process can no longer make progress. For example, under GRPO, when correct solutions are absent, the normalized advantages $\hat{A}_{i,t}$ in Eq. (4) tend to approach zero. Consequently, the update term in Eq. (3) becomes ineffective, preventing any policy improvement. Therefore, a necessary condition for high-quality exploration is that the policy must be able to discover at least one optimal trajectory within its support.

162 **Diversity issue.** During reinforcement learning, policy entropy tend to rapidly collapse, leading
 163 to reduced diversity in model outputs and limiting the exploration of a wider range of possible tra-
 164 jectories. Some studies have found that the decline in exploratory diversity can hinder performance
 165 improvements on unsolved problems (Song et al., 2025). The following theorem formalizes this
 166 diversity issue (a detailed proof is provided in the appendix A.1.1):
 167

168 **Theorem 2.1** (Entropy Upper-Bound Decay with Increasing Expected Reward). In the binary-
 169 reward case $R \in \{0, 1\}$, let \mathcal{T}^* be the set of optimal trajectories with $K = |\mathcal{T}^*|$, $M = |\mathcal{S}_q \setminus \mathcal{T}^*|$,
 170 $N = K + M$. For any expected reward $C \in (0, 1)$, the policy entropy is upper-bounded by

$$H_{ub}(C) = H_b(C) + C \log K + (1 - C) \log M. \quad (6)$$

171 where $H_b(C) = -C \log C - (1 - C) \log(1 - C)$. For $c_2 > c_1$ with c_1 larger than the expected
 172 reward under the uniform policy on $\text{supp}(\pi_\theta(\cdot | q))$ (i.e., $c_1 > \frac{K}{N}$), the entropy upper bound satisfies
 173 the single inequality
 174

$$0 < H_{ub}(c_1) - H_{ub}(c_2) = (c_2 - c_1) \log \frac{N}{K} + H_b(c_1) - H_b(c_2), \quad (7)$$

175 The entropy upper bound necessarily decreases as the expected reward increases, with the amount
 176 of inversely proportional to the size K of the optimal trajectory set \mathcal{T}^* .
 177

178 This theorem shows that to prevent a rapid collapse of diversity, high-quality exploration must ensure
 179 the discovery of multiple, diverse optimal trajectories. When the set \mathcal{T}^* contains only a few optimal
 180 solutions, increasing expected reward necessarily forces the policy to concentrate probability mass
 181 more aggressively, causing its entropy upper bound to drop rapidly and thus accelerating diversity
 182 collapse. In contrast, a larger \mathcal{T}^* can slow down entropy collapse and thus preserve more explo-
 183 ration diversity, thereby enabling the policy ultimately achieve higher final performance. Therefore,
 184 another necessary condition for high-quality exploration is that the policy must discover multiple
 185 distinct optimal trajectories, so that exploration diversity can be preserved during reward improve-
 186 ment.
 187

188 Highlights

189 In summary, to avoid suboptimal convergence under limited exploration budgets, high-quality
 190 exploration is indispensable. Specifically, it must satisfy two necessary conditions: **effec-**
 191 **tiveness** and **diversity**. If either of these conditions is missing, the model will converge to a
 192 suboptimal solution.
 193

194 3 MENTOR: MIXED-POLICY EXPERT NAVIGATION FOR TOKEN-LEVEL 195 OPTIMIZATION OF REASONING

196 As discussed in Section 2, high-quality exploration in RLVR requires both effectiveness and diver-
 197 sity. However, existing methods that incorporate expert solutions improve effectiveness but overlook
 198 diversity, leading to entropy collapse (Zhang et al., 2025a). To address this, we propose **MENTOR**,
 199 a framework that balances effectiveness and diversity through two components: **Mixed-policy Roll-**
 200 **out**, which introduces expert guidance only at critical decision points, and **Mixed-policy GRPO**,
 201 which integrates these guided rollouts into on-policy RL with modified advantage estimation. The
 202 overall framework is illustrated in Figure 1.
 203

204 3.1 MIXED-POLICY ROLLOUT

205 Existing expert-guided methods, in order to obtain reasoning trajectories beyond the capability of
 206 the base model, typically sample full trajectories from the expert model π^* , where every token is
 207 generated according to $y_t \sim \pi^*(\cdot | q, y_{<t})$, and the base model is then trained to imitate each token
 208 in this expert-generated trajectory equally.

209 However, recent studies show that tokens contribute unequally to reasoning trajectories (Wang et al.,
 210 2025). some (e.g., high-entropy tokens) determine critical decision forks, while others only serve as
 211 deterministic following. The latter often vary across models in stylistic ways, but such differences

216 have little impact on reasoning process. Entire expert trajectories inevitably contain many of these
 217 low-impact tokens, which distract the model from learning the key reasoning decisions. To mitigate
 218 this problem, we introduce expert guidance only where it is truly needed.

219 **Definition 3.1** (Mixed-policy Distribution) At each decoding step t , we define a token-level mixed-
 220 policy distribution that interpolates between the on-policy distribution π_θ and the expert distribution
 221 π^* . The expert distribution π^* is derived from a stronger reference model with the same vocabulary
 222 \mathcal{V} , such as a larger model or a domain-adapted model (Du et al., 2024). Formally, given question q
 223 and prefix $y_{<t}$, the sampling distribution for token y_t is:
 224

$$\pi_{\text{mix}}(\cdot | q, y_{<t}) = (1 - w_t) \pi_\theta(\cdot | q, y_{<t}) + w_t \pi^*(\cdot | q, y_{<t}), \quad (8)$$

225 where $w_t = \min(1, H_t / \gamma_p)$ is the interpolation weight determined by the token-level entropy $H_t =$
 226 $-\sum_y \pi_\theta(y | q, y_{<t}) \log \pi_\theta(y | q, y_{<t})$, and γ_p denotes the p -quantile of entropies across tokens in
 227 the batch. Thus, high-entropy tokens receive stronger expert guidance, while low-entropy tokens
 228 remain closer to the on-policy distribution π_θ .
 229

230 By sampling trajectories from this mixed-policy distribution, exploration achieves a balance be-
 231 tween effectiveness and diversity. Effectiveness is enhanced because expert guidance is injected at
 232 uncertain decision points, increasing the probability of discovering correct trajectories. Diversity is
 233 preserved because expert guidance is restricted to only a few positions, ensuring that the exploration
 234 space remains exponentially large and avoiding collapse to a fixed expert solution. At the same time,
 235 selective guidance enables models to focus on learning the core reasoning strategies from the expert.
 236

237 **Accelerating Mixed-policy Rollout.** Although π_{mix} introduces expert guidance only at critical
 238 tokens, standard auto-regressive sampling from π_{mix} still requires forward computation of both the
 239 policy model π_θ and the expert π^* at every step to determine whether guidance is required, which
 240 substantially increases rollout cost and consequently reduces the efficiency of training, especially
 241 when the expert has a large number of parameters.

242 Since π_{mix} deviates from the policy distribution π_θ only on a few tokens, while at the remaining po-
 243 sitions π_{mix} is close to π_θ . Based on this positional sparsity, we propose an accelerated mixed-policy
 244 rollout method based on Speculative Sampling (Chen et al., 2023). Speculative Sampling is an un-
 245 biased acceleration method that let the draft model propose multiple tokens and then verifying them
 246 with the target model in parallel. Its acceleration effect depends on the draft acceptance rate, making
 247 it naturally suitable for mixed-policy rollout where most tokens align with the policy distribution.

248 We first let the policy model π_θ auto-regressively generate K candidate tokens $\tilde{y}_{1:K}$, while record-
 249 ing the corresponding sampling distributions $\pi_\theta(\cdot | q, \tilde{y}_{<t})$ at each step t . Next, the expert model
 250 computes the distributions $\pi^*(\cdot | q, \tilde{y}_{<t})$ in parallel. Based on these results, we construct the mixed-
 251 policy distribution $\pi_{\text{mix}}(\cdot | q, \tilde{y}_{<t})$ as defined in Eq.(8). Each candidate token \tilde{y}_t is then validated with
 252 the acceptance probability

$$\min \left(1, \frac{\pi_{\text{mix}}(\tilde{y}_t | q, \tilde{y}_{<t})}{\pi_\theta(\tilde{y}_t | q, \tilde{y}_{<t})} \right). \quad (9)$$

253 If \tilde{y}_t is accepted, the process continues to the next candidate until either a rejection occurs or all K
 254 candidates are accepted.
 255

256 When a candidate is rejected, it is resampled from the residual distribution
 257

$$(\pi_{\text{mix}}(\cdot | q, \tilde{y}_{<t}) - \pi_\theta(\cdot | q, \tilde{y}_{<t}))_+. \quad (10)$$

258 where $(f(v))_+ = \max(0, f(v)) / \sum_v \max(0, f(v))$, $v \in \mathcal{V}$.
 259

260 This process is repeated to generate complete sequences, enabling substantially faster sampling from
 261 the mixed policy while remaining unbiased with Eq.(8), see Appendix A.1.2 for proof. The detailed
 262 algorithm is summarized in Algorithm 1.
 263

264 3.2 MIXED-POLICY GRPO

265 To effectively integrate samples generated by the mixed-policy rollout into GRPO, we extend the
 266 algorithm with a modified advantage function. Specifically, for each query q , we collect two sets of
 267

270 **Algorithm 1** Accelerating Mixed-policy Rollout with Modified Speculative Sampling

271 Given lookahead K , entropy threshold γ_p and maximum response length T .
272 Given expert model π^* , and on-policy model π_θ , question sequence q .
273 Initialize $n = 0$.
274 **while** $n < T$ **do**
275 **for** $t = 1 : K$ **do**
276 Sample candidate tokens from the policy model $\tilde{y}_t \sim \pi_\theta(\cdot | q, y_{\leq n}, \tilde{y}_{<t})$
277 Compute the token-level entropy H_t from the on-policy distribution $\pi_\theta(\cdot | q, y_{\leq n}, \tilde{y}_{<t})$
278 Compute weight $w_t \leftarrow \min(1, H_t / \gamma_p)$
279 **end for**
280 In parallel, compute K sets of logits from candidate tokens $\tilde{y}_1, \dots, \tilde{y}_K$:
281 $\pi^*(\cdot | q, y_{\leq n}), \pi^*(\cdot | q, y_{\leq n}, \tilde{y}_1), \dots, \pi^*(\cdot | q, y_{\leq n}, \tilde{y}_K)$
282 **for** $t = 1 : K$ **do**
283 Sample $r \sim U[0, 1]$ from a uniform distribution.
284 Compute $\pi_{\text{mix}}(\cdot | q, y_{\leq n}) \leftarrow (1 - w_t)\pi_\theta(\cdot | q, y_{\leq n}) + w_t\pi^*(\cdot | q, y_{\leq n})$
285 **if** $r < \min\left(1, \frac{\pi_{\text{mix}}(\tilde{y}_t | q, y_{\leq n})}{\pi_\theta(\tilde{y}_t | q, y_{\leq n})}\right)$, **then**
286 Set $y_{n+1} \leftarrow \tilde{y}_t$ and $n \leftarrow n + 1$.
287 **else**
288 sample $y_{n+1} \sim (\pi_{\text{mix}}(\cdot | q, y_{\leq n}) - \pi_\theta(\cdot | q, y_{\leq n}))_+$ and exit for loop.
289 **end if**
290 **end for**
291 **end while**
292

