Experiment Planning with Function Approximation

Aldo Pacchiano Jonathan N. Lee Emma Brunskill
Broad Institute & Boston University Stanford University Stanford University
apacchia@broadinstitute.org jnl@stanford.edu ebrun@cs.stanford.edu
Abstract

We study the problem of experiment planning with function approximation in
contextual bandit problems. In settings where there is a significant overhead
to deploying adaptive algorithms—for example, when the execution of the data
collection policies is required to be distributed, or a human in the loop is needed
to implement these policies—producing in advance a set of policies for data
collection is paramount. We study the setting where a large dataset of contexts
but not rewards is available and may be used by the learner to design an effective
data collection strategy. Although when rewards are linear this problem has been
well studied [53]], results are still missing for more complex reward models. In
this work we propose two experiment planning strategies compatible with function
approximation. The first is an eluder planning and sampling procedure that can
recover optimality guarantees depending on the eluder dimension [42] of the
reward function class. For the second, we show that a uniform sampler achieves
competitive optimality rates in the setting where the number of actions is small.
We finalize our results introducing a statistical gap fleshing out the fundamental
differences between planning and adaptive learning and provide results for planning
with model selection.

1 Introduction

Data-driven decision-making algorithms have achieved impressive empirical success in various
domains such as online personalization [4}48]], games [36} 43|, dialogue systems [32]] and robotics [25]
35]. In many of these decision-making scenarios, it is often advantageous to consider contextual
information when making decisions. This recognition has sparked a growing interest in studying
adaptive learning algorithms in the setting of contextual bandits [26}|33}16] and reinforcement learning
(RL) [46]. Adaptive learning scenarios involve the deployment of data collection policies, where
learners observe rewards or environment information and utilize this knowledge to shape subsequent
data collection strategies. Nonetheless, the practical implementation of adaptive policies in real-
world experiments currently presents significant challenges. First, there is significant infrastructure
requirements and associated overheads which require skills and resources many organizations lack.
For example, while there are end-user services that enable organizations to automatically send
different text messages to different individuals, such services typically do not offer adaptive bandit
algorithms. Second, the resulting reward signal may be significantly delayed. As an example, the
effect of personalized health screening reminders on a patient making a doctors appointments may
take weeks. Therefore, while it is increasingly recognized that there exist other settings where context-
specific policies are likely to be beneficial, including behavioural science[8], many organizations
working in these settings may find it infeasible to run experiments with adaptive policies. To bridge
this gap, there is a need to explore the deployment of non-adaptive or static strategies that can
effectively collect data with minimal or no updates. Surprisingly, limited research has been conducted
to investigate this particular setting, highlighting the importance of further exploration in this area.
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In this work, we consider how to design a static experimental sampling strategy for contextual
multi-armed bandit settings which, when executed, will yield a dataset from which we can compute
a near-optimal contextual policy (one with small simple regret). Our framework closely adheres to
the experiment planning problem formulation originally introduced by [S3]]. The problem involves
a learner interacting with a contextual bandit problem where the reward function is unknown. Our
assumption is that the learner possesses a substantial offline dataset comprising of m sample contexts,
none of which include reward information. The learner’s objective is to utilize this data to design
a static policy sequence of length 7' (where m > T) that enables the collection of valuable reward
information when deployed in the real world. The ultimate goal is to produce an almost optimal policy
using the data gathered during deployment. To address this scenario, the authors of [53] propose a
two-phase approach involving Planner and Sampler algorithms. In the planner phase, the learner
employs the context data to generate a set of sampling policies, which are then utilized in the sampler
phase. The primary focus of [53]] lies in the analysis of the linear case, assuming the reward function
to be a linear function of the context vectors. Their key algorithmic contribution is the linear Planner
Algorithm, which encompasses a reward-free instance of LinUCB. The analysis presented in [S3]]
demonstrates that the required number of samples under the static sampler to achieve an e-optimal
policy (also referred to as simple regret) scales as O (d2 / 52), where d represents the dimension of the
underlying space. This result matches the online minimax sample complexity for the simple regret
problem [[11} [1].

The algorithm proposed by [53] effectively constructs a static policy sequence of adequate span, uti-
lizing the linear structure of the problem. However, in many problem settings, linearity alone may not
be sufficient to capture the true nature of the underlying reward model. This limitation is particularly
evident in scenarios such as genetic perturbation experimentation [40|] or other similar contexts. In
such cases, the availability of algorithms that do not rely on linearity becomes crucial. Unfortunately,
extending the results and techniques presented in [53] to the generic function approximation regime
is not straightforward.

Here we consider when the reward function is realized by an unknown function f, belonging to a
known function class F (which can be more complex than linear).

Adaptive Learning with Function Approximation. In adaptive learning settings where a learner
can change the data collection policies as it observes rewards and has much more flexibility than
in experiment planning scenarios, various adaptive learning procedures compatible with generic
function approximation have been proposed for contextual bandit problems. Among these, two
significant methods relevant to our discussion are the Optimistic Least Squares algorithm (OptLS
) introduced by [42] and the SquareCB algorithm introduced by [17]. Both of these methods
offer guarantees for cumulative regret. Specifically, the cumulative regret of OptLS scales as

O(\/detuder log(|F|)T), while the cumulative regret of SquareCB scales as O (« /|A] log(|]—'|)T),

where A corresponds to the set of actions. The eluder dimensimﬂ (deluder) 18 a statistical complexity
measure introduced by [42], which enables deriving guarantees for adaptive learning algorithms
based on the principle of optimism in the face of uncertainty in contextual bandits and reinforcement
learning [31} 22} 137,19]. By employing an online-to-batch conversion strategy, these two methods
imply that the number of samples required to achieve e-simple regret using an adaptive algorithm is
at most O (deluder log(|F])/2?) and O (|A|log(|F])/e?) respectively.

