Under review as a conference paper at ICLR 2026

How LoNG DO MODEL PATCHES LAST? A TEMPORAL
PERSPECTIVE ON PORTLLM

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) undergo regular updates through continual
pretraining, the temporal reliability of downstream fine-tuning methods becomes
increasingly important. Parameter-efficient methods, such as low-rank adapta-
tion (LoRA), offer scalable solutions for task adaptations without requiring full
LLM retraining. More recently, PortLLM has been proposed as a training-free
patching mechanism that permits patch reuse over consecutive LLM releases.
Although these training-free methods are appealing when full fine-tuning is im-
practical, their temporal reliability remains underexplored. Using PortLLM-style
patches as a baseline approach, we conduct large-scale experiments and found
that PortLLM patching exhibits a statistically significant performance decline over
time, even when the task and neural architecture remain unchanged. Our findings
reveal that patch performance degradation is a general and measurable risk when
PortLLM is applied over an extended period. The statistical observation of the
declining performance trends forms the foundation for our proposed forecasting
algorithms, which estimate failure dates and test hypotheses about target-date
performance failures. These forecasting algorithms rely on historical performance
indicators without requiring downstream fine-tuning or access to original training
data. Our framework enables downstream developers to anticipate failure and make
informed decisions about when retraining is necessary, thereby supporting reliable
and cost-effective LLM maintenance.

1 INTRODUCTION

Large language models (LLMs) have achieved strong performance across many tasks, including
language (Brown et al.| 2020; Liang et al.| 2023, math (Shao et al.,|[2024; |Wang et al.,[2024a)), and
reasoning (DeepSeek-Al, 2025 |Wei et al., [2022; Team et al., [2025). Frequently updated LLMs incur
significant retraining costs, posing challenges for downstream developers seeking to adapt LLMs
to specific tasks. To reduce the retraining costs, a growing body of work has explored lightweight
fine-tuning/personalization methods (Hu et al., 2022; |Khan et al.,2025; Houlsby et al., 2019; Zaken
et al., [2022)) that inject task-specific knowledge into LLMs without full retraining of base models.
Among them, PortLLM (Khan et al.l [2025) proposes a data- and training-free patching method
for portability of patches across temporally evolved LLMs. PortLLM’s patching achieves strong
task performance in short-term transfer to successive LLM base-model releases without retraining.
However, the long-term reliability of patching has not been systematically studied, potentially leaving
developers reliant on downstream patched models that silently degrade. In this work, we use PortLLM
as a baseline to explore the temporal reliability of patched LLMs by posing an open question: How
long can PortLLM patching remain effective as the base model evolves?

Figure [I)illustrates a PortLLM deployment scenario over an extended period of time, and typical
questions being asked concerning patching performance degradation. An upstream LLM vendor
periodically (e.g., quarterly) releases an updated base model through continual pretraining. A
downstream developer fine-tunes the initial base model 6 and generates a PortLLