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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has become a widely
adopted technique for enhancing the reasoning ability of Large Language Models
(LLMs). However, the effectiveness of RLVR strongly depends on the capability
of base models. This issue arises because it requires the model to have sufficient
capability to perform high-quality exploration, which involves both effectiveness
and diversity. Unfortunately, existing methods address this issue by imitating ex-
pert trajectories, which improve effectiveness but neglect diversity. To address
this, we argue that the expert only needs to provide guidance at critical deci-
sion points rather than the entire reasoning path. Based on this insight, we pro-
pose MENTOR: Mixed-policy Expert Navigation for Token-level Optimization
of Reasoning, a framework that provides expert guidance only at critical decision
points to perform effective and diverse exploration in RLVR. Extensive experi-
ments show that MENTOR enables models capture the essence of expert strate-
gies rather than surface imitation, thereby performing high-quality exploration and
achieving superior overall performance. Our code is available online1.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has become a widely adopted technique
for enhancing the reasoning ability of Large Language Models (LLMs). It has significantly improved
models’ performance in solving challenging mathematics and programming problems, as evidenced
by models such as OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-
1.5 (Team et al., 2025). These improvements are largely attributed to the models’ ability to generate
detailed chains of thought (CoT) before giving final answers (Wei et al., 2022), which is termed
test-time scaling (Muennighoff et al., 2025).

However, the effectiveness of RLVR strongly depends on the capability of base models. It has
been observed that when applied to models with limited parameters, RLVR fails to reproduce the
remarkable gains observed on powerful base models (Guo et al., 2025).

This issue arises because RLVR requires the model to have sufficient capability to perform high-
quality exploration, which involves both effectiveness and diversity. Specifically, when the task is
overly challenging for the model, it often struggle to discover any correct reasoning trajectory (Yue
et al., 2025), resulting in ineffective exploration that hinders training (Yu et al., 2025). Furthermore,
even when correct solutions are found, limited diversity of reasoning trajectories often leads the
model to rapidly converge to a narrow set of solutions (Song et al., 2025), which reflected in entropy
collapse (Cui et al., 2025) and ultimately traps it in suboptimal solutions (Song et al., 2025).

Unfortunately, existing methods address this issue by imitating expert trajectories, which improve
effectiveness but neglect diversity. While such imitation reduces ineffective exploration (Yan et al.,
2025; Zhang et al., 2025a;b; Liu et al., 2025; Li et al., 2025), it forces the model to follow to
fixed expert trajectories, thereby restricting the diversity of exploration and accelerating entropy
collapse (Yan et al., 2025). In addition, the reduction of diversity is further accelerated by gradient

1https://anonymous.4open.science/r/mentor-F9C4/
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On-policy Solutions
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Figure 1: Illustration of MENTOR framework. By providing expert guidance only at critical deci-
sion points, MENTOR steers reasoning trajectories while preserving the policy’s own exploration,
thereby avoiding the constraints of fixed expert trajectories and achieving more effective and diverse
exploration in RL training.

imbalance (Huang et al., 2025), which drives the model to quickly overfit expert trajectories, espe-
cially when expert reasoning patterns diverge substantially from those of the policy model (Zhang
et al., 2025a). Although some works attempt to mitigate it by reweighting tokens in expert trajecto-
ries (Yan et al., 2025; Zhang et al., 2025a), the relief remains superficial, as the exploration space is
still fundamentally restricted by the fixed expert trajectories.

To achieve better exploration, we argue that the expert only needs to provide guidance at critical
decision points rather than the entire reasoning trajectory. Expert guidance is indeed essential for
steering the model toward correct solutions, but blindly imitating full expert trajectories restricts
the exploration space. Since tokens contribute unequally to reasoning trajectories (Wang et al.,
2025), introducing guidance at critical decision points enables the model to best leverage expert
knowledge while preserving exploration diversity. Based on this insight, we propose MENTOR:
Mixed-policy Expert Navigation for Token-level Optimization of Reasoning, a framework that in-
jects expert guidance only at critical decision points to perform effective and diverse exploration.
Extensive experiments show that MENTOR enables models capture the essence of expert strategies
rather than surface imitation, thereby sustaining high-quality exploration and achieving superior
overall performance.

Our contributions can be summarized as follows:

• We provide a formal analysis of RLVR and demonstrate that effective policy improvement
critically depends on high-quality exploration, which requires not only discovering correct
solutions but also maintaining sufficient diversity to prevent entropy collapse and avoid
being trapped in suboptimal solutions.

• We are the first to propose leveraging expert knowledge only at critical decision points in
RLVR training rather than imitating entire expert trajectories, thereby enabling models to
achieve both effective and diverse exploration in RLVR.

• We conduct extensive experiments showing that MENTOR delivers consistent improve-
ments on six challenging math benchmarks and out-of-domain tasks, with gains stable
across diverse model families. Further analysis reveals that it mitigates entropy collapse
in RLVR training and broadens the capability boundary of base models, and case studies
demonstrate it can selectively absorb expert knowledge rather than superficial imitation.

2 WHAT IS HIGH-QUALITY EXPLORATION IN RLVR?

Exploration is fundamental to reinforcement learning, as it enables models to discover more re-
warding strategies and thereby avoid being trapped in suboptimal behaviors. In this section, we
investigate the necessary conditions of high-quality exploration in RLVR.
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2.1 PRELIMINARY

Let S denote the space of all possible token sequences over the LLM’s vocabulary, and let πθ denote
a LLM with parameters θ. Given a question space D ⊆ S and a input q ∈ D, the model generates
sequences τ autoregressively according to a conditional distribution πθ(·|q).
Definition 2.1 (Exploration Support Set). Given a probability threshold δp and a question q, define
the exploration support of πθ(·|q) that excludes negligible-probability sequences:

supp(πθ(·|q)) =
{
τ ∈ S

∣∣πθ(τ |q) > δp

}
, (1)

Although softmax guarantees that every sequence has strictly positive probability, a limited sam-
pling budget makes extremely low-probability sequences practically unreachable. Therefore,
supp(πθ(·|q)) characterizes the effective exploration space of the model for a given question q.

Fine-tuning LLM πθ using RL with a reward function R(·) involves repeatedly sampling sequences
from the current policy, rewarding the LLM for correct sequences and penalizing for the wrong ones,
in order to maximize the expected reward:

J(θ) = Eq∼D,τ∼πθ(·|q)[R(q, τ)]. (2)

In practice, this objective is commonly optimized with Group Relative Policy Optimization
(GRPO) (Shao et al., 2024), which has demonstrated strong performance across tasks and enables
effective scaling in the RLVR paradigm. GRPO leverages the reward scores of G sampled solutions
for a given question q to estimate advantages, thereby eliminating the need for an additional value
model. Formally, let πθold and πθ denote the policy before and after the update, each representing a
distribution over tokens at every position. Given a question q, a set of sampled solution sequences τi
from πθold , and a reward function R(·), GRPO computes the advantage Ai by normalizing rewards
within the group,

JGRPO(θ) = Eq∼D,{τi}G
i=1∼πθold (·|q) 1∑G

i=1 |τi|

G∑
i=1

|τi|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1± εclip) Âi,t

)
− βDKL(πθ||πref)

 (3)

where

ri,t(θ) =
πθ (τi,t | q, τi,<t)

πθold (τi,t | q, τi,<t)
, Âi,t =

Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (4)

2.2 THE NECESSARY CONDITIONS OF HIGH-QUALITY EXPLORATION IN RLVR

Definition 2.2 (Explorable Optimal Trajectory Subset). For a given question q, the optimal trajectory
set within the exploration support supp(πθ(·|q)) is defined as

T ⋆ = {τ ∈ supp(πθ(·|q)) | R(q, τ) = Rmax(q)} , (5)

where Rmax(q) = supτ∈S R(q, τ) denotes the maximal achievable reward for question q .

Intuitively, T ⋆ is a subset of the globally optimal trajectories, representing the portion of optimal
solutions that the model can actually sample during rollouts. Under the training objective in Eq. (2),
the support of πθ will progressively contract toward T ⋆, eventually concentrating its probability
mass on this set. This convergence yields the optimal policy πopt, which maximizes the expected
reward while maintaining the highest possible output diversity (see Appendix A.1.1 for proof).