Contributions. In this paper, we address the function approximation setting within the contextual
bandit (static) experiment planning problem. Although in experiment planning the data collection
policies have to be produced before interacting with the environment, we establish that surprisingly
the adaptive e-simple regret rates achieved by OptLS and SquareCB are also attainable by a
static experiment sampling strategy. To achieve this, we introduce and analyze two experimental
planning algorithms. The PlannerEluder algorithm (see Section §) utilizes confidence intervals
derived from least squares optimization to construct a static set of policies to be executed during the
sampling phase. When the algorithm has access to a sufficient number of offline samples to generate
T=0 (deluder log(|.F]) /52) static policies, the learner can produce an e-optimal policy denoted as
7 thus matching the online-to-batch e-simple regret rates of OptLS . Since the eluder dimension
of linear function classes of dimension d is -up to logarithmic factors- of order O(d), our results

'We formally introduce this quantity in Section Here we use a simpler notation to avoid confusion.



recover the linear experiment planning rates of [53]]. Additionally, in Section [5, we demonstrate
that collecting 7' = € (|.A|log(|F|) /%) uniform samples is sufficient to obtain an -optimal policy
7r. This matches the online-to-batch e-simple regret rates of SquareCB . These two results yield
conclusions similar to those known in the linear setting [53]], but for general function classes.

These results prompt two important questions: (1) are existing adaptive cumulative regret algorithms
already optimal for simple regret minimization, and (2) is static experiment planning sufficient to
match the simple regret guarantees of adaptive learning for realizable contextual bandits?

In Section [6, we provide a negative answer to both questions. We present a certain structured
class of bandit problems where a different adaptive algorithm can require significantly less samples
than that implied by the bounds from OptLS and SquareCB . Our result is for the realizable
setting [12} [18] [17, 44} O], where the true reward function f, belongs to a known function class F,
where the true complexity of simple regret problems in adaptive learning scenarios has not be known
known in this setting. This result complements recent results [34] that online-to-batch strategies are
suboptimal for minimizing simple regret in the agnostic contextual bandits setting

For the second question, our statistical lower bound shows that for this class of problems, a sig-
nificantly smaller number of samples are needed to find an e-optimal policy when using adaptive
learning, than when using a static policy. This result complements related work in reinforcement
learning with realizable linear state-action value function approximation[52].

Finally, we address the problem of model selection when the learner is presented with a family of
reward function classes {F;}}, and is guaranteed that the true reward function f, belongs to F;,,
where the index i, is unknown. We demonstrate that as long as T' = €2 (|.A| log(max (M, | F;.|)) /%)
uniform samples are available, it is possible to construct an e-optimal policy denoted as 77. Further
details regarding these results can be found in Section

2 Further Related Work

Best Arm Identification and Design of Experiments. Previous work to efficiently produce an
almost optimal policy for non-contextual linear and multi-armed bandits settings is based on best-arm
identification procedures [[16} 20} |13} 145,147, 151]. These are strategies that react adaptively to the
collected rewards and achieve instance dependent sample complexity. Other papers in the design of
experiments literature [24, 15} 29, 41]] introduce methods for designing a non-adaptive policy that
can be used to find an optimal arm with high probability in non-contextual scenarios.

Safe Optimal Design. When safety concerns are imposed in the exploration policy, works such
as [54] and [49] have studied the problem of producing a safe and efficient static policy used to
collect data that can then be used for policy evaluation in the MAB and linear settings. This is in
contrast with the unconstrained contextual function approximation scenario we study.

Reward Free Reinforcement Learning. In Reinforcement Learning settings a related line of
research 211150l [10] considers the problem of producing enough exploratory data to allow for policy
optimization for all functions in a reward class. These works allow for the learner to interact with the
world for a number of steps, enough to collect data that will allow for zero-shot estimation of the
optimal policy within a reward family. This stands in contrast with the experiment planning setup,
where the objective is to produce a sequence of policies for static deployment at test time with the
objective of learning the unknown reward function.

3 Problem Definition

We study a two-phase interaction between a learner and its environment consisting of a Planning
and a Sampling phase. During the planning phase the learner has access to m > T i.i.d. offline

%In the agnostic case the learner is instead presented with an arbitrary policy class II that may or may not
be related to the mean reward function f.. In this setting a recent study by [34] introduces an algorithm that
achieves sharp rates characterized in terms of a quantity pry.



context sample from a context distribution P supported on a context space X" as well as knowledge
of a reward function class F where each element f € F has domain X x A where A is the action
set. During the sampling phase the learner interacts with a contextual bandit problem for 7' steps
where at each time-step ¢ a context x; ~ P is revealed to the learner, the learner takes an action ay
and receives a reward r,. We adopt the commonly used realizability assumption, which is widely
employed in the contextual bandit literature [2, |18 [17, 44} 9]

Assumption 3.1 (Realizability). There exists a function f, € F such that ry = f.(x¢, ar) + & where
fx € F and & is a conditionally zero mean 1—subgaussian random variable for all t € [T during
the sampling phase.

