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Figure 1: View-Consistent D-Normal Regularizer. Pseudo normals predicted from pretrained
monocular normal estimators tend to be inconsistent across different views (left). Our method
calculates a confidence map indicating the confidence of the pseudo normals (middle). The confidence
is used to weigh the loss imposed on our proposed D-Normals. Our method achieves new state-of-
the-art surface reconstruction results and rendering quality comparable with prior work.

Abstract

Although 3D Gaussian Splatting has been widely studied because of its realistic
and efficient novel-view synthesis, it is still challenging to extract a high-quality
surface from the point-based representation. Previous works improve the surface by
incorporating geometric priors from the off-the-shelf normal estimator. However,
there are two main limitations: 1) Supervising normals rendered from 3D Gaussians
effectively updates the rotation parameter but is less effective for other geometric
parameters; 2) The inconsistency of predicted normal maps across multiple views
may lead to severe reconstruction artifacts. In this paper, we propose a Depth-
Normal regularizer that directly couples normal with other geometric parameters,
leading to full updates of the geometric parameters from normal regularization. We
further propose a confidence term to mitigate inconsistencies of normal predictions
across multiple views. Moreover, we also introduce a densification and splitting
strategy to regularize the size and distribution of 3D Gaussians for more accurate
surface modeling. Compared with Gaussian-based baselines, experiments show
that our approach obtains better reconstruction quality and maintains competitive
appearance quality at faster training speed and 100+ FPS rendering.
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1 Introduction
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Figure 2: Illustration of rendered normal supervision and the D-Normal regularizer. (a) As
a result of the back-propagation through alpha-blending via Eq. 1, rendered normal supervision
Ln moves Gaussians closer to (P1) or away from (P2) the intersecting ray. When the normal of a
Gaussian is closer to the GT surface normal, the supervision pushes this Gaussian (P1) towards the ray
to increase its weight in the rendering equation, and vice-versa (P2). (b) Such movement of Gaussians
stops when the rendered normal loss Ln is equal to zero. In either case ((a) or (b)), the rendered
normal loss cannot move Gaussian towards the surface. In contrast, (c) the D-Normal regularizer Ldn
can move Gaussians towards or away from GT surface. P1 and P2 are the 3D positions corresponding
to the mean depth of two neighboring pixels (rays) via Eq. 10. The D-Normal N̄d is derived from P1

and P2 in Eq. 11. Ldn encourages N̄d to align with the ground truth normal N, resulting in Gaussians
moving towards or away from the surface.

Multi-view stereo (MVS) is a long-standing problem that aims to create 3D surfaces of an object or
scene captured from multiple viewpoints [9; 5; 25; 41]. This technique has applications in robotics,
graphics, virtual reality, etc. Recently, rendering methods [49; 59; 26; 16] have enhanced the quality
of reconstructions. These approaches which are often based on implicit neural representations require
extensive training time. For instance, Neuralangelo [26] uses hash encoding [33] for creating high-
fidelity surfaces but requires 128 GPU hours for a single scene. On the other hand, the novel 3D
Gaussian Spatting method [22] employs 3D Gaussians to render complex scenes photorealistically
in real-time, offering a more efficient alternative. Consequently, many recent works attempted the
utilization of Gaussian Splatting for surface reconstruction [8; 15; 45; 19]. Although they achieve
success in object-level reconstruction, it is still challenging to extract a high-quality surface for large
scenes. Previous works [59] improve the surface for scene-level reconstruction by incorporating
geometric priors from the off-the-shelf normal estimator. However, there are two main limitations
for Gaussian-based reconstruction: 1) Supervising normals rendered from 3D Gaussians effectively
updates the rotation parameter but is less effective for other geometric parameters; 2) The predicted
normal maps are inconsistent across multiple views, which may lead to severe reconstruction artifacts.

In this paper, we introduce a novel view-consistent Depth-Normal (D-Normal) regularizer to alleviate
the above-mentioned limitations. As illustrated in Fig. 2, we notice that the supervision of the
Gaussian normals can effectively update its rotations but is less effective for affecting its positions.
Consequently, the supervision of Gaussian normals is not as effective as NeuS-based methods [49; 59;
26] whose normal is the gradient of the signed distance function (SDF) that is directly related to the
position in 3D space. To solve this issue, we are inspired by the depth and normal estimation [1; 56]
to introduce a D-Normal formulation, where the normal is derived from the gradient of rendered
depth instead of directly blended from 3D Gaussians. Unlike existing works that obtain depth from
the center position of 3D Gaussians, we compute the depth as the intersection of the ray and the
compressed Gaussians. Specifically, we first make the Gaussians suitable for 3D reconstruction by
applying a scale regularization similar to NeuSG [8] to compress the 3D Gaussian ellipsoids into a
plane. Subsequently, the computation of the depth can be simplified to the intersection between a ray
and a plane. As a result, our novel parametrization of the depth allows effective full supervision of
the Gaussian geometric parameters by any data-driven monocular normal estimator.