293 trajectories: (i) on-policy rollouts $\mathcal{G}_{\text{on}} = \{\tau\}^{N_1}$ sampled from the policy model π_θ , and (ii) mixed-
294 policy rollouts $\mathcal{G}_{\text{mix}} = \{\tau\}^{N_2}$ sampled from the mixed-policy π_{mix} . Then optimizes the policy model
295 by maximizing the following objective:
296

297
$$\mathcal{J}_{\text{mixed}}(\theta) = \frac{1}{\sum_{i=1}^{N_1+N_2} |\tau_i|} \sum_{i=1}^{N_1+N_2} \sum_{t=1}^{|\tau_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_{i,t} \right) \quad (11)$$
298

300 **On-policy advantages.** For $\tau \in \mathcal{G}_{\text{on}}$, we retain GRPO’s group-wise standardization to promote
301 self-improvement:
302

303
$$\hat{A}_{i,t}(\tau) = \frac{R_i - \text{mean}(\{R_j\}_{\tau_j \in \mathcal{G}_{\text{on}}})}{\text{std}(\{R_j\}_{\tau_j \in \mathcal{G}_{\text{on}}})}, \quad \tau \in \mathcal{G}_{\text{on}}. \quad (12)$$
304

305 **Mixed-policy advantages.** For $\tau \in \mathcal{G}_{\text{mix}}$, we aim to **encourage exploration rather than penalize**
306 **failures**. To this end, we define its advantage function as the positive excess of its reward over the
307 mean reward of on-policy rollouts:
308

309
$$\hat{A}_{i,t}(\tau) = \alpha \cdot \frac{[R_i - \text{mean}(\{R_j\}_{\tau_j \in \mathcal{G}_{\text{on}}})]_+}{R_{\text{range}}}, \quad \tau \in \mathcal{G}_{\text{mix}}. \quad (13)$$
310

311 where $[x]_+ = \max(x, 0)$ ensures that only above-average exploration is rewarded while failures
312 are ignored, and R_{range} is a fixed reward span (e.g., the global maximum–minimum reward range)
313 used to normalize rewards into $[0, 1]$ for numerical stability. And α is a weighting coefficient that
314 balances the contribution of samples from the mixed-policy. In our setting, α is additionally sched-
315 uled to gradually decay, thereby shifting the policy from expert-guided exploration to self-driven
316 exploration as training progresses.
317

4 EXPERIMENTS

4.1 SETUP

321 **Datasets and Models.** We conduct experiments on two model families: Qwen2.5 (Team, 2024)
322 and LLaMA3.1 (Dubey et al., 2024). For Qwen2.5, we use the Qwen2.5-7B-Base and Qwen2.5-3B-
323 Base for experiments. And we use the MATH dataset (Hendrycks et al.) as training dataset, restrict-
324 ing to problems with difficulty levels 3–5 and removing any instances overlapping with the test set

324 to prevent data leakage, total 8,889 training examples. For LLaMA3.1, we use the LLaMA3.1-8B-
 325 Base for experiments. However, the MATH dataset is too difficult for this model, such that vanilla
 326 GRPO fails to train successfully. To enable comparison between GRPO and other baselines, we
 327 construct a simplified dataset from OpenR1-MATH-220K² (Hugging Face, 2025) as the training
 328 dataset for LLaMA3.1. Further dataset and expert model details are provided in the Appendix A.3.
 329

330 **Evaluations.** We evaluate the models along two categories. (i) **In-domain performance.** We
 331 assess the in-domain performance on mathematics benchmarks, including MATH (Hendrycks et al.),
 332 AIME24, AIME25, and AMC (Li et al., 2024). (ii) **Out-of-domain performance.** To examine
 333 whether post-tuning affects general reasoning ability beyond mathematics, we further evaluate the
 334 out-of-domain performance in MMLU-Pro (Wang et al., 2024) and GPQA-diamond (Rein et al.).
 335 For AIME24, AIME25, and AMC, we report avg@32 at temperature 0.6 as the test set is relatively
 336 small, while for the other benchmarks, we report pass@1 at temperature 0.
 337

338 **Baselines.** We compare MENTOR with several representative baselines, including: (1) **Base:** The
 339 base model without any fine-tuning. (2) **On-policy RL:** Standard GRPO without expert guidance,
 340 enhanced with token-level loss and the Clip-Higher in DAPO (Yu et al., 2025) to serve as a stronger
 341 baseline. (3) **LUFFY** (Yan et al., 2025): A method that integrates full expert trajectories within the
 342 GRPO rollout groups. (4) **QuestA** (Li et al., 2025): A method that provides the first half of expert
 343 trajectories as hints for the model to follow. Hyper-parameters and training details of different
 344 methods can be found in Appendix A.3.
 345

4.2 MAIN RESULTS

347 Table 1: MENTOR vs. other baselines. **Compared to the On-policy RL, MENTOR achieves an**
 348 **average performance improvement of 3.2%, 4.3% and 3.9% on the three models, respectively.**
 349 The best results are highlighted in bold, and the second-best results are underlined.
 350

Methods	In-Domain Performance						Out-of-Domain			Avg
	MATH	AIME24	AIME25	AMC	Minerva	Olympiad	GPQA	ARC	MMLU-Pro	
LLaMa3.1-8B-Base										
Base	10.6	0.1	0.0	1.8	4.4	2.1	0.0	0.0	0.1	2.1
On-policy RL	24.0	<u>0.4</u>	0.4	8.0	13.6	6.4	25.8	70.7	<u>35.7</u>	20.6
LUFFY	<u>25.2</u>	<u>0.5</u>	<u>0.4</u>	<u>8.4</u>	<u>14.0</u>	<u>7.1</u>	27.8	<u>74.9</u>	34.9	<u>21.5</u>
QuestA	20.6	0.1	0.2	5.3	8.8	4.0	25.3	72.5	33.9	19.0
MENTOR	30.2	1.2	0.6	10.4	16.2	8.9	30.3	77.3	39.1	23.8
Qwen2.5-3B-Base										
Base	47.4	2.4	1.9	17.7	19.9	19.0	3.0	23.6	19.4	17.1
On-policy RL	65.8	3.3	2.5	32.2	25.4	29.8	<u>17.7</u>	72.1	30.6	31.0
LUFFY	64.0	5.2	4.2	32.8	25.0	<u>30.1</u>	15.2	<u>72.5</u>	30.8	31.1
QuestA	<u>66.4</u>	<u>7.9</u>	2.9	<u>34.1</u>	27.6	29.8	16.2	70.3	<u>30.9</u>	<u>31.8</u>
MENTOR	69.8	8.3	<u>3.8</u>	34.2	<u>26.5</u>	35.2	22.7	80.8	36.8	35.3
Qwen2.5-7B-Base										
Base	62.4	5.4	2.9	26.5	16.9	28.9	11.1	70.4	42.9	29.7
On-policy RL	76.8	14.2	9.1	46.0	34.2	<u>41.5</u>	29.3	86.0	48.0	42.8
LUFFY	77.0	12.9	10.4	46.4	35.3	40.8	26.8	86.0	49.7	42.8
QuestA	<u>78.8</u>	<u>14.6</u>	<u>13.3</u>	<u>47.4</u>	33.5	<u>41.5</u>	<u>30.3</u>	<u>86.7</u>	51.0	<u>44.1</u>
MENTOR	81.4	18.3	16.5	53.1	<u>34.9</u>	45.2	30.8	89.6	<u>50.2</u>	46.7

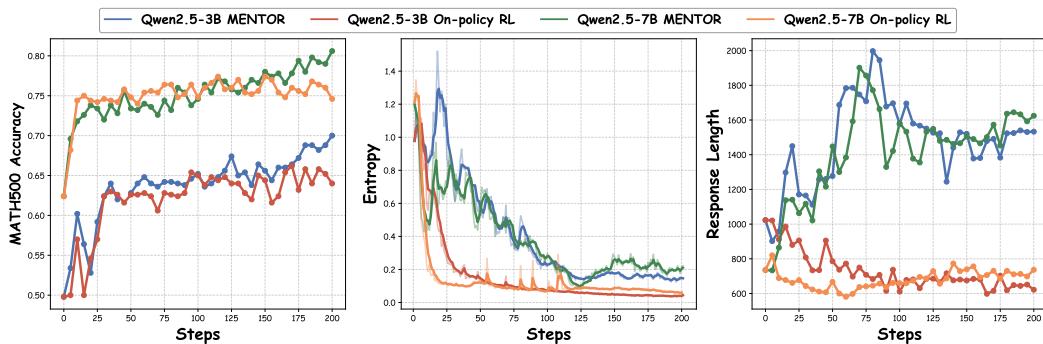
372 **MENTOR achieves consistent improvements across different models.** Table 1 shows that
 373 MENTOR outperforms the on-policy RL baseline across all three backbones. On Qwen2.5-7B,
 374 for example, MENTOR lifts the average score on the MATH benchmark from 76.8 to 81.4, and
 375 yields notable relative gains of +4.1, +7.4, and +7.1 points on AIME24, AIME25, and AMC, re-
 376 spectively. Similar trends are observed on Qwen2.5-3B and LLaMa3.1-8B. Importantly, these gains
 377

²<https://huggingface.co/datasets/open-r1/OpenR1-Math-220k>

378 are not confined to in-domain reasoning. MENTOR also delivers clear improvements on out-of-
 379 domain benchmarks, demonstrating that the reasoning abilities learned under expert guidance can
 380 effectively generalize to out-of-domain tasks.
 381

382 **MENTOR achieves a better trade-off between expert guidance and autonomous exploration.**
 383 Compared to on-policy RL, LUFFY introduces full expert trajectories but achieves only limited im-
 384 provements across all models, indicating that directly imitating expert solutions does not fully lever-
 385 age expert knowledge. This is likely because full trajectories overly constrain the exploration space,
 386 causing the model to overfit superficial expert patterns and fall into suboptimal strategies. QuestA,
 387 which provides partial expert trajectories as hints, alleviates over-imitation to some extent but its
 388 effectiveness strongly depends on model capacity: it yields clear gains (+1.3) on Qwen2.5-7B, only
 389 minor improvement (+0.8) on Qwen2.5-3B, and even a negative effect (-1.6) on LLaMa3.1-8B. This
 390 is because, in the absence of subsequent guidance, the weaker model struggles to explore correct so-
 391 lutions, and the excessive hints further disrupt its exploration. In contrast, MENTOR consistently
 392 outperforms across different models, achieving a better balance between leveraging expert knowl-
 393 edge and maintaining autonomous exploration, thereby achieving significant improvements.
 394