During the planning phase the learner is required to build a static policy sequence {m;}_; (a policy
is a mapping from X to A 4, the set of distributions over actions) that, without knowledge of the
reward, can be deployed to collect data during the sampling phase. In contrast with adaptive learning
procedures, in the experiment planning problem the policies in {7;}X_; have to be fully specified
during the planning phase and cannot depend on the learner’s observed reward values during the
sampling phase. The learner’s objective is to use the reward data collected during the sampling phase
to produce an e—optimal policy 7 such that,

Ea:~73,a~7?T(a:) [f,,(x,a)] te= mBXEa:~P,a~7r(a:) [f,,(x,a)] .

for a suboptimality parameter € > 0. Because we have assumed realizability of the reward function,
the optimal policy among all possible policies 7, = argmax, By p g~r(a) [f+(2, @)] can be written
as m,(x) = argmax, 4 fu(z,a) forallz € X.

Throughout this work we make the following boundedness assumptions,

Assumption 3.2 (Bounded Function Range). The range of F is bounded, i.e. for all x,a € X x A,
|f(z,a)| < B for some constant B > 0.

Assumption 3.3 (Bounded Noise). The noise variables are bounded |&;| < B for all t € [T] for
some constant B > 0.

Assumptions[3.2/and 3.3]imply |r;| < B + B forall t € [T].

4 Planning Under the Eluder Dimension

The eluder dimension is a sequential notion of complexity for function classes that was originally
introduced by [42]]. The eluder dimension can be used to bound the regret of optimistic least squares
algorithms in contextual bandits [42] 9] and reinforcement learning [37]. Informally speaking the
eluder dimension is the length of the longest sequence of points one must observe to accurately
estimate the function value at any other point. We use the eluder dimension definition from [42].

Definition 4.1. (e—dependence) Let G be a scalar function class with domain Z and € > 0. An

element z € Z is e—dependent on {z1,--- ,z,} S Z w.rt. G if any pair of functions g, g’ € G
satisfying />, (9(zi) — g'(2:))? < ¢ also satisfies g(z) — ¢'(z) < e. Furthermore, z € Z is
e—independent of {z1,- -+ ,z,} w.rt. G if it is not e—dependent on {z1,- - , z, }.

Definition 4.2. (z-eluder) The e—non monotone eluder dimension delyaer (G, €) of G is the length of
the longest sequence of elements in Z such that every element is e—independent of its predecessors.
Moreover, we define the e—eluder dimension delyder (G, €) as deluder(G,€) = maxerse deluder (G, €)-

By definition the e—eluder dimension increases as ¢ is driven down to zero. Let D be a dataset of X,
A pairs. For any f, f’ with support X x A we use the notation || f — f’|p to denote the data norm of
the difference between functions f and f':

If=Flo= | Y (fl@,0) = f(x,a)

(xz,a)eD

3This assumption is based on the fact that gathering offline context samples can be significantly less costly
compared to conducting multiple rounds of experimental deployment.



Algorithm 1 EluderPlanner

1: Input: m > T samples {z; ~ P}}",, function class F, confidence radius function S5 : t,0 — R
2: Initialize data buffer D, = &

3: fort=1...Tdo

4 For any x € X define the uncertainty radius of action a € A as,

w(z,a,Dy) = f(z,a) — f'(z,a).
( t) FoFreF st | F-F oy <anecen) (@,0) = f(@,a)

5:  Define the policy m; as m;(z) = argmax,c 4 w(x,a, D) forall x € X.
6:  Update Dy 11 < Dy U {(z4, me(24))}
7: end for

The EluderPlanner algorithm takes as input

Algorithm 2 Sampler m > T ii.d. samples from the context distri-

1: Input: number of time-steps 7". bution {z, ~ P}}~, and a realizable function
2: Initialize data buffer D; = & class F satisfying Assumption 3.1 The learner
3: fort=1...T do iterates over 1" out of these m samples in a se-
4:  Define deployment policy 7, as 7. quential manner. We use the name z; to denote
5:  Observe context T, ~ P. the t—th input sample and call 7; to the (de-
6:  Play action a; = 74(Z;) and receive re-  terministic) exploration policies produced upon

ward 7. processing samples 1,--- ;¢ — 1. We use the
7:  Update 5t+1 — ﬁt U {(Z4, ag, 7))} notation D; = {(xy, Wg(xg))}zj to denote the
8: end for dataset composed of the first £ — 1 (ordered)

samples from {x,}}” , and actions from policies
{m} . We adopt the convention that D; = ¢J. The output of the EluderPlanner algorithm is
the sequence of policies {m;}7_,. Policy 7 is defined as m;(z) = arg max,. 4 w(z,a, D;) such that
w(x, a, Dy) is an uncertainty measure defined as,

Wiz a.Dy) = max r,a)— ':aa. 1
( 2 fLf'eF st \\f*f’l\p,<4ﬁ;(t,5)f( )= f( ) e

Where the confidence radius function 8x(d, t) equals

Br(8.1) = C(B + B), |log ('J;'t) @

for some universal constant C' > 0 defined in Proposition This is a complexity radius im-
plied by the guarantees of least squares regression (Lemma [A.8) and constraints imposed by
Lemma See Appendix and Proposition for a detailed discussion about this defini-
tion. We call the combination of the EluderPlanner and Sampler as the eluder planning algorithm.
Its performance guarantees are obtained by relating the regret of a constructed sequence of opti-

mistic policies {#;"*}7_, based on the data collected by {m;}_, to the sum of uncertainty radii
Zt 1 w(z¢, me (), D) of the context-actions collected during the planning phase. Using optimism
when constructing this policy sequence is 1mp0rtant In contrast with the sequence of greedy policies

7&e (|2) = argmax,. 4 fi(z,a), where f, = arg mingez Y, o e, (f(2,0) = r)? resulting
from a least squares over Dt, the sequence of 0pt1mlstlc policies satisfies a regret bound. Thus,
playing a uniform policy from the sequence {7rt T satisfies a simple regret guarantee. The sum
of uncertainty radii ZtT Lw(xe, (@), Dy) is bounded using a Lemma we borrow from [9]].