Effectiveness issue. However, a key insight is that if the model lacks the ability to discover any op-
timal trajectory, then T ⋆ becomes empty, and the reinforcement learning process can no longer make
progress. For example, under GRPO, when correct solutions are absent, the normalized advantages
Âi,t in Eq. (4) tend to approach zero. Consequently, the update term in Eq. (3) becomes ineffective,
preventing any policy improvement. Therefore, a necessary condition for high-quality exploration
is that the policy must be able to discover at least one optimal trajectory within its support.
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Diversity issue. During reinforcement learning, policy entropy tend to rapidly collapse, leading
to reduced diversity in model outputs and limiting the exploration of a wider range of possible tra-
jectories. Some studies have found that the decline in exploratory diversity can hinder performance
improvements on unsolved problems (Song et al., 2025). The following theorem formalizes this
diversity issue (a detailed proof is provided in the appendix A.1.1):

Theorem 2.1 (Entropy Upper-Bound Decay with Increasing Expected Reward). In the binary-
reward case R ∈ {0, 1}, let T ⋆ be the set of optimal trajectories with K = |T ⋆|, M = |Sq \ T ⋆|,
N = K +M . For any expected reward C ∈ (0, 1), the policy entropy is upper-bounded by

Hub(C) = Hb(C) + C logK + (1− C) logM. (6)

where Hb(C) = −C logC − (1 − C) log(1 − C). For c2 > c1 with c1 larger than the expected
reward under the uniform policy on supp(πθ(· | q)) (i.e., c1 > K

N ), the entropy upper bound satisfies
the single inequality

0 < Hub(c1)−Hub(c2) = (c2 − c1) log
N

K
+Hb(c1)−Hb(c2), (7)

The entropy upper bound necessarily decreases as the expected reward increases, with the amount
of inversely proportional to the size K of the optimal trajectory set T ⋆.

This theorem shows that to prevent a rapid collapse of diversity, high-quality exploration must ensure
the discovery of multiple, diverse optimal trajectories. When the set T ⋆ contains only a few optimal
solutions, increasing expected reward necessarily forces the policy to concentrate probability mass
more aggressively, causing its entropy upper bound to drop rapidly and thus accelerating diversity
collapse. In contrast, a larger T ⋆ can slow down entropy collapse and thus preserve more explo-
ration diversity, thereby enabling the policy ultimately achieve higher final performance. Therefore,
another necessary condition for high-quality exploration is that the policy must discover multiple
distinct optimal trajectories, so that exploration diversity can be preserved during reward improve-
ment.

Highlights

In summary, to avoid suboptimal convergence under limited exploration budgets, high-quality
exploration is indispensable. Specifically, it must satisfy two necessary conditions: effec-
tiveness and diversity. If either of these conditions is missing, the model will converge to a
suboptimal solution.

3 MENTOR: MIXED-POLICY EXPERT NAVIGATION FOR TOKEN-LEVEL
OPTIMIZATION OF REASONING

As discussed in Section 2, high-quality exploration in RLVR requires both effectiveness and diver-
sity. However, existing methods that incorporate expert solutions improve effectiveness but overlook
diversity, leading to entropy collapse (Zhang et al., 2025a). To address this, we propose MENTOR,
a framework that balances effectiveness and diversity through two components: Mixed-policy Roll-
out, which introduces expert guidance only at critical decision points, and Mixed-policy GRPO,
which integrates these guided rollouts into on-policy RL with modified advantage estimation. The
overall framework is illustrated in Figure 1.

3.1 MIXED-POLICY ROLLOUT

Existing expert-guided methods, in order to obtain reasoning trajectories beyond the capability of
the base model, typically sample full trajectories from the expert model π∗, where every token is
generated according to yt ∼ π∗(· | q, y<t), and the base model is then trained to imitate each token
in this expert-generated trajectory equally.

However, recent studies show that tokens contribute unequally to reasoning trajectories (Wang et al.,
2025). some (e.g., high-entropy tokens) determine critical decision forks, while others only serve as
deterministic following. The latter often vary across models in stylistic ways, but such differences

4
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have little impact on reasoning process. Entire expert trajectories inevitably contain many of these
low-impact tokens, which distract the model from learning the key reasoning decisions. To mitigate
this problem, we introduce expert guidance only where it is truly needed.

Definition 3.1 (Mixed-policy Distribution) At each decoding step t, we define a token-level mixed-
policy distribution that interpolates between the on-policy distribution πθ and the expert distribution
π∗. The expert distribution π∗ is derived from a stronger reference model with the same vocabulary
V , such as a larger model or a domain-adapted model (Du et al., 2024). Formally, given question q
and prefix y<t, the sampling distribution for token yt is:

πmix(· | q, y<t) = (1− wt)πθ(· | q, y<t) + wt π
∗(· | q, y<t), (8)

where wt = min(1,Ht/γp) is the interpolation weight determined by the token-level entropy Ht =
−
∑

y πθ(y | q, y<t) log πθ(y | q, y<t), and γp denotes the p-quantile of entropies across tokens in
the batch. Thus, high-entropy tokens receive stronger expert guidance, while low-entropy tokens
remain closer to the on-policy distribution πθ.

By sampling trajectories from this mixed-policy distribution, exploration achieves a balance be-
tween effectiveness and diversity. Effectiveness is enhanced because expert guidance is injected at
uncertain decision points, increasing the probability of discovering correct trajectories. Diversity is
preserved because expert guidance is restricted to only a few positions, ensuring that the exploration
space remains exponentially large and avoiding collapse to a fixed expert solution. At the same time,
selective guidance enables models to focus on learning the core reasoning strategies from the expert.

Accelerating Mixed-policy Rollout. Although πmix introduces expert guidance only at critical
tokens, standard auto-regressive sampling from πmix still requires forward computation of both the
policy model πθ and the expert π∗ at every step to determine whether guidance is required, which
substantially increases rollout cost and consequently reduces the efficiency of training, especially
when the expert has a large number of parameters.

Since πmix deviates from the policy distribution πθ only on a few tokens, while at the remaining po-
sitions πmix is close to πθ. Based on this positional sparsity, we propose an accelerated mixed-policy
rollout method based on Speculative Sampling (Chen et al., 2023). Speculative Sampling is an un-
biased acceleration method that let the draft model propose multiple tokens and then verifying them
with the target model in parallel. Its acceleration effect depends on the draft acceptance rate, making
it naturally suitable for mixed-policy rollout where most tokens align with the policy distribution.

We first let the policy model πθ auto-regressively generate K candidate tokens ỹ1:K , while record-
ing the corresponding sampling distributions πθ(·|q, ỹ<t) at each step t. Next, the expert model
computes the distributions π∗(·|q, ỹ<t) in parallel . Based on these results, we construct the mixed-
policy distribution πmix(·|q, ỹ<t) as defined in Eq.(8). Each candidate token ỹt is then validated with
the acceptance probability

min

(
1,

πmix(ỹt | q, ỹ<t)

πθ(ỹt | q, ỹ<t)

)
. (9)

If ỹt is accepted, the process continues to the next candidate until either a rejection occurs or all K
candidates are accepted.

When a candidate is rejected, it is resampled from the residual distribution(
πmix(· | q, ỹ<t)− πθ(· | q, ỹ<t)

)
+
. (10)

where (f(v))+ = max(0, f(v)) /
∑

v max(0, f(v)), v ∈ V .

This process is repeated to generate complete sequences, enabling substantially faster sampling from
the mixed policy while remaining unbiased with Eq.(8), see Appendix A.1.2 for proof. The detailed
algorithm is summarized in Algorithm 1.

3.2 MIXED-POLICY GRPO

To effectively integrate samples generated by the mixed-policy rollout into GRPO, we extend the
algorithm with a modified advantage function. Specifically, for each query q, we collect two sets of

5
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Algorithm 1 Accelerating Mixed-policy Rollout with Modified Speculative Sampling

Given lookahead K, entropy threshold γp and maximum response length T .
Given expert model π∗, and on-policy model πθ, question sequence q.
Initialize n = 0.
while n < T do

for t = 1 : K do
Sample candidate tokens from the policy model ỹt ∼ πθ(·|q, y≤n, ỹ<t)
Compute the token-level entropy Ht from the on-policy distribution πθ(·|q, y≤n, ỹ<t)
Compute weight wt ← min(1,Ht/γp)

end for
In parallel, compute K sets of logits from candidate tokens ỹ1, . . . , ỹK :

π∗(·|q, y≤n), π
∗(·|q, y≤n, ỹ1), . . . , π

∗(·|q, y≤n, ỹ<K)
for t = 1 : K do

Sample r ∼ U [0, 1] from a uniform distribution.
Compute πmix(·|q, y≤n)← (1− wt)πθ(·|q, y≤n) + wtπ

∗(·|q, y≤n)

if r < min
(
1,

πmix(ỹt|q,y≤n)

πθ(ỹt|q,y≤n)

)
, then

Set yn+1 ← ỹt and n← n+ 1.
else

sample yn+1 ∼ (πmix(·|q, y≤n)− πθ(·|q, y≤n))+ and exit for loop.
end if

end for
end while

trajectories: (i) on-policy rollouts Gon = {τ}N1 sampled from the policy model πθ, and (ii) mixed-
policy rollouts Gmix = {τ}N2 sampled from the mixed-policy πmix. Then optimizes the policy model
by maximizing the following objective:

Jmixed(θ) =
1∑N1+N2

i=1 |τi|

N1+N2∑
i=1

|τi|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ε, 1 + ε) Âi,t

)
(11)

On-policy advantages. For τ ∈ Gon, we retain GRPO’s group-wise standardization to promote
self-improvement:

Âi,t(τ) =
Ri −mean

(
{Rj}τj∈Gon

)
std

(
{Rj}τj∈Gon

) , τ ∈ Gon. (12)

Mixed-policy advantages. For τ ∈ Gmix, we aim to encourage exploration rather than penalize
failures. To this end, we define its advantage function as the positive excess of its reward over the
mean reward of on-policy rollouts:

Âi,t(τ) = α ·
[
Ri −mean

(
{Rj}τj∈Gon

)]
+

Rrange
, τ ∈ Gmix. (13)

where [x]+ = max(x, 0) ensures that only above-average exploration is rewarded while failures
are ignored, and Rrange is a fixed reward span (e.g., the global maximum–minimum reward range)
used to normalize rewards into [0, 1] for numerical stability. And α is a weighting coefficient that
balances the contribution of samples from the mixed-policy. In our setting, α is additionally sched-
uled to gradually decay, thereby shifting the policy from expert-guided exploration to self-driven
exploration as training progresses.