To mitigate the inconsistent normal predictions across views, we further propose an uncertainty-
aware normal regularizer as shown in Fig. 1. Particularly, we introduce a confidence term for
each normal prediction. A high confidence means low uncertainty leading to enhancement of
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the normal regularization, and vice-versa. Typically, the predicted normal maps from different
views are combined to assess the uncertainty of a specific view. However, it is challenging to find
correspondence across different views. We circumvent this issue by using the rendered normal
learned from multi-view normal priors since we notice that it represents an average of normal priors
across views. Furthermore, the confidence term is computed as the cosine distance between the
rendered and predicted normals. Although the normal supervision has made the normals more
accurate, there is still a minor error leading to depth error arising from the remnant large Gaussians.
We thus devise a new densification that splits large Gaussians into smaller ones to represent the
surface better. Finally, we incorporate a new splitting strategy to alleviate the surface bumps caused
by densification. Experiments show that our approach outperforms Gaussian-based baselines in terms
of both reconstruction quality and rendering speed.

Our main contributions are summarized below:

• We formulate a novel multi-view D-Normal regularizer that enables full optimization of the
Gaussian geometric parameters to achieve better surface reconstruction.

• We further design a confidence term to weigh our D-Normal regularizer to mitigate inconsis-
tencies of normal predictions across multiple views.

• We introduce a new densification and splitting strategy to alleviate depth error towards more
accurate surface modeling.

• Our method outperforms prior work in terms of reconstruction accuracy and running effi-
ciency on the benchmarking Tank and Temples, Replica, MipNeRF360, and DTU datasets.

2 Related Work

Novel View Synthesis. The pursuit of novel view synthesis began with Soft3D [34], which integrated
deep learning and volumetric ray-marching to form a continuous, differentiable density field for
geometry representation [18; 42]. While effective, this approach was computationally expensive.
Neural Radiance Fields (NeRF) [32] improved render quality with importance sampling and positional
encoding, but the deep neural networks slowed down processing. Subsequent methods aimed to
optimize both quality and speed. Techniques like position encoding and band-limited coordinate
networks are combined with neural radiance fields for pre-filtered scene representation [2; 3; 28].
Innovations to speed up rendering included leveraging spatial data structures and adjusting MLP
size [6; 11; 14; 17; 35; 44]. Notable examples are InstantNGP [33], which uses a hash grid and
a reduced MLP for faster computation, and Plenoxels [11], which employs a sparse voxel grid to
eliminate neural networks entirely. Both use Spherical Harmonics to enhance rendering. Despite these
advancements, challenges remain in representing empty space and maintaining image quality with
structured grids and extensive sampling. Recently, 3D Gaussian Splatting (3DGS) [22] has addressed
these issues with unstructured and GPU-optimized splatting, achieving faster and higher-quality
rendering without neural components. In this work, we utilize the advantage of Gaussian Splatting to
perform surface reconstruction and incorporate normal priors to guide the reconstruction, especially
for large indoor and outdoor scenes.

Multi-View Surface Reconstruction. Surface reconstruction is key in 3D vision. Traditional
MVS methods [4; 9; 5; 25; 38; 41; 40] use feature matching for depth [4; 38] or voxel-based
shapes [9; 5; 25; 41; 46]. Depth-based methods combine depth maps into point clouds, while
volumetric methods estimate occupancy and color in voxel grids [9; 5; 29]. However, the finite
resolution of voxel grids limits precision. Learning-based MVS modifies traditional steps such as
feature matching [31; 48; 60], depth integration [37], or depth inference from images [20; 51; 61; 52;
58]. Further advancements [49; 53] integrated implicit surfaces with volume rendering, achieving
detailed surface reconstructions from RGB images. These methods have been extended to large-
scale reconstructions via additional regularization [59; 26]. Despite these impressive developments,
efficient large-scale scene reconstruction remains a challenge. For example, Neuralangelo [26]
requires 128 GPU hours for reconstructing a single scene from the Tanks and Temples Dataset [24].
To accelerate the reconstruction process, some works [15; 19] introduce the 3D Gaussian splitting
technique. However, these works still fail in large-scale reconstructions. In this work, we focus on
introducing normal regularization for large-scale reconstructions.
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Figure 3: Overview of our VCR-GauS. During densification and splitting, our method only keeps
the Gaussians at the first intersections and splits large Gaussians into smaller ones along the major
principle axis. The rendered normals are supervised with pseudo normals predicted from a pretrained
monocular normal estimator in Ln. We further calculate an uncertainty map based on the discrepancies
between the rendered and pseudo normals (cf. Eq. 13) to weigh the loss Ldn between pseudo normals
and D-Normals derived from the rendered depth maps. We compare different approaches for normal
calculation (Top Right) and show our intersection depth (Bottom Right).