395 4.3 TRAINING DYNAMICS



407 Figure 2: Training dynamics of MENTOR compared with On-policy RL. **MENTOR mitigates en-**
 408 **tropy collapse, and its response length dynamics reflect a shift from learning to understanding,**
 409 **thereby achieving higher performance.**
 410

411 **Entropy dynamics.** Figure 2 compares the training dynamics of On-policy RL and MENTOR in
 412 terms of validation accuracy, entropy and response length. Under On-policy RL, entropy collapses
 413 rapidly, indicating that the support of the policy exploration space shrinks prematurely to a narrow
 414 subset of trajectories. MENTOR enhances exploration diversity through selective expert guidance,
 415 thereby slowing down entropy collapse and enabling more persistent exploration throughout train-
 416 ing. More importantly, the entropy eventually converges to a slightly higher level than On-policy
 417 RL, indicating that the final support set discussed in Section 2 is expanded, which directly translates
 418 into stronger final performance.
 419

420 **Response Length dynamics.** In the early training stage, MENTOR’s responses grow in length
 421 compared with GRPO. By analyzing rollout samples during training, we find that this rapid growth
 422 stems from adopting expert-style reasoning forks such as *verify* and *wait*, the occurrence of which
 423 extends the reasoning chain. However, as training progresses, MENTOR’s response length gradually
 424 declines, consistent with the scheduled reduction of expert advantage. We find that the model starts
 425 to distinguish useful tokens (e.g., *verify*) from redundant ones (e.g., *wait*), reflecting a shift from
 426 expert-guided to self-driven exploration. Through this selective absorption, the model achieves a
 427 more efficient final reasoning pattern, as shown in Appendix A.7.
 428

429 4.4 THE ANALYSIS OF REASONING PATTERN

430 To better understand the reasoning patterns induced by different training methods, Figure 3 reports
 431 the occurrence rate of high-frequency reasoning tokens, defined as the proportion of trajectories
 in which the token appears at least once, computed from 500 trajectories on MATH500, which

provides a more reliable perspective than individual cases. Detailed case studies are provided in Appendix A.7.

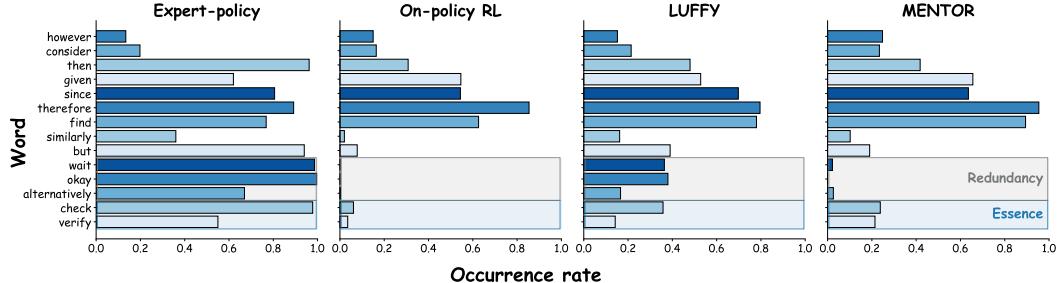


Figure 3: The occurrence rate of high-frequency reasoning tokens under different training methods. **MENTOR absorbs the essence of expert trajectories such as *verify*, while avoiding over-imitation of redundant tokens like *okay* or *wait*.**

MENTOR achieves selective absorption of expert knowledge. As shown in Figure 3, although LUFFY successfully incorporate expert knowledge compared with on-policy RL, it tends to imitate indiscriminately. For example, it excessively adopts tokens such as *okay* and *wait*, which leads to overly redundant reasoning. In contrast, MENTOR exhibits a more selective learning process, adopting valuable reasoning tokens such as *verify* and *check* while avoiding preserving redundant ones. This selective learning shows that MENTOR goes beyond surface imitation, effectively absorbing the essence of expert guidance while discarding the redundancy, resulting in an efficient reasoning pattern.

4.5 THE ANALYSIS OF REASONING DIVERSITY

To further quantify the impact of different methods on reasoning diversity, we adopt pass@k as the evaluation metric, which is widely used to measure reasoning diversity (Song et al., 2025; Chen et al., 2025). As shown in Figure 4, Pass@32 of On-policy RL stagnates or even declines compared to the Base model, as it can only reshape behaviors within the original capability, resulting in reduced reasoning diversity. By introducing external expert trajectories, LUFFY and QuestA expand the model’s capability boundary and raise pass@k. However, these methods are limited in achieving further improvements in reasoning diversity due to excessive imitation. In contrast, by balancing expert guidance with autonomous exploration, MENTOR achieves a 9.2% average gain in pass@32, indicating a clear enhancement in reasoning diversity.

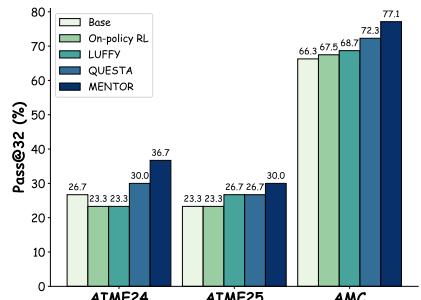


Figure 4: Pass@32 performance of Qwen2.5-7B under different methods. **MENTOR improves the model’s reasoning diversity beyond other baselines.**

5 RELATED WORK

Reinforcement Learning for Large Language Models Reinforcement learning has recently made significant progress in enhancing the reasoning abilities of LLMs (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025). A central development is Reinforcement Learning from Verifiable Rewards (RLVR), which replaces human feedback signals (Kirk et al., 2024) with automatically checkable objectives such as mathematical verification (Shao et al., 2024) and program execution (Pennino et al., 2025). However, studies also reveal that the gains of RLVR are closely tied to the capability of the base model. For instance, DeepSeek-R1 reports that while RLVR yields remarkable improvements for powerful base models, its benefits become much less pronounced when applied to models with more limited capacity (Guo et al., 2025).

486 **On-Policy Learning under Expert Guidance** To improve the effectiveness of RLVR, a line of
 487 work incorporates expert trajectories into on-policy RL training. Some approaches directly mix entire
 488 expert rollouts with policy rollouts (Yan et al., 2025; Zhang et al., 2025a), while others provide
 489 partial prefixes of expert trajectories as hints for continued generation (Liu et al., 2025; Zhang et al.,
 490 2025b; Li et al., 2025). These strategies have proven effective in reducing unproductive exploration
 491 and stabilizing training. However, imitation of fixed expert trajectories restricts exploration, accelerates
 492 entropy collapse (Yan et al., 2025), and ultimately undermines the diversity of reasoning trajectories.
 493 In addition, the reduction of diversity is further accelerated by gradient imbalance (Huang
 494 et al., 2025), which drives the model to quickly overfit expert trajectories, especially when their
 495 reasoning patterns diverge substantially from those of the policy model (Zhang et al., 2025a). Although
 496 token-level reweighting has been proposed to alleviate this issue (Yan et al., 2025; Zhang et al.,
 497 2025a), the fundamental limitation remains: the exploration is still constrained by the fixed expert
 498 trajectories.
 499
 500

501 **LLM reasoning under guidance** Generating detailed chains of thought (CoT) has become a central
 502 strategy for improving LLM problem-solving performance (Wei et al., 2022). This strategy
 503 can be viewed as a form of test-time compute (Muennighoff et al., 2025), where allocating more
 504 inference-time FLOPs leads to better performance. Since the quality of the CoT strongly influences
 505 final accuracy, a growing body of work focuses on optimizing the model’s reasoning process. Some
 506 approaches leverage the model’s own confidence or self-evaluation signals to select higher-value
 507 reasoning paths (Yao et al., 2023; Fu et al., 2025; Razghandi et al., 2025). Another line introduces
 508 process-reward models that help the model progressively search the output space for more promising
 509 CoT trajectories during inference (Snell et al., 2025; Setlur et al., 2024; Zhang et al., 2024;
 510 Chen et al., 2024). While these methods improve reasoning by searching within the model’s own
 511 distribution, their exploration remains inherently bounded by the model’s capability. In contrast,
 512 our work employs guidance from a more capable expert model, enabling exploration beyond the
 513 policy model’s native reasoning space and thus providing a stronger mechanism for discovering
 514 higher-quality reasoning trajectories.

515 6 CONCLUSION

516 In this paper, we introduced MENTOR, a powerful framework that enables effective and diverse
 517 exploration through selective expert guidance at critical decision points. MENTOR avoids super-
 518 ficial imitation and allows policy model to internalize the essence of expert reasoning strategies.
 519 Across challenging benchmarks, our method consistently outperforms strong baselines and signif-
 520 icantly improves pass@k performance on complex tasks. These results demonstrate the potential
 521 of selective expert guidance to enhance RLVR and suggest promising directions for future research,
 522 such as extending the framework to multimodal reasoning or investigating how expert guidance can
 523 be provided more effectively.

525 7 ETHICS STATEMENT

526 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
 527 mentation was involved. All datasets used, such as MATH and OpenR1-MATH-220K, were sourced
 528 in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
 529 to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
 530 information was used, and no experiments were conducted that could raise privacy or security
 531 concerns. We are committed to maintaining transparency and integrity throughout the research process.

534 8 REPRODUCIBILITY STATEMENT

535 We have made every effort to ensure that the results presented in this paper are reproducible. All
 536 code and datasets have been made publicly available in an anonymous repository to facilitate repli-
 537 cation and verification. The experimental setup, including training steps, model configurations, and
 538 hardware details, is described in detail in the paper. Furthermore, we will also release the model

540 checkpoints from our main experiments to facilitate future research. The public datasets used in
 541 the paper, such as MATH, OpenR1-MATH-220K, are publicly available, ensuring consistent and
 542 reproducible evaluation results.
 543

544 **REFERENCES**
 545

546 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
 547 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint*
 548 *arXiv:2302.01318*, 2023.

549 Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
 550 without process. *Advances in Neural Information Processing Systems*, 37:27689–27724, 2024.

551 Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
 552 Pass@ k training for adaptively balancing exploration and exploitation of large reasoning models.
 553 *arXiv preprint arXiv:2508.10751*, 2025.