4 EXPERIMENTS

4.1 SETUP

Datasets and Models. We conduct experiments on two model families: Qwen2.5 (Team, 2024)
and LLaMA3.1 (Dubey et al., 2024). For Qwen2.5, we use the Qwen2.5-7B-Base and Qwen2.5-3B-
Base for experiments. And we use the MATH dataset (Hendrycks et al.) as training dataset, restrict-
ing to problems with difficulty levels 3–5 and removing any instances overlapping with the test set

6
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to prevent data leakage, total 8,889 training examples. For LLaMA3.1, we use the LLaMA3.1-8B-
Base for experiments. However, the MATH dataset is too difficult for this model, such that vanilla
GRPO fails to train successfully. To enable comparison between GRPO and other baselines, we
construct a simplified dataset from OpenR1-MATH-220K2 (Hugging Face, 2025) as the training
dataset for LLaMA3.1. Further dataset and expert model details are provided in the Appendix A.3.

Evaluations. We evaluate the models along two categories. (i) In-domain performance. We
assess the in-domain performance on mathematics benchmarks, including MATH (Hendrycks et al.),
AIME24, AIME25, and AMC (Li et al., 2024). (ii) Out-of-domain performance. To examine
whether post-tuning affects general reasoning ability beyond mathematics, we further evaluate the
out-of-domain performance in MMLU-Pro (Wang et al., 2024) and GPQA-diamond (Rein et al.).
For AIME24, AIME25, and AMC, we report avg@32 at temperature 0.6 as the test set is relatively
small, while for the other benchmarks, we report pass@1 at temperature 0.

Baselines. We compare MENTOR with several representative baselines, including: (1) Base: The
base model without any fine-tuning. (2) On-policy RL: Standard GRPO without expert guidance,
enhanced with token-level loss and the Clip-Higher in DAPO (Yu et al., 2025) to serve as a stronger
baseline. (3) LUFFY (Yan et al., 2025): A method that integrates full expert trajectories within the
GRPO rollout groups. (4) QuestA (Li et al., 2025): A method that provides the first half of expert
trajectories as hints for the model to follow. Hyper-parameters and training details of different
methods can be found in Appendix A.3.

4.2 MAIN RESULTS

Table 1: MENTOR vs. other baselines. Compared to the On-policy RL, MENTOR achieves an
average performance improvement of 3.2%, 4.3% and 3.9% on the three models, respectively.
The best results are highlighted in bold, and the second-best results are underlined.

Methods
In-Domain Performance Out-of-Domain

AvgMATH AIME24 AIME25 AMC Minerva Olympiad GPQA ARC MMLU-Pro

LLaMa3.1-8B-Base
Base 10.6 0.1 0.0 1.8 4.4 2.1 0.0 0.0 0.1 2.1
On-policy RL 24.0 0.4 0.4 8.0 13.6 6.4 25.8 70.7 35.7 20.6

LUFFY 25.2 0.5 0.4 8.4 14.0 7.1 27.8 74.9 34.9 21.5
QuestA 20.6 0.1 0.2 5.3 8.8 4.0 25.3 72.5 33.9 19.0

MENTOR 30.2 1.2 0.6 10.4 16.2 8.9 30.3 77.3 39.1 23.8
Qwen2.5-3B-Base

Base 47.4 2.4 1.9 17.7 19.9 19.0 3.0 23.6 19.4 17.1
On-policy RL 65.8 3.3 2.5 32.2 25.4 29.8 17.7 72.1 30.6 31.0

LUFFY 64.0 5.2 4.2 32.8 25.0 30.1 15.2 72.5 30.8 31.1
QuestA 66.4 7.9 2.9 34.1 27.6 29.8 16.2 70.3 30.9 31.8

MENTOR 69.8 8.3 3.8 34.2 26.5 35.2 22.7 80.8 36.8 35.3
Qwen2.5-7B-Base

Base 62.4 5.4 2.9 26.5 16.9 28.9 11.1 70.4 42.9 29.7
On-policy RL 76.8 14.2 9.1 46.0 34.2 41.5 29.3 86.0 48.0 42.8

LUFFY 77.0 12.9 10.4 46.4 35.3 40.8 26.8 86.0 49.7 42.8
QuestA 78.8 14.6 13.3 47.4 33.5 41.5 30.3 86.7 51.0 44.1

MENTOR 81.4 18.3 16.5 53.1 34.9 45.2 30.8 89.6 50.2 46.7

MENTOR achieves consistent improvements across different models. Table 1 shows that
MENTOR outperforms the on-policy RL baseline across all three backbones. On Qwen2.5-7B,
for example, MENTOR lifts the average score on the MATH benchmark from 76.8 to 81.4, and
yields notable relative gains of +4.1, +7.4, and +7.1 points on AIME24, AIME25, and AMC, re-
spectively. Similar trends are observed on Qwen2.5-3B and LLaMa3.1-8B. Importantly, these gains

2https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
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are not confined to in-domain reasoning. MENTOR also delivers clear improvements on out-of-
domain benchmarks, demonstrating that the reasoning abilities learned under expert guidance can
effectively generalize to out-of-domain tasks.

MENTOR achieves a better trade-off between expert guidance and autonomous exploration.
Compared to on-policy RL, LUFFY introduces full expert trajectories but achieves only limited im-
provements across all models, indicating that directly imitating expert solutions does not fully lever-
age expert knowledge. This is likely because full trajectories overly constrain the exploration space,
causing the model to overfit superficial expert patterns and fall into suboptimal strategies. QuestA,
which provides partial expert trajectories as hints, alleviates over-imitation to some extent but its
effectiveness strongly depends on model capacity: it yields clear gains (+1.3) on Qwen2.5-7B, only
minor improvement (+0.8) on Qwen2.5-3B, and even a negative effect (-1.6) on LLaMa3.1-8B. This
is because, in the absence of subsequent guidance, the weaker model struggles to explore correct so-
lutions, and the excessive hints further disrupt its exploration. In contrast, MENTOR consistently
outperforms across different models, achieving a better balance between leveraging expert knowl-
edge and maintaining autonomous exploration, thereby achieving significant improvements.

4.3 TRAINING DYNAMICS
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Figure 2: Training dynamics of MENTOR compared with On-policy RL. MENTOR mitigates en-
tropy collapse, and its response length dynamics reflect a shift from learning to understanding,
thereby achieving higher performance.

Entropy dynamics. Figure 2 compares the training dynamics of On-policy RL and MENTOR in
terms of validation accuracy, entropy and response length. Under On-policy RL, entropy collapses
rapidly, indicating that the support of the policy exploration space shrinks prematurely to a narrow
subset of trajectories. MENTOR enhances exploration diversity through selective expert guidance,
thereby slowing down entropy collapse and enabling more persistent exploration throughout train-
ing. More importantly, the entropy eventually converges to a slightly higher level than On-policy
RL, indicating that the final support set discussed in Section 2 is expanded, which directly translates
into stronger final performance.

Response Length dynamics. In the early training stage, MENTOR’s responses grow in length
compared with GRPO. By analyzing rollout samples during training, we find that this rapid growth
stems from adopting expert-style reasoning forks such as verify and wait, the occurrence of which
extends the reasoning chain. However, as training progresses, MENTOR’s response length gradually
declines, consistent with the scheduled reduction of expert advantage. We find that the model starts
to distinguish useful tokens (e.g., verify) from redundant ones (e.g., wait), reflecting a shift from
expert-guided to self-driven exploration. Through this selective absorption, the model achieves a
more efficient final reasoning pattern, as shown in Appendix A.7.