Lemma 4.3. [Lemma 3 from [[9]] Let F be a function class satisfying Assumption[3.2|with e-eluder
dimension deuder(F,¢€). For all T € N and any dataset sequence {D;}° | with D, = & and

Dy = {{Z¢,ar}}iZ} of context-action pairs, the following inequality on the sum of the uncertainty
radii holds,

> w(@rar, Dy) < O (min (BT, Bdewaer (F, B/T) + B#(T. 6)\/detaer (F B/T)T) ) .

t=1



Extracting Policy 77 from Data. At the end of the execution of the Sampler algorithm, the learner

will have access to a sequence of datasets {lNDt}thl of contexts, actions and reward triplets. The
learner will use this sequence of datasets to compute the sequence of regression functions,

t—1
fi = argmin 3 (f(&0,de) — ), 3)

feF =1

Standard Least Squares (LS) results (see Lemma i imply that || fi - fellp, < B(t,0) with
high probability for all ¢ € N. These confidence sets are used to define a sequence of optimistic
(deterministic) policies {7P*}L

7P () = arg max max f(z,a) )

acA  fst|fi=flp,<Br(t.9)
The candidate optimal policy 7 is then defined as 77 = Uniform (%", - - - , #9°*). The main result
in this section is the following Theorem.
Theorem 4.4. Let ¢ > 0. There exists a universal constant ¢ > 0 such that if
max?(B, B, 1)deuger (F, B/T) log (|F|T/5)
22

T>c &)

then with probability at least 1 — § the eluder planning algorithm’s policy 7T is e—optimal .

Remark 4.5. The results of this section hold for the structured bandits setting [23\ 27]; that is,
scenarios where X = {J}.

Both sides of the inequality defining 7" in Theoremd.4/depend on T'. Provided deiuder (F, B/T) is sub-
linear as a function of 7', there exists a finite value of T satisfying Equation [5} When dejuder (F, ) =

deluder 10g (1/€) for some dejuder and for all £ > 0 setting T’ > cmaxz(B’B’l)de‘“de;(f’Bs) log(|71/29)

£
is enough to guarantee the conditions of Theorem 4.4 are satisfied. Examples 4 and 5 from [42] show
the eluder dimension of linear or generalized linear function classes can be written in such way. In
these cases dejuder 15 @ constant multiple of the underlying dimension of the space.

Using standard techniques, the results of Theorem[4.4]can be adapted to the case when the function
class F is infinite but admits a metrization and has a covering number. In this case the sample
complexity will scale not with log(|F|) but instead with the logarithm of the covering number of F.
For example, in the case of linear functions, the logarithm of the covering number of F under the
£5 norm will scale as d, the ambient dimension of the space up to logarithmic factors of T" (see for
example Lemma D.1 of [14])). Plugging this into the sample guarantees of Theorem 4.4 recovers the

9, (d2 / 52) sample complexity for linear experiment planning from [53].

4.1 Proof Sketch of Theorem[4.4]

Let 21, -- , 27 be the sampler’s context sequence. The proof works by showing that with probability
at least 1 — & the regret of the {7?**(-)}Z_, sequence satisfies the regret bound

T
D max f, (T, a) — fu(T, FPUT)) <O ((B + B)\/detder(F, B/T)T log(|F IT/5))

A key part of the proof involves relating the balls defined by the data norms of the planner datasets

{D;}L_, and those induced by the data norms of the sampler datasets {D;}7_,. The precise statement
of this relationship is provided in Lemma[4.6] and its proof can be found in Appendix [C]

Lemma 4.6. With probability at least 1 — %,
{(f 1) st | f = Fllp, < 287(t0)} S {(f, ) st |f = f'llp, <4BF(t,0)} (©)

Simultaneously for all t € [T). Where {D;}]_, is the dataset sequence resulting of the execution of

EluderPlanner while {Et}le is the dataset sequence resulting of the execution of the Sampler and
Bx(0,t) is the confidence radius function defined in Equation



Let f, as in Equation E and define £ as the event where the Standard Least Squares results (see
Lemma holdice. | ft — ful 5, < Br(t,0) forall t € [T] and also Equationl%from Lemma W
holds for all ¢ € [T]. The results of Lemmasandﬁimply PE) =13

For context x and action a let’s denote by f as a function achlevmg the inner maximum in the
definition of 7;P" (see Equatlon' When & holds the policies {7;P"}]_, are optimistic in the sense

t
that f,” e (x,frfpt(x)) > MaXgeA f*(x a) and therefore,

—~

T

~ ~0 i) z, 7P (x ~ 0 ~ ~O ~
3. max f, (3, a) — fu(@, 7P (@ <Zf O3y, 7PN — fulFe 7 (E)
panr} aceA

(i) L o " —opbse
< max _ f(Ze, 7P (&) — (@0 7 (30))
= 1ff'E]Bt(2 D)

le

< fo/max F@ AP (2) = /(@0 7 (@) = (),

€B:(4,Dy)