554 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 555 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
 556 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

557 Chengyu Du, Jinyi Han, Yizhou Ying, Aili Chen, Qianyu He, Haokun Zhao, Sirui Xia, Haoran Guo,
 558 Jiaqing Liang, Zulong Chen, et al. Think thrice before you act: Progressive thought refinement in
 559 large language models. *arXiv preprint arXiv:2410.13413*, 2024.

560 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 561 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 562 *arXiv e-prints*, pp. arXiv–2407, 2024.

563 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. *arXiv*
 564 *preprint arXiv:2508.15260*, 2025.

565 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 566 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 567 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

568 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 569 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
 570 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 571 *Track (Round 2)*.

572 Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M Ponti, and Ivan
 573 Titov. Blending supervised and reinforcement fine-tuning with prefix sampling. *arXiv preprint*
 574 *arXiv:2507.01679*, 2025.

575 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

576 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 577 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 578 *preprint arXiv:2412.16720*, 2024.

579 Edwin T Jaynes. Information theory and statistical mechanics. *Physical review*, 106(4):620, 1957.

580 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 581 Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
 582 and diversity. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 583 <https://openreview.net/forum?id=PXD3FAVHJT>.

584 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 585 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 586 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 587 *Systems Principles*, 2023.

594 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 595 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 596 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 597 13(9):9, 2024.

598 Jiazhen Li, Hong Lu, Kaiyue Wen, Zaiwen Yang, Jiaxuan Gao, Hongzhou Lin, Yi Wu, and
 599 Jingzhao Zhang. Questa: Expanding reasoning capacity in llms via question augmentation. *arXiv*
 600 *preprint arXiv:2507.13266*, 2025.

601 Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu,
 602 Qingfu Zhang, and Dandan Tu. Ghpo: Adaptive guidance for stable and efficient llm reinforce-
 603 ment learning. *arXiv preprint arXiv:2507.10628*, 2025.

604 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 605 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 606 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

607 Federico Pennino, Bianca Raimondi, Massimo Rondelli, Andrea Gurioli, and Maurizio Gabbielli.
 608 From reasoning to code: Grpo optimization for underrepresented languages. *arXiv preprint*
 609 *arXiv:2506.11027*, 2025.

610 Ali Razghandi, Seyed Mohammad Hadi Hosseini, and Mahdieh Soleymani Baghshah. Cer: Confi-
 611 dence enhanced reasoning in llms. *arXiv preprint arXiv:2502.14634*, 2025.

612 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 613 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 614 mark. In *First Conference on Language Modeling*.

615 Amritra Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 616 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 617 process verifiers for llm reasoning. *arXiv preprint arXiv:2410.08146*, 2024.

618 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 619 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 620 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

621 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 622 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 623 *arXiv: 2409.19256*, 2024.

624 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
 625 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth Interna-
 626 tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=4FWAwZtd2n)
 627 [forum?id=4FWAwZtd2n](https://openreview.net/forum?id=4FWAwZtd2n).

628 Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning. *arXiv*
 629 *preprint arXiv:2509.06941*, 2025.

630 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 631 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 632 llms. *arXiv preprint arXiv:2501.12599*, 2025.

633 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

634 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 635 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 636 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025.

637 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 638 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 639 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 640 37:95266–95290, 2024.

648 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
649 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
650 *neural information processing systems*, 35:24824–24837, 2022.

651 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
652 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

653 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
654 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
655 *vances in neural information processing systems*, 36:11809–11822, 2023.

656 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
657 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
658 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

659 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
660 inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
661 *preprint arXiv:2504.13837*, 2025.

662 Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
663 mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. *arXiv preprint*
664 *arXiv:2406.07394*, 2024.

665 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
666 and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
667 reinforcement learning via dynamic weighting. *arXiv preprint arXiv:2508.11408*, 2025a.

668 Xuechen Zhang, Zijian Huang, Yingcong Li, Chenshun Ni, Jiasi Chen, and Samet Oymak.
669 Bread: Branched rollouts from expert anchors bridge sft & rl for reasoning. *arXiv preprint*
670 *arXiv:2506.17211*, 2025b.

671 Yaowei Zheng, Shenzhi Wang Junting Lu, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
672 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025.

678 A APPENDIX

679 A.1 THEORETICAL PROOF

682 A.1.1 PROOF OF EXPLORATION DIVERSITY

684 **Lemma 2.1** (Policy Distribution under the Expected-Reward Constraint). For a fixed question q ,
685 let $\mathcal{S}_q = \text{supp}(\pi_\theta(\cdot | q))$, $\mathcal{T}^* = \{\tau \in \mathcal{S}_q : R(\tau) = R_{\max}\}$. Based on the Maximum Entropy
686 Principle, the policy distribution that attains the largest entropy under the expected-reward constraint
687 $\mathbb{E}_P[R] = C$ takes the Gibbs form

$$688 P_\lambda(\tau) = \frac{\exp\{\lambda R(\tau)\}}{Z(\lambda)}, \quad Z(\lambda) = \sum_{\tau' \in \mathcal{S}_q} \exp\{\lambda R(\tau')\}.$$

691 As the reward constraint C approaches its maximal value R_{\max} , the corresponding multiplier λ
692 diverges, and all probability mass concentrates on the optimal set \mathcal{T}^* :

$$694 P_\lambda(\tau) \longrightarrow \begin{cases} \frac{1}{|\mathcal{T}^*|}, & \tau \in \mathcal{T}^*, \\ 0, & \tau \notin \mathcal{T}^*. \end{cases}$$

697 *Proof.* Since the learning objective in Eq.(2) is to maximize expected reward but the exact optimal
698 distribution is unknown, we adopt a Maximum Entropy Principle (Jaynes, 1957). Specifically, we
699 optimize over all probability mass functions $P : \mathcal{S}_q \rightarrow [0, 1]$ with $\sum_{\tau \in \mathcal{S}_q} P(\tau) = 1$:

$$701 \max_P H(P) \quad \text{s.t.} \quad \sum_{\tau \in \mathcal{S}_q} P(\tau)R(\tau) = C, \quad \sum_{\tau \in \mathcal{S}_q} P(\tau) = 1, \quad (14)$$

702 where $H(P) = -\sum_{\tau \in \mathcal{S}_q} P(\tau) \log P(\tau)$ and C is the target expected reward. A standard La-
 703 grangian calculation yields the unique Gibbs-form solution
 704

$$705 \quad P_\lambda(\tau) = \frac{\exp\{\lambda R(\tau)\}}{Z(\lambda)}, \quad Z(\lambda) = \sum_{\tau' \in \mathcal{S}_q} \exp\{\lambda R(\tau')\}, \quad (15)$$

706 for some multiplier $\lambda > 0$ chosen such that $\mathbb{E}_{P_\lambda}[R] = C$.
 707

708 Define $\phi(\lambda) = \sum_{\tau} P_\lambda(\tau)R(\tau)$. Then $\phi'(\lambda) = \text{Var}_{P_\lambda}[R] \geq 0$, so $\phi(\lambda)$ is non-decreasing. More-
 709 over, $\lim_{\lambda \rightarrow \infty} \phi(\lambda) = R_{\max}$. Hence as $C \uparrow R_{\max}$, we must have $\lambda \rightarrow \infty$, and for any $\tau \notin \mathcal{T}^*$ and
 710 $\tau^* \in \mathcal{T}^*$,

$$711 \quad \frac{P_\lambda(\tau)}{P_\lambda(\tau^*)} = \exp\{-\lambda(R_{\max} - R(\tau))\} \rightarrow 0 \quad (\lambda \rightarrow \infty). \quad (16)$$

712 Thus all probability mass concentrates on \mathcal{T}^* in the limit.
 713

714 **Theorem 2.1** (Entropy Upper-Bound Decay with Increasing Expected Reward). In the binary-
 715 reward case $R(\tau) \in \{0, 1\}$, let \mathcal{T}^* be the set of optimal trajectories with $K = |\mathcal{T}^*|$, $M = |\mathcal{S}_q \setminus \mathcal{T}^*|$,
 716 $N = K + M$. For any expected reward $C \in (0, 1)$, the policy entropy is upper-bounded by
 717

$$718 \quad H_{\text{ub}}(C) = H_b(C) + C \log K + (1 - C) \log M.$$

719 where $H_b(C) = -C \log C - (1 - C) \log(1 - C)$.
 720

721 For $c_2 > c_1$ with c_1 larger than the expected reward under the uniform policy on $\text{supp}(\pi_\theta(\cdot | q))$
 722 (i.e., $c_1 > \frac{K}{N}$), the entropy upper bound satisfies the single inequality
 723

$$724 \quad 0 < H_{\text{ub}}(c_1) - H_{\text{ub}}(c_2) = (c_2 - c_1) \log \frac{N}{K} + H_b(c_1) - H_b(c_2),$$

725 The entropy upper bound necessarily decreases as the expected reward increases, with the amount
 726 of inversely proportional to the size K of the optimal trajectory set \mathcal{T}^* .
 727

728 *Proof.* Let \mathcal{S}_q denote $\text{supp}(\pi_\theta(\cdot | q))$. Assume $R(\tau) \in \{0, 1\}$ for all $\tau \in \mathcal{S}_q$ and write
 729

$$730 \quad \mathcal{T}^* = \{\tau \in \mathcal{S}_q : R(\tau) = 1\}, \quad K = |\mathcal{T}^*|, \quad M = |\mathcal{S}_q \setminus \mathcal{T}^*|, \quad N = K + M.$$

731 For a fixed target expected reward $C \in (0, 1)$, in the binary case the Gibbs distribution in Eq. (15)
 732 is equivalent to
 733

$$734 \quad \pi_C(\tau) = \begin{cases} \frac{C}{K}, & \tau \in \mathcal{T}^*, \\ \frac{1-C}{M}, & \tau \notin \mathcal{T}^*. \end{cases} \quad (17)$$

735 Thus the maximum-entropy solution is uniform over correct trajectories and uniform over incorrect
 736 ones, with total mass C and $1 - C$, respectively.
 737

738 The entropy of π_C is
 739

$$740 \quad H_{\text{ub}}(C) = -\sum_{\tau} \pi_C(\tau) \log \pi_C(\tau) \quad (18)$$

$$743 \quad = -C \log \frac{C}{K} - (1 - C) \log \frac{1 - C}{M} \quad (19)$$

$$745 \quad = H_b(C) + C \log K + (1 - C) \log M, \quad (20)$$

746 where $H_b(C) = -C \log C - (1 - C) \log(1 - C)$ is the binary entropy. Treating $H(C)$ as a function
 747 of C , we have
 748

$$749 \quad H'_{\text{ub}}(C) = -\log C + \log(1 - C) + \log K - \log M = \log \frac{(1 - C)K}{CM}. \quad (21)$$

750 The critical point satisfies $H'_{\text{ub}}(C) = 0$, which gives
 751

$$753 \quad \frac{(1 - C)K}{CM} = 1 \iff C = \frac{K}{K + M} = \frac{K}{N}, \quad (22)$$

