
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW LONG DO MODEL PATCHES LAST? A TEMPORAL
PERSPECTIVE ON PORTLLM

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) undergo regular updates through continual
pretraining, the temporal reliability of downstream fine-tuning methods becomes
increasingly important. Parameter-efficient methods, such as low-rank adapta-
tion (LoRA), offer scalable solutions for task adaptations without requiring full
LLM retraining. More recently, PortLLM has been proposed as a training-free
patching mechanism that permits patch reuse over consecutive LLM releases.
Although these training-free methods are appealing when full fine-tuning is im-
practical, their temporal reliability remains underexplored. Using PortLLM-style
patches as a baseline approach, we conduct large-scale experiments and found
that PortLLM patching exhibits a statistically significant performance decline over
time, even when the task and neural architecture remain unchanged. Our findings
reveal that patch performance degradation is a general and measurable risk when
PortLLM is applied over an extended period. The statistical observation of the
declining performance trends forms the foundation for our proposed forecasting
algorithms, which estimate failure dates and test hypotheses about target-date
performance failures. These forecasting algorithms rely on historical performance
indicators without requiring downstream fine-tuning or access to original training
data. Our framework enables downstream developers to anticipate failure and make
informed decisions about when retraining is necessary, thereby supporting reliable
and cost-effective LLM maintenance.

1 INTRODUCTION

Large language models (LLMs) have achieved strong performance across many tasks, including
language (Brown et al., 2020; Liang et al., 2023), math (Shao et al., 2024; Wang et al., 2024a), and
reasoning (DeepSeek-AI, 2025; Wei et al., 2022; Team et al., 2025). Frequently updated LLMs incur
significant retraining costs, posing challenges for downstream developers seeking to adapt LLMs
to specific tasks. To reduce the retraining costs, a growing body of work has explored lightweight
fine-tuning/personalization methods (Hu et al., 2022; Khan et al., 2025; Houlsby et al., 2019; Zaken
et al., 2022) that inject task-specific knowledge into LLMs without full retraining of base models.
Among them, PortLLM (Khan et al., 2025) proposes a data- and training-free patching method
for portability of patches across temporally evolved LLMs. PortLLM’s patching achieves strong
task performance in short-term transfer to successive LLM base-model releases without retraining.
However, the long-term reliability of patching has not been systematically studied, potentially leaving
developers reliant on downstream patched models that silently degrade. In this work, we use PortLLM
as a baseline to explore the temporal reliability of patched LLMs by posing an open question: How
long can PortLLM patching remain effective as the base model evolves?

Figure 1 illustrates a PortLLM deployment scenario over an extended period of time, and typical
questions being asked concerning patching performance degradation. An upstream LLM vendor
periodically (e.g., quarterly) releases an updated base model through continual pretraining. A
downstream developer fine-tunes the initial base model θ0 and generates a PortLLM-style patch ∆θ0.
Due to cost or data limitations, the same patch is applied to subsequent base model releases θ1, θ2,
and θ3 without retraining. Over time, task performance mildly degrades. This raises two research
questions (RQs) motivated by practical deployment: (RQ1) From the developer’s perspective, when
will patching performance fall below a threshold (red dashed line)? (RQ2) From the business
planning standpoint, will computing resources be required or not by a future date (blue dashed line)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Performance Threshold

Observed Forecasted

Pe
rf

or
m

an
ce

 I
n
d
ic

at
or

t0 t1 t2 t3 t4 t5 t6 t7

C
u
rr

en
t

T
im

e

[θ0 + Δθ0]

 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7

[θ6 + Δθ0] [θ7 + Δθ0][θ1 + Δθ0]

Applying t0-Patch (by downstream developer)

Downstream
Fine-tuning Continual Pretraining (by LLM vendor)

RQ1 (ML Engineer):
When will performance
drop below this line?

RQ2 (Finance Manager):
Will cloud credits
be required by t6?

Time
Threshold

Figure 1: Overview of PortLLM deployment over an extended period of time and patch degradation
forecasting. A downstream developer applies a patch ∆θ0 trained at t0 to a continually evolved
base model ∆θi, i ≥ 1, provided by an LLM vendor. As updates progress, the task performance
of models ∆θi + ∆θ0 degrades. Our forecasting algorithms use observed degradation trends to
estimate future performance (shaded region) and answer two critical deployment questions of when
and whether PortLLM patching will fail. Our framework enables proactive, cost-aware adaptation
decisions without requiring retraining at every base model release.

for retraining?1 Answering these questions requires modeling how patching performance changes
over time and developing algorithms to forecast future performance based on observed trends.

Our work presents the first systematic study of temporal degradation in patched LLMs. We conduct
extensive experiments on the Math Genie (Lu et al., 2024), BoolQ (Clark et al., 2019), ARC-
Easy (Clark et al., 2018), and WinoGrande (Sakaguchi et al., 2021) datasets using LLMs such
as Mistral-7B (Jiang et al., 2023). We track PortLLM-style patched model performance across
successive base model updates and statistically quantify the rate and structure of degradation driven
by patch misalignment resulting from continual pretraining. We model these patterns as a time series
and propose statistical estimation and hypothesis testing algorithms to predict when and whether a
patch will fail in deployment settings, respectively. Our contributions are threefold:

1. We conduct the first large-scale experimental evaluations on the temporal reliability of patched
LLMs evolved via continual pretraining. While PortLLM (Khan et al., 2025) conducted a feasibil-
ity study of temporal patch portability, we provide statistically significant evidence that gradual
performance decline occurs over time, even when tasks and architectures remain unchanged.

2. We perform statistical analysis of patching performance trends across model updates, quantifying
the gradual degradation process. Building on these empirical observations, we develop a time
series modeling framework that characterizes patching performance as a structured temporal
process. This formalizes degradation dynamics as a measurable property and provides the basis
for forecasting when adaptations are likely to fail.

3. Built on the modeling of degraded trends, we introduce lightweight, mathematically grounded
algorithms for (i) failure date estimation and (ii) target date hypothesis testing to detect patch
failure. Their principled monitoring of the temporal reliability of patched LLMs advises when or
whether to retrain, without requiring retraining at every base model release.

2 RELATED WORK

Parameter-Efficient Personalization. LLMs have achieved strong generalizability through scal-
ing (Kaplan et al., 2020), instruction tuning (Ouyang et al., 2022), and reinforcement learning
from human feedback (Christiano et al., 2017), enabling extensive applicability across diverse tasks.
Continual learning research (de Masson D’Autume et al., 2019; Sun et al., 2020) and continual

1Retraining consumes computational resources, diverts engineers from other tasks, and may require domain-
specific data that may be no longer available after a period of time. Forecasting the need for retraining enables
teams to plan data access and allocate developer resources effectively, even if compute is not the primary concern.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

pretraining studies (Jin et al., 2022) have further highlighted challenges arising from evolving cor-
pora and distributional drift, primarily focusing on full-model adaptation across sequential tasks
or datasets. While these advances enable broad task applicability, efficiently adapting models to
specific domains or applications remains an open challenge. Parameter-efficient fine-tuning (PEFT)
methods provide scalable alternatives to full-model adaptation by updating only a small subset of
parameters. Low-rank adaptation (LoRA) (Hu et al., 2022), QLoRA (Dettmers et al., 2023), and
related techniques use low-rank updating matrices to enable efficient adaptation. Adapter-based
methods (Houlsby et al., 2019; Pfeiffer et al., 2021) insert task-specific bottleneck layers that allow
for modularity and reuse. PortLLM (Khan et al., 2025) extends this line of research by injecting
task-related patches into evolved base models without additional training. While these methods have
demonstrated strong performance when evaluated on patched base models that evolved for a short
duration, their effectiveness under extended, continually pretrained base models remains largely
unevaluated. Our work studies the behavior of task-specific adaptations across many sequential LLM
updates, focusing on whether PortLLM patches remain effective as the base model evolves.

Drift Modeling and Temporal Analysis. Performance degradation over time has been studied in
several domains through the lens of drift detection and anomaly analysis. Classical work on concept
drift (Gama et al., 2014) and unsupervised anomaly detection (Chandola et al., 2009) provides
statistical tools for identifying failure trends in evolving systems. More recent efforts in dataset
shift detection (Rabanser et al., 2019) and concept drift characterization (Webb et al., 2016) extend
these ideas to machine learning. These methods focus on evolving input distributions, whereas our
setting concerns parameter drift—continual pretraining shifts the base model so that a static PortLLM
patch gradually misaligns, even under fixed tasks and inputs. This patch-based misalignment creates
a qualitatively distinct failure mode as developers may unknowingly rely on patches that silently
degrade. Our work innovatively applies temporal techniques to address the performance degradation
observed in our large-scale experimental evaluations.

3 LARGE-SCALE EXPERIMENTAL STUDY AND EVIDENCE OF DEGRADATION

We aim to provide empirical grounding for whether the PortLLM patching method can maintain
long-term utility. We specifically investigate the performance of applying the same PortLLM patch
over time as the base model evolves through continual pretraining. We conduct multiple independent
repetitions of continual pretraining to ensure that the results are statistically significant.

3.1 DATASETS AND EXPERIMENTAL CONDITIONS

Datasets. We evaluate patching performance on four benchmarks spanning mathematical reason-
ing, reading comprehension, and commonsense inference, namely, MathGenie (Lu et al., 2024),
BoolQ (Clark et al., 2019), WinoGrande (Sakaguchi et al., 2021), and ARC-Easy (Clark et al., 2018)
(see Appendix A for more details). Continual pretraining is performed on UpVoteWeb (UpV, 2024),
a filtered Reddit corpus that reflects evolving internet discourse and is a minutiae proxy for web-scale
mega-datasets curated for continual pretraining of base LLMs in production settings. Additional
experiments were performed on a broader collection of datasets structured into a time series (see
Appendix I) to ensure generality across pretraining sources. Pretraining on this broader collection
introduces substantial distributional shifts across time steps, allowing us to model the temporal
evolution of data even more radically than typically observed in real-world scenarios.