Where B:(v, D) = {f, f' € Fst. |f — f'|p < vB8x(5,t)}. Inequality () follows by optimism, (7)
is a consequence of f?’ﬂfl @) f, € B;(2, D;) when & holds since in this case | f; — fel, < BF(t,0)

and Hftxir;’v (x) —J?tHf)t < B£(t,6), and (iii) follows because when & holds, Equation@ofLemmaléE
is satisfied and thérefore IB%t(QJD D,) = By(4,D;). The RHS () of thelequation above satisfies,
(*) = Z w(it, ﬁ'?p (.i‘t), Dt) < Izrzlea_f\{w(i‘t’ a, Dt) = Z w(jt, Wt(i't), Dt)
t=1 =1 =1
We relate the sum of uncertainty radii {w(%, 7 (%), Dy)}7_,; with those of the planner
{w(ws, ¢ (2¢), Dy)}E_, via Hoeffding Inequality (see Lemma|A.1) and conclude that w.h.p,
T T
2 max Jo(@e, a) = fu(@, ~?p (@) < Z w(@e, me(zt), D) + O (BV T'log (1/5)) :
t=1 t=1
Lemma[.3]allows us to bound the sum of these uncertainty radii as
T
> wwe mi(w0), D) < O (min (BT, Bdawaer (F, B/T) + 85 (T, 6)\/detuaes (F, B/T)T) )
t=1
and therefore w.h.p,

>’ max fu(ie, @)~ o (50,7 (0)) < O (min (BT, Bdetaaer (F, B/T) + B (T, )/ derwaer(F, B/T)T) ) .

Converting this cumulative regret bound into a simple regret one (Lemma [B.T)) finalizes the result. A
detailed version of the proof can be found in Appendix[C.T.

5 Uniform Sampling Strategies

In this section we show that a uniform sampling strategy can produce an ¢ optimal policy with
(max2(B7B)IAI log(lf\/85))
£2

probability at least 1 — § after collecting O samples. This procedure

achieves the same simple regret rate as converting SquareCB ’s cumulative regret into simple regreﬂ
In contrast with the eluder planning algorithm the uniform sampling strategy does not require a
planning phase. Instead it consists of running of the Sampler (Algorithm setting 7; = Uniform(.A)

for all j € [T]. Given a dataset Dy of contexts, actions and rewards collected during the sampling
phase, we solve the least squares problem:

fr = argmin Z (f(xi,a;) —14)°
feF ~
(mi,ai,ri)eDT

and define the policy 77 as 7r(x) = arg max,e 4 fr(z, a). The main result of this section is,

“The regret bound of the SquareCB algorithm scales as O (\/|A\ log(}')Tlog(T/é)).



~max2(B B)\.A\ log(|.F|/€d)

Theorem 5.1. There exists a universal constant ¢ > 0 such that if T > then

with probability at least 1 — § the uniform planning algorithm’s policy Ty is e— opnmal

The proof of Theorem [5.1|can be found in Appendix D.

Comparison Between OptLS and SquareCB . The regret rate after 7" steps of the OptLS algo-
rithm applied to a contextual bandit problem with discrete function class F scale (up to logarithmic

factors) as O (\/ detuder (F, B/T) log(|.F|/0)T ) In contrast, the regret of the SquareCB algorithm

satisfies a regret guarantee (up to logarithmic factors) of order O ( | Al log(|.F|/ 6)T) where the

eluder dimension dependence is substituted by a polynomial dependence on the number of actions
| A|. When the number of actions is small, or even constant, the regret rate of SquareCB can be
much smaller than that of OptLS . The opposite is true when the number of actions is large or
even infinite. Converting these cumulative regret bounds to simple regret implies the number of

samples required to produce an e—optimal policy from the adaptive OptLS policy sequence scales as
detuder (F, B/T) log (| F]/9) LAl 10g(|F|/5)

whereas for the adaptive SquareCB policy sequence it scales as
The results of Theorems [4.4]and [5.|recover these rates in the experiment planning setting.

6 Gap Between Experiment Planning and Adaptive Learning

The results of Sections [ and [5/imply planning bounds that are comparable to the corresponding
online-to-batch guarantees for OptLS [42] and SquareCB [17]. The main result of this section
Theorem[6.1 shows there are problems where the number of samples required for experiment planning
can be substantially larger than the number of samples required of an adaptive learning algorithm.
This result implies the suboptimality of algorithms such as SquareCB and OptLS for adaptive
learning.

In order to state our results we consider an action set Ay, indexed by the nodes
of a height L binary tree defined here as having L levels and 2° — 1 nodes.
We call a;; the i-th action of the [-th level of
the tree. For an example see Figure[T. Let ¢ >
0. We define a function class Fi,ee indexed by
paths from the root node to a leaf. For any such

path p = {a1,1,a2,,, - ,ar,, } the function

f®) equals,
/ \ / \ 1 ifa = QL.

fPa)=431-2 ifaep\fari,}
1—-12¢ o.w.
Figure 1: Binary Tree

The following result fleshes out a separation

between planning and adaptive learning with
action set Ay, and function class Fi,e in the setting where at time 7 the learner will produce a
guess for the optimal policy 7.

Theorem 6.1. Let ¢ > 0, T' € N. Consider the action set Ay, and function class Fiyee and a reward
noise process such that & ~ N(0, 1) conditionally for all t € [T). For any planning algorithm Alg

there is a function f, € Firee such that when T’ < 9L — and Alg interacts with f,. then,
Eatg . [Bavry [f2(0)]] < max fufo) —<.