4.4 THE ANALYSIS OF REASONING PATTERN

To better understand the reasoning patterns induced by different training methods, Figure 3 reports
the occurrence rate of high-frequency reasoning tokens, defined as the proportion of trajectories
in which the token appears at least once, computed from 500 trajectories on MATH500, which
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provides a more reliable perspective than individual cases. Detailed case studies are provided in
Appendix A.7.
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Figure 3: The occurrence rate of high-frequency reasoning tokens under different training meth-
ods. MENTOR absorbs the essence of expert trajectories such as verify, while avoiding over-
imitation of redundant tokens like okay or wait.

MENTOR achieves selective absorption of expert knowledge. As shown in Figure 3, although
LUFFY successfully incorporate expert knowledge compared with on-policy RL, it tends to imi-
tate indiscriminately. For example, it excessively adopts tokens such as okay and wait, which leads
to overly redundant reasoning. In contrast, MENTOR exhibits a more selective learning process,
adopting valuable reasoning tokens such as verify and check while avoiding preserving redundant
ones. This selective learning shows that MENTOR goes beyond surface imitation, effectively ab-
sorbing the essence of expert guidance while discarding the redundancy, resulting in an efficient
reasoning pattern.

4.5 THE ANALYSIS OF REASONING DIVERSITY
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Figure 4: Pass@32 performance of
Qwen2.5-7B under different methods.
MENTOR improves the model’s rea-
soning diversity beyond other baselines.

To further quantify the impact of different methods on
reasoning diversity, we adopt pass@k as the evaluation
metric, which is widely used to measure reasoning di-
versity (Song et al., 2025; Chen et al., 2025). As shown
in Figure 4, Pass@32 of On-policy RL stagnates or even
declines compared to the Base model, as it can only re-
shape behaviors within the original capability, resulting
in reduced reasoning diversity. By introducing exter-
nal expert trajectories, LUFFY and QuestA expand the
model’s capability boundary and raise pass@k. How-
ever, these methods are limited in achieving further im-
provements in reasoning diversity due to excessive imi-
tation. In contrast, by balancing expert guidance with
autonomous exploration, MENTOR achieves a 9.2%
average gain in pass@32, indicating a clear enhance-
ment in reasoning diversity.

5 RELATED WORK

Reinforcement Learning for Large Language Models Reinforcement learning has recently
made significant progress in enhancing the reasoning abilities of LLMs (Jaech et al., 2024; Guo et al.,
2025; Team et al., 2025). A central development is Reinforcement Learning from Verifiable Rewards
(RLVR), which replaces human feedback signals (Kirk et al., 2024) with automatically checkable
objectives such as mathematical verification (Shao et al., 2024) and program execution (Pennino
et al., 2025). However, studies also reveal that the gains of RLVR are closely tied to the capability
of the base model. For instance, DeepSeek-R1 reports that while RLVR yields remarkable improve-
ments for powerful base models, its benefits become much less pronounced when applied to models
with more limited capacity (Guo et al., 2025).

9
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On-Policy Learning under Expert Guidance To improve the effectiveness of RLVR, a line of
work incorporates expert trajectories into on-policy RL training. Some approaches directly mix en-
tire expert rollouts with policy rollouts (Yan et al., 2025; Zhang et al., 2025a), while others provide
partial prefixes of expert trajectories as hints for continued generation (Liu et al., 2025; Zhang et al.,
2025b; Li et al., 2025). These strategies have proven effective in reducing unproductive exploration
and stabilizing training. However, imitation of fixed expert trajectories restricts exploration, accel-
erates entropy collapse (Yan et al., 2025), and ultimately undermines the diversity of reasoning tra-
jectories. In addition, the reduction of diversity is further accelerated by gradient imbalance (Huang
et al., 2025), which drives the model to quickly overfit expert trajectories, especially when their rea-
soning patterns diverge substantially from those of the policy model (Zhang et al., 2025a). Although
token-level reweighting has been proposed to alleviate this issue (Yan et al., 2025; Zhang et al.,
2025a), the fundamental limitation remains: the exploration is still constrained by the fixed expert
trajectories.

LLM reasoning under guidance Generating detailed chains of thought (CoT) has become a cen-
tral strategy for improving LLM problem-solving performance (Wei et al., 2022). This strategy
can be viewed as a form of test-time compute (Muennighoff et al., 2025), where allocating more
inference-time FLOPs leads to better performance. Since the quality of the CoT strongly influences
final accuracy, a growing body of work focuses on ooptimizing the model’s reasoning process. Some
approaches leverage the model’s own confidence or self-evaluation signals to select higher-value
reasoning paths (Yao et al., 2023; Fu et al., 2025; Razghandi et al., 2025). Another line introduces
process-reward models that help the model progressively search the output space for more promis-
ing CoT trajectories during inference (Snell et al., 2025; Setlur et al., 2024; Zhang et al., 2024;
Chen et al., 2024). While these methods improve reasoning by searching within the model’s own
distribution, their exploration remains inherently bounded by the model’s capability. In contrast,
our work employs guidance from a more capable expert model, enabling exploration beyond the
policy model’s native reasoning space and thus providing a stronger mechanism for discovering
higher-quality reasoning trajectories.

6 CONCLUSION

In this paper, we introduced MENTOR, a powerful framework that enables effective and diverse
exploration through selective expert guidance at critical decision points. MENTOR avoids super-
ficial imitation and allows policy model to internalize the essence of expert reasoning strategies.
Across challenging benchmarks, our method consistently outperforms strong baselines and signif-
icantly improves pass@k performance on complex tasks. These results demonstrate the potential
of selective expert guidance to enhance RLVR and suggest promising directions for future research,
such as extending the framework to multimodal reasoning or investigating how expert guidance can
be provided more effectively.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation was involved. All datasets used, such as MATH and OpenR1-MATH-220K, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information was used, and no experiments were conducted that could raise privacy or security con-
cerns. We are committed to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. Furthermore, we will also release the model
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checkpoints from our main experiments to facilitate future research. The public datasets used in
the paper, such as MATH, OpenR1-MATH-220K, are publicly available, ensuring consistent and
reproducible evaluation results.
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A APPENDIX

A.1 THEORETICAL PROOF

A.1.1 PROOF OF EXPLORATION DIVERSITY

Lemma 2.1 (Policy Distribution under the Expected-Reward Constraint). For a fixed question q,
let Sq = supp(πθ(· | q)), T ⋆ = {τ ∈ Sq : R(τ) = Rmax}. Based on the Maximum Entropy
Principle, the policy distribution that attains the largest entropy under the expected-reward constraint
EP [R] = C takes the Gibbs form

Pλ(τ) =
exp{λR(τ)}

Z(λ)
, Z(λ) =

∑
τ ′∈Sq

exp{λR(τ ′)}.

As the reward constraint C approaches its maximal value Rmax, the corresponding multiplier λ
diverges, and all probability mass concentrates on the optimal set T ⋆:

Pλ(τ) −→


1

|T ⋆|
, τ ∈ T ⋆,

0, τ /∈ T ⋆.

Proof. Since the learning objective in Eq.(2) is to maximize expected reward but the exact optimal
distribution is unknown, we adopt a Maximum Entropy Principle (Jaynes, 1957). Specifically, we
optimize over all probability mass functions P : Sq → [0, 1] with

∑
τ∈Sq

P (τ) = 1:

max
P

H(P ) s.t.
∑
τ∈Sq

P (τ)R(τ) = C,
∑
τ∈Sq

P (τ) = 1, (14)
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where H(P ) = −
∑

τ∈Sq
P (τ) logP (τ) and C is the target expected reward. A standard La-

grangian calculation yields the unique Gibbs-form solution

Pλ(τ) =
exp{λR(τ)}

Z(λ)
, Z(λ) =

∑
τ ′∈Sq

exp{λR(τ ′)}, (15)

for some multiplier λ > 0 chosen such that EPλ
[R] = C.

Define ϕ(λ) =
∑

τ Pλ(τ)R(τ). Then ϕ′(λ) = VarPλ
[R] ≥ 0, so ϕ(λ) is non-decreasing. More-

over, limλ→∞ ϕ(λ) = Rmax. Hence as C ↑ Rmax, we must have λ→∞, and for any τ /∈ T ⋆ and
τ⋆ ∈ T ⋆,

Pλ(τ)

Pλ(τ⋆)
= exp{−λ (Rmax −R(τ))} −→ 0 (λ→∞). (16)

Thus all probability mass concentrates on T ⋆ in the limit.

Theorem 2.1 (Entropy Upper-Bound Decay with Increasing Expected Reward). In the binary-
reward case R(τ)∈{0, 1}, let T ⋆ be the set of optimal trajectories with K = |T ⋆|, M = |Sq \ T ⋆|,
N = K +M . For any expected reward C ∈ (0, 1), the policy entropy is upper-bounded by

Hub(C) = Hb(C) + C logK + (1− C) logM.

where Hb(C) = −C logC − (1− C) log(1− C).