3D Gaussian Splatting. Since 3DGS [22] was introduced, it has been rapidly extended to surface
reconstruction. We highlight the distinctions between our method and concurrent works SuGaR [15],
2DGS [19], NeuSG [8], and DN-Splatter [47]. In contrast to SuGaR and 2DGS with unsatisfactory
performance on large-scale scenes, our method focuses on introducing normal regularization to
improve large-scale reconstructions. 2DGS obtaining 2D Gaussian primitives by setting the last entry
of scaling factors to zero which is hard to optimize by original Gaussian Splatting technique as noted
in [65; 19], while our method utilizes scale regularization to flatten 3D Gaussians which are easier
to optimize. NeuSG utilizes both 3D Gaussian splitting and neural implicit rendering jointly and
extracts the surface from an SDF network, while our approach is faster and conceptually simpler
by leveraging only Gaussian splatting for surface approximation. Although normal prior is also
used for indoor scenes, DN-Splatter may show severe reconstruction artifacts due to their normal
supervision can only update the rotation parameters and normal maps inconsistencies across multiple
views. Moreover, we do not use the ground truth depth for supervision utilized by DN-Splatter. In
comparison, our work is designed to solve both limitations.

3 Our Method

Our proposed view-consistent D-Normal regularizer efficiently reconstructs complete and detailed
surfaces of scenes from multi-view images. Sec. 3.1 provides an overview of 3D Gaussian Splat-
ting [22]. Our normal and depth formulation of 3D Gaussians is detailed in Sec. 3.2. Sec. 3.3
introduces our proposed regularizations. The densification and splitting of the Gaussian is described
in Sec. 3.4. Fig. 3 depicts our whole framework.

3.1 Preliminaries: 3D Gaussian Splatting

3D Gaussian Splatting [22] is an explicit 3D scene representation with 3D Gaussians. Each Gaussian
is defined by a covariance matrix Σ and a center point p ∈ R3 which is the mean of the Gaussian.
The 3D Gaussian distribution can be represented as:

G(x) = exp {−1

2
(x− p)⊤Σ−1(x− p)}. (1)

To maintain positive semi-definiteness during optimization, the covariance matrix Σ is expressed as
the product of a scaling matrix S and a rotation matrix R:

Σ = RSS⊤R⊤, (2)
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where S is a diagonal matrix, stored by a scaling factor s ∈ R3, and the rotation matrix R is
represented by a quaternion r ∈ R4.

For novel view rendering, the splatting technique [55] is applied to the Gaussians on the camera
planes. Using the viewing transform matrix W and the Jacobian of the affine approximation of the
projective transformation J [64], the transformed covariance matrix Σ′ can be determined as:

Σ′ = JWΣW⊤J⊤. (3)

A 3D Gaussian is defined by its position p, quaternion r, scaling factor s, opacity o ∈ R, and color
represented with spherical harmonics coefficients H ∈ Rk. For a given pixel, the combined color and
opacity from multiple Gaussians are weighted by Eq. 1. The color blending for overlapping points is:

Ĉ =
∑
i∈M

ciαi

i−1∏
j=1

(1− αj), (4)

where ci and αi = oiG(xi) denote the color and density of a point, respectively.

3.2 Geometric Properties

To reconstruct the 3D surface, we introduce two geometric properties: normal and depth of a Gaussian,
which are used to render the corresponding normal map and depth map for regularization.

Normal Vector. Following NeuSG [8], the normal of the Gaussian can be represented as the direction
of the minimized scaling factor. The normal in the world coordinate system is defined as:

n = R[k, :] ∈ R3, k = argmin ([s1, s2, s3]) , (5)

The normal n and position p are transformed into the camera coordination system with the camera
extrinsic matrix, which we subsequently take as the default unless otherwise stated.

Intersection Depth. The existing work [45] obtains the depth from the center position p =
(px, py, pz) of each Gaussian in the camera coordinate system. However, this formulation is in-
accurate and results in the depth from each Gaussian center being unrelated to its normal n during
optimization. A more reasonable depth calculation is to compute the depth of the intersection between
the Gaussian and the ray emitted from the camera center. To simplify the computation of intersection
and represent the surface, we incorporate a scale regularization loss Lscale from NeuSG [8] to squeeze
the 3D Gaussian ellipsoids into highly flat shapes. This loss constrains the minimum component of
the scaling factor s = (s1, s2, s3)

⊤ ∈ R3 for each Gaussian towards zero:

Ls = ∥min(s1, s2, s3)∥1. (6)

This process effectively flattens the 3D Gaussian towards a planar shape which we represent by (p,n).
As a result, any point op on the plane follows the incidence equation given by: n · (op − p) = 0. We
further denote any point ol on a ray that passes through the origin in 3D space as ol = rt, where
t ∈ R is the distance from the point to the origin along the ray. We set ol = op at the intersection of
the ray with the plane, which we can then solve for the depth of the intersection along the z-axis as:

d(n,p) = rz ∗ (n · p)/(n · r), (7)

where rz is the z-value of the ray direction r. From the equation, we can see the intersection depth is
related to both the position p and the normal n of the Gaussian. This not only offers more accurate
depth calculation but also enables the D-Normal regularization to backpropagate its loss to all different
Gaussian parameters.

3.3 View-Consistent D-Normal Regularization

We first introduce our D-Normal formulation to allow the full optimization of the Gaussian geometric
parameters. We further propose a confidence term to relieve the constraint from uncertain predictions
and strengthen it from certain ones to avoid the wrong guidance from the inconsistent normal priors
from a pretrained monocular model across multiple views.