Moreover, there is an adaptive algorithm Alg, ., ive Such that if T' > %(2%/6),

Bl [ansr [F(@]] > max f(a) —e.

tree

forall f € Firee. Where E e f [-] is the expectation over the randomness of Alg and the environment

for target function f, and Tt is the algorithm’s final policy guess after the sampling phase.

>We obviate the T’ dependence on deiyder for readability.



The main insight behind Theorem|[6.1]is that adaptive strategies to find an optimal action in the Fiyce
function class can make use of the conditional structure of the action space by trying to determine
a path of actions from the root to the leaf containing the optimal action. An adaptive strategy can
determine this path by querying only nodes that are adjacent to it. In contrast, a static experiment
planning strategy cannot leverage this structure and has to query all leaf nodes. Theorem[6.T implies a
gap between the adaptive and experiment planning problems. Moreover, since the eluder dimension of
Fireo Scales with 27 (see Lemma[li), OptLS and SquareCB are suboptimal adae algorithms for
6

this model class. In contrast with the O (%W) upper bound in Theorem , converting the

cummulative regret bounds of OptLS and SquareCB yield guarantees scaling as O (%)

7 Model Selection

In this section we consider a setting where the learner has access to F7, - - - , Fjs function (model)
classes all with domain X' x A. The learner is promised there exists an index i, such that f, € F;

The value of index i, is not known by the learner. We will show the uniform sampling strategy has a
sample complexity that scales logarithmically with the number of models and with the complexity
of the optimal model class |F;, |. In this setting the Sampler will collect two uniform actions

(ﬁ%Train) 7 ﬁ%Tcst) )

datasets of size T'/2 each. Using the “train" dataset 5(Tﬂain) the learner computes

candidate reward models fj(f) for all ¢ € [M] by solving the least squares problems:
fi) =argmin ) (f(aiai) —15)°.
feF;

~ (Train
(i,a5,r;)eDT

Using the “test" dataset the learner extracts a guess for the optimal model class index i by solving,

i — arg min 3 (}“(x@,ag) _ W)Q. %)

e[ M ~ (Tes
e[l (we,ap,me)eDS

The candidate policy 7y is defined as () = argmax,e 4 f;l) (x,a). Let’s start by relating the
expected least squares loss of the candidate model f}l) to the size of the optimal model class | F;, |,
Proposition 7.1. There exists a universal constant ¢ > 0 such that,

j 2 cmax?(B, B)log(T max(M, | F;,|)/é
IEr~73,a~Uniform(.A) [(f*(x,a) - f’.\(TD(mva')) ] < - ( ) g( ( | |)/ )

T
With probability at lest 1 — 6.

The proof of Proposition[7.1]can be found in Appendix [E.I} The uniform sampling model-selection
algorithm has the following performance guarantees,

_,max”(B,B)|A| log(w)

Theorem 7.2. There exists a universal constant ¢ > 0 s.t. if T = ¢
then with probability at least 1 — §, the candidate policy Tt of the uniform sampling model selection
algorithm is e—optimal.

Proof. Due to the realizability assumption (r; = f.(x¢,a;) + &) the instantaneous regret of 77 on
context x € X equals max, fi(x,a) — fo(z, 77 (z)). Let mi(x) = arg maX,e 4 | fe(x,a). Just like in
the proof of TheoremE (see Equation 25, we can relate the suboptimality of 7 with the expected

least squares loss of fT under the uniform policy,

. 2
o [ f(0.0) = £ (o) | < 2\/ ABpanttomic | (£ = B @) |
(8)

Finally Proposition [7.T]implies thre is a universal constant ¢ > 0 such that,

By~ P a~Uniform(A) [(f*(:v,a) - fg) (f,a))z] < c(B? + B?) log(TTmax(M, |Fi.1)/6)




with probability at least 1 — §. Plugging this result back into Equation [8| we see the suboptimality of
7 can be upper bounded as,

R2 2 x )
Eop [n} fulw,a) - f*u,mx»] < 2\/ olA|(B* + B >log<TTma (M, |F..))/9)

Setting g(T) = ASAIB®+57) 10g($ max(M. 75, D/0) 3y Lemma implies there exists a universal

_ _ max?(B,B)|A| log 7maij‘fi*l)
constant & > 0 such that g(T') < 2 forall T > & ( )

O

2

The results of Theorem[7.2 can be best understood by contrasting them to the uniform sampling algo-
rithm with input model class equal to the union of the function classes Fay = UjeranFi- Applying
the results of Theorem Mto Fan yields a sample complexity scaling with max;e[a) log(]Fi), a
quantity that could be much larger than log(|F;, |). In contrast, the uniform sampling model-selection
algorithm achieves a sample complexity scaling with log(|.F;, |) at a price logarithmic in the number of
models classes M. This logarithmic dependence on M stands apart from model selection algorithms
for cumulative regret scenarios such as Corral [5,139], ECE [30] and RegretBalancing [38}12] that
instead have a polynomial dependence on M. The uniform sampling model-selection algorithm is ag-
nostic to the value of €. The results of Theorem[7.2/hold for any . If ¢ is known in advance the learner

~ 2 B _
can compute the model class index i = argmin {z €[M]st. T > ™= (B’B)lél log(l}-"‘/sa)} and

use the uniform sampling strategy for F;. For this choice of €, Theorem |5.1| guarantees similar
bounds to those of Theorem[7.2. Unfortunately in contrast with the uniform sampling model-selection
algorithm this method would be valid for a single choice of .