For c2 > c1 with c1 larger than the expected reward under the uniform policy on supp(πθ(· | q))
(i.e., c1 > K

N ), the entropy upper bound satisfies the single inequality

0 < Hub(c1)−Hub(c2) = (c2 − c1) log
N

K
+Hb(c1)−Hb(c2),

The entropy upper bound necessarily decreases as the expected reward increases, with the amount
of inversely proportional to the size K of the optimal trajectory set T ⋆.

Proof. Let Sq denote supp(πθ(· | q)). Assume R(τ) ∈ {0, 1} for all τ ∈ Sq and write

T ⋆ = {τ ∈ Sq : R(τ) = 1}, K = |T ⋆|, M = |Sq \ T ⋆|, N = K +M.

For a fixed target expected reward C ∈ (0, 1), in the binary case the Gibbs distribution in Eq. (15)
is equivalent to

πC(τ) =


C

K
, τ ∈ T ⋆,

1− C

M
, τ /∈ T ⋆.

(17)

Thus the maximum-entropy solution is uniform over correct trajectories and uniform over incorrect
ones, with total mass C and 1− C, respectively.

The entropy of πC is

Hub(C) = −
∑
τ

πC(τ) log πC(τ) (18)

= −C log
C

K
− (1− C) log

1− C

M
(19)

= Hb(C) + C logK + (1− C) logM, (20)

where Hb(C) = −C logC− (1−C) log(1−C) is the binary entropy. Treating H(C) as a function
of C, we have

H ′
ub(C) = − logC + log(1− C) + logK − logM = log

(1− C)K

CM
. (21)

The critical point satisfies H ′
ub(C) = 0, which gives

(1− C)K

CM
= 1 ⇐⇒ C =

K

K +M
=

K

N
, (22)

i.e., the expected reward under the uniform distribution on Sq . Moreover, H ′
ub(C) < 0 whenever

C > K
N , so Hub(C) is strictly decreasing for C > K

N .
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Now take c1 < c2 with c1 > K
N . Since Hub is strictly decreasing on (KN , 1), we obtain

∆Hub(K) := Hub(c1)−Hub(c2) > 0.

Thus the entropy necessarily drops when the expected reward increases from c1 to c2 in this regime.

Next, for fixed c1, c2 and N , the explicit expression

∆Hub(K) = Hub(c1)−Hub(c2) = [Hb(c1)−Hb(c2)] + (c2 − c1) log
N −K

K
(23)

shows that all dependence on K = |T ⋆| is through the factor log N−K
K . Differentiating with respect

to K yields
∂

∂K
∆Hub(K) = (c2 − c1)

(
− 1

N −K
− 1

K

)
< 0, (24)

so ∆Hub(K) is strictly decreasing in K. Hence, for the same reward increase c1 → c2, a larger
optimal set |T ⋆| always leads to a smaller entropy drop. In this sense, the entropy loss scales
inversely with the size of T ⋆, and entropy collapse is slower when the optimal set is larger.

A.1.2 PROOF OF UNBIASEDNESS FOR MIXED-POLICY ROLLOUT

The unbiasedness of speculative sampling is well established in prior work. For completeness,
we include a concise proof specialized to our mixed policy πmix, confirming that the validation
procedure remains unbiased in our setting.

Let the token space be V , and fix a prefix (q, y<t) at step t. Denote the base policy by
pt(·) = πθ(· | q, y<t),

and let st(·) = π∗(· | q, y<t) be the expert policy. The mixed policy is obtained by a deterministic
ensemble of (pt, st),

qt(·) = πmix(· | q, y<t) =M
(
pt(·), st(·)

)
,

whereM denotes any tokenwise mixing operator that yields a valid distribution on V (e.g., convex
mixing). The validation procedure only depends on qt.

At step t, a candidate token ỹt is first sampled from pt. It is accepted with probability

αt(ỹt) = min
(
1,

qt(ỹt)

pt(ỹt)

)
,

If rejection occurs, a new token is drawn from the residual distribution on V , defined for the dummy
variable z ∈ V by

rt(z) =
(qt(z)− pt(z))+∑

z′∈V(qt(z
′)− pt(z′))+

, (u)+ = max{u, 0}.

For any possible token v ∈ V , the probability that it becomes the committed token is therefore

P(yt = v) = pt(x)min
(
1, qt(v)

pt(v)

)
+ P(reject) rt(v).

The first term equals min{pt(v), qt(v)}. The rejection probability is

P(reject) = 1−
∑
z∈V

pt(z)min
(
1, qt(z)

pt(z)

)
= 1−

∑
z∈V

min{pt(z), qt(z)} =
∑
z∈V

(qt(z)− pt(z))+,

which coincides with the denominator of rt(·). Consequently, the second term contributes exactly
(qt(v)− pt(v))+. Combining the two contributions yields

P(yt = v) = min{pt(v), qt(v)}+ (qt(v)− pt(v))+ = qt(v).

Thus the distribution of the validated token is exactly the mixed policy qt.

To extend the result to entire speculative sequences, note that at t = 1 the marginal distribution is
q1. Suppose inductively that the joint distribution of the prefix y<t is

∏
j<t qj(yj). Conditioning on

such a prefix, the above calculation shows that yt ∼ qt(·). Hence, by induction,

P(y1:T | q) =
T∏

t=1

qt(yt) =

T∏
t=1

πmix(yt | q, y<t),

which is identical to direct autoregressive sampling from the mixed policy.
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A.1.3 PROOF OF AUTOMATIC FILTERING OF MISLEADING EXPERT GUIDANCE

We show that the mixed-policy objective intrinsically filters out misleading or low-quality expert
guidance, thereby ensuring robustness even when the expert is weak. For clarity, we rewrite the
mixed-policy objective of Eq. (11) in its equivalent expectation form (for analytical convenience,
we omit the clipping)

Jmixed(θ) = Eq∼D, τ∼πθ(·|q)

[
R(τ)− R̄

std(R)

]
+ Eq∼D, τ∼πmix(·|q)

[
[R(τ)− R̄]+

Rrange

]
, (25)

where R̄ denotes the average reward obtained by on-policy rollouts on the same query q, and [x]+ =
max(x, 0).

The first expectation corresponds to standard GRPO without expert guidance. Thus, we focus on the
second term, which represents the contribution of expert guidance. The key observation is that the
choice of [ · ]+ induces an implicit rejection sampling effect. In typical reasoning tasks with binary
outcome rewards (correct yields 1, incorrect yields 0), we have

[R(τ)− R̄]+ =

{
R(τ)− R̄, if τ is correct,
0, otherwise.

(26)

Consequently, any trajectory, which results in an incorrect answer because of unsuitable or mis-
leading expert guidance, obtains zero advantage and thus contributes no gradient signal, ensuring
that such erroneous expert signals are automatically filtered out. We further equivalently rewrite the
second term as

Eq∼D, τ∼πmix(·|q)

[
[R(τ)− R̄]+

Rrange

]
(27)

=

∫
Tcorrect

[R(τ)− R̄]

Rrange
πmix(τ |q) dτ +

∫
Tincorrect

0 · πmix(τ |q) dτ (28)

= Eq∼D, τ∼πmix(·|q), τ is correct

[
R(τ)− R̄

Rrange

]
. (29)

where Tcorrect and Tincorrect denote, for a given query q, the sets of trajectories that yield correct
and incorrect outcomes, respectively.

Eq.(29) shows that the algorithm learns exclusively from effective expert-guided trajectories. Fur-
thermore, the term (R(τ) − R̄) measures the improvement provided by expert guidance over the
model’s own reasoning, which allows the algorithm to distinguish whether success comes from the
model itself or from the expert guidance. Only those expert-guided trajectories that provide genuine
improvement beyond the model’s baseline ability yield a positive advantage and are consequently
reinforced, while guidance that offers no real benefit results in negligible.

In summary, the mixed-policy objective:

• completely suppresses gradient contributions from incorrect expert-guided trajectories,
thereby preventing interference from misleading guidance.

• only reinforces expert guidance when it provides measurable improvement over the model’s
self-generated rollouts.

Even in the extreme case where the expert can provide only misleading guidance, and no correct
trajectory can be sampled under such guidance, our method still guarantees a performance lower
bound equivalent to standard GRPO, since the second expectation in Eq.(25) becomes zero and thus
has no effect on the update.