D-Normal Regularizer. To improve the reconstruction quality, we utilize a normal prior N predicted
from a pretrained monocular deep neural network [1] to supervise the rendered normal map N̂ with
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L1 and cosine losses:

Ln = ∥N̂−N∥1 + (1− N̂ ·N), (8)

where N̂ =
∑
i∈M

niαi

i−1∏
j=1

(1− αj)/
∑
i∈M

αi

i−1∏
j=1

(1− αj). (9)

However, normal regularization alone is insufficient for surface reconstruction as compared with
NeuS-based methods. There are two main reasons for this: 1) Updating the position of a Gaussian
using G(x) only moves it closer to or farther from the intersecting ray, as shown in Fig. 2 (a) (the
mathematical proof is provided in A.2 of the supplemental material); 2) NeuS-based methods calculate
normals as gradients of the SDF function from the input position p and therefore normal regularization
effectively influences position updates. However, since the normal is only related to the rotation of the
Gaussian in 3DGS, supervising the rendered normals does not efficiently update positions as shown
in Fig. 3. To solve this problem and inspired by normal and depth estimation [1; 56], we propose a
new depth-normal formulation. First, we render the depth map by weighted summing the depths:

D̂ =
∑
i∈M

diαi

i−1∏
j=1

(1− αj)/
∑
i∈M

αi

i−1∏
j=1

(1− αj), (10)

where di is the intersection depth from Eq. 7. Subsequently, we convert the rendered depth D̂ to
a D-Normal N̄d and use the predicted normal N by a pretrained model to supervise the depth via
the D-Normal N̄d. In particular, the D-Normal is computed by back-projecting the depth map into
point clouds {dk(n,p)} with the camera intrinsic matrix. The D-Normal N̄d is then computed by the
cross-product with the horizontal and vertical finite differences from the neighboring points:

N̄d(n,p) =
∇vd(n,p)×∇hd(n,p)
|∇vd(n,p)×∇hd(n,p)|

. (11)

From this equation, we can see the D-Normal is a function of both the normal n and the position p of
Gaussians. This allows the regularization on the D-Normal to optimize both normal n and position p.
The D-Normal regularization is formulated as:

Ldn = ∥N̄d − N∥1 + (1− N̄d · N). (12)

Confidence. Although the D-Normal regularizer resolves the issue with the Gaussian position in the
supervision of its normal, the normal maps predicted by a pretrained model are not always accurate.
This is especially problematic when inconsistencies arise across multiple views. We thus introduce a
confidence term w to emphasize the regularization for high certainty areas while reducing on low
certainty areas. Typically, the normals from different views are combined to assess the certainty
of a specific view. However, it is challenging to find correspondence between different views. We
circumvent the challenge by using the rendered normal learned from multi-view pseudo normals,
which represents an average of the pseudo normals across the views. As a result, we can use the
rendered normal to gauge the uncertainty of the predicted normal in the current view. Specifically, the
confidence term w is computed as the cosine distance between the rendered and predicted normals,
i.e.:

w = exp{(N̂d · N − 1)/γ}, (13)
where γ is a hyper-parameter. Consequently, the view-consistent D-Normal regularizer is defined as:

Ldn = w ∗ (∥N̄d − N∥1 + (1− N̄d · N)). (14)

The overall loss function combining these elements is:

Ltotal = LRGB + λ1Ls + λ2Ln + λ3Ldn, (15)

with λ1, λ2 and λ3 balancing the individual components. LRGB includes L1 and D-SSIM losses.

3.4 Densification and Splitting

We observe that the original densification and splitting in Gaussian Splatting causes depth error as
well as surface bumps and protrusions to appear. To address this issue, we further propose a new
densification and splitting strategy as depicted in Fig. 3 (Bottom Left).
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Densification. Although normal supervision has made the normals more accurate, there is still a
minor error θ leading to depth error arising from the remnant large Gaussians since Gaussian size is
not the consideration in the original “large position gradient" selection criteria for Gaussians to be
densified. As illustrated in Fig. 4a, a very small normal error at the edges can result in a significant
depth error sin θ · r away from the center for larger Gaussians (top of figure). Comparatively, the
depth error is small for smaller Gaussians since r′ becomes relatively smaller (bottom of figure).
Consequently, we subdivide the larger Gaussians into smaller Gaussians to keep the depth error small.
To achieve this, we first randomly sample camera views from a cuboid that encompasses the entire
scene for object-centric outdoor scenes and from the training views for indoor scenes. Since we aim
to densify only the surface Gaussians, we only keep the first intersected Gaussian and discard the
rest for each ray emitted from the camera. Subsequently, we densify only those with a scale above a
threshold β among the collected Gaussians.