Evolution of LLM’s Model Parameters. We simulate real-world evolution of LLMs by continually
pretraining a base model in successive stages and tracking performance of LLM-patches over time.
Specifically, we pretrain Mistral-7B (Jiang et al., 2023) on UpVoteWeb in 12 chronological two-week-
long segments2, yielding 13 model versions spanning five months. A single PortLLM patch ∆θ0 is
trained at timestep t = 0 and applied via addition in parameter space to all evolved base models θt at
t ∈ {1, . . . , 12}. This will isolate the effect of misalignment between a PortLLM-style patch and the
base model, while keeping task, architecture, and patching procedure unchanged.

Reproducibility. Repetitions. All evaluations of PortLLM’s patching degradation are repeated over
5 independent continual pretraining repetitions to ensure statistical confidence. Experiments were

2We divided UpVoteWeb into equal token count segments. Appendix G shows that varying segment density
yields similar degradation trends, indicating that our results are not sensitive to this choice.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

t0 1/15 2/12 3/11 4/08 5/06 6/03

0

5

10

15

MathGenie

Timestep

B
L

E
U

Sc
or

e

t0-Patching (PortLLM) No Patching Periodic Patch Regeneration

t0 1/15 2/12 3/11 4/08 5/06 6/03
50

55

60

65

70

75

80

85

90

BoolQ

Timestep

A
cc

ur
ac

y
(%

)

0 2 4 6 8 10 12

4

6

8

10

12

14

16

B
L

E
U

0 2 4 6 8 10 12

Timestep

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

A
c

c
u

ra
c

y

Figure 2: PortLLM patching performance (blue “◦”) for MathGenie and BoolQ over 13 temporal
checkpoints continually pretrained on the Reddit dataset. PortLLM patching outperforms the no-
patching baseline (black “⋄”) by a significant margin (as in Khan et al. (2025)), while our experiments
reveal that its performance degrades steadily over time (Section 3). Error bars denote the standard
deviation across 5 independent repetitions of continually pretrained base models. The two example
plots on the side for MathGenie and BoolQ show linear and exponential curve fitting results for the
PortLLM patching performance of a single repetition. Finally, periodic patching (gray “□”) at every
four time steps can boost performance at each refreshing step, but it may not be cost-effective if the
downstream developer can predict when PortLLM patching fails (Section 4).

repeated with unique random seeds. Exact seeds and configuration files will be released with the
codebase. Compute. All experiments were run on Nvidia A100 GPUs (40GB). Each continual
pretraining timestep was distributed across 8 GPUs and took approximately 2 wall-clock hours.
LoRA-based patch fine-tuning at each checkpoint required 15–45 minutes, depending on the task.
LoRA Configuration. For continual pretraining of base models, we applied LoRA with r = 64 and
α = 128 to all attention submodules (i.e., query, key, value, output projection) and feed-forward
layers (i.e., up, down, and gate projections, where applicable). For downstream fine-tuning, we used
a LoRA with r = 8 and α = 16 targeting the same set of LLM modules.

Metrics. We adopt the same evaluation metrics across all temporal checkpoints to ensure fair
comparisons. All tasks are evaluated using the LM-Eval-Harness framework (Gao et al., 2024) with
standardized decoding and scoring procedures. For MathGenie, we report the BLEU score (Papineni
et al., 2002) to measure the structural fidelity of generated math explanations. While absolute
correctness is difficult to verify at scale, BLEU provides a stable approximation of answer coherence.
Following established evaluation conventions, we report test accuracy as the primary metric for BoolQ,
ARC-Easy, and WinoGrande. These metrics enable us to track PortLLM’s patching performance as
the base model evolves.

3.2 EVIDENCE OF PATCHING DEGRADATION OVER TIME IN LARGE-SCALE EXPERIMENTS

We experimentally evaluate how PortLLM’s patching strategy performs as the base model evolves
through continual pretraining. The two larger plots in Figure 2 present results on MathGenie and
BoolQ across 13 successive model checkpoints. A patch trained at timestep t = 0 (blue line with “◦”)
initially provides substantial gains over the no-patching baseline (black line with “⋄”). However, its
effectiveness declines steadily with additional base model updates. Statistical analysis in Section 3.3
further supports this observation: Linear and exponential decaying trends significantly outperform
constant/no trend across all benchmarks. While Figure 2 presents results on MathGenie and BoolQ,
we observe similar patterns on WinoGrande and ARC-Easy in Appendix H. Despite differences in
domain and problem characteristics, all benchmarks reveal that the benefit of t0-patching erodes
predictably as the base model evolves. This evidence across diverse datasets augments the preliminary
finding from PortLLM (Khan et al., 2025), providing the first systematic experimental evidence that
temporal degradation is not task-specific, but a broader limitation of the t0-patching strategy applied
to the continually evolving base LLMs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We attribute the observed performance decline to the misalignment of the evolved base LLMs with the
t0-patch. From an optimization perspective, continual pretraining modifies the optimization landscape
such that the descent direction guided by the t0-patch may no longer align with the new optimal
descent direction in the optimization landscape of the evolved base LLM. Long-term evolutions of
the base LLM can alter the optimization trajectory even more, resulting in much weaker adaptations.

Our experimental observation motivates the development of adaptation strategies that explicitly
account for temporal degradation. The gray curves with “□” in Figure 2 show the PortLLM per-
formance when patches are retained every 4 time steps for restoring alignment. While this tactic
of periodic patch regeneration can mitigate temporal degradation, it requires significant time and
monetary overhead for medium-term deployment if regeneration is performed more frequently than
necessary. Furthermore, it requires continual access to domain-specific data for patch retraining.
Section 4 will present forecasting algorithms that indicate when intervention is necessary.

3.3 TIME SERIES ANALYSIS AND DETECTION OF PATCH PERFORMANCE DEGRADATION

The two example scatter plots in the right panel of Figure 2 confirm that the performance of
PortLLM patching slowly degrades temporally. Both plots show observed data points (scatter
points), a linear curve fit (solid line), and an exponential curve fit (dashed line). We selected
linear and exponential parametric models based on our observation of the data that performance
degradation is generally consistent without abrupt jumps. The exponential curves are obtained by
performing a linear fit on log-transformed response variables (Faraday, 2005). The BoolQ data
points shown in Figure 2 aligns closely with a linear model, whereas MathGenie shows greater
variation but still follows the same slow decline. This supports modeling degradation with lin-
ear/exponential parametric trends. The use of a parametric model is further supported by the
remaining curve fitting plots shown in Figures 10 to 15 of Appendix B. Tables 3 and 4 of Appendix B
further provide detailed statistical results for testing a linear/exponential trend of patching perfor-
mance against an intercept/constant performance. The p-values in Table 3, which shows results
for pretraining on the Reddit dataset, provide statistically significant evidence with p-value < 0.05
against an intercept model in 49 out of 50 tests. The evidence in Table 4, which shows results
for pretraining on the combined time-series dataset, is statistically significant in 16 out of 22 tests.

Time,

Po
rtL

LM
's

 P
er

fo
rm

an
ce

 In
di

ca
to

r,

Performance
Thresholds:

True model
Observed data points

 Future data points

0

Figure 3: Illustration of the idea of
the forecasting algorithm for the worst-
tolerable performance thresholds, ρ
and γ. Ground-truth model g(t) =
β0 + β1t is shown by the solid line. The
scatter points represent observed per-
formance indicators of the ground-truth
model corrupted by noise. The thresh-
olds ρ and γ of worst-tolerable perfor-
mance are described by the dotted lines.
The times at which performance drops
below these thresholds, t∗ρ and t∗γ , are
denoted by dashed lines.

The combined time-series dataset introduces stronger tem-
poral distributional shifts than typical in practice, yet
we still see statistical significance, indicating our models
may remain robust under realistic temporal drift. For the
time ranges where the model performance should be high
enough to be practically useful, linear trends sufficiently
model the data for the algorithms in Section 4.

4 PROPOSED DEGRADATION FORECASTING
ALGORITHMS

To identify an LLM’s downstream retraining needs, we
propose two forecasting algorithms to facilitate techni-
cal and business planning, respectively. First, we use a
parameter estimation to identify the time when the perfor-
mance drops below a worst-tolerable threshold. Next, we
use hypothesis testing to predict whether the performance
at a future time will still be acceptable. We validate the
effectiveness of our proposed forecasting algorithms via
extensive training on various LLM benchmark datasets.

4.1 ASSUMPTIONS AND DEFINITIONS

To facilitate the presentation of the proposed performance
forecasting algorithms, we begin by mathematically mod-
eling the time series for LLM-patching performance with
assumptions justified by the statistical observations in Sec-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tion 3.3. Figure 3 shows in circles the temporal performance indicators yt associated with down-
stream task, with empty circles denoting future data points. We assume per the statistical evidence
in Section 3.3 that the data points are observations from a linear statistical model with a regression
function/ground-truth model g(t) = β0 + β1t represented by the solid line, corrupted by additive
white Gaussian noise (AWGN) ϵt with variance σ2

ϵ . Here, β0 is the intercept denoting the theoretical
performance at t = 0 and β1 is the slope denoting the rate of change of the performance. This
linear statistical model captures the overall trend of the gradual performance degradation and the
fluctuations caused by various random factors as observed in Section 3.3.

Downstream developers wishing to forecast future performance may have predefined standards for
acceptable performance. We formalize these standards as thresholds that are used in formulation of
our algorithms. The horizontal dashed lines in Figure 3 represent two ways in which the thresholds
may be defined to accommodate different forecasting needs. In the first case of the dashed line
located ρ below the theoretical performance β0 at t = 0, the downstream developer is concerned
with relative performance. For example, suppose the downstream developer will tolerate a ρ = 5%
drop from the theoretical performance at t = 0. In the second case, the downstream developer has
an absolute threshold γ as their worst-tolerable performance, e.g., an accuracy of at least γ = 80%
is required. Mathematically, the performance cutoff time t∗ρ and t∗γ , determined by the relative and
absolute thresholds ρ and γ, respectively, fulfills the following constraints:

(Relative) β0 − g(t∗ρ) = ρ, (Absolute) g(t∗γ) = γ. (1)

Figure 3 depicts the steps to obtain t∗ρ or t∗γ via the ground-truth model g(t). In the main paper,
we focus on formulating parameter estimation and hypothesis testing algorithms for the relative
thresholding scenario. See Appendix F for further estimation formulation for absolute thresholding.

4.2 PARAMETER ESTIMATION FORMULATION

When a worst-tolerable threshold of the patch performance is specified, future planning can be
facilitated by forecasting the time at which the PortLLM patch will need to be retrained. We ask:

RQ 1 Given past performance indicators and a worst-tolerable performance threshold, at what
future time will patching performance drop below the threshold?