A.2 ALGORITHMIC PROCEDURE OF MENTOR

To complement the main-text description, we provide the full algorithmic procedure of MENTOR in
Algorithm 2. The algorithm outlines how mixed-policy expert navigation is integrated into on-policy
GRPO training, including the construction of the mixed policy, the dynamic update of the entropy
threshold, and the computation of group-wise advantages. For clarity, the pseudocode explicitly
separates on-policy rollouts from expert-guided mixed rollouts and highlights how the mixed-policy
GRPO objective is optimized at each step.
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Algorithm 2 Mixed-policy Expert Navigation for Token-level Optimization of Reasoning

Given initial policy model πθinit , expert policy model π∗, task prompts D.
Given hyperparameters N1, N2, p, µ, number of total training steps M .
Initialize policy model πθ ← πθinit .
Initialize entropy threshold γp ← inf .
for step = 1 : M do

Sample a batch Db from D.
Update old policy model πθold ← πθ.
Define mixed-policy πmix in Eq. (8) with πθold , π∗ and γp
For each question q ∈ Db, sample outputs

Gon = {τi}N1
i=1 ∼ πθold(· | q), Gmix = {τi}N2

i=1 ∼ πmix(· | q).
Compute and update the entropy threshold γp from trajectories in Gon.
Compute rewards for each trajectory in Gon ∪ Gmix.
Compute advantages Âi,t for Gon and Gmix, using Eq. (12) and Eq. (13), respectively.
for mini step = 1 : µ do

Update policy parameters θ by maximizing the Mixed-policy GRPO objective in Eq. (11).
end for

end for
return πθ

A.3 EXPERIMENTAL DETAILS

Platform. All of our experiments are conducted on workstations equipped with eight NVIDIA
A100 GPUs with 80GB memory, running Ubuntu 22.04.4 LTS and CUDA 12.4.

System Prompt. All models trained under MENTOR and other baselines, except QuestA, share
the same system prompt for both training and inference:

System
You are a helpful AI Assistant that provides well-reasoned and detailed responses. You FIRST
think about the reasoning process as an internal monologue and then provide the final answer.
The reasoning process MUST BE enclosed within <think></think>tags. The final answer
MUST BE put in \boxed{}.
User
{QUESTION}
Assistant

For QuestA, we additionally append “## Hint: Partial Solution” after the QUESTION as a hint
section.

Reward Setting. For outcome reward, we employ Math-Verify to automatically check whether
the final answer inside the “<think>... </think>... \boxed{}” format matches the ground truth,
assigning +1 if correct and 0 otherwise. In addition, we introduce a format reward that grants
+1 when the response adheres to this format, and 0 if not. The same reward design is applied to
MENTOR and all baselines to ensure fairness. For Qwen2.5-7B and Qwen2.5-3B, the weights of
outcome reward and format reward are set to 9:1. For LLaMa3.1-8B, however, this ratio is adjusted
to 8:2, since the original weighting did not sufficiently enforce format adherence.

Dataset Details. For Qwen2.5-7B and Qwen2.5-3B, we use problems from the MATH dataset
with difficulty levels 3–5, removing all instances that overlap with the test sets to avoid data leakage.
This yields a total of 8,889 training examples. However, for LLaMA3.1-8B, this dataset is too
difficult, making the vanilla GRPO algorithm hard to apply. To address this issue, we constructed
an easier training set from OpenR1-Math-220K by selecting problems with response lengths shorter
than 4K tokens, on which the model could be successfully trained using GRPO. All subsequent
methods on LLaMA3.1-8B were trained using this simplified dataset. For each problem, the fixed
expert trajectory used in LUFFY and QuestA is generated by DeepSeek-R1.
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Export Model Details. For Qwen2.5, We adopt OpenR1-Qwen-7B3 as the expert model in MEN-
TOR, which is trained on a distilled dataset generated by DeepSeek-R1. For LLaMA3.1, the expert
model in MENTOR is obtained by further fine-tuning LLaMA3.1-8B-Instruct under the same dataset
and setting used for OpenR1-Qwen-7B.

Training Details. We conduct all experiments using the EasyR14 (Zheng et al., 2025) framework,
which employs Verl (Sheng et al., 2024) as the RL training engine and vLLM (Kwon et al., 2023)
as the rollout engine. The training setup includes a rollout batch of 128, a learning rate of 1× 10−6,
a generation temperature of 1.0, and a higher-clip of 0.28. Each response sequence is up to 8k
tokens in length. We perform 8 rollouts per prompt and do not apply KL divergence or entropy
regularization (KL Coeff = 0, entropy loss = 0). The mini-batch size is set to 64. For important
parameters of MENTOR, α is initialized to 1 and annealed to 0 with a cosine schedule over 120
steps, enabling a smooth transition from expert guidance to autonomous exploration. The number
of mixed-policy rollouts is set to 4. For γp, p is chosen as 0.95, corresponding to the 95-th percentile
of token-level entropies within each batch. As a special case, γp is initialized to 999 at the first step.

A.4 EXPLORING ALTERNATIVE FORMS OF EXPERT GUIDANCE

Beyond the entropy-based guidance introduced in the main text, we further investigate several
alternative ways of determining where and how expert guidance should be injected during mixed-
policy rollout.

(1) Random guidance. We begin with a simple baseline that injects expert guidance uniformly at
random throughout decoding, without relying on any uncertainty signal or contextual criterion. At
each step, the model routes the next-token decision to the expert policy π∗ with probability 0.2, and
to the base policy πθ with probability 0.8. In expectation, this stochastic routing yields the following
mixed distribution:

πmix(yt | x<t) = 0.8πθ(yt | x<t) + 0.2π∗(yt | x<t). (30)

(2) Perplexity-based guidance. Token-level perplexity measures how confused the model is about
generating a particular next token. For a token yt with predicted probability pθ(yt | x<t), the
perplexity is defined as

PPL(t) = exp
(
− log pθ(yt | x<t)

)
=

1

pθ(yt | x<t)
. (31)

Higher perplexity indicates that the model is more confused about predicting the next token and is
more likely to make an error. To leverage this signal, we route the top 20% highest-perplexity tokens
to the expert policy. Concretely, let τ denote the 80th-percentile threshold of token-level perplexity
within the sequence, then the mixed policy is defined as:

πmix(yt | x<t) =

{
π∗(yt | x<t) PPL(t) > τ,

πθ(yt | x<t) otherwise.
(32)

To provide a direct illustration of how these guidance mechanisms differ in practice, we further ana-
lyze the critical tokens generated by expert. Concretely, we use Qwen2.5-7B-Base as the base policy
and OpenR1-Qwen-7B as the expert policy, matching the setup used in our main experiments. For
each AIME24 query, we decode with temperature (T = 1.0) and apply the three guidance strate-
gies during generation. By aggregating the guidance tokens generated by the expert π∗ under each
strategy, we visualize their distributions in Figure 5.

Compared with random and perplexity-based guidance, entropy-based guidance generates many log-
ical connectors (e.g., wait, however) that, in our experiments, often trigger new reasoning branches
and lead to trajectories whose style and structure differ substantially from the model’s own reason-
ing without guidance. By contrast, random and perplexity-based guidance rarely introduce such

3https://huggingface.co/open-r1/OpenR1-Qwen-7B
4https://github.com/hiyouga/EasyR1
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(a) Random guidance (b) Perplexity-based guidance (c) Entropy-based guidance

Figure 5: Word-cloud visualizations of expert-generated guidance tokens under different selection
strategies.

branching points, and the resulting reasoning trajectories remain close to those produced by the base
model alone.

To further validate the downstream impact of different guidance strategies, we follow the main train-
ing setup and compare random guidance, perplexity-based guidance, and entropy-based guidance on
Qwen2.5-7B-Base.

Setting MATH AIME24
GRPO 76.8 14.2

MENTOR (Random guidance) 77.6 14.8
MENTOR (Perplexity-based guidance) 77.0 13.3
MENTOR (Entropy-based guidance) 81.4 18.3

Table 2: Impact of different guidance on MENTOR performance.

As shown in Table 2, both random guidance and perplexity-based guidance provide only limited
improvement over GRPO, with the latter even occasionally degrading performance. In contrast,
entropy-based guidance delivers substantial gains on both MATH and AIME24, indicating that ex-
pert guidance is more effective when applied at high-entropy positions.

A.5 ABLATION STUDY

A.5.1 ABLATION OF METHOD COMPONENTS

We analyze the contributions of each component in our methodology, as detailed in Table 3. The
observed improvements demonstrate the effectiveness of these components in RL training, with each
contributing performance gains on MATH.

Method MATH AIME24
Qwen2.5-7B-Base 62.4 5.4

GRPO 76.8 14.2
+Mixed-policy Rollout 79.4 14.6
+Mixed-policy GRPO 81.4 18.3

Table 3: Main results of progressive components applied to MENTOR

A.5.2 ABLATION OF EXPERT WEIGHT α

We also study the effect of the expert weight α, comparing the default decaying schedule (from 1
to 0) with several fixed-weight baselines. As shown in Table 5, MENTOR consistently outperforms
standard GRPO under all settings, indicating that the framework remains stable and effective under
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various parameter configurations. However, different values of α induce distinct patterns in how the
model acquires and utilizes expert knowledge.