𝑠𝑖𝑛𝜃 ⋅ 𝑟𝜃𝑟

𝑠𝑖𝑛𝜃 ⋅ 𝑟′
𝜃
𝑟′

𝜃
𝑟′

𝜃
𝑟′

Gaussian Surface

(a) Large vs. Small Gaussians

Original Ours
Gaussian before splitting Gaussian after splitting

(b) Splitting Strategy

Figure 4: Illustration of the rationals behind the densification and splitting strategies. (a)
Comparison between large and small Gaussians of depth errors caused by a small normal error (in
side view). (b) Comparison of the original and the proposed splitting strategies (in bird-eye view).

Splitting. We notice that the Gaussians tend to protrude the ground truth surface after densification
due to the clustering of many Gaussians. As also observed in Mip-Splatting [57], Gaussians splitted
from the same parents tend to remain clustered with relatively stable positions due to the sampling
from the same Gaussian distribution. To avoid clustering, we split the old Gaussian into two new
Gaussian along the axis with the largest scale instead of using the Gaussian sampling with the position
of the Gaussian as mean and the 3D scale of the Gaussian as variance. The positions of the new
Gaussians evenly divide the maximum scale of the old Gaussian. Other parameters of new Gaussians
are obtained following the original 3DGS. This process is shown in Fig. 4b.

4 Experiments

We first evaluate our method on 3D surface reconstruction in Sec. 4.1. We also report the rendering
results in Sec. 4.1. Additionally, we validate the effectiveness of the proposed techniques in Sec. 4.2.

Table 1: Quantitative results on the Tanks and Temples Dataset [24]. Reconstructions are
evaluated with the official evaluation scripts and we report F1-score, average optimization time
and FPS. Ours outperforms all 3DGS-based surface reconstruction methods by a large margin and
performs better than neural implicit methods by a minor margin while optimizing significantly faster.

NeuS-based Gaussian-based
NeuS MonoSDF Geo-Neus SuGaR 3DGS 2DGS Ours

Barn 0.29 0.49 0.33 0.14 0.13 0.36 0.62
Caterpillar 0.29 0.31 0.26 0.16 0.08 0.23 0.26
Courthouse 0.17 0.12 0.12 0.08 0.09 0.13 0.19
Ignatius 0.83 0.78 0.72 0.33 0.04 0.44 0.61
Meetingroom 0.24 0.23 0.20 0.15 0.01 0.16 0.19
Truck 0.45 0.42 0.45 0.26 0.19 0.26 0.52

Mean 0.38 0.39 0.35 0.19 0.09 0.30 0.40
Time >24h >24h >24h >1h 14.3 m 34.2 m 53 m

FPS <10 - 159 68 145
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Figure 5: Qualitative comparison on TNT dataset. From top to bottom, we show the reconstructed
meshes from our method, SuGar, 2DGS, and NeuS, as well as the ground truth colored point cloud.
Our method reconstructs more complete surfaces featuring smoother planar regions and finer details.

Dataset. We evaluate the performance of our method on various datasets. For surface reconstruction,
we evaluate on Tanks and Temples (TNT) [24]. To further validate the effectiveness of our method,
we compare with other methods on Replica [43]. Although we focus on the large-scale reconstruction,
we also report our results on DTU [21], which can be seen in the supplementary. Furthermore, we
evaluate the rendering results on Mip-NeRF360 [3]. For all the datasets, we use COLMAP [39] to
generate a sparse point cloud for each scene as initialization.

Table 2: Quantitative results on Mip-NeRF 360 [3]. Our method achieves NVS rendering quality
and speed comparable with other Gaussian-based methods.

Outdoor Scene Indoor Scene FPS ↑PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LIPPS ↓
NeRF 21.46 0.458 0.515 26.84 0.790 0.370

<10
Deep Blending 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216
MERF 23.19 0.616 0.343 27.80 0.855 0.271
MipNeRF360 24.47 0.691 0.283 31.72 0.917 0.180
Mobile-NeRF 21.95 0.470 0.470 - - - <100BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258
3DGS 24.64 0.731 0.234 30.41 0.920 0.189 134
SuGaR 22.93 0.629 0.356 29.43 0.906 0.225 -
2DGS 24.21 0.709 0.276 30.10 0.913 0.211 27
Ours 24.31 0.707 0.280 30.53 0.921 0.184 128
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Implementation Details. Our method is built upon the open-source 3DGS code base [22] and the
intersection depth calculation is implemented with custom CUDA kernels. λ1, λ2, and λ3 are set to
1, 0.01, and 0.015, respectively. The densification threshold β is set to 0.002. The hyperparameter
γ is set to 0.005. We use pretrained DSINE [1] to predict normal maps for outdoor scenes and
pretrained GeoWizard [13] for indoor scenes. We also employ a semantic surface trimming approach
to avoid unwanted background elements like the sky in the reconstructions for outdoor scenes, which
is introduced in the supplementary material. Similar to 3DGS, we stop densification at 15k iterations
and optimize all of our model parameters for 30k iterations. For mesh extraction, we adapt truncated
signed distance fusion (TSDF) to fuse the rendered depth maps using Open3D [63].

4.1 Comparison

Table 3: Quantitative assessment on Replica
[43]. Bold indicates the best.