754 i.e., the expected reward under the uniform distribution on \mathcal{S}_q . Moreover, $H'_{\text{ub}}(C) < 0$ whenever
 755 $C > \frac{K}{N}$, so $H_{\text{ub}}(C)$ is strictly decreasing for $C > \frac{K}{N}$.
 756

756 Now take $c_1 < c_2$ with $c_1 > \frac{K}{N}$. Since H_{ub} is strictly decreasing on $(\frac{K}{N}, 1)$, we obtain

$$757 \quad \Delta H_{\text{ub}}(K) := H_{\text{ub}}(c_1) - H_{\text{ub}}(c_2) > 0.$$

758 Thus the entropy necessarily drops when the expected reward increases from c_1 to c_2 in this regime.

759 Next, for fixed c_1, c_2 and N , the explicit expression

$$760 \quad \Delta H_{\text{ub}}(K) = H_{\text{ub}}(c_1) - H_{\text{ub}}(c_2) = [H_{\text{b}}(c_1) - H_{\text{b}}(c_2)] + (c_2 - c_1) \log \frac{N - K}{K} \quad (23)$$

761 shows that all dependence on $K = |\mathcal{T}^*|$ is through the factor $\log \frac{N - K}{K}$. Differentiating with respect
762 to K yields

$$763 \quad \frac{\partial}{\partial K} \Delta H_{\text{ub}}(K) = (c_2 - c_1) \left(-\frac{1}{N - K} - \frac{1}{K} \right) < 0, \quad (24)$$

764 so $\Delta H_{\text{ub}}(K)$ is strictly decreasing in K . Hence, for the same reward increase $c_1 \rightarrow c_2$, a larger
765 optimal set $|\mathcal{T}^*|$ always leads to a smaller entropy drop. In this sense, the entropy loss scales
766 inversely with the size of \mathcal{T}^* , and entropy collapse is slower when the optimal set is larger.

767 A.1.2 PROOF OF UNBIASEDNESS FOR MIXED-POLICY ROLLOUT

768 The unbiasedness of speculative sampling is well established in prior work. For completeness,
769 we include a concise proof specialized to our mixed policy π_{mix} , confirming that the validation
770 procedure remains unbiased in our setting.

771 Let the token space be \mathcal{V} , and fix a prefix $(q, y_{<t})$ at step t . Denote the base policy by

$$772 \quad p_t(\cdot) = \pi_\theta(\cdot | q, y_{<t}),$$

773 and let $s_t(\cdot) = \pi^*(\cdot | q, y_{<t})$ be the expert policy. The mixed policy is obtained by a deterministic
774 ensemble of (p_t, s_t) ,

$$775 \quad q_t(\cdot) = \pi_{\text{mix}}(\cdot | q, y_{<t}) = \mathcal{M}(p_t(\cdot), s_t(\cdot)),$$

776 where \mathcal{M} denotes any tokenwise mixing operator that yields a valid distribution on \mathcal{V} (e.g., convex
777 mixing). The validation procedure only depends on q_t .

778 At step t , a candidate token \tilde{y}_t is first sampled from p_t . It is accepted with probability

$$779 \quad \alpha_t(\tilde{y}_t) = \min\left(1, \frac{q_t(\tilde{y}_t)}{p_t(\tilde{y}_t)}\right),$$

780 If rejection occurs, a new token is drawn from the residual distribution on \mathcal{V} , defined for the dummy
781 variable $z \in \mathcal{V}$ by

$$782 \quad r_t(z) = \frac{(q_t(z) - p_t(z))_+}{\sum_{z' \in \mathcal{V}} (q_t(z') - p_t(z'))_+}, \quad (u)_+ = \max\{u, 0\}.$$

783 For any possible token $v \in \mathcal{V}$, the probability that it becomes the committed token is therefore

$$784 \quad \mathbb{P}(y_t = v) = p_t(v) \min\left(1, \frac{q_t(v)}{p_t(v)}\right) + \mathbb{P}(\text{reject}) r_t(v).$$

785 The first term equals $\min\{p_t(v), q_t(v)\}$. The rejection probability is

$$786 \quad \mathbb{P}(\text{reject}) = 1 - \sum_{z \in \mathcal{V}} p_t(z) \min\left(1, \frac{q_t(z)}{p_t(z)}\right) = 1 - \sum_{z \in \mathcal{V}} \min\{p_t(z), q_t(z)\} = \sum_{z \in \mathcal{V}} (q_t(z) - p_t(z))_+,$$

787 which coincides with the denominator of $r_t(\cdot)$. Consequently, the second term contributes exactly
788 $(q_t(v) - p_t(v))_+$. Combining the two contributions yields

$$789 \quad \mathbb{P}(y_t = v) = \min\{p_t(v), q_t(v)\} + (q_t(v) - p_t(v))_+ = q_t(v).$$

790 Thus the distribution of the validated token is exactly the mixed policy q_t .

791 To extend the result to entire speculative sequences, note that at $t = 1$ the marginal distribution is
792 q_1 . Suppose inductively that the joint distribution of the prefix $y_{<t}$ is $\prod_{j < t} q_j(y_j)$. Conditioning on
793 such a prefix, the above calculation shows that $y_t \sim q_t(\cdot)$. Hence, by induction,

$$794 \quad \mathbb{P}(y_{1:T} | q) = \prod_{t=1}^T q_t(y_t) = \prod_{t=1}^T \pi_{\text{mix}}(y_t | q, y_{<t}),$$

795 which is identical to direct autoregressive sampling from the mixed policy.

810 A.1.3 PROOF OF AUTOMATIC FILTERING OF MISLEADING EXPERT GUIDANCE
811

812 We show that the mixed-policy objective intrinsically filters out misleading or low-quality expert
813 guidance, thereby ensuring robustness even when the expert is weak. For clarity, we rewrite the
814 mixed-policy objective of Eq. (11) in its equivalent expectation form (for analytical convenience,
815 we omit the clipping)

$$816 \quad \mathcal{J}_{\text{mixed}}(\theta) = \mathbb{E}_{q \sim \mathcal{D}, \tau \sim \pi_{\theta}(\cdot|q)} \left[\frac{R(\tau) - \bar{R}}{\text{std}(R)} \right] + \mathbb{E}_{q \sim \mathcal{D}, \tau \sim \pi_{\text{mix}}(\cdot|q)} \left[\frac{[R(\tau) - \bar{R}]_+}{R_{\text{range}}} \right], \quad (25)$$

818 where \bar{R} denotes the average reward obtained by on-policy rollouts on the same query q , and $[x]_+ =$
819 $\max(x, 0)$.

820 The first expectation corresponds to standard GRPO without expert guidance. Thus, we focus on the
821 second term, which represents the contribution of expert guidance. The key observation is that the
822 choice of $[\cdot]_+$ induces an implicit rejection sampling effect. In typical reasoning tasks with binary
823 outcome rewards (correct yields 1, incorrect yields 0), we have

$$824 \quad [R(\tau) - \bar{R}]_+ = \begin{cases} R(\tau) - \bar{R}, & \text{if } \tau \text{ is correct,} \\ 0, & \text{otherwise.} \end{cases} \quad (26)$$

827 Consequently, any trajectory, which results in an incorrect answer because of unsuitable or mis-
828 leading expert guidance, obtains zero advantage and thus contributes no gradient signal, ensuring
829 that such erroneous expert signals are automatically filtered out. We further equivalently rewrite the
830 second term as

$$831 \quad \mathbb{E}_{q \sim \mathcal{D}, \tau \sim \pi_{\text{mix}}(\cdot|q)} \left[\frac{[R(\tau) - \bar{R}]_+}{R_{\text{range}}} \right] \quad (27)$$

$$834 \quad = \int_{\mathcal{T}_{\text{correct}}} \frac{[R(\tau) - \bar{R}]}{R_{\text{range}}} \pi_{\text{mix}}(\tau|q) d\tau + \int_{\mathcal{T}_{\text{incorrect}}} 0 \cdot \pi_{\text{mix}}(\tau|q) d\tau \quad (28)$$

$$836 \quad = \mathbb{E}_{q \sim \mathcal{D}, \tau \sim \pi_{\text{mix}}(\cdot|q), \tau \text{ is correct}} \left[\frac{R(\tau) - \bar{R}}{R_{\text{range}}} \right]. \quad (29)$$

838 where $\mathcal{T}_{\text{correct}}$ and $\mathcal{T}_{\text{incorrect}}$ denote, for a given query q , the sets of trajectories that yield correct
839 and incorrect outcomes, respectively.

840 Eq.(29) shows that the algorithm learns exclusively from effective expert-guided trajectories. Fur-
841 thermore, the term $(R(\tau) - \bar{R})$ measures the improvement provided by expert guidance over the
842 model’s own reasoning, which allows the algorithm to distinguish whether success comes from the
843 model itself or from the expert guidance. Only those expert-guided trajectories that provide genuine
844 improvement beyond the model’s baseline ability yield a positive advantage and are consequently
845 reinforced, while guidance that offers no real benefit results in negligible.

846 In summary, the mixed-policy objective:

- 848 • completely suppresses gradient contributions from incorrect expert-guided trajectories,
849 thereby preventing interference from misleading guidance.
- 850 • only reinforces expert guidance when it provides measurable improvement over the model’s
851 self-generated rollouts.

852 Even in the extreme case where the expert can provide only misleading guidance, and no correct
853 trajectory can be sampled under such guidance, our method still guarantees a performance lower
854 bound equivalent to standard GRPO, since the second expectation in Eq.(25) becomes zero and thus
855 has no effect on the update.

857 A.2 ALGORITHMIC PROCEDURE OF MENTOR
858

859 To complement the main-text description, we provide the full algorithmic procedure of MENTOR in
860 Algorithm 2. The algorithm outlines how mixed-policy expert navigation is integrated into on-policy
861 GRPO training, including the construction of the mixed policy, the dynamic update of the entropy
862 threshold, and the computation of group-wise advantages. For clarity, the pseudocode explicitly
863 separates on-policy rollouts from expert-guided mixed rollouts and highlights how the mixed-policy
864 GRPO objective is optimized at each step.