We denote available time steps as {t0, t1, . . . , tI}, where tI is the current time. We generalize the
linear statistical model presented in Section 4.1 to the cases where nti ≥ 1 performance indicators
are available at each time step ti, although for most resource-constrained applications, we expect
only one observation per time step, i.e., nti = 1. Formally, we denote the jth performance indicator
at time ti as

y
(j)
ti ∼ N (β0 + β1ti, σ

2
ϵ), i ∈ {0, 1, . . . , I} and j ∈ {1, . . . , nti}. (2)

We examine a simplified case that, for any fixed ti, the observations {y(j)ti }nti
j=1 are uncorrelated.

Next, we outline the high-level idea for estimating t∗ρ. First, we note that in the thresholding defini-
tion (1), the optimal time step t∗ρ and the rate of the performance degradation β1 are deterministically
related, i.e., ρ = β0−g(t∗ρ) = β0−(β0+β1t

∗
ρ) = −β1t

∗
ρ. We can then apply the invariance principle

of maximum likelihood estimation (MLE) (Devore et al., 2021) to reduce the problem of estimating
t∗ρ to estimating β1, followed by applying the deterministic mapping from β1 to t∗ρ. It can be shown
that the MLE for β1, assuming nti = n for all i, is

β̂1 =
1

t̃− t̄2
(−t̄ ȳI + rI), (3)

where ȳI =
∑I

i=0

∑n
j=1 y

(j)
ti

/
N , rI =

∑I
i=0

∑n
j=1 ti y

(j)
ti

/
N , N =

∑I
i=0 nti , t̄ =

∑I
i=0 ti

/
(I +

1), and t̃ =
∑I

i=0 t
2
i

/
(I + 1). Detailed steps to derive (3) are provided in Appendix C. Applying the

invariance principle using the mapping t∗ρ = −ρ/β1, we obtain the MLE for t∗ρ as follows:

t̂∗ρ = −ρ
/
β̂1. (4)

In the specific case of uniform time steps, i.e., ti = i ∀i, the precision t̂∗ρ is

Var
(
1/t̂∗ρ

)
=

Var(β̂1)

ρ2
=

12σ2
ϵ

nρ2I(I + 1)(I + 2)
. (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Here, Var(β̂1) is provided in (28) of Appendix C. We note that, as I increases, the precision of the
cutoff time estimator decreases at the rate of O(I−3), implying that the width of the confidence
interval for 1/t̂∗ρ shrinks at the rate of O(I−3/2). In the case that the time steps are not consecutive
integers, the variance also decreasing with increasing observations, but the variance also depends
on the spacing of the time steps. Figure 4 plots theoretical curves for the precision of t∗ρ, where
sharp turnings are seen between the duration of observation I = 2 and 4. The estimation is also
more accurate for larger relative threshold ρ. Experimental validation results using this estimation
framework are provided in Section 4.4.

4.3 HYPOTHESIS TESTING FORMULATION

1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

Figure 4: Theoretical plot for the
variance of the estimator 1/t̂∗ρ as a
function of the duration of obser-
vation, I . The variance decreases
at the rate of O(I−3), with sharp
turnings between I = 2 and 4. The
estimation is more accurate when
the duration I is longer and the rel-
ative threshold ρ is larger.

A downstream developer may have a time of interest, t = tm,
for which the judgment of acceptable performance is required.
For example, if the base model is updated quarterly, the time
step of interest may be tm = 8, or two years after the patch
is initially trained. In this case, the test may be performed
at I = 4, or one year after the initial training, to determine
whether retraining will be needed in the next year’s budget.
Formally, we ask:

RQ 2 Give past performance indicators, a worst-
tolerable threshold, and a future time step of in-
terest, will patch performance fail to meet the
threshold at the future time step?

We define the null hypothesis H0 as the patch fails to meet
performance standards at time tm, and the alternative hypothesis
H1, otherwise, namely,

H0 : β0 − g(tm) > ρ against H1 : β0 − g(tm) ≤ ρ. (6)

This composite hypothesis testing is solved as a likelihood ratio test (LRT) (Hogg et al., 2019) as:

λ =
supβ L(β ∈ R0)

supβ L(β ∈ R2)

def
=

L(β̂(0))

L(β̂MLE)
> η0 accepts H0, (7)

where β̂(0) = argmaxβ∈R0
L(β) and β̂MLE = argmaxβ∈R2 L(β). L(β) defined in (30) of Ap-

pendix D is the likelihood of the observations, R0 defined in (29) is the feasible region of β for which
H0 is true, and η0 is a decision threshold. We show in Appendix D that the test statistic, z

z = min(0, e) > η accepts H0, (8)

where η < 0 is another decision threshold, e = −tmβ̂1 − ρ ∼ N (µe, σ
2
e), µe

def
= −tmβ1 − ρ, and

σ2
e

def
= t2mVar(β̂1). We note that the null hypothesis can also be written as H0 : µe > 0. Here, e

captures the estimated margin by which the patch’s performance at tm exceeds the threshold ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
N

R

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
N

R

(b)

Figure 5: Theoretical ROC curves for hypothesis
testing. We use time step of interest tm = 8, rela-
tive threshold ρ = 1, for duration of observations
(a) I = 4 and (b) I = 6. Here, µi

e denotes the
performance margin for Hi. For µi

e further from
zero or longer observation durations, the hypothe-
sis testing tends to be more accurate.

The false negative rate (FNR), i.e., the proba-
bility of predicting that retraining is not needed
at tm when it is actually needed, and the false
positive rate (FPR) are given by

FNR = P(z < η | µe > 0) = Φ(η−µe

σe
), (9a)

FPR = P(z > η | µe ≤ 0) = Φ(µe−η
σe

). (9b)

Theoretical ROC curves are plotted in Figure 5.
We find that while the LRT itself is close to op-
timal, the hyperparameters control the difficulty
of the problems. For example, the test can make
more accurate decisions when µe under H0 and
H1 are more different, or when the duration of
observed I is longer. See Section 4.4 for experi-
mental validation for this test.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

40

45

(a)

2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

(b)

2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

(c)

2 3 4 5 6 7 8

0

2

4

6

8

10

12

14

16

18

20

(d)

2 3 4 5 6 7 8

0

2

4

6

8

10

12

(e)

Figure 6: MSE of estimate for the time, t̂∗ρ, at which performance drops below the worst-tolerable
threshold as a function of the duration of observation, I for different relative thresholds, ρ. The curves
are averaged across 5 repetitions. The benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande,
(d) MathGenie (patch #1), and (e) MathGenie (patch #2). MSE decreases with increasing I , and the
largest drops occur for smaller I . As downstream task performance indicators are observed for longer
duration, we expect estimates of t̂∗ρ to be more accurate.

4.4 EXPERIMENTAL VALIDATION OF THE EFFECTIVENESS OF PROPOSED ALGORITHMS

We validate our forecasting methods on a base model continually pretrained on UpVoteWeb (UpV,
2024) data and fine-tuned using downstream benchmarks: ARC-Easy (Clark et al., 2018),
BoolQ (Clark et al., 2019), WinoGrande (Sakaguchi et al., 2021), and MathGenie (Lu et al., 2024). 3 4

0 1 2 3 4 5 6 7 8

Timestep

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
c
c
u
ra

c
y

(a)

0 1 2 3 4 5 6 7 8

Timestep

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b)

Figure 7: Estimation results for tolerance threshold
ρ = 0.15 on (a) repetitions #2 and (b) #3 of ARC-
Easy using I = 3 as the latest observation. The
estimates are t̂∗ρ = 4.31 for (a) and t̂∗ρ = 3.97
for (b). Both estimates would correctly direct the
downstream developer to retrain before t = 5.

Parameter Estimation. Figure 7 shows two
representative examples of parameter estima-
tion scenarios on repetitions #2 and #3 of ARC-
Easy. In Figure 7(a), the upper and lower dashed
lines coincide with the predicted performance at
t = 0, β̂0, and the predicted performance minus
the threshold, β̂0 − ρ. Observed performance
drops below the lower dashed line at approxi-
mately t = 5, while the prediction is at t̂∗ρ = 4.3.
In this case, the downstream developer would
be correctly informed to retrain before t = 5.
Similarly, in Figure 7(b), the estimator predicts
that retraining is needed slightly before it actu-
ally is; in this case, the downstream developer
may think that retraining is needed before t = 4.
For each plot, we used tI = I = 3 so that ob-
servations from t = 0 to t = 3 were used for estimation. If the base model is updated quarterly, the
downstream developer could predict performance after nine months.

To systematically validate our estimation algorithm, we consider the mean squared error (MSE)
(1/M)

∑M
m=1(t

∗
ρ − t̂∗ρ)

2 where M = 5 repetitions and I is the index of the time for the most recently
observed data point. From (28), the variance of β̂1 decreases at a rate of O(I−3). Because t̂∗ρ
is deterministically related to β̂1, we expect the MSE of t̂∗ρ to decrease as I increases. Figure 6
empirically shows that the error decreases when the duration of observation increases. The largest
drop in error occurs from I = 2 to 3, indicating that estimation will be much more reliable after
at least three downstream patching rounds. This drop is especially pronounced for ARC-Easy and
MathGenie. For WinoGrande and BoolQ, MSE decreases approximately linearly from I = 0 to 6.
Figure 8 also reveals that estimation is consistently more accurate for smaller ρ and Figure 16 of
Appendix E provides a more direct visualization—when ρ is smaller, t∗ρ is also smaller, so there is a

3Because the true parameters β1 and β0 are unavailable from the real benchmark data, we use the best
estimate from 9 available time steps as a proxy for the ground truth.

4By observing the data, we found that t ∈ [0, 8] is the interval for which the trend is best considered linear.
This coincides with the practical nature of time of interest for prediction because PortLLM patching performance
will be too low to be useful after t = 8.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Hypothesis testing example on
rep. #2 of BoolQ using ρ = 0.1 and
tm = 5. The test correctly selects H1

when η = −0.001 but incorrectly de-
cides H0 when η = −0.01.