8 Conclusion

In this work we have introduced the first set of algorithms for the experiment planning problem for
contextual bandits with general function approximation. We have developed the EluderPlanning
algorithm that produces a static policy sequence that after deployment can be used to recover an
e—optimal policy. We showed it is enough for the number of static policies and therefore samples
during the sampling phase to be as large as the number of samples required from an adaptive procedure
based on an online-to-batch conversion of the OptLS algorithm. Similarly we also demonstrated
the uniform sampling strategy enjoys the same online-to-batch conversion sample complexity as
the SquareCB algorithm. These results seemingly suggest that simple regret rates for adaptive
learning may also be achieved in experiment planning scenarios. We show this is not the case. There
exist structured bandit problems for which adaptive learning may require a number of samples that
is substantially smaller than the number of samples required by a static policy sequence. This is
significant because it implies the suboptimality of the rates achieved by existing adaptive learning
algorithms such as OptLS and SquareCB and also because it draws a clear distinction between
adaptive learning and experiment planning. This implies these algorithms are either suboptimal
or their upper bound analysis is not tight. We believe the first to be correct. This is an important
open question we hope to see addressed in future research. We have also introduced the first model
selection results for the experiment planning problem.

Many important questions remain regarding this setting. Chief among them is to characterize
the true statistical complexity of experimental design for contextual bandits with general function
approximations. Our results indicate the eluder dimension is not the sharpest statistical complexity
measure to characterize learning here. Developing a more new form of complexity, as well as
an accompanying algorithm that can achieve the true statistical lower bound for the problem of
experiment planning remains an exciting and important open question to tackle in future research.

10



Acknowledgments and Disclosure of Funding

We thank Akshay Krishnamurthy for helpful discussions. Aldo Pacchiano would like to thank the
support of the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard. This work
was supported in part by funding from the Eric and Wendy Schmidt Center at the Broad Institute of
MIT and Harvard. This work was supported in part by NSF grant #2112926.

References

[1] Y. Abbasi-Yadkori, D. Pdl, and C. Szepesvari. Improved algorithms for linear stochastic bandits.
Advances in neural information processing systems, 24:2312-2320, 2011.

[2] A. Agarwal, M. Dudik, S. Kale, J. Langford, and R. Schapire. Contextual bandit learning with
predictable rewards. In Artificial Intelligence and Statistics, pages 19-26. PMLR, 2012.

[3] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the monster: A fast
and simple algorithm for contextual bandits. In International Conference on Machine Learning,
pages 1638-1646. PMLR, 2014.

[4] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee, J. Li, D. Melamed,
G. Oshri, O. Ribas, et al. Making contextual decisions with low technical debt. arXiv preprint
arXiv:1606.03966, 2016.

[5] A. Agarwal, H. Luo, B. Neyshabur, and R. E. Schapire. Corralling a band of bandit algorithms.
In Conference on Learning Theory, pages 12-38. PMLR, 2017.

[6] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International conference on machine learning, pages 127-135. PMLR, 2013.

[7] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. Schapire. Contextual bandit algorithms
with supervised learning guarantees. In Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 19—26. JMLR Workshop and Conference
Proceedings, 2011.

[8] C.1J.Bryan, E. Tipton, and D. S. Yeager. Behavioural science is unlikely to change the world
without a heterogeneity revolution. Nature human behaviour, 5(8):980-989, 2021.

[9] J. Chan, A. Pacchiano, N. Tripuraneni, Y. S. Song, P. Bartlett, and M. 1. Jordan. Parallelizing
contextual bandits. arXiv preprint arXiv:2105.10590, 2021.

[10] J. Chen, A. Modi, A. Krishnamurthy, N. Jiang, and A. Agarwal. On the statistical efficiency of
reward-free exploration in non-linear rl. Advances in Neural Information Processing Systems,
35:20960-20973, 2022.

[11] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 208-214, 2011.

[12] A. Cutkosky, C. Dann, A. Das, C. Gentile, A. Pacchiano, and M. Purohit. Dynamic balancing
for model selection in bandits and rl. In International Conference on Machine Learning, pages
2276-2285. PMLR, 2021.

[13] R. Degenne, P. Ménard, X. Shang, and M. Valko. Gamification of pure exploration for linear
bandits. In International Conference on Machine Learning, pages 2432-2442. PMLR, 2020.

[14] S.S.Du, S. M. Kakade, J. D. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear classes:
A structural framework for provable generalization in rl. arXiv preprint arXiv:2103.10897,
2021.

[15] H. Esfandiari, A. Karbasi, A. Mehrabian, and V. Mirrokni. Regret bounds for batched bandits.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 73407348,
2021.

11



[16] T. Fiez, L. Jain, K. G. Jamieson, and L. Ratliff. Sequential experimental design for transductive
linear bandits. Advances in neural information processing systems, 32, 2019.

[17] D. Foster and A. Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with regression
oracles. In International Conference on Machine Learning, pages 3199-3210. PMLR, 2020.

[18] D. Foster, A. Agarwal, M. Dudik, H. Luo, and R. Schapire. Practical contextual bandits with
regression oracles. In International Conference on Machine Learning, pages 1539-1548. PMLR,
2018.

[19] D. A. Freedman. On tail probabilities for martingales. the Annals of Probability, pages 100-118,
1975.

[20] Y. Jedra and A. Proutiere. Optimal best-arm identification in linear bandits. Advances in Neural
Information Processing Systems, 33:10007-10017, 2020.