Algorithm 2 Mixed-policy Expert Navigation for Token-level Optimization of Reasoning

```

864 Given initial policy model  $\pi_{\theta_{\text{init}}}$ , expert policy model  $\pi^*$ , task prompts  $\mathcal{D}$ .
865 Given hyperparameters  $N_1, N_2, p, \mu$ , number of total training steps  $M$ .
866 Initialize policy model  $\pi_\theta \leftarrow \pi_{\theta_{\text{init}}}$ .
867 Initialize entropy threshold  $\gamma_p \leftarrow \text{inf}$ .
868 for step = 1 :  $M$  do
869     Sample a batch  $\mathcal{D}_b$  from  $\mathcal{D}$ .
870     Update old policy model  $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$ .
871     Define mixed-policy  $\pi_{\text{mix}}$  in Eq. (8) with  $\pi_{\theta_{\text{old}}}, \pi^*$  and  $\gamma_p$ 
872     For each question  $q \in \mathcal{D}_b$ , sample outputs
873          $\mathcal{G}_{\text{on}} = \{\tau_i\}_{i=1}^{N_1} \sim \pi_{\theta_{\text{old}}}(\cdot | q), \quad \mathcal{G}_{\text{mix}} = \{\tau_i\}_{i=1}^{N_2} \sim \pi_{\text{mix}}(\cdot | q)$ .
874         Compute and update the entropy threshold  $\gamma_p$  from trajectories in  $\mathcal{G}_{\text{on}}$ .
875         Compute rewards for each trajectory in  $\mathcal{G}_{\text{on}} \cup \mathcal{G}_{\text{mix}}$ .
876         Compute advantages  $\hat{A}_{i,t}$  for  $\mathcal{G}_{\text{on}}$  and  $\mathcal{G}_{\text{mix}}$ , using Eq. (12) and Eq. (13), respectively.
877         for mini step = 1 :  $\mu$  do
878             Update policy parameters  $\theta$  by maximizing the Mixed-policy GRPO objective in Eq. (11).
879         end for
880     end for
881     return  $\pi_\theta$ 
882
883
884
885
```

A.3 EXPERIMENTAL DETAILS

Platform. All of our experiments are conducted on workstations equipped with eight NVIDIA A100 GPUs with 80GB memory, running Ubuntu 22.04.4 LTS and CUDA 12.4.

System Prompt. All models trained under MENTOR and other baselines, except QuestA, share the same system prompt for both training and inference:

System

You are a helpful AI Assistant that provides well-reasoned and detailed responses. You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST BE enclosed within `<think></think>` tags. The final answer MUST BE put in `\boxed{}`.

User

{QUESTION}

Assistant

For QuestA, we additionally append “## Hint: Partial Solution” after the QUESTION as a hint section.

Reward Setting. For outcome reward, we employ Math-Verify to automatically check whether the final answer inside the “`<think>... </think>... \boxed{}`” format matches the ground truth, assigning +1 if correct and 0 otherwise. In addition, we introduce a format reward that grants +1 when the response adheres to this format, and 0 if not. The same reward design is applied to MENTOR and all baselines to ensure fairness. For Qwen2.5-7B and Qwen2.5-3B, the weights of outcome reward and format reward are set to 9:1. For LLaMA3.1-8B, however, this ratio is adjusted to 8:2, since the original weighting did not sufficiently enforce format adherence.

Dataset Details. For Qwen2.5-7B and Qwen2.5-3B, we use problems from the MATH dataset with difficulty levels 3–5, removing all instances that overlap with the test sets to avoid data leakage. This yields a total of 8,889 training examples. However, for LLaMA3.1-8B, this dataset is too difficult, making the vanilla GRPO algorithm hard to apply. To address this issue, we constructed an easier training set from OpenR1-Math-220K by selecting problems with response lengths shorter than 4K tokens, on which the model could be successfully trained using GRPO. All subsequent methods on LLaMA3.1-8B were trained using this simplified dataset. For each problem, the fixed expert trajectory used in LUFFY and QuestA is generated by DeepSeek-R1.

918 **Export Model Details.** For Qwen2.5, We adopt OpenR1-Qwen-7B³ as the expert model in MENTOR, which is trained on a distilled dataset generated by DeepSeek-R1. For LLaMA3.1, the expert model in MENTOR is obtained by further fine-tuning LLaMA3.1-8B-Instruct under the same dataset and setting used for OpenR1-Qwen-7B.

923 **Training Details.** We conduct all experiments using the EasyR1⁴ (Zheng et al., 2025) framework, which employs Verl (Sheng et al., 2024) as the RL training engine and vLLM (Kwon et al., 2023) as the rollout engine. The training setup includes a rollout batch of 128, a learning rate of 1×10^{-6} , a generation temperature of 1.0, and a higher-clip of 0.28. Each response sequence is up to 8k tokens in length. We perform 8 rollouts per prompt and do not apply KL divergence or entropy regularization (KL Coeff = 0, entropy loss = 0). The mini-batch size is set to 64. For important parameters of MENTOR, α is initialized to 1 and annealed to 0 with a cosine schedule over 120 steps, enabling a smooth transition from expert guidance to autonomous exploration. The number of mixed-policy rollouts is set to 4. For γ_p , p is chosen as 0.95, corresponding to the 95-th percentile of token-level entropies within each batch. As a special case, γ_p is initialized to 999 at the first step.

933 A.4 EXPLORING ALTERNATIVE FORMS OF EXPERT GUIDANCE

935 Beyond the **entropy-based guidance** introduced in the main text, we further investigate several 936 alternative ways of determining where and how expert guidance should be injected during mixed- 937 policy rollout.

939 **(1) Random guidance.** We begin with a simple baseline that injects expert guidance uniformly at 940 random throughout decoding, without relying on any uncertainty signal or contextual criterion. At 941 each step, the model routes the next-token decision to the expert policy π^* with probability 0.2, and 942 to the base policy π_θ with probability 0.8. In expectation, this stochastic routing yields the following 943 mixed distribution:

$$\pi_{\text{mix}}(y_t | x_{<t}) = 0.8 \pi_\theta(y_t | x_{<t}) + 0.2 \pi^*(y_t | x_{<t}). \quad (30)$$

946 **(2) Perplexity-based guidance.** Token-level perplexity measures how confused the model is about 947 generating a particular next token. For a token y_t with predicted probability $p_\theta(y_t | x_{<t})$, the 948 perplexity is defined as

$$\text{PPL}(t) = \exp \left(-\log p_\theta(y_t | x_{<t}) \right) = \frac{1}{p_\theta(y_t | x_{<t})}. \quad (31)$$

952 Higher perplexity indicates that the model is more confused about predicting the next token and is 953 more likely to make an error. To leverage this signal, we route the top 20% highest-perplexity tokens 954 to the expert policy. Concretely, let τ denote the 80th-percentile threshold of token-level perplexity 955 within the sequence, then the mixed policy is defined as:

$$\pi_{\text{mix}}(y_t | x_{<t}) = \begin{cases} \pi^*(y_t | x_{<t}) & \text{PPL}(t) > \tau, \\ \pi_\theta(y_t | x_{<t}) & \text{otherwise.} \end{cases} \quad (32)$$

960 To provide a direct illustration of how these guidance mechanisms differ in practice, we further 961 analyze the critical tokens generated by expert. Concretely, we use Qwen2.5-7B-Base as the base policy 962 and OpenR1-Qwen-7B as the expert policy, matching the setup used in our main experiments. For 963 each AIME24 query, we decode with temperature ($T = 1.0$) and apply the three guidance strategies 964 during generation. By aggregating the guidance tokens generated by the expert π^* under each 965 strategy, we visualize their distributions in Figure 5.

966 Compared with random and perplexity-based guidance, entropy-based guidance generates many logical 967 connectors (e.g., wait, however) that, in our experiments, often trigger new reasoning branches 968 and lead to trajectories whose style and structure differ substantially from the model’s own reasoning 969 without guidance. By contrast, random and perplexity-based guidance rarely introduce such 970

³<https://huggingface.co/open-r1/OpenR1-Qwen-7B>

⁴<https://github.com/hiyouga/EasyR1>

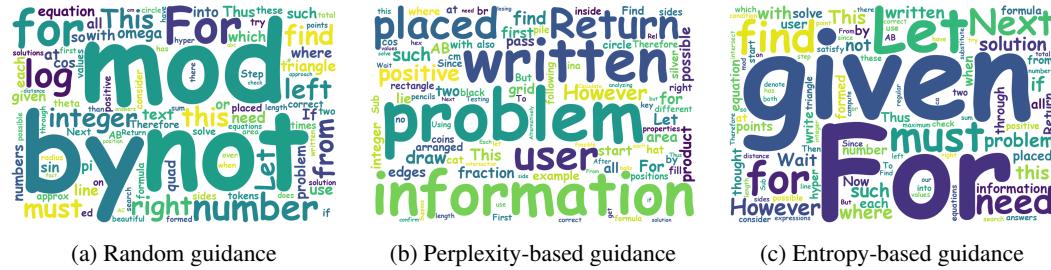


Figure 5: Word-cloud visualizations of expert-generated guidance tokens under different selection strategies.

branching points, and the resulting reasoning trajectories remain close to those produced by the base model alone.

To further validate the downstream impact of different guidance strategies, we follow the main training setup and compare random guidance, perplexity-based guidance, and entropy-based guidance on Qwen2.5-7B-Base.

Setting	MATH	AIME24
GRPO	76.8	14.2
MENTOR (Random guidance)	77.6	14.8
MENTOR (Perplexity-based guidance)	77.0	13.3
MENTOR (Entropy-based guidance)	81.4	18.3

Table 2: Impact of different guidance on MENTOR performance.

As shown in Table 2, both random guidance and perplexity-based guidance provide only limited improvement over GRPO, with the latter even occasionally degrading performance. In contrast, entropy-based guidance delivers substantial gains on both MATH and AIME24, indicating that expert guidance is more effective when applied at high-entropy positions.

A.5 ABLATION STUDY

A.5.1 ABLATION OF METHOD COMPONENTS

We analyze the contributions of each component in our methodology, as detailed in Table 3. The observed improvements demonstrate the effectiveness of these components in RL training, with each contributing performance gains on MATH.

Method	MATH	AIME24
Qwen2.5-7B-Base	62.4	5.4
GRPO	76.8	14.2
+Mixed-policy Rollout	79.4	14.6
+Mixed-policy GRPO	81.4	18.3

Table 3: Main results of progressive components applied to MENTOR

A.5.2 ABLATION OF EXPERT WEIGHT α

We also study the effect of the expert weight α , comparing the default decaying schedule (from 1 to 0) with several fixed-weight baselines. As shown in Table 5, MENTOR consistently outperforms standard GRPO under all settings, indicating that the framework remains stable and effective under

various parameter configurations. However, different values of α induce distinct patterns in how the model acquires and utilizes expert knowledge.

Setting	MATH	AIME24
GRPO (equiv. to $\alpha = 0$)	76.8	14.2
MENTOR (fixed $\alpha = 1.0$)	78.2	13.9
MENTOR (fixed $\alpha = 0.5$)	80.4	16.1
MENTOR (decay $\alpha : 1 \rightarrow 0$)	81.4	18.3

Table 4: Effect of expert weights on MENTOR performance.