I Test
stat z

Decision
thres
η = −0.01

Decision
thres
η = −0.001

1 0.000 H0 H0

2 −0.017 H1 H1

3 −0.002 H0 H1

4 −0.005 H0 H1

5 −0.003 H0 H1

Table 2: AUC results for hypothesis testing. Prediction is
much more accurate when µe is far from zero and when
more time steps have been observed.

I µ0
e Range µ1

e Range AUC Downstream
Datasets

Metric

5 0.05± 0.05 −0.13± 0.03 1.000 AE, BQ, WG Acc
5 0.50± 0.50 −3.50± 0.50 0.922 MG BLEU
5 0.05± 0.05 −0.08± 0.03 0.885 AE, BQ, WG Acc
5 0.50± 0.50 −2.50± 0.50 0.816 MG BLEU
4 0.05± 0.05 −0.13± 0.03 0.958 AE, BQ, WG Acc
4 0.50± 0.50 −3.50± 0.50 0.680 MG BLEU
4 0.05± 0.05 −0.08± 0.03 0.715 AE, BQ, WG Acc
4 0.50± 0.50 −2.50± 0.50 0.575 MG BLEU

AE: ARC-Easy, BQ: BoolQ, WG: WinoGrande, MG: MathGenie

smaller duration between the time of prediction and the predicted event. Appendix E also presents
results on each repetition individually.

Multiple observations per time step (n ≥ 2) can be obtained by bootstrapping downstream test data
with little compute overhead. For example, on ARC-Easy with ρ = 0.1, Figure 8 shows that MSE
drops substantially from n = 1 to n = 2, with smaller but noticeable reductions up to n = 8. The
trend holds across different ρ values, with smaller ρ yielding lower overall error.

2 3 4 5 6 7 8

I

0

5

10

15

20

M
S

E

Figure 8: MSE for t̂∗ρ for n ≥ 1 ob-
servations per time step. The most sub-
stantial improvement is observed from
n = 1 to 2. The results indicate that
bootstrapping downstream testing data
can increase the prediction accuracy of
t̂ρ for downstream developers.

Hypothesis Testing. Table 1 illustrates our hypothesis
testing algorithm using time of interest tm = 5 and the
relative threshold ρ = 0.1, where the true margin µe =
−0.017 < 0 falls in the feasible region of H1. This case
is difficult since the margin is close to zero. At I = 3, the
third row of Table 1, the test statistic is z = −0.002. For a
choice decision threshold η = −0.001 we decide H1, but
for η = −0.01 we decide H0. A similar pattern holds in
the other rows, with correct decisions at η = −0.001 but
typically incorrect at η = −0.01. This shows the influence
of threshold choice on testing when the true margin is near
zero, i.e., the decision is inherently a different problem.

To further assess general performance, we validate the
effectiveness of our hypothesis testing algorithm by calcu-
lating area under the curve (AUC) values for ROC curves
using experimental data grouped in Table 2. Here, µi

e de-
notes µe on hypothesis Hi. We generate tests by varying the worst-tolerable performance threshold ρ
selection and the time step of interest tm selection across four benchmarks. ROC curves for accu-
racy tasks (ARC-Easy, BoolQ, WinoGrande) are drawn separately from BLEU tasks (MathGenie).
Because the hypotheses can be written as H0 : µe > 0 and H1 otherwise, we group test cases for
ranges of µe values. Take the second row as an example, grouping test cases with µe ∈ [0, 1] for H0

and µe ∈ [−4,−3] for H1 to calculate error rates and draw the ROC curves yields an AUC of 0.922.
Overall, FNR is consistently very low, while the FPR depends on how far µe under H1 lies from zero.
Longer duration of observation I also improves test accuracy.

5 CONCLUSION

We presented the first systematic study of the temporal performance degradation of patched LLMs.
Statistical analysis from large-scale experiments revealed that temporal patching consistently exhibits
predictable performance declines as base LLMs evolve. To proactively manage this degradation in
deployment, our proposed statistical forecasting tools can advise developers on when and whether
patches would fail. Running these tools in simulated PortLLM deployment scenarios demonstrated
that estimation precision improves significantly when the observation duration I exceeds 2–4 time
steps and when using two performance measures per time step. The proposed statistical forecasting
tools can assist downstream developers in making informed technical and business decisions about
patch reuse as base LLMs evolve.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

UpVoteWeb-24-600M, 2024. URL <https://huggingface.co/datasets/OpenCo7/
UpVoteWeb>.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedia.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901, 2020.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3):1–58, 2009.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. TheoremQA: A theorem-driven question answering dataset. In Conference on Empirical
Methods in Natural Language Processing. ACL, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Nations of
the Americas Chapter of the Association for Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Cyprien de Masson D’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. In Advances in Neural Information Processing Systems,
volume 32, 2019.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. In Advances in Neural Information Processing Systems, volume 36, pages
10088–10115, 2023.

Jay L. Devore, Kenneth N. Berk, and Matthew A. Carlton. Point estimation. In Modern Mathematical
Statistics with Applications, pages 397–449. Springer International Publishing, Cham, 2021.

Julian J Faraday. Transformations. In Linear models with R, chapter 7. Chapman & HLL/CRC, New
York, 2005.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):1–37, 2014.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 2024. URL https://zenodo.org/records/12608602.

10

<https://huggingface.co/datasets/OpenCo7/UpVoteWeb>
<https://huggingface.co/datasets/OpenCo7/UpVoteWeb>
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. Advances
in Neural Information Processing Systems, 2021.

Robert V. Hogg, Joseph W. McKean, and Allen T. Craig. Optimal tests for hypotheses. In Introduction
to Mathematical Statistics, chapter 8, pages 469–514. Pearson, 8 edition, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, volume 1, pages 1–20, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora. In
BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language
Models. ACL, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Rana Muhammad Shahroz Khan, Pingzhi Li, Sukwon Yun, Zhenyu Wang, Shahriar Nirjon, Chau-
Wai Wong, and Tianlong Chen. PortLLM: Personalizing evolving large language models with
training-free and portable model patches. In International Conference on Learning Representations,
2025.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arxiv:2308.07317, 2023.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema challenge. In
International Conference on Principles of Knowledge Representation and Reasoning, 2012.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
OpenOrca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/datasets/Open-Orca/OpenOrca, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. In Transactions on Machine Learning Research, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The Flan Collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688, 2023.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to Explain: Multimodal reasoning via thought chains for
science question answering. In Advances in Neural Information Processing Systems, 2022.

11

https://https://huggingface.co/datasets/Open-Orca/OpenOrca
https://https://huggingface.co/datasets/Open-Orca/OpenOrca

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. MathGenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, pages
2732–2747, Bangkok, Thailand, August 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems,
volume 35, pages 27730–27744, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for automatic
evaluation of machine translation. In 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, 2002.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction Tuning
with GPT-4. arXiv preprint arXiv:2304.03277, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics, pages
487–503. Association for Computational Linguistics, April 2021.

Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. Failing loudly: An empirical study
of methods for detecting dataset shift. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An
adversarial Winograd schema challenge at scale. In Communications of the Association for
Computing Machinery, volume 64, pages 99–106. ACM, 2021.

Zhihong Shao, Peiyi Wang, Runxin Xu Qihao Zhu, Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Qingkai Sun, Haolin Qian, Xipeng Qiu, and Xuanjing Huang. LAMOL: LAnguage MOdeling for
lifelong language learning. In International Conference on Learning Representations, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
LLMs. arXiv preprint arXiv:2501.12599, 2025.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. MathCoder: Seamless code integration in LLMs for enhanced
mathematical reasoning. In Twelfth International Conference on Learning Representations, 2024a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating College-Level
Scientific Problem-Solving Abilities of Large Language Models. In International Conference on
Machine Learning, 2024b.

Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean. Characterizing
concept drift. Data Mining and Knowledge Discovery, 30(4):964–994, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pages 24824–24837, 2022.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. ReClor: A reading comprehension dataset
requiring logical reasoning. In International Conference on Learning Representations, 2020.

12

https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). ACL, May 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

4 4.5 5 5.5 6 6.5 7 7.5 8

Timestep

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

B
L

E
U

(a)

4 4.5 5 5.5 6 6.5 7 7.5 8

Timestep

9

10

11

12

13

14

15

16

B
L

E
U

(b)

4 4.5 5 5.5 6 6.5 7 7.5 8

Timestep

10

11

12

13

14

15

16

B
L

E
U

(c)

4 4.5 5 5.5 6 6.5 7 7.5 8

Timestep

10

11

12

13

14

15

16

17

B
L

E
U

(d)

1 2 3 4 5 6 7 8 9 10

Timestep

8

9

10

11

12

13

14

15

B
L

E
U

(e)

Figure 9: Model fitting results using various pretrain data. Linear (solid black lines) and exponential
(dashed blue lines) fits are shown for (a) MathGenie repetition 1, (b) MathGenie repetition 3, (c)
MathGenie repetition 4, (d) MathGenie repetition 5, and (e) Reddit. As in the case of using the Reddit
pretrain dataset, the linear and exponential fits produce similar trends.

A DOWNSTREAM FINETUNING DATASETS

MathGenie (Lu et al., 2024) is a synthetic dataset of verified math problems generated by rephrasing
and validating questions derived from GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). It supports high-quality evaluation of multi-step mathematical reasoning through natural
language explanations.

BoolQ (Clark et al., 2019) is a binary reading comprehension task, consisting of naturally occurring
yes/no questions paired with short passages from Wikipedia.

WinoGrande (Sakaguchi et al., 2021) is a large-scale commonsense reasoning dataset structured
as pronoun resolution problems. It is designed to be more challenging than the original Winograd
Schema Challenge (Levesque et al., 2012), offering high lexical diversity and reduced bias.

ARC-Easy (Clark et al., 2018) is a standardized science Q&A benchmark targeting elementary-
school-level multiple-choice questions, emphasizing recalling science facts and basic reasoning.

B ADDITIONAL RESULTS ON MODEL FITTING

Results for model fitting where the base model is pretrained on the combined time-series dataset are
shown in Figures 9 and 10. It is possible that the temporal variety of pretraining datasets affects the
linearity of the trend. Curve fitting plots for pretraining on the Reddit temporal dataset are shown in
Figures 11, 12, 13, 14, and 15. The model fitting results support the claim that patch performance on
a continuously-updated base model degrades with a predictable trend. In some cases, for example
repetitions 2 and 5 in Figures 15 and 12, a linear trend fits the observations well for all time steps.
In other cases, the performance degrades linearly for the first part of the time series, then plateaus
for later time steps. This case can be observed in repetitions 1 and 3 in Figures 11 and 13. For later
time steps, when most of the nonlinearity occurs, the patch performance has degraded below what is
acceptable for most applications.

The statistical results for model fitting on linear and exponential models where the base model is
pretrained on Reddit data are shown in Table 3. Results for pretraining on various datasets are shown
in Table 4. In most cases, there is statistically significant evidence for rejecting a constant trend in
favor of a more complex model.

C DERIVATION TO OBTAIN CLOSED-FORM SOLUTIONS FOR β̂0 AND β̂1 AND
THEIR VARIANCE

Here, we present the general case where the time steps may not be consecutive integers and there are
nti ≥ 1 available observations at each ti. Let the I available time steps be denoted as {t0, t1, . . . , tI}
and denote the corresponding nti observations at ti as {y(1)ti , y

(2)
ti , . . . , y

(nti
)

ti }. We organize all
variables for β̂ estimation into the matrix–vector form below:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Curve fitting results for patching an evolved base model continually pretrained on the
Reddit temporal dataset. For each test, the null hypothesis (H0) is an intercept model (flat trend).
For each repetition and benchmark, we test against linear and exponential trends (H1). For almost
all benchmarks, the p-values indicate statistically significant evidence against the flat trend. The
exponential fit results are obtained by performing a linear fit on log-transformed response variables.

Benchmark H1 F -statistic p-value Adjusted R2

Repetition 1 ARC (Easy) Linear 23.9 10−4 0.66
Repetition 1 ARC (Easy) Exponential 26.0 10−4 0.68
Repetition 1 BoolQ Linear 10.8 10−2 0.45
Repetition 1 BoolQ Exponential 10.9 10−2 0.45
Repetition 1 MathGenie (patch 1) Linear 12.4 10−3 0.49
Repetition 1 MathGenie (patch 1) Exponential 13.2 10−3 0.51
Repetition 1 MathGenie (patch 2) Linear 23.8 10−4 0.66
Repetition 1 MathGenie (patch 2) Exponential 36.9 10−4 0.75
Repetition 1 WinoGrande Linear 9.0 10−2 0.40
Repetition 1 WinoGrande Exponential 9.6 10−2 0.42
Repetition 2 ARC (Easy) Linear 528.6 10−10 0.98
Repetition 2 ARC (Easy) Exponential 1133.8 10−12 0.99
Repetition 2 BoolQ Linear 709.2 10−11 0.98
Repetition 2 BoolQ Exponential 944.3 10−11 0.99
Repetition 2 MathGenie (patch 1) Linear 118.5 10−7 0.91
Repetition 2 MathGenie (patch 1) Exponential 206.6 10−8 0.94
Repetition 2 MathGenie (patch 2) Linear 39.7 10−4 0.76
Repetition 2 MathGenie (patch 2) Exponential 151.3 10−7 0.93
Repetition 2 WinoGrande Linear 18.4 10−3 0.59
Repetition 2 WinoGrande Exponential 20.8 10−3 0.62
Repetition 3 ARC (Easy) Linear 452.4 10−10 0.97
Repetition 3 ARC (Easy) Exponential 1102.7 10−12 0.99
Repetition 3 BoolQ Linear 6.6 10−2 0.32
Repetition 3 BoolQ Exponential 4.2 10−1 0.21
Repetition 3 MathGenie (patch 1) Linear 347.9 10−9 0.97
Repetition 3 MathGenie (patch 1) Exponential 302.9 10−9 0.96
Repetition 3 MathGenie (patch 2) Linear 34.4 10−4 0.74
Repetition 3 MathGenie (patch 2) Exponential 150.0 10−7 0.93
Repetition 3 WinoGrande Linear 23.4 10−3 0.65
Repetition 3 WinoGrande Exponential 23.4 10−3 0.65
Repetition 4 ARC (Easy) Linear 213.2 10−8 0.95
Repetition 4 ARC (Easy) Exponential 261.7 10−8 0.96
Repetition 4 BoolQ Linear 224.0 10−8 0.95
Repetition 4 BoolQ Exponential 202.6 10−8 0.94
Repetition 4 MathGenie (patch 1) Linear 55.8 10−5 0.82
Repetition 4 MathGenie (patch 1) Exponential 96.8 10−6 0.89
Repetition 4 MathGenie (patch 2) Linear 44.4 10−5 0.78
Repetition 4 MathGenie (patch 2) Exponential 97.4 10−6 0.89
Repetition 4 WinoGrande Linear 33.5 10−4 0.73
Repetition 4 WinoGrande Exponential 39.2 10−4 0.76
Repetition 5 ARC (Easy) Linear 321.2 10−9 0.96
Repetition 5 ARC (Easy) Exponential 335.3 10−9 0.97
Repetition 5 BoolQ Linear 194.7 10−8 0.94
Repetition 5 BoolQ Exponential 189.2 10−8 0.94
Repetition 5 MathGenie (patch 1) Linear 11.2 10−2 0.46
Repetition 5 MathGenie (patch 1) Exponential 17.0 10−3 0.57
Repetition 5 MathGenie (patch 2) Linear 25.3 10−4 0.67
Repetition 5 MathGenie (patch 2) Exponential 24.2 10−4 0.66
Repetition 5 WinoGrande Linear 30.2 10−4 0.71
Repetition 5 WinoGrande Exponential 34.0 10−4 0.73

xti =

[
1
ti

]
∈ R2×1,yti =


y
(1)
ti
...

y
(nti

)
ti

 ∈ Rnt×1, and Xti =

x
⊤
ti
...

x⊤
ti

 ∈ Rnti
×2. (10)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Model fitting statistical results for base models pretrained on the combined time-series
dataset. In each case, the alternative hypothesis H1 is tested against an intercept trend. Only 5 time
steps from t = 4 to t = 8 are available for MathGenie. 16 out of 22 cases are statistically significant
with p-value < 0.05 against the flat trend.

Benchmark H1 F -statistic p-value Adjusted R2

Repetition 1 MathGenie Linear 107.5 10−3 0.96
Repetition 1 MathGenie Exponential 106.2 10−3 0.96
Repetition 3 MathGenie Linear 3.7 10−1 0.41
Repetition 3 MathGenie Exponential 3.4 10−1 0.37
Repetition 4 MathGenie Linear 7.4 10−1 0.61
Repetition 4 MathGenie Exponential 6.9 10−1 0.59
Repetition 5 MathGenie Linear 11.2 10−2 0.72
Repetition 5 MathGenie Exponential 10.9 10−2 0.71
Reddit Linear 4.1 10−1 0.25
Reddit Exponential 3.3 10−1 0.21
Repetition 1 ARC (Easy) Linear 12.3 10−2 0.62
Repetition 1 ARC (Easy) Exponential 12.1 10−2 0.61
Repetition 2 ARC (Easy) Linear 9.9 10−2 0.56
Repetition 2 ARC (Easy) Exponential 9.4 10−2 0.54
Repetition 1 BoolQ Linear 10.6 10−2 0.58
Repetition 1 BoolQ Exponential 10.6 10−2 0.58
Repetition 2 BoolQ Linear 92.2 10−4 0.93
Repetition 2 BoolQ Exponential 93.2 10−4 0.93
Repetition 1 WinoGrande Linear 6.5 10−2 0.44
Repetition 1 WinoGrande Exponential 6.2 10−2 0.43
Repetition 2 WinoGrande Linear 143.6 10−5 0.95
Repetition 2 WinoGrande Exponential 127.0 10−5 0.95

1 2 3 4 5 6 7 8

Timestep

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

A
c

c
u

ra
c

y

(a)

1 2 3 4 5 6 7 8

Timestep

0.88

0.885

0.89

0.895

0.9

0.905

0.91

A
c
c
u

ra
c
y

(b)

1 2 3 4 5 6 7 8

Timestep

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

A
c

c
u

ra
c

y

(c)

1 2 3 4 5 6 7 8

Timestep

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
c

c
u

ra
c

y

(d)

1 2 3 4 5 6 7 8

Timestep

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

A
c

c
u

ra
c

y

(e)

1 2 3 4 5 6 7 8

Timestep

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c

c
u

ra
c

y

(f)

Figure 10: Curve fitting results for linear fit (solid black line) and exponential fit (dashed blue line)
for models pretrained on the time series collection dataset. The two rows show two repetitions, and
the benchmarks are (a) and (d) ARC-Easy, (b) and (e) BoolQ, and (c) and (f) WinoGrande. As for
the evaluations where the Reddit pretrain dataset is used, the linear and exponential curves predict a
similar trend.

Further, we define

X̃T =


Xt0
Xt1

...
XtI

 ∈ RN×2 and ỹT =


yt0
yt1

...
ytI

 ∈ RN×1 (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12

Timestep

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

(a)

0 2 4 6 8 10 12

Timestep

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

A
c
c
u

ra
c
y

(b)

0 2 4 6 8 10 12

Timestep

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

(c)

0 2 4 6 8 10 12

Timestep

9

10

11

12

13

14

15

16

B
L

E
U

(d)

0 2 4 6 8 10 12

Timestep

0

2

4

6

8

10

12

14

16

18

B
L

E
U

(e)

Figure 11: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 1). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

0 2 4 6 8 10 12

Timestep

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

(a)

0 2 4 6 8 10 12

Timestep

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u

ra
c
y

(b)

0 2 4 6 8 10 12

Timestep

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

(c)

0 2 4 6 8 10 12

Timestep

2

4

6

8

10

12

14

16

B
L

E
U

(d)

0 2 4 6 8 10 12

Timestep

0

2

4

6

8

10

12

14

16

18

B
L

E
U

(e)

Figure 12: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 2). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

0 2 4 6 8 10 12

Timestep

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

(a)

0 2 4 6 8 10 12

Timestep

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

(b)

0 2 4 6 8 10 12

Timestep

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

(c)

0 2 4 6 8 10 12

Timestep

0

2

4

6

8

10

12

14

16

18

B
L

E
U

(d)

0 2 4 6 8 10 12

Timestep

-2

0

2

4

6

8

10

12

14

16

18

B
L

E
U

(e)

Figure 13: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 3). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

0 2 4 6 8 10 12

Timestep

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
c
c
u

ra
c
y

(a)

0 2 4 6 8 10 12

Timestep

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c
c
u

ra
c
y

(b)

0 2 4 6 8 10 12

Timestep

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

(c)

0 2 4 6 8 10 12

Timestep

4

6

8

10

12

14

16

B
L

E
U

(d)

0 2 4 6 8 10 12

Timestep

2

4

6

8

10

12

14

16

18

B
L

E
U

(e)

Figure 14: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 4). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

where N =
∑I

t=1 nti . With these definitions, we can write the maximum likelihood solution,

β̂MLE = (X̃⊤
T X̃T)

−1X̃⊤
T ỹT . (12)

Taking a special case of nti = n, ∀i ∈ {0, 1, . . . , I}, we can develop a closed-form solution for β̂. In
this case, X̃⊤

T X̃T can be written as

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12

Timestep

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

A
c

c
u

ra
c

y

(a)

0 2 4 6 8 10 12

Timestep

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

A
c

c
u

ra
c

y

(b)

0 2 4 6 8 10 12

Timestep

4

6

8

10

12

14

16

18

B
L

E
U

(c)

Figure 15: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 5). Benchmarks are (a) BoolQ, (b) WinoGrande, and (c) MathGenie’s patch 2.