Method F1-score Time

Implicit NeuS 65.12
>10hMonoSDF 81.64

Explicit

3DGS 50.79

≤1hSuGar 63.20
2DGS 64.36
Ours 78.17

Surface Reconstruction. As shown in Tab. 1, our
method outperforms SDF models (i.e., NeuS [49],
MonoSDF [59], and Geo-NeuS [12]) on the TNT
dataset, and reconstructs significantly better surfaces
than explicit reconstruction methods (i.e., 3DGS [22],
SuGaR [15], and 2DGS [19]). Notably, our model
demonstrates exceptional efficiency, offering a re-
construction speed that is approximately 20 times
faster compared to NeuS-based reconstruction meth-
ods. Compared with the concurrent work 2DGS[19],
although our method is a little slower than it (about
20 minutes), it works much better (0.3 vs. 0.4). As shown in Fig. 5, our approach better recovers
planar surfaces (e.g., roof in Barn and ground in Truck) as well as finer geometry details. In addition,
2DGS renders much slower than ours (68 FPS vs. 145 FPS). On the Replica dataset shown in
Tab. 3, our method is much faster than MonoSDF (10+ hours vs. 50 minutes) although showing
comparable performance. Compared with explicit reconstruction methods, including 3DGS, SuGaR,
and 2DGS, our method achieves significantly higher F1-score for reconstruction. Although we focus
on large-scale reconstruction, we also report the results on object-level reconstruction DTU [21] (cf.
supplementary).

Novel View Synthesis. Our method can reconstruct 3D surfaces and provide high-quality novel
view synthesis. As shown in Tab. 2, we compare our novel view rendering results against baseline
approaches on the Mip-NeRF360 dataset in this section. Remarkably, our method consistently
achieves competitive novel view synthesis results compared to state-of-the-art techniques (e.g., Mip-
NeRF360, 3DGS, etc.) while providing geometrically accurate surface reconstruction. Furthermore,
our method renders a few times faster than the concurrent work 2DGS (128 FPS vs. 27 FPS). The
reason is that our method utilizes the original and efficient Gaussian Splatting technique, while 2DGS
applies a time-consuming ray-splat technique.

w/o D-Normal w/ D-Normal

Figure 6: Qualitative ablation for the D-Normal regularizer. We plot the positions of Gaussian
centers from the optimized 3D scenes. The left disables the D-Normal regularizer with only rendered
normal supervision, and the right enables both D-Normal and rendered normal supervision. Compared
to w/o D-Normal that produces many noisy Gaussians floating off the surface, our proposed D-Normal
regularizer effectively pushes the 3D Gaussians towards the surface and thus providing much cleaner
reconstruction.
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4.2 Ablation Studies

Table 4: Ablation on TNT [24]. Bold indicates best result.

Ablation Item Precision ↑ Recall ↑ F-score ↑
A. w/o D-Normal 0.27 0.34 0.30
B. w/o confidence 0.36 0.37 0.36
C. w/o intersection depth 0.35 0.37 0.35
D. w/o densify and split 0.32 0.35 0.33

E. Full 0.39 0.42 0.40

We verify the effectiveness of dif-
ferent design choices on reconstruc-
tion quality, including regularization
terms, intersection depth, and densi-
fication on the TNT dataset [24] and
report the F1-score. We first examine
the effect of our view-consistent D-
Normal regularization. Our full model
(Tab. 4 E) provides the best perfor-
mance (0.40 F1-score). The performance drops 0.10 F1-score from 0.4 to 0.3 without the D-Normal
regularizer (Tab. 4 A) while keeping rendered normal regularization. It proves that it is insufficent
to supervise only the normal maps rendered from Gaussian Splatting. The visualization in Fig. 6
demonstrates that our d-normal regularization can effectively push the 3D Gaussians towards the
surface. Furthermore, the result drops by 0.04 F1-score without the confidence (Tab. 4 B) and with
the D-Normal regularizer. It demonstrates that confidence can mitigate the problem of inconsistency
of the predicted normal maps. From Fig. 7, we can observe that disabling the confidence leads
to an unsmooth surface. Both of these validate the effectiveness of the view-consistent D-Normal
regularization. Additionally, the absence of intersection depth (Tab. 4 C) results in poor performance.
Lastly, the performance increases from 0.33 F1-score to 0.40 with our densification and split (Tab. 4
D), proving small Gaussians represent surfaces better than large Gaussians.

ConfidenceInconsistent Pseudo Normal w/ Confidence

w/o Confidence

V
ie
w
2

V
ie
w
3

V
ie
w
1

Figure 7: Qualitative ablation for the confidence. Without the confidence weight, the reconstructed
surface shows protrusions caused by the inconsistent pseudo normal maps across different views.

5 Conclusion

In this work, we have introduced a view-consistent D-Normal regularizer for efficient, high-quality,
and compact surface reconstruction. We formulate the D-Normal regularizer that directly couples
normal with the other geometric parameters. This allows for the full update of all geometric
parameters during normal regularization. We also propose a confidence term that weighs our D-
Normal regularizer to mitigate inconsistencies of normal predictions across multiple views. Finally,
we introduce a densification and splitting strategy to regularize the scales and distribution of 3D
Gaussians for more precise surface modeling. Our evaluations on diverse datasets demonstrate that
our method outperforms existing works in surface reconstruction.