Introducing expert knowledge consistently improves model performance across all hyperparameter settings. Across all hyperparameter configurations, MENTOR consistently surpasses GRPO ($\alpha = 0$), demonstrating that incorporating expert guidance effectively broadens the model’s exploration and improves learning stability. This confirms that absorbing expert knowledge is fundamentally beneficial for the training process.

Beyond injecting expert information, the model must also consolidate and internalize that knowledge. The experiments reveal that using a lower fixed weight ($\alpha = 0.5$) yields stronger performance than an overly high weight ($\alpha = 1$). This indicates that retaining a degree of autonomy allows the model to selectively reinforce the parts of expert knowledge that are truly useful, rather than relying on it indiscriminately. In other words, preserving autonomy is necessary for genuine understanding rather than rote imitation.

The decaying schedule achieves the best balance between them. Early in training, a high mixing weight accelerates learning by leveraging expert guidance; later, as the weight decreases, the model shifts toward autonomous optimization, refining its own strategy and filtering expert signals more effectively. This dynamic adjustment enables the model to both learn from experts and ultimately surpass them, producing the strongest overall performance.

A.5.3 ABLATION OF ENTROPY THRESHOLD γ_p

To assess the sensitivity of MENTOR to the entropy threshold γ_p , we conduct an ablation study by varying the high-entropy quantile p .

Setting	MATH	AIME24
MENTOR ($p = 0.8$)	80.8	17.0
MENTOR ($p = 0.9$)	80.2	17.7
MENTOR ($p = 0.95$)	81.4	18.3

Table 5: Effect of entropy threshold γ_p on MENTOR performance.

MENTOR’s final performance remains stable across different γ_p . As shown in Table 5, the final performance is largely insensitive to the choice of threshold, indicating that MENTOR remains robust across a reasonable range of γ_p .

A.5.4 ABLATION OF NORMALIZING EXPERT ADVANTAGES

To better understand the role of our advantage normalization design in Eq. 13, we conduct an ablation study that replaces our range-based normalization

$$\frac{[R_i - \text{mean}(\{R_j\}_{\tau_j \in \mathcal{G}_{\text{on}}})]_+}{R_{\text{range}}}$$

to std-based normalization

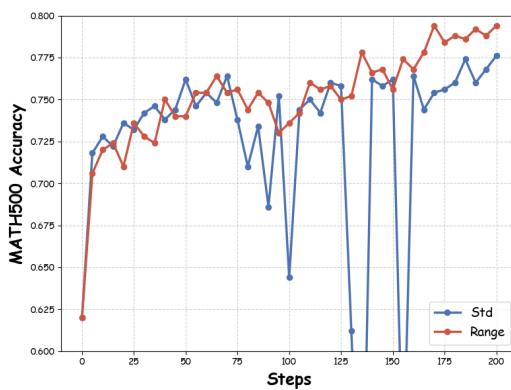
$$\frac{[R_i - \text{mean}(\{R_j\}_{\tau_j \in \mathcal{G}_{\text{on}}})]_+}{\text{std}([R_i - \text{mean}(\{R_j\}_{\tau_j \in \mathcal{G}_{\text{on}}})]_+)}$$

1080 We repeat the experiments on Qwen2.5-7B-Base under the same settings as the main experiments,
 1081 while fixing $\alpha = 0.5$. The results are shown below.
 1082

Setting	MATH	AIME24
GRPO	76.8	14.2
MENTOR (std-based)	77.8	14.8
MENTOR (range-based)	80.4	16.1

1089 Table 6: Effect of different normalization strategies for expert advantages on MENTOR performance.
 1090
 1091
 1092
 1093

1094 **Range-based normalization enables more stable absorption of expert knowledge.** As shown
 1095 in Table 6, range-based normalization yields notably better final performance than std-based nor-
 1096 malization. To further examine this behavior, Figure 6 presents the validation performance on
 1097 MATH500 throughout training for both normalization strategies.
 1098



1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Figure 6: Comparison of different normalization strategies.

We observe that the std-based normalization exhibits instability during training, particularly in the mid-to-late stages. This behavior arises because the model fails to effectively filter out low-value expert tokens, such as wait or alternative, which tend to induce unnecessary continuation of reasoning and lead to overthinking, ultimately degrading final performance. The underlying reason is that, in the later stages of training, the model has already acquired sufficient capability to solve problems correctly on its own (with training accuracy approaching 80%). Under such conditions, even when the expert provides misleading guidance, the model can still obtain the correct answer through its own reasoning. Std-based normalization tends to re-amplify those advantages that should have remained small, causing the advantage signal to no longer reliably reflect the value of expert guidance. Consequently, low-value tokens such as wait or alternative tend to be overestimated, hindering the model’s ability to distill the genuinely useful knowledge from the expert.

It is worth noting, however, that std-based normalization leads to faster improvement in the early training phase. At the beginning of training, the model’s own accuracy is extremely low, making it unlikely to overcome incorrect expert signals. In this regime, only genuinely useful expert guidance can lead to correct outcomes, while ineffective or erroneous signals naturally fail to yield positive rewards and are implicitly filtered out. As a result, std-based normalization does not amplify misleading outliers; instead, it reduces training variance, stabilizes gradient updates, and accelerates early-stage learning.

In contrast, range-based normalization can allow the model to absorb genuinely useful expert knowledge in a more stable manner.

1134 A.6 EFFICIENCY ANALYSIS
1135

1136 To provide a deeper comparison between MENTOR and a range of baselines, including on-policy
1137 RL algorithms (GRPO, DAPO) and expert-guided methods (LUFFY, QuestA), we conduct a detailed
1138 efficiency analysis during 200 training steps on Qwen2.5-7B-Base, using the same hyperparameters
1139 as in the main experiments. For each method, we report the average sequence lengths and the aver-
1140 age stage runtimes. Additionally, because different RL methods produce responses of substantially
1141 different lengths, we further define an **throughput** metric to ensure fair comparison across methods,
1142 which is computed as the average number of tokens that produce gradients per step divided by the
1143 average per-step time. The results are shown in Table 7.

Method	Sequence Length		Stage Time (s)			Total Time (s)	Throughput (tokens/s)
	Prompt	Response	Gen	Old	Update		
On-policy RL							
GRPO	153	828	133	24	87	244	3474
DAPO	153	833	307	25	92	424	2011
Expert-guided RL							
LUFFY	153	2902	270	60	230	560	5306
QuestA	510	711	142	31	117	290	2510
MENTOR	153	1751	404	48	175	627	2860

1148 Table 7: Efficiency analysis of different methods. Here, **Gen**, **Old** and **Update** denote respectively
1149 the generation (rollout) phase, the computing of the logits of π_{old} , and the model update phase in the
1150 Verl framework.

1151
1152
1153
1154
1155
1156 MENTOR achieves the highest performance with only moderate and acceptable additional
1157 training overhead. Since different methods generate responses of different lengths, we mainly
1158 rely on throughput for a fair comparison. Compared with on-policy RL methods, MENTOR reaches
1159 2860 tokens/s, between GRPO (3474) and DAPO (2011), because DAPO often performs two or three
1160 full generation phases to collect enough samples, while MENTOR’s mixed-policy rollouts are more
1161 efficient than repeated full generations. For expert-guided methods, LUFFY shows high throughput
1162 partly because it mixes in a full offline expert trajectory of about 6k tokens, which increases the num-
1163 ber of processed tokens. From the perspective of the algorithmic design, the throughput of LUFFY’s
1164 newly generated rollout data should be close to that of GRPO (3474). QuestA concatenates expert
1165 segments into the input, creating longer prompts that slightly reduce training throughput. Compared
1166 with these approaches, MENTOR achieves the highest final performance, and although it relies on
1167 expert guidance during the rollout stage, the additional overhead remains acceptable.

1168 A.7 CASE STUDY
1169

1170 To complement the aggregate analysis in Figure 3, we provide representative trajectory-level cases
1171 in this section. These examples illustrate how different training methods influence the emergence of
1172 reasoning tokens such as *verify*, *check*, and *wait*. By examining full reasoning traces, we highlight
1173 qualitative differences between methods, offering additional context to the quantitative analysis in
1174 the main text.

1175 We find that the incorporation of expert policy indeed shapes the final reasoning patterns of the
1176 models, with different methods leading to distinct outcomes.

1177

- 1178 • **From a stylistic perspective**, QuestA and MENTOR exhibit reasoning traces more aligned
1179 with on-policy RL, whereas LUFFY shows a closer resemblance to the expert’s style. This
1180 difference arises because LUFFY emphasizes direct imitation of expert demonstrations,
1181 often reproducing surface-level tokens such as *wait* and *okay*, while QuestA and MEN-
1182 TOR encourage the model to explore autonomously while using expert guidance, thereby
1183 preserving a degree of its own stylistic characteristics.

1188

- 1189 • **From a content perspective**, MENTOR and LUFFY successfully acquire specific reason-
1190 ing modes from the expert, such as the use of *verify*, which are absent in the base model. In
1191 contrast, QuestA, despite leveraging expert policy, does not exhibit the adoption of *verify*.
1192 Our analysis suggests this limitation stems from the design choice of using only the first
1193 half of the expert trajectory as hints, while tokens like *verify* typically appear toward the
1194 end of trajectories, thereby restricting their adoption.

1195

1196 An example of On-policy RL

1197 **QUESTION**

1198 Let x_1, x_2, x_3, y_1, y_2 , and y_3 be real numbers such that

1200
$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1201
$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1202
$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

1203 Find

1204
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2.$$

1205 **RESPONSE**

1206 <think>

1207 To solve for $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2$, we start by defining the determinant of the matrix:

1208
$$D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}.$$

1209 The determinant D can be expanded as follows:

1210
$$D = x_1 \begin{vmatrix} y_2 & 1 \\ y_3 & 1 \end{vmatrix} - y_1 \begin{vmatrix} x_2 & 1 \\ x_3 & 1 \end{vmatrix} + \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}.$$

1211 This expands to:

1212
$$D = x_1(y_2 - y_3) - y_1(x_2 - x_3) + (x_2y_3 - x_3y_2).$$

1213 So, we have:

1214
$$D = x_1y_2 - x_1y_3 - y_1x_2 + y_1x_3 + x_2y_3 - x_3y_2.$$

1215 We need to find D^2 . To do this, we will use the given distances between the points (x_1, y_1) ,
1216 (x_2, y_2) , and (x_3, y_3) . The distances are:

1217
$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1218
$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1219
$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

1220 These distances suggest that the points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) form a right triangle
1221 with sides of lengths 3, 4, and 5. Without loss of generality, we can place the points in a
1222 coordinate system where the distances are satisfied. One possible configuration is:

1223
$$(x_1, y_1) = (0, 0), \quad (x_2, y_2) = (3, 0), \quad (x_3, y_3) = (0, 4).$$

1224 Now, we calculate the determinant D for these points:

1225
$$D = \begin{vmatrix} 0 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & 4 & 1 \end{vmatrix}.$$

1242

1243 Expanding this determinant, we get:

1244

1245
$$D = 0 \cdot \begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 3 & 1 \\ 0 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 0 \\ 0 & 4 \end{vmatrix} = 1 \cdot (3 \cdot 4 - 0 \cdot 0) = 12.$$
 1246

1247

So, $D = 12$, and we need to find D^2 :

1248

1249
$$D^2 = 12^2 = 144.$$

1250

Thus, the answer is:

1251

144

1252

</think>

1253

144

1254

1255

1256

An example of MENTOR

1257

1258

QUESTION

1259

Let x_1, x_2, x_3, y_1, y_2 , and y_3 be real numbers such that

1260

1261
$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1262

1263
$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1264

1265
$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

1266

Find

1267
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2.$$

1268

RESPONSE

1269

<think>

1270

To find $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2$, we start by recalling that the determinant of the given matrix is the

1271

area of the triangle formed by the points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) multiplied by 2.