X̃⊤
T X̃T =

[∑I
i=0

∑n
j=1 1

∑I
i=0

∑n
j=1 ti∑I

i=0

∑n
j=1 ti

∑I
i=0

∑n
j=1 t

2
i

]
= n(I + 1)

[
1 t̄
t̄ t̃

]
, (13)

where

t̄ =
1

I + 1

I∑
i=0

ti and t̃ =
1

I + 1

I∑
i=0

t2i . (14)

The inverse is given by

(X̃⊤
T X̃T)

−1 =
1

n(I + 1)(t̃− t̄2)

[
t̃ − t̄
−t̄ 1

]
. (15)

Now,
X̃⊤

T ỹT = n(I + 1) [ȳI rI]
⊤ (16)

where

ȳI
def
=

1

N

I∑
i=0

n∑
j=1

y
(j)
ti and (17a)

rI
def
=

1

N

I∑
i=0

n∑
j=1

tiy
(j)
ti . (17b)

Hence, (12) can be simplified to

β̂ =
1

t̃− t̄2

[
t̃ ȳI − t̄ rI
−t̄ ȳI + rI

]
. (18)

Note that in the case ti = i ∀i, t̄ = (I + 1)−1
∑

i i = I/2 and t̃ = (I + 1)−1
∑

i i
2 = I(2I + 1)/6.

In this case, (18) simplifies to

β̂ =
2

I(I + 2)

[
I(2I + 1)ȳI − 3IrI

−3IȳI + 6rI

]
. (19)

With the solution for β̂ formulated, it is instructive to also consider the variance of the estimator. The
variances and covariance for the statistics are

Var(ȳI) =
σ2
ϵ

N
=

σ2
ϵ

n(I + 1)
, (20)

Var(rI) = Var
(1

N

I∑
i=0

n∑
j=1

tiy
(j)
ti

)
=

1

N2

I∑
i=0

n∑
j=1

Var(tiy
(j)
ti) (21)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

=
σ2
ϵn

n2(I + 1)2

I∑
i=0

t2i =
σ2
ϵ t̃

n(I + 1)
= t̃Var(ȳI) (22)

and

Cov(ȳI , rI) =
1

n2(I + 1)2

I∑
i=0

n∑
j=1

tiE[(y(j)ti − E[y(j)ti])2] =
1

n2(I + 1)2

I∑
i=0

n∑
j=1

tiσ
2
ϵ (23)

=
σ2
ϵn

n2(I + 1)2
(I + 1)t̄ =

σ2
ϵ t̄

n(I + 1)
= t̄Var(ȳI). (24)

Note that in the last two equations, we use the independence of the y
(j)
ti and y

(j′)
t′i

observations for all
(i, j) ̸= (i′, j′) to move the variance operator inside of the summation.

The variance of β̂0 in (18) is given by

Var(β̂0) =
1

(t̃− t̄2)2
[t̃2Var(ȳI) + t̄2V ar(rI)− 2t̄ t̃Cov(ȳI, rI)] (25a)

=
1

(t̃− t̄2)2

[
t̃2

σ2
ϵ

n(I + 1)
+ t̃ t̄2

σ2
ϵ

n(I + 1)
− 2t̃ t̄2

σ2
ϵ

n(I + 1)
(25b)

=
σ2
ϵ t̃

n(I + 1)(t̃− t̄2)2
(t̃− t̄2) (25c)

=
t̃

t̃− t̄2
Var(ȳI). (25d)

The variance of β̂1 in (18) is given by

Var(β̂1) =
1

(t̃− t̄2)2
[t̄2Var(ȳI) + V ar(rI)− 2t̄Cov(ȳI, rI)] (26a)

=
1

(t̃− t̄2)2

[
t̄2

σ2
ϵ

n(I + 1)
+ t̃

σ2
ϵ

n(I + 1)
− 2t̄2

σ2
ϵ

n(I + 1)
(26b)

=
σ2
ϵ

n(I + 1)(t̃− t̄2)2
(t̃− t̄2) (26c)

=
1

t̃− t̄2
Var(ȳI). (26d)

In the case ti = i ∀i, t̃− t̄2 = I(I + 2)/12 and

Var(β̂0) =
t̃

t̃− t̄2
Var(ȳI) =

2(2I + 1)

(I + 2)
Var(ȳI) =

2σ2
ϵ (2I + 1)

n(I + 1)(I + 2)
. (27)

Similarly,

Var(β̂1) =
1

t̃− t̄2
Var(ȳI) =

12

I(I + 2)
Var(ȳI) =

12σ2
ϵ

nI(I + 1)(I + 2)
. (28)

From (27) and (28), it can be seen that, as I increases, the variance of β̂0 goes to zero at the rate of
O(I−1), and the variance of β̂1 goes to zero much more quickly at the rate of O(I−3). We expect
estimation accuracy for the rate of degradation, β1, to improve two orders of magnitude faster than for
the theoretical initial performance, β0, as more indicators y(j)ti are observed along the time. Similar
trends hold when ti ̸= i in general, but the variance also depends on the spacing of the time steps.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D FORMULATION OF TEST STATISTIC FOR HYPOTHESIS TESTING

In this section, we use a likelihood ratio to define a test statistic that may be used for hypothesis
testing. We begin by defining regions of β corresponding to each hypothesis. In the case of the
absolute threshold we have

R0 = {(β0, β1) : β0 − g(tm) > ρ} (29)

where β ∈ R0 when the null hypothesis is true and β ∈ R1 = R2\R0 when the alternative hypothesis
is true. To proceed with hypothesis testing, define the likelihood of the observed performance
parameterized by β as

L(β) = p(ỹT ;β) (30)
and the likelihood ratio test

λ =

sup
β:H0

L(β)

sup
β

L(β)

def
=

L(β̂(0))

L(β̂MLE)
, where β̂(0) = argmax

β∈R0

L(β) and β̂MLE = argmax
β∈R2

L(β) (31)

as the ratio of the likelihood parameterized by the best parameters given H0 to the global maximum
of the likelihood function.

The estimate β̂(0) is the results of a constrained optimization problems. For this problem, the
constraint may be active or inactive. If it is active, the constraint holds with equality. If it is inactive,
the optimization result is equivalent to the unconstrained MLE estimation given in (12). In our case,
the constraint (with equality) can be written as [0 − tm] [β0 β1]

⊤
= ρ. Defining,

c
def
= [0 − tm]

⊤ (32)

and
r

def
= ρ (33)

we can write the constraint in terms of the known constants, c and r, as

c⊤β = r, c ∈ R2×1, r ∈ R. (34)

Defining β̂u = β̂MLE as the unconstrained results given in (12), it can be shown that

β̂c = β̂u − e[c⊤(X̃⊤
T X̃T)

−1c]−1(X̃⊤
T X̃T)

−1c, where (35a)

e
def
= c⊤β̂u − r. (35b)

This can be viewed as the unconstrained result, β̂u, plus a correction term dependent on the error
between the unconstrained result and the constraint, e. Because the constraint is c⊤β ≥ r, the
constraint is active when e = c⊤β− r ≤ 0 and if e ≥ 0 we use unconstrained result β̂u and we wish
for the correction term to be zero. Therefore we can consolidate both cases into one equations as

β̂ = β̂u −min(0, e)[c⊤(X̃⊤
T X̃T)

−1c]−1(X̃⊤
T X̃T)

−1c. (36)

With the constrained regression problem solved, we turn to finding a test statistic based on the
likelihood ratio defined in (31). The log-likelihood ratio is given by

lnλ = − 1

2σ2
ϵ

I∑
i=0

n∑
j=1

[
(x⊤

ti β̂
(0) − y

(j)
ti)2 − (x⊤

ti β̂u − y
(j)
ti)2

]
(37)

where we use xti = [1, ti]
⊤ from (10). Expanding the squared terms in (37),

2σ2
ϵ lnλ =

(I∑
i=0

n∑
j=1

2x⊤
tiy

(j)
ti

)(
β̂(0) − β̂u

)
+

I∑
i=0

n∑
j=1

(x⊤
ti β̂u)

2 −
I∑

i=0

n∑
j=1

(x⊤
ti β̂

(0))2 (38)

Note that the left-hand side is an increasing function of λ. From (36),

β̂(0) − β̂u = −min(e, 0)[c⊤(X̃⊤
T X̃T)

−1c]−1(X̃⊤
T X̃T)

−1c. (39)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Further, note that
∑I

i=0

∑n
j=1 2x

⊤
t y

(j)
ti = 2ỹ⊤

T X̃T , so the first term of (38) can be written as

(
β̂(0) − β̂MLE

)(I∑
i=0

n∑
j=1

2x⊤
t y

(j)
ti

)
= −2min(e, 0)[c⊤(X̃⊤

T X̃T)
−1c]−1ỹ⊤

T X̃T (X̃
⊤
T X̃T)

−1c

(40a)

= −2min(e, 0)[c⊤(X̃⊤
T X̃T)

−1c]−1β̂⊤
u c (40b)

The second and third terms in (38) can be written as

I∑
i=0

n∑
j=1

(x⊤
ti β̂u)