Setting MATH AIME24
GRPO (equiv. to α = 0) 76.8 14.2

MENTOR (fixed α = 1.0) 78.2 13.9
MENTOR (fixed α = 0.5) 80.4 16.1
MENTOR (decay α : 1→ 0) 81.4 18.3

Table 4: Effect of expert weights on MENTOR performance.

Introducing expert knowledge consistently improves model performance across all hyperpa-
rameter settings. Across all hyperparameter configurations, MENTOR consistently surpasses
GRPO (α = 0), demonstrating that incorporating expert guidance effectively broadens the model’s
exploration and improves learning stability. This confirms that absorbing expert knowledge is fun-
damentally beneficial for the training process.

Beyond injecting expert information, the model must also consolidate and internalize that
knowledge. The experiments reveal that using a lower fixed weight (α = 0.5) yields stronger
performance than an overly high weight (α = 1). This indicates that retaining a degree of autonomy
allows the model to selectively reinforce the parts of expert knowledge that are truly useful, rather
than relying on it indiscriminately. In other words, preserving autonomy is necessary for genuine
understanding rather than rote imitation.

The decaying schedule achieves the best balance between them. Early in training, a high mixing
weight accelerates learning by leveraging expert guidance; later, as the weight decreases, the model
shifts toward autonomous optimization, refining its own strategy and filtering expert signals more
effectively. This dynamic adjustment enables the model to both learn from experts and ultimately
surpass them, producing the strongest overall performance.

A.5.3 ABLATION OF ENTROPY THRESHOLD γp

To assess the sensitivity of MENTOR to the entropy threshold γp, we conduct an ablation study by
varying the high-entropy quantile p.

Setting MATH AIME24
MENTOR (p = 0.8) 80.8 17.0
MENTOR (p = 0.9) 80.2 17.7
MENTOR (p = 0.95) 81.4 18.3

Table 5: Effect of entropy threshold γp on MENTOR performance.

MENTOR’s final performance remains stable across different γp. As shown in Table 5, the
final performance is largely insensitive to the choice of threshold, indicating that MENTOR remains
robust across a reasonable range of γp.

A.5.4 ABLATION OF NORMALIZING EXPERT ADVANTAGES

To better understand the role of our advantage normalization design in Eq. 13, we conduct an abla-
tion study that replaces our range-based normalization[

Ri −mean
(
{Rj}τj∈Gon

)]
+

Rrange

to std-based normalization [
Ri −mean

(
{Rj}τj∈Gon

)]
+

std(
[
Ri −mean

(
{Rj}τj∈Gon

)]
+
)
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We repeat the experiments on Qwen2.5-7B-Base under the same settings as the main experiments,
while fixing α = 0.5. The results are shown below.

Setting MATH AIME24
GRPO 76.8 14.2

MENTOR (std-based) 77.8 14.8
MENTOR (range-based) 80.4 16.1

Table 6: Effect of different normalization strategies for expert advantages on MENTOR perfor-
mance.

Range-based normalization enables more stable absorption of expert knowledge. As shown
in Table 6, range-based normalization yields notably better final performance than std-based nor-
malization. To further examine this behavior, Figure 6 presents the validation performance on
MATH500 throughout training for both normalization strategies.

Figure 6: Comparison of different normalization strategies.

We observe that the std-based normalization exhibits instability during training, particularly in the
mid-to-late stages. This behavior arises because the model fails to effectively filter out low-value
expert tokens, such as wait or alternative, which tend to induce unnecessary continuation of reason-
ing and lead to overthinking, ultimately degrading final performance. The underlying reason is that,
in the later stages of training, the model has already acquired sufficient capability to solve problems
correctly on its own (with training accuracy approaching 80%). Under such conditions, even when
the expert provides misleading guidance, the model can still obtain the correct answer through its
own reasoning. Std-based normalization tends to re-amplify those advantages that should have re-
mained small, causing the advantage signal to no longer reliably reflect the value of expert guidance.
Consequently, low-value tokens such as wait or alternative tend to be overestimated, hindering the
model’s ability to distill the genuinely useful knowledge from the expert.

It is worth noting, however, that std-based normalization leads to faster improvement in the early
training phase. At the beginning of training, the model’s own accuracy is extremely low, making it
unlikely to overcome incorrect expert signals. In this regime, only genuinely useful expert guidance
can lead to correct outcomes, while ineffective or erroneous signals naturally fail to yield positive
rewards and are implicitly filtered out. As a result, std-based normalization does not amplify mis-
leading outliers; instead, it reduces training variance, stabilizes gradient updates, and accelerates
early-stage learning.

In contrast, range-based normalization can allow the model to absorb genuinely useful expert knowl-
edge in a more stable manner.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.6 EFFICIENCY ANALYSIS

To provide a deeper comparison between MENTOR and a range of baselines, including on-policy
RL algorithms (GRPO, DAPO) and expert-guided methods (LUFFY, QuestA), we conduct a detailed
efficiency analysis during 200 training steps on Qwen2.5-7B-Base, using the same hyperparameters
as in the main experiments. For each method, we report the average sequence lengths and the aver-
age stage runtimes. Additionally, because different RL methods produce responses of substantially
different lengths, we further define an throughput metric to ensure fair comparison across methods,
which is computed as the average number of tokens that produce gradients per step divided by the
average per-step time. The results are shown in Table 7.

Method Sequence Length Stage Time (s)
Total Time

(s)
Throughput

(tokens/s)Prompt Response Gen Old Update

On-policy RL
GRPO 153 828 133 24 87 244 3474
DAPO 153 833 307 25 92 424 2011

Expert-guided RL
LUFFY 153 2902 270 60 230 560 5306
QuestA 510 711 142 31 117 290 2510
MENTOR 153 1751 404 48 175 627 2860

Table 7: Efficiency analysis of different methods. Here, Gen, Old and Update denote respectively
the generation (rollout) phase, the computing of the logits of πold, and the model update phase in the
Verl framework.

MENTOR achieves the highest performance with only moderate and acceptable additional
training overhead. Since different methods generate responses of different lengths, we mainly
rely on throughput for a fair comparison. Compared with on-policy RL methods, MENTOR reaches
2860 tokens/s, between GRPO (3474) and DAPO (2011), because DAPO often performs two or three
full generation phases to collect enough samples, while MENTOR’s mixed-policy rollouts are more
efficient than repeated full generations. For expert-guided methods, LUFFY shows high throughput
partly because it mixes in a full offline expert trajectory of about 6k tokens, which increases the num-
ber of processed tokens. From the perspective of the algorithmic design, the throughput of LUFFY’s
newly generated rollout data should be close to that of GRPO (3474). QuestA concatenates expert
segments into the input, creating longer prompts that slightly reduce training throughput. Compared
with these approaches, MENTOR achieves the highest final performance, and although it relies on
expert guidance during the rollout stage, the additional overhead remains acceptable.

A.7 CASE STUDY

To complement the aggregate analysis in Figure 3, we provide representative trajectory-level cases
in this section. These examples illustrate how different training methods influence the emergence of
reasoning tokens such as verify, check, and wait. By examining full reasoning traces, we highlight
qualitative differences between methods, offering additional context to the quantitative analysis in
the main text.

We find that the incorporation of expert policy indeed shapes the final reasoning patterns of the
models, with different methods leading to distinct outcomes.

• From a stylistic perspective, QuestA and MENTOR exhibit reasoning traces more aligned
with on-policy RL, whereas LUFFY shows a closer resemblance to the expert’s style. This
difference arises because LUFFY emphasizes direct imitation of expert demonstrations,
often reproducing surface-level tokens such as wait and okay, while QuestA and MEN-
TOR encourage the model to explore autonomously while using expert guidance, thereby
preserving a degree of its own stylistic characteristics.
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• From a content perspective, MENTOR and LUFFY successfully acquire specific reason-
ing modes from the expert, such as the use of verify, which are absent in the base model. In
contrast, QuestA, despite leveraging expert policy, does not exhibit the adoption of verify.
Our analysis suggests this limitation stems from the design choice of using only the first
half of the expert trajectory as hints, while tokens like verify typically appear toward the
end of trajectories, thereby restricting their adoption.

An example of On-policy RL

QUESTION
Let x1, x2, x3, y1, y2, and y3 be real numbers such that

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25.

Find ∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

.

RESPONSE
<think>

To solve for

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

, we start by defining the determinant of the matrix:

D =

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣ .
The determinant D can be expanded as follows:

D = x1

∣∣∣∣y2 1
y3 1

∣∣∣∣− y1

∣∣∣∣x2 1
x3 1

∣∣∣∣+ ∣∣∣∣x2 y2
x3 y3

∣∣∣∣ .
This expands to:

D = x1(y2 − y3)− y1(x2 − x3) + (x2y3 − x3y2).