Acknowledgement. This research / project is supported by the National Research Foundation (NRF)
Singapore, under its NRF-Investigatorship Programme (Award ID. NRF-NRFI09-0008).
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A Supplemental Material

A.1 Semantic Surface Trimming

w/ Semantic Trimmingw/o Semantic Trimming

Figure 8: Qualitative ablation for the semantic trimming. The left is disabling the semantic
trimming and the right is enabling the strategy. We can see that the proposed semantic trimming can
prune the unwanted regions, e.g. the sky in the left figure.

To avoid unwanted background elements like the sky in reconstructions for outdoor scenes, we employ
a semantic surface trimming approach by learning a semantic field [54; 7; 50; 62] that leverages
a pretrained semantic model [23; 30; 36]. Specifically, we assign each Gaussian with a learnable
semantic feature. Subsequently, similar to color blending, alpha blending is applied on these features
to get the pixel-level semantics. We use the predicted semantic map from Grounded-SAM [36] with
cross-entropy loss to train the learnable features. After the optimization, we render the semantic
map for each view and then use the semantics to mask out the background. Although we can use
the predicted semantic maps from Grounded-SAM to prune the background directly, the predicted
semantic maps are not always accurate and consistent across views. Our proposed method can get a
more accurate semantics with noisy pseudo labels to a certain extent, which is also observed in [62].

A.2 Proof on Our D-Normal Regularizer

Fig. 2 is to illustrate the optimization of positions of Gaussians under normal and d-normal supervi-
sions. As we mentioned in Sec. 1, in contrast to supervision on rendered normal maps which only
updates Gaussian rotations, our D-Normal regularizer can also effectively update the positions of the
Gaussians. We show the mathematical proof below.

Proposition 1.1: Supervision on rendered normal cannot effectively affect the positions of Gaussians.

Proposition 1.2: Supervision on our D-Normal regularizer can effectively affect the positions of
Gaussians.

Proof: Without a loss of generality, we omit the summation over multiple views in our following
derivations for brevity. Based on the loss Ln on rendered normal (cf. Eq. 8), the gradient of Ln with
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respect to position p:

∂Ln

∂pi
=

Ln

∂N̂
· ∂N̂
∂pi

, (16)

∂N̂

∂pi
=

∂N̂

∂αi
· ∂αi

∂pi
+

∂N̂

∂ni
· ∂ni

∂pi

=
∂N̂

∂αi
· ∂αi

∂G(x)
· ∂G(x)

∂pi

=
∂N̂

∂αi
· ∂αi

∂G(x)
· [−G(x) · (RSS⊤R⊤)−1 · (x− pi)]

≈ ∂N̂

∂αi
· ∂αi

∂G(x)
· [−G(x) · (x− pi)] (17)

Putting Eq. 17 into Eq. 16, we get:

∂Ln

∂pi
≈ Ln

∂N̂
· ∂N̂
∂αi

· ∂αi

∂G(x)
· [−G(x) · (x− pi)]

= β · ∂αi

∂G(x)
· [−G(x) · (x− pi)]

∝ (x− pi),where β =
Ln

∂N̂
· ∂N̂
∂αi

is a scalar. (18)

Based on the D-Normal regularization Ldn (cf. Eq. 12), the gradient of Ldn with respect to position p:

∂Ldn

∂pi

=
∂Ldn

∂N̄d
· ∂N̄d

∂D̂
· ∂D̂
∂pi

,

∂D̂

∂pi

=
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∂αi
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∂pi

+
∂D̂
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· ∂di
∂pi

=
∂D̂
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· ∂αi

∂G(x)
· ∂G(x)

∂pi

+
∂D̂

∂di
· rz ·

n

n · r
. (19)

We can deduce the following from Eq. 16 and Eq. 19:

Case 1: From Eq. 16, we can see that the gradient-update ∂Ln
∂pi

of position is independent of the
normal n. Consequently, the supervision on rendered normal cannot effectively affect the Gaussian
position p.

Case 2: From Eq. 19, there is an additional term with n
n·p , where the denominator n · r is a scalar

term. This effectively makes the change in the position ∂D̂
∂pi

to move along the direction of the normal
n. Consequently, the supervision on D-Normal directly affects the Gaussian position p.

We can further deduce that the gradient-update on the Gaussian position pulls the position along the
normal towards the surface, which achieves better reconstruction.

In view of the above proof, we conclude that it is better to do supervision on the D-Normal regularizer.
In addition to the mathematical proof, we also visualize the positions of Gaussian centers from the
optimized 3D scenes both with and without the D-Normal regularizer in Fig. 6, thereby providing
experimental validation of the conclusion.