2 = β̂⊤
u X̃

⊤
T X̃T β̂u and

I∑
i=0

n∑
j=1

(x⊤
ti β̂

(0))2 = β̂(0)⊤X̃⊤
T X̃T β̂

(0). (41)

From (36),

β̂(0)⊤X̃⊤
T X̃T β̂

(0) = β̂⊤
u X̃

⊤
T X̃T β̂u+min(e, 0)[c⊤(X̃⊤

T X̃T)
−1c]−1c)−1[min(0, e)−2β̂⊤

u c]. (42)

From (39), (41), and (42), (38) can be written as

2σ2
ϵ lnλ = min(0, e)[c⊤(X̃⊤

T X̃T)
−1c]−1

[
−2β̂⊤

u c− (min(0, e)− 2β̂⊤
u c)

]
(43a)

= −(min(e, 0))2[c⊤(X̃⊤
T X̃T)

−1c]−1 (43b)

From (43), we may define a test statistic

z = min(0, e) (44)

as an increasing function of the likelihood ratio. To better understand how to perform tests on z, we
consider the distribution of e, defined in (35b). Note that, using the definitions of c and r in (32) and
(33),

e = −tmβ̂1,MLE − ρ. (45)

The distribution of e is determined by the distribution of β̂1,MLE which is a weighted sum of the
(normally distributed) observations, {y(j)ti }, so e is also Gaussian. In the case of linear regression
where the observations {y(j)ti } are Gaussian and independent, the MLE estimator is equivalent to the
least squares (LS) estimator, which is unbiased. Because the MLE estimator is unbiased, the mean of
e is given by

E[e] = −tmβ1 − ρ
def
= µe (46)

where β1 is the deterministic but unknown true model parameter. The variance of e is given by
t2m Var(β̂1). From (28), when ti = i ∀i this is equivalent to

Var(e) =
12t2mσ2

ϵ

nI(I + 1)(I + 2)

def
= σ2

e . (47)

where σ2
ϵ is the noise variance.

E ADDITIONAL ESTIMATION VALIDATION RESULTS

Here, we show additional estimation validation results. In Figure 16, we plot MSE for t̂∗ρ against ρ.
As in Section 4.4, we find that error is smaller for smaller ρ.

In Figures 17–26, we plot squared estimation error for t∗ρ against varying I and ρ. These results are
the same as in Section 4.4 and Figure 16 except that individual repetitions are shown instead of an
average across repetitions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

5

10

15

20

25

30

35

40

45

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

20

40

60

80

100

120

140

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

10

20

30

40

50

60

70

80

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

14

16

18

20

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

(e)

Figure 16: MSE of estimate for the time at which performance drops below the worst-tolerable
threshold, t̂∗ρ, as a function of the worst-tolerable threshold ρ for maximum available time steps, I .
The curves are averaged across 5 repetitions. The benchmarks are (a) ARC-Easy, (b) BoolQ, (c),
WinoGrande, (d), MathGenie (patch 1), and (e) MathGenie (patch 2). Error increases with increasing
ρ. Larger ρ requires prediction of time steps further in the future, which makes the estimation task
more difficult so that MSE is higher. In general, we expect short-term predictions to be more accurate
than long-term predictions.

2 3 4 5 6 7 8

I

0

2

4

6

8

10

12

14

S
q
u
a
re

d
 E

rr
o
r

(a)

2 3 4 5 6 7 8

I

0

1

2

3

4

5

6

7

S
q
u
a
re

d
 E

rr
o
r

(b)

2 3 4 5 6 7 8

I

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
S

q
u
a
re

d
 E

rr
o
r

(c)

2 3 4 5 6 7 8

I

0

10

20

30

40

50

60

70

S
q
u
a
re

d
 E

rr
o
r

(d)

2 3 4 5 6 7 8

I

0

20

40

60

80

100

120

140

S
q

u
a

re
d

 E
rr

o
r

(e)

Figure 17: Squared error for t∗ρ estimations on ARC-Easy. Five repetitions are shown. Error is
consistently low for ρ = 0.05. For larger ρ, error depends heavily on I . Larger I produces a smaller
variance of the estimator.

2 3 4 5 6 7 8

I

0

50

100

150

200

250

300

S
q

u
a

re
d

 E
rr

o
r

(a)

2 3 4 5 6 7 8

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
q
u
a
re

d
 E

rr
o
r

(b)

2 3 4 5 6 7 8

I

0

2

4

6

8

10

12

14

16

18

S
q
u
a
re

d
 E

rr
o
r

(c)

2 3 4 5 6 7 8

I

0

5

10

15

20

25

30

S
q
u
a
re

d
 E

rr
o
r

(d)

2 3 4 5 6 7 8

I

0

20

40

60

80

100

120

S
q

u
a

re
d

 E
rr

o
r

(e)

Figure 18: Squared error for t∗ρ estimations on BoolQ. Five repetitions are shown.

2 3 4 5 6 7 8

I

0

10

20

30

40

50

60

70

80

S
q
u
a
re

d
 E

rr
o
r

(a)

2 3 4 5 6 7 8

I

0

5

10

15

20

25

30

S
q
u
a
re

d
 E

rr
o
r

(b)

2 3 4 5 6 7 8

I

0

2

4

6

8

10

12

S
q
u
a
re

d
 E

rr
o
r

(c)

2 3 4 5 6 7 8

I

0

10

20

30

40

50

60

S
q
u
a
re

d
 E

rr
o
r

(d)

2 3 4 5 6 7 8

I

0

20

40

60

80

100

120

140

160

180

200

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 19: Squared error for t∗ρ estimations on WinoGrande. Five repetitions are shown.

F FORMULATIONS FOR THE ABSOLUTE PERFORMANCE THRESHOLD, γ

Here, we provide formulations for an estimation framework when the worst-tolerable threshold is
the absolute threshold, γ, defined in (1). Here, the time we seek to estimate, t∗γ , depends on both
the theoretical ground-truth performance at t = 0, β0, and the slope of performance degradation, β1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8

I

0

10

20

30

40

50

60

S
q
u
a
re

d
 E

rr
o
r

(a)

2 3 4 5 6 7 8

I

0

1

2

3

4

5

6

S
q
u
a
re

d
 E

rr
o
r

(b)

2 3 4 5 6 7 8

I

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
q
u
a
re

d
 E

rr
o
r

(c)

2 3 4 5 6 7 8

I

0

5

10

15

S
q
u
a
re

d
 E

rr
o
r

(d)

2 3 4 5 6 7 8

I

0

5

10

15

20

25

30

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 20: Squared error for t∗ρ estimations on MathGenie patch 1. Five repetitions are shown.

2 3 4 5 6 7 8

I

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
q
u
a
re

d
 E

rr
o
r

(a)

2 3 4 5 6 7 8

I

0

1

2

3

4

5

6

7

8

9

S
q
u
a
re

d
 E

rr
o
r

(b)

2 3 4 5 6 7 8

I

0

1

2

3

4

5

6

S
q
u
a
re

d
 E

rr
o
r

(c)

2 3 4 5 6 7 8

I

0

2

4

6

8

10

12

S
q
u
a
re

d
 E

rr
o
r

(d)

2 3 4 5 6 7 8

I

0

5

10

15

20

25

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 21: Squared error for t∗ρ estimations on MathGenie patch 2. Five repetitions are shown.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

S
q

u
a

re
d

 E
rr

o
r

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

S
q

u
a

re
d

 E
rr

o
r

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

30

35

40

45

50

S
q

u
a

re
d

 E
rr

o
r

(c)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

60

80

100

120

140

160

180

200

S
q

u
a

re
d

 E
rr

o
r

(d)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300

350

400

S
q

u
a

re
d

 E
rr

o
r

(e)

Figure 22: Squared error for t∗ρ estimations on ARC-Easy. Five repetitions are shown.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

100

200

300

400

500

600

700

800

S
q
u
a
re

d
 E

rr
o
r

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35

40

S
q
u
a
re

d
 E

rr
o
r

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

S
q
u
a
re

d
 E

rr
o
r

(c)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

250

S
q
u
a
re

d
 E

rr
o
r

(d)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

250

300

350

400

450

500

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 23: Squared error for t∗ρ estimations on BoolQ. Five repetitions are shown.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

60

80

100

120

140

S
q
u
a
re

d
 E

rr
o
r

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

S
q
u
a
re

d
 E

rr
o
r

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

30

35

40

45

50

S
q
u
a
re

d
 E

rr
o
r

(c)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

60

80

100

120

140

S
q
u
a
re

d
 E

rr
o
r

(d)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300

350

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 24: Squared error for t∗ρ estimations on WinoGrande. Five repetitions are shown.

Namely,

t∗γ = g−1(γ) =
γ − β0

β1
(48)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

S
q

u
a

re
d

 E
rr

o
r

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

S
q
u
a
re

d
 E

rr
o
r

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

S
q
u
a
re

d
 E

rr
o
r

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

S
q
u
a
re

d
 E

rr
o
r

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 25: Squared error for t∗ρ estimations on MathGenie patch 1. Five repetitions are shown.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

S
q
u
a
re

d
 E

rr
o
r

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

S
q
u
a
re

d
 E

rr
o
r

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

S
q
u
a
re

d
 E

rr
o
r

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

S
q
u
a
re

d
 E

rr
o
r

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50

S
q
u
a
re

d
 E

rr
o
r

(e)

Figure 26: Squared error for t∗ρ estimations on MathGenie patch 2. Five repetitions are shown.

We begin by showing the estimators for β0 and β1, then use those estimators to estimate t∗γ . It can be
shown that the maximum likelihood estimator (MLE) for the theoretical initial performance β0 and
the rate of performance degradation β1, assuming nti = n for all i, are[

β̂0

β̂1

]
=

1

t̃− t̄2

[
t̃ȳI − t̄rI
−t̄ȳI + rI

]
(49)

where ȳI =
∑I

i=0

∑n
j=1 y

(j)
ti

/
N , rI =

∑I
i=0

∑n
j=1 ti y

(j)
ti

/
N , N =

∑I
i=0 nti , t̄ =

∑I
i=0 ti

/
(I +

1), and t̃ =
∑I

i=0 t
2
i

/
(I + 1). We provide the detailed steps to obtain (49) in Appendix C. By the

MLE invariance principle (Devore et al., 2021), we can write the MLE estimator for t∗γ in terms of
the MLE estimators for the model parameters, β1 and β0, as

t̂∗γ = (γ − β̂0)/β̂1. (50)

In Appendix C, we show that,

Var(β̂1) =
12σ2

ϵ

nI(I + 1)(I + 2)
and Var(β̂0) =

2σ2
ϵ (2I + 1)

n(I + 1)(I + 2)
(51)

when ti = i ∀i. Hence, we expect the variance of t̂∗γ to decrease as I increases.