[21] C.Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu. Reward-free exploration for reinforcement
learning. In International Conference on Machine Learning, pages 4870-4879. PMLR, 2020.

[22] C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of 1l problems,
and sample-efficient algorithms. Advances in neural information processing systems, 34:
13406-13418, 2021.

[23] K.-S.Jun and C. Zhang. Crush optimism with pessimism: Structured bandits beyond asymptotic
optimality. Advances in Neural Information Processing Systems, 33:6366—-6376, 2020.

[24] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363-366, 1960.

[25] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

[26] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits.
Advances in neural information processing systems, 20(1):96-1, 2007.

[27] T. Lattimore and R. Munos. Bounded regret for finite-armed structured bandits. Advances in
Neural Information Processing Systems, 27, 2014.

[28] T. Lattimore and C. Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

[29] T. Lattimore, C. Szepesvari, and G. Weisz. Learning with good feature representations in
bandits and in 1l with a generative model. In International Conference on Machine Learning,
pages 5662-5670. PMLR, 2020.

[30] J. Lee, A. Pacchiano, V. Muthukumar, W. Kong, and E. Brunskill. Online model selection for
reinforcement learning with function approximation. In International Conference on Artificial
Intelligence and Statistics, pages 3340-3348. PMLR, 2021.

[31] G.Li, P. Kamath, D. J. Foster, and N. Srebro. Understanding the eluder dimension. Advances
in Neural Information Processing Systems, 35:23737-23750, 2022.

[32] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky. Deep reinforcement learning
for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

[33] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661-670, 2010.

[34] Z.Li, L. Ratliff, K. G. Jamieson, L. Jain, et al. Instance-optimal pac algorithms for contextual
bandits. Advances in Neural Information Processing Systems, 35:37590-37603, 2022.

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

12



[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529-533, 2015.

[37] 1. Osband and B. Van Roy. Model-based reinforcement learning and the eluder dimension.
Advances in Neural Information Processing Systems, 27, 2014.

[38] A. Pacchiano, C. Dann, C. Gentile, and P. Bartlett. Regret bound balancing and elimination for
model selection in bandits and rl. arXiv preprint arXiv:2012.13045, 2020.

[39] A. Pacchiano, M. Phan, Y. Abbasi Yadkori, A. Rao, J. Zimmert, T. Lattimore, and C. Szepesvari.
Model selection in contextual stochastic bandit problems. Advances in Neural Information
Processing Systems, 33:10328—-10337, 2020.

[40] A. Pacchiano, D. Wulsin, R. A. Barton, and L. Voloch. Neural design for genetic perturbation
experiments. arXiv preprint arXiv:2207.12805, 2022.

[41] Y. Ruan,J. Yang, and Y. Zhou. Linear bandits with limited adaptivity and learning distributional
optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 74-87, 2021.

[42] D.Russo and B. Van Roy. Eluder dimension and the sample complexity of optimistic exploration.
Advances in Neural Information Processing Systems, 26, 2013.

[43] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484-489, 2016.

[44] D. Simchi-Levi and Y. Xu. Bypassing the monster: A faster and simpler optimal algorithm for
contextual bandits under realizability. Mathematics of Operations Research, 2021.

[45] M. Soare, A. Lazaric, and R. Munos. Best-arm identification in linear bandits. Advances in
Neural Information Processing Systems, 27, 2014.

[46] R.S. Sutton. Introduction: The challenge of reinforcement learning. In Reinforcement Learning,
pages 1-3. Springer, 1992.

[47] C. Tao, S. Blanco, and Y. Zhou. Best arm identification in linear bandits with linear dimension
dependency. In International Conference on Machine Learning, pages 4877-4886. PMLR,
2018.

[48] A.Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in mobile health.
Mobile Health: Sensors, Analytic Methods, and Applications, pages 495-517, 2017.

[49] R. Wan, B. Kveton, and R. Song. Safe exploration for efficient policy evaluation and comparison.
In International Conference on Machine Learning, pages 22491-22511. PMLR, 2022.

[50] R. Wang, S. S. Du, L. Yang, and R. R. Salakhutdinov. On reward-free reinforcement learning
with linear function approximation. Advances in neural information processing systems, 33:
17816-17826, 2020.

[51] L. Xu, J. Honda, and M. Sugiyama. A fully adaptive algorithm for pure exploration in linear
bandits. In International Conference on Artificial Intelligence and Statistics, pages 843—-851.
PMLR, 2018.

[52] A. Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be
exponentially harder than online rl. In International Conference on Machine Learning, pages
12287-12297. PMLR, 2021.

[53] A.Zanette, K. Dong, J. N. Lee, and E. Brunskill. Design of experiments for stochastic contextual
linear bandits. Advances in Neural Information Processing Systems, 34:22720-22731, 2021.

[54] R. Zhu and B. Kveton. Safe optimal design with applications in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pages 2436-2447. PMLR,
2022.

13



	Introduction
	Further Related Work
	Problem Definition
	Planning Under the Eluder Dimension
	Proof Sketch of Theorem 4.4

	Uniform Sampling Strategies
	Gap Between Experiment Planning and Adaptive Learning
	Model Selection
	Conclusion
	Supporting Lemmas
	Conditions for F(t, )
	Least Squares Guarantees

	Online to Batch Conversion
	Proofs of Section 4
	Proof of Theorem 4.4

	Proof of Theorem 5.1
	Proof of Theorem 6.1
	Eluder dimension of Ftree

	Model Selection
	Proof of Proposition 7.1