1272

Let's denote the determinant by D , so $D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$. Then, D^2 is the square of the area

1273

of the triangle.

1274

The area A of the triangle can be found using the formula for the area of a triangle with vertices (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) :

1275

1276
$$A = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

1277

Thus, $D^2 = 4A^2$. To find A^2 , we need to use the given distances between the points. The distances are given by the equations:

1278

1279
$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1280

1281
$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1282

1283
$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

1284

These equations represent the squared lengths of the sides of the triangle. Let's denote the points as $A = (x_1, y_1)$, $B = (x_2, y_2)$, and $C = (x_3, y_3)$. The distances $AB = 3$, $AC = 4$, and $BC = 5$. Notice that $3^2 + 4^2 = 5^2$, which suggests that triangle ABC is a right triangle with $\angle A = 90^\circ$.

1285

To verify, let's use the coordinates to check if the points form a right triangle. Assume $A = (x_1, y_1)$, $B = (x_2, y_2)$, and $C = (x_3, y_3)$. The squared distances are:

1286

1287
$$AB^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1288

1289

1290

1291

1292

1293

1294
$$AC^2 = (x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1295

1296

$$AC^2 = (x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1298

$$BC^2 = (x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

1299

Since $AB = 3$, $AC = 4$, and $BC = 5$, and $3^2 + 4^2 = 5^2$, the triangle is indeed a right triangle with $\angle A = 90^\circ$.

1300

The area A of a right triangle is given by half the product of the legs:

1302

$$A = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 3 \times 4 = 6.$$

1304

Therefore, $D^2 = 4A^2 = 4 \times 6^2 = 144$.

1305

So, the answer is 144.

</think>

$$\begin{vmatrix} x_1 & y_1 & 1 \end{vmatrix}^2$$

To find $\begin{vmatrix} x_1 & y_1 & 1 \end{vmatrix}^2$, we start by recalling that the determinant of the matrix is the area

of the triangle formed by the points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) multiplied by 2. Let's

denote the determinant by D , so $D = \begin{vmatrix} x_1 & y_1 & 1 \end{vmatrix}$. Then, D^2 is the square of the area of

the triangle.

Given the distances between the points:

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25,$$

we recognize these as the squared lengths of the sides of a triangle with sides $AB = 3$, $AC = 4$, and $BC = 5$. Since $3^2 + 4^2 = 5^2$, the triangle is a right triangle with $\angle A = 90^\circ$.

The area A of a right triangle is given by:

$$A = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 3 \times 4 = 6.$$

The determinant D is twice the area of the triangle:

$$D = 2A = 12.$$

Therefore,

$$D^2 = 12^2 = 144.$$

Thus, the final answer is:

144.

An example of LUFFY

QUESTION

Let x_1, x_2, x_3, y_1, y_2 , and y_3 be real numbers such that

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

Find

$$\begin{vmatrix} x_1 & y_1 & 1 \end{vmatrix}^2$$

$$\begin{vmatrix} x_2 & y_2 & 1 \end{vmatrix}$$

$$\begin{vmatrix} x_3 & y_3 & 1 \end{vmatrix}.$$

RESPONSE

<think>

Okay, so I've got this problem here about finding the square of the determinant of a matrix given some conditions on the coordinates. Let me try to break it down step by step.

1350

1351 First, the problem gives me six real numbers: $x_1, x_2, x_3, y_1, y_2, y_3$. It also provides three
 1352 equations involving these numbers:

1353 1. $(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9$ 2. $(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16$ 3. $(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25$
 1354 I need to find the square of the determinant of the matrix:

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

1358 Hmm, okay. Let me recall that the determinant of a 3x3 matrix can be calculated using the
 1359 formula:
 1360

$$\det = x_1(y_2 \cdot 1 - y_3 \cdot 1) - y_1(x_2 \cdot 1 - x_3 \cdot 1) + 1(x_2y_3 - x_3y_2)$$

1362 Simplifying that, it becomes:
 1363

$$\det = x_1(y_2 - y_3) - y_1(x_2 - x_3) + x_2y_3 - x_3y_2$$

1364 So, the square of the determinant is:
 1365

$$\det^2 = [x_1(y_2 - y_3) - y_1(x_2 - x_3) + x_2y_3 - x_3y_2]^2$$

1368 But wait, maybe there's a better way to approach this. I remember that the determinant of a
 1369 matrix formed by coordinates of points in a plane is related to the area of the triangle formed
 1370 by those points. Specifically, the absolute value of the determinant is twice the area of the
 1371 triangle. So, perhaps I can use that.

1372 Let me denote the points as $A(x_1, y_1)$, $B(x_2, y_2)$, and $C(x_3, y_3)$. The determinant is twice
 1373 the area of triangle ABC. So, if I can find the area, I can square it.

1374 The area of triangle ABC can be found using the formula:

$$\text{Area} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

1378 But wait, that's the same as the determinant divided by 2. So, the determinant is twice the
 1379 area. Therefore, the square of the determinant is four times the square of the area.

1380 So, I need to find the area of triangle ABC. Let me denote the area as A . Then, the square
 1381 of the determinant is $4A^2$.

1382 Now, the area A can be found using the distance formula. The three given equations are
 1383 the squared distances between the points. Let me denote the points as A , B , and C . So,
 1384 $AB^2 = 9$, $AC^2 = 16$, and $BC^2 = 25$. Therefore, $AB = 3$, $AC = 4$, and $BC = 5$.

1385 Hmm, interesting. So, the sides of the triangle are 3, 4, and 5. That's a right triangle because
 1386 $3^2 + 4^2 = 5^2$. So, the area of a right triangle is $\frac{1}{2} \times \text{base} \times \text{height}$. In this case, the base and
 1387 height are 3 and 4, so the area is $\frac{1}{2} \times 3 \times 4 = 6$.

1388 Therefore, the square of the area is $6^2 = 36$. So, the square of the determinant is $4 \times 36 =$
 1389 144.

1390 Wait, let me **double-check**. The area is 6, so the determinant squared is $4 \times 6^2 = 4 \times 36 =$
 1391 144. That seems correct.

1392 But let me make sure I didn't make a mistake in the area calculation. The sides are 3, 4, 5,
 1393 which form a right triangle. The area is indeed $\frac{1}{2} \times 3 \times 4 = 6$. So, the square is 36, and the
 1394 determinant squared is 144.

1395 I think that's it. So, the final answer is 144.

1396 `</think>`

1397 The square of the determinant is 144.

1398

1399

1400

1401

1402

1403

An example of QuestA

QUESTION

1404

1405 Let x_1, x_2, x_3, y_1, y_2 , and y_3 be real numbers such that

1406

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1407

$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1408

$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25.$$

1409

Find

1410

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2.$$

1411

RESPONSE

1412

<think>

1413

Given the equations:

1414

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 9,$$

1415

$$(x_1 - x_3)^2 + (y_1 - y_3)^2 = 16,$$

1416

$$(x_2 - x_3)^2 + (y_2 - y_3)^2 = 25,$$

1417

we need to find $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2$.

1418

Let's denote the determinant by D :

1419

$$D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}.$$

1420

1421

1422

1423

1424

The square of the determinant D^2 can be found using the formula for the square of a determinant of a 3×3 matrix. However, we can use a geometric interpretation to simplify the problem.

1425

1426

1427

1428

Consider the points $A = (x_1, y_1)$, $B = (x_2, y_2)$, and $C = (x_3, y_3)$ in the coordinate plane.

The given equations represent the squared distances between these points:

$$AB^2 = 9,$$

$$AC^2 = 16,$$

$$BC^2 = 25.$$

1429

These distances suggest that the points A , B , and C form a right triangle with BC as the hypotenuse. This is because $9 + 16 = 25$, which satisfies the Pythagorean theorem.

1430

Without loss of generality, let's assume B is the right angle, so A , B , and C form a right triangle with BC as the hypotenuse. This assumption simplifies our calculations.

1431

The area of the triangle ABC can be calculated using the distances given. The area K of a triangle with vertices (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) can also be found using the determinant formula for the area of a triangle:

1432

1433

1434

1435

1436

1437

$$K = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|.$$

1438

The square of the determinant D is related to the area of the triangle. Specifically, the square of the determinant of the matrix formed by the coordinates of the points is four times the square of the area of the triangle:

$$D^2 = 4K^2.$$

1439

1440

1441

1442

1443

1444

To find K^2 , we use the fact that the points form a right triangle. The legs of the triangle are the distances AB and AC , and the hypotenuse is BC . The area K of the right triangle can be calculated as:

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

$$K = \frac{1}{2} \cdot AB \cdot AC = \frac{1}{2} \cdot \sqrt{9} \cdot \sqrt{16} = \frac{1}{2} \cdot 3 \cdot 4 = \frac{1}{2} \cdot 12 = 6.$$

1458
 1459 Thus, the square of the area K^2 is:

$$1460 \quad K^2 = 6^2 = 36.$$

1461
 1462 Therefore, the square of the determinant D^2 is:

$$1463 \quad D^2 = 4K^2 = 4 \cdot 36 = 144.$$

1464
 1465 </think>

1466 The final answer is:

1467 144.

B LLM USAGE

1470 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 1471 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 1472 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 1473 grammar checking, and enhancing the overall flow of the text.

1474 It is important to note that the LLM was not involved in the ideation, research methodology, or
 1475 experimental design. All research concepts, ideas, and analyses were developed and conducted by
 1476 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
 1477 of the paper, with no involvement in the scientific content or data analysis.

1478 The authors take full responsibility for the content of the manuscript, including any text generated
 1479 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
 1480 and does not contribute to plagiarism or scientific misconduct.

1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511