G VARYING PRETRAIN DATASET SIZES

We study the impact of the density of the pretrain datasets on downstream task performance. Theoret-
ical analysis indicates that our algorithms will not be substantially affected by variable dataset size.
Consider two datasets from the same temporal period which may be used for the same base model
update: Dsmall has 20k tokens and Dlarge has 200k tokens. Because they are based in the same time
period, both datasets will be drawn from the same distribution and are expected to produce the same
gradient descent directions. Formally, we write

E[G(Dsmall)] = E[G(Dlarge)], Var(G
(
Dsmall)

)
> Var(G

(
Dlarge)

)
. (52)

where G(D) returns the normalized gradient updates from dataset D. This analysis indicates that,
while increasing the dataset size reduces the variance of the gradient updates, it does not affect the
optimization landscape substantially, hence patch degradation is not substantially affected.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Downstream scores with base vs. dense datasets at t = 3, 6, 9. Differences were not
statistically significant (p > 0.05 in all cases; p > 0.1 in 10/12)

Task Timesteps Base/Dense Diff p-Value

t = 3 t = 4 (base) t = 4 (dense)

Math Genie 7.367 6.613 5.896 -0.717 0.744
BoolQ 0.856 0.85 0.869 0.019 0.254
Arc-Easy 0.703 0.675 0.675 0.00 0.995
WinoGrande 0.5865 0.577 0.685 0.108 0.068

t = 6 t = 7 (base) t = 7 (dense)

Math Genie 4.794 4.635 4.555 -0.08 0.933
BoolQ 0.834 0.824 0.845 0.021 0.435
Arc-Easy 0.637 0.627 0.657 0.030 0.729
WinoGrande 0.575 0.568 0.639 0.071 0.063

t = 9 t = 10 (base) t = 10 (dense)

Math Genie 3.938 3.518 3.375 -0.143 0.847
BoolQ 0.817 0.806 0.831 0.025 0.428
Arc-Easy 0.607 0.592 0.624 0.032 0.554
WinoGrande 0.556 0.572 0.610 0.038 0.195

To test this hypothesis, we increased the dataset size from 20 million tokens to 100 million tokens at
t = 3, t = 6, and t = 9. We drew each dataset from a 2-week period in UpVoteWeb (UpV, 2024).
In Table 5, we report the average downstream evaluation results across two repetitions for before
training, after training with the base dataset, and after training with the dense dataset. To test the
statistical significance of the difference in downstream evaluation results on the two dataset densities,
we performed t-tests and report p-values. We do not observe a statistically significant difference
between the base and dense dataset results. The p-value is greater than 0.05 in all cases and greater
than 0.1 in 10 out of 12 cases.

H ADDITIONAL BENCHMARKS

Figure 27 presents PortLLM-style patch results on two additional benchmarks: WinoGrande and
ARC-Easy. Both tasks display clear degradation trends over time, reinforcing our core finding that
patch misalignment increases with continual pretraining of the base model. On WinoGrande, the
fixed patch degrades rapidly and eventually underperforms even the unpatched base model. This
suggests that for sensitive commonsense reasoning tasks, static patches can be actively detrimental,
worsening performance compared to not patching at all. The result highlights a cautionary implication
of relying on frozen patches strategies in domains that are especially brittle to representation drift. On
ARC-Easy, static patching and periodic patching closely follow the trend of the evolving base model.
However, periodic patching performs inconsistently, sometimes performing worse than fixed patching.
We attribute this to the limited size of ARC-Easy’s training split, which makes it prone to overfitting.
Unlike the initial t0 patch, which benefits from a more generalizable optimization trajectory, periodic
patches are retrained on narrow snapshots of data without retuning hyperparameters. While tuning
could improve periodic patch performance, it would incur significant computational overhead and
cause unfair comparison between patches. Together, these results further underscore the practical
need for adaptive monitoring and estimation strategies. Reliance on manual refresh intervals or
naive reuse of PortLLM-style patches may fail silently or introduce instability in tasks with limited
supervision or high sensitivity.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

t0 1/15 2/12 3/11 4/08 5/06 6/03
45

50

55

60

65

70

75

WinoGrande

Timestep

A
cc

ur
ac

y
(%

)

t0-Patching (PortLLM) No Patching Periodic Patch Regeneration

t0 1/15 2/12 3/11 4/08 5/06 6/03
40
45
50
55
60
65
70
75
80

ARC-Easy

Timestep

A
cc

ur
ac

y
(%

)

Figure 27: PortLLM patching performance (blue “◦”) for WinoGrande and ARC-Easy over 13
temporal checkpoints continually pretrained on the Reddit dataset. While PortLLM patching initially
outperforms the no-patching baseline (black “⋄”) as in Khan et al. (2025), our experiments reveal
that its performance degrades steadily over time (Section 3). On WinoGrande, periodic patching
(gray “□”) improves performance at each refresh point. However, for ARC-Easy, periodic patching
provides limited gains and occasionally underperforms fixed patching, suggesting sensitivity to task-
specific data scarcity or overfitting. Error bars denote the standard deviation across 5 independent
repetitions of continually pretrained base models. Forecasting methods (Section 4) may enable more
efficient adaptation decisions by anticipating when patch failure occurs.

I STRUCTURED/COMBINED TIME-SERIES DATASET

To assess patch robustness across varied continual pretraining sources, we performed additional
experiments using a collection of independent datasets structured into a time series. Each dataset
or subset represents a temporally distinct pretraining phase, simulating the evolving corpora often
encountered in production-scale LLM training pipelines. The datasets are ordered as follows:
OpenOrca (Lian et al., 2023) is a large-scale, augmented version of the FLAN Collection (Longpre
et al., 2023). It contains approximately 1 million GPT-4 completions and 3.2 million GPT-3.5
completions. OpenPlatypus (Lee et al., 2023) is a reasoning-focused dataset which aggregates
multiple logical and scientific reasoning benchmarks such as PRM800K (Lightman et al., 2023),
MATH (Hendrycks et al., 2021), ScienceQA (Lu et al., 2022), SciBench (Wang et al., 2024b),
ReClor (Yu et al., 2020), and TheoremQA (Chen et al., 2023), applying similarity filtering for
question diversity. Math Genie (Lu et al., 2024) is a synthetic dataset of verified math problems
generated by rephrasing and validating questions derived from GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). Alpaca-GPT (Peng et al., 2023) is an instruction-following dataset
generated by GPT-4 using the original Alpaca prompts (Taori et al., 2023), maintaining the Alpaca
format but improving response quality through higher-capability completions. Cosmopedia (Ben Allal
et al., 2024) is a synthetic dataset of textbook-style and web-derived documents generated by Mixtral-
8x7B-Instruct-v0.1 (Jiang et al., 2024). It contains over 30 million files and 25 billion tokens
spanning topics such as math, science, storytelling, and general knowledge. We used three subsets
from Cosmopedia: Khan Academy, WikiHow, and OpenStax.

Figure 28 shows patch performance across four benchmarks under temporally structured pretraining
sources. These results emphasize the important role of optimization landscape alignment for effective
patch transfer. In general, applying a fixed patch from t = 0 leads to consistent degradation over
time. However, when the patch and continual pretraining data become aligned, as in MathGenie,
performance improves rather than degrades, indicating that landscape compatibility can enhance
generalization even without retraining. In contrast, BoolQ, WinoGrande, ARC-Easy exhibit steady
performance decay, consistent with our findings in Section 3.2 that attribute degradation to increasing
misalignment between the patch and the evolving base model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

t0 1 2 3 4 5 6 7

0

5

10

15

20

MathGenie

Timestep

B
L

E
U

Sc
or

e

t0-Patching (PortLLM) No Patching

t0 1 2 3 4 5 6 7

80

85

90

BoolQ

Timestep
A

cc
ur

ac
y

(%
)

t0 1 2 3 4 5 6 7

55

60

65

70

75

WinoGrande

Timestep

A
cc

ur
ac

y
(%

)

t0 1 2 3 4 5 6 7
70

75

80

85

ARC-Easy

Timestep

A
cc

ur
ac

y
(%

)

Figure 28: Patch effectiveness across independent pretraining phases structured as a synthetic time
series. We evaluate PortLLM-style patch robustness under continual pretraining using 7 distinct
datasets: OpenOrca, OpenPlatypus, MathGenie, AlpacaGPT and three subsets from Cosmopedia
(Khan Academy, WikiHow and OpenStax). Each dataset represents a temporally isolated pretraining
phase, simulating evolving corpora in real-world LLM deployments. As shown, fixed patches trained
at t = 0 degrade predictably as the base LLM evolves, despite task and architecture remaining
constant. But when the patch and base LLM become well-aligned (e.g., MathGenie on MathGenie),
patch performance improves over time. Together, these trends highlight the impact of pretraining
drift on patch viability and support the hypothesis that degradation arises from misalignment of
optimization landscapes.

27

	Introduction
	Related Work
	Large-Scale Experimental Study and Evidence of Degradation
	Datasets and Experimental Conditions
	Evidence of Patching Degradation Over Time in Large-Scale Experiments
	Time Series Analysis and Detection of Patch Performance Degradation

	Proposed Degradation Forecasting Algorithms
	Assumptions and Definitions
	Parameter Estimation Formulation
	Hypothesis Testing Formulation
	Experimental Validation of the Effectiveness of Proposed Algorithms

	Conclusion
	Downstream Finetuning Datasets
	Additional Results on Model Fitting
	Derivation to Obtain Closed-Form Solutions for 0 and 1 and Their Variance
	Formulation of Test Statistic for Hypothesis Testing
	Additional Estimation Validation Results
	Formulations for the Absolute Performance Threshold,
	Varying Pretrain Dataset Sizes
	Additional Benchmarks
	Structured/Combined Time-Series Dataset