So, we have:
D = x1y2 − x1y3 − y1x2 + y1x3 + x2y3 − x3y2.

We need to find D2. To do this, we will use the given distances between the points (x1, y1),
(x2, y2), and (x3, y3). The distances are:

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25.

These distances suggest that the points (x1, y1), (x2, y2), and (x3, y3) form a right triangle
with sides of lengths 3, 4, and 5. Without loss of generality, we can place the points in a
coordinate system where the distances are satisfied. One possible configuration is:

(x1, y1) = (0, 0), (x2, y2) = (3, 0), (x3, y3) = (0, 4).

Now, we calculate the determinant D for these points:

D =

∣∣∣∣∣0 0 1
3 0 1
0 4 1

∣∣∣∣∣ .
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Expanding this determinant, we get:

D = 0 ·
∣∣∣∣0 1
4 1

∣∣∣∣− 0 ·
∣∣∣∣3 1
0 1

∣∣∣∣+ 1 ·
∣∣∣∣3 0
0 4

∣∣∣∣ = 1 · (3 · 4− 0 · 0) = 12.

So, D = 12, and we need to find D2:

D2 = 122 = 144.

Thus, the answer is:
144 .

</think>
144

An example of MENTOR

QUESTION
Let x1, x2, x3, y1, y2, and y3 be real numbers such that

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25.

Find ∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

.

RESPONSE
<think>

To find

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

, we start by recalling that the determinant of the given matrix is the

area of the triangle formed by the points (x1, y1), (x2, y2), and (x3, y3) multiplied by 2.

Let’s denote the determinant by D, so D =

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣. Then, D2 is the square of the area

of the triangle.
The area A of the triangle can be found using the formula for the area of a triangle with
vertices (x1, y1), (x2, y2), and (x3, y3):

A = 1
2 |x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

Thus, D2 = 4A2. To find A2, we need to use the given distances between the points. The
distances are given by the equations:

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25.

These equations represent the squared lengths of the sides of the triangle. Let’s denote the
points as A = (x1, y1), B = (x2, y2), and C = (x3, y3). The distances AB = 3, AC = 4,
and BC = 5. Notice that 32+42 = 52, which suggests that triangle ABC is a right triangle
with ∠A = 90◦.
To verify, let’s use the coordinates to check if the points form a right triangle. Assume
A = (x1, y1), B = (x2, y2), and C = (x3, y3). The squared distances are:

AB2 = (x1 − x2)
2 + (y1 − y2)

2 = 9,
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AC2 = (x1 − x3)
2 + (y1 − y3)

2 = 16,

BC2 = (x2 − x3)
2 + (y2 − y3)

2 = 25.

Since AB = 3, AC = 4, and BC = 5, and 32 + 42 = 52, the triangle is indeed a right
triangle with ∠A = 90◦.
The area A of a right triangle is given by half the product of the legs:

A = 1
2 ×AB ×AC = 1

2 × 3× 4 = 6.

Therefore, D2 = 4A2 = 4× 62 = 144.
So, the answer is 144 .
</think>

To find

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

, we start by recalling that the determinant of the matrix is the area

of the triangle formed by the points (x1, y1), (x2, y2), and (x3, y3) multiplied by 2. Let’s

denote the determinant by D, so D =

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣. Then, D2 is the square of the area of

the triangle.
Given the distances between the points:

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25,

we recognize these as the squared lengths of the sides of a triangle with sides AB = 3,
AC = 4, and BC = 5. Since 32 + 42 = 52, the triangle is a right triangle with ∠A = 90◦.
The area A of a right triangle is given by:

A = 1
2 ×AB ×AC = 1

2 × 3× 4 = 6.

The determinant D is twice the area of the triangle:

D = 2A = 12.

Therefore,
D2 = 122 = 144.

Thus, the final answer is:
144 .

An example of LUFFY

QUESTION
Let x1, x2, x3, y1, y2, and y3 be real numbers such that

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25.

Find ∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

.

RESPONSE
<think>
Okay, so I’ve got this problem here about finding the square of the determinant of a matrix
given some conditions on the coordinates. Let me try to break it down step by step.
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First, the problem gives me six real numbers: x1, x2, x3, y1, y2, y3. It also provides three
equations involving these numbers:
1. (x1−x2)

2+(y1−y2)2 = 9 2. (x1−x3)
2+(y1−y3)2 = 16 3. (x2−x3)

2+(y2−y3)2 = 25
I need to find the square of the determinant of the matrix:∣∣∣∣∣x1 y1 1

x2 y2 1
x3 y3 1

∣∣∣∣∣
Hmm, okay. Let me recall that the determinant of a 3x3 matrix can be calculated using the
formula:

det = x1(y2 · 1− y3 · 1)− y1(x2 · 1− x3 · 1) + 1(x2y3 − x3y2)

Simplifying that, it becomes:

det = x1(y2 − y3)− y1(x2 − x3) + x2y3 − x3y2

So, the square of the determinant is:

det2 = [x1(y2 − y3)− y1(x2 − x3) + x2y3 − x3y2]
2

But wait, maybe there’s a better way to approach this. I remember that the determinant of a
matrix formed by coordinates of points in a plane is related to the area of the triangle formed
by those points. Specifically, the absolute value of the determinant is twice the area of the
triangle. So, perhaps I can use that.
Let me denote the points as A(x1, y1), B(x2, y2), and C(x3, y3). The determinant is twice
the area of triangle ABC. So, if I can find the area, I can square it.
The area of triangle ABC can be found using the formula:

Area =
1

2
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

But wait, that’s the same as the determinant divided by 2. So, the determinant is twice the
area. Therefore, the square of the determinant is four times the square of the area.
So, I need to find the area of triangle ABC. Let me denote the area as A. Then, the square
of the determinant is 4A2.
Now, the area A can be found using the distance formula. The three given equations are
the squared distances between the points. Let me denote the points as A, B, and C. So,
AB2 = 9, AC2 = 16, and BC2 = 25. Therefore, AB = 3, AC = 4, and BC = 5.
Hmm, interesting. So, the sides of the triangle are 3, 4, and 5. That’s a right triangle because
32 + 42 = 52. So, the area of a right triangle is 1

2 × base× height. In this case, the base and
height are 3 and 4, so the area is 1

2 × 3× 4 = 6.
Therefore, the square of the area is 62 = 36. So, the square of the determinant is 4 × 36 =
144.
Wait, let me double-check. The area is 6, so the determinant squared is 4× 62 = 4× 36 =
144. That seems correct.
But let me make sure I didn’t make a mistake in the area calculation. The sides are 3, 4, 5,
which form a right triangle. The area is indeed 1

2 × 3× 4 = 6. So, the square is 36, and the
determinant squared is 144.
I think that’s it. So, the final answer is 144.
</think>
The square of the determinant is 144 .

An example of QuestA

QUESTION
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Let x1, x2, x3, y1, y2, and y3 be real numbers such that

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25.

Find ∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

.

RESPONSE
<think>
Given the equations:

(x1 − x2)
2 + (y1 − y2)

2 = 9,

(x1 − x3)
2 + (y1 − y3)

2 = 16,

(x2 − x3)
2 + (y2 − y3)

2 = 25,

we need to find

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
2

.

Let’s denote the determinant by D:

D =

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣ .
The square of the determinant D2 can be found using the formula for the square of a deter-
minant of a 3 × 3 matrix. However, we can use a geometric interpretation to simplify the
problem.
Consider the points A = (x1, y1), B = (x2, y2), and C = (x3, y3) in the coordinate plane.
The given equations represent the squared distances between these points:

AB2 = 9,

AC2 = 16,

BC2 = 25.

These distances suggest that the points A, B, and C form a right triangle with BC as the
hypotenuse. This is because 9 + 16 = 25, which satisfies the Pythagorean theorem.
Without loss of generality, let’s assume B is the right angle, so A, B, and C form a right
triangle with BC as the hypotenuse. This assumption simplifies our calculations.
The area of the triangle ABC can be calculated using the distances given. The area K of a
triangle with vertices (x1, y1), (x2, y2), and (x3, y3) can also be found using the determinant
formula for the area of a triangle:

K =
1

2
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)| .

The square of the determinant D is related to the area of the triangle. Specifically, the square
of the determinant of the matrix formed by the coordinates of the points is four times the
square of the area of the triangle:

D2 = 4K2.

To find K2, we use the fact that the points form a right triangle. The legs of the triangle are
the distances AB and AC, and the hypotenuse is BC. The area K of the right triangle can
be calculated as:

K =
1

2
·AB ·AC =

1

2
·
√
9 ·
√
16 =

1

2
· 3 · 4 =

1

2
· 12 = 6.
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Thus, the square of the area K2 is:

K2 = 62 = 36.

Therefore, the square of the determinant D2 is:

D2 = 4K2 = 4 · 36 = 144.

</think>
The final answer is:

144 .

B LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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