A.3 Implementation Details

We use PyTorch 2.0.1 and CUDA 11.8. for most experiments. All experiments are conducted on an
NVIDIA 3090/4090/A5000/A6000 GPU. We set most hyperparameters to the same as that used in
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Gaussian Splatting [22]. For outdoor scenes in the TNT dataset, we also utilize decoupled appearance
modeling [27] to alleviate the exposure issue. Moreover, to remove some outlier Gaussians, we adopt
a pruning technique from LightGaussian [10]. We also use a cuboid bounding box to contain the
scene we need to reconstruct and we only regulate and add the new densification to Gaussians inside
the box. We use the same train and test data with 2DGS on TNT, Mip-NeRF360, and DTU datasets.

Table 5: Additional ablation on TNT Dataset.
Precision ↑ Recall ↑ F-score ↑

F. w/o semantic trimming 0.37 0.42 0.38
G. w/o scale regularization 0.35 0.38 0.36
H. Set scale s3 zero 0.36 0.40 0.37
I. Scale Regularization 0.39 0.42 0.40

A.4 Additional Ablation Studies

We further verify the effectiveness of additional design choices on reconstruction quality. We conduct
experiments on the TNT dataset [24] and report the F1-score. The quantitative result is reported in
Tab. 5. We first verify the proposed semantic trimming strategy (Tab. 5 F). From the table, we can see
the strategy can increase the F1-score by 0.02. We can also observe the qualitative result from Fig. 8
that the trimming strategy can prune the sky correctly. Additionally, we confirm the effectiveness
of scale regularization (Tab. 5 G), which leads to an improvement of 0.04. The current work [19]
sets the last item of the scale factor to zero to flatten the 3D Gaussians for surface reconstruction.
Additionally, we also ablate the setting zero (Tab. 5 H) and the scale regularization (Tab. 5 I). From
the table, we can see that using the scale regularization instead of setting zero can obtain a 0.03
F1-score improvement.

A.5 Additional Qualitative Results

Fig. 9 shows the rendering (top) and reconstruction (down) results on the Mip-NeRF360 [2] dataset.
The rendering results on the TNT and Replica datasets are shown in Fig. 11. We also compare the
qualitative results of VCR-GauS with SuGar and 2DGS, shown in Fig. 10. From the figure, we can
see that our method can reconstruct both complete and high-detailed surfaces. In addition to the
visualization in the form of pictures, we have also recorded a video in the supplementary material
that can be downloaded and watched.

A.6 Additional Dataset

Table 6: Quantitative comparison on the DTU Dataset [21]. We show the Chamfer distance and
average optimization time.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

Im
pl

ic
it NeRF [32] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49 >12h

VolSDF [53] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 >12h
NeuS [49] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 >12h
MonoSDF [59] 0.83 1.61 0.65 0.47 0.92 0.87 0.87 1.30 1.25 0.68 0.65 0.96 0.41 0.62 0.58 0.84 >12h

E
xp

lic
it 3DGS [22] 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 < 1h

SuGaR [15] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 < 1h
2DGS [19] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80 < 1h
Ours 0.55 0.91 0.40 0.43 0.97 0.95 0.84 1.39 1.30 0.90 0.76 0.92 0.44 0.75 0.54 0.80 < 1h

In this section, we report the result of object-level reconstruction. Although we focus on large-scale
reconstruction, we still outperform implicit (i.e., NeRF, VolSDF, NeuS, and MonoSDF) and most
explicit methods (i.e., 3DGS and SuGaR) on DTU [21]. While our method is comparable with
current work 2DGS on object-level reconstruction, our method is much better than it on large-scale
reconstruction, as shown in Tab. 1 and Tab. 3. The qualitative results on DTU are shown in Fig. 12.

17



R
en
de
r

M
es
h

Figure 9: Qualitative results on the Mip-NeRF360 dataset. Our method reconstructs surfaces with
fine geometry details and produces high-fidelity renderings on Mip-NeRF360 dataset.

B Limitations

Although our method can alleviate the problem of inaccurate normal prediction from a pretrained
normal estimator, especially the inconsistent normal predictions across views, it fails under the
extreme case when almost all predicted normal across views are wrong. In addition, our method
cannot reconstruct beyond the observed scene. Furthermore, our method cannot capture the surface
of the semi-transparent object as shown in Fig. 13.
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Figure 10: Qualitative results on the Replica dataset.

Figure 11: Qualitative rendering results on the TNT and Replica dataset.

19



R
en
de
r

M
es
h

Figure 12: Qualitative results on the DTU dataset.

Figure 13: Illustration of limitations: Our VCR-GauS encounters difficulties in accurately recon-
structing semi-transparent surfaces, such as the window depicted in Caterpillar.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have discussed them on page 2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed about that in the supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theoretical contributions in this work, where our contributions
are validated with experiments.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the hyper-parameters and network organizations are provided in the main
paper and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Our codes have been released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test details are described in the main paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow existing related works for the setting of error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided that in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed that and claim we conform that Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our method focuses on reconstructing 3D surfaces using Gaussian Splatting
technique, which is a component of 3D reconstruction. It does not have further societal
impacts than existing 3D reconstruction works.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited them in the references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use and cite existing datasets in this work. Other assets including
code/model will be released after submitting.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not include such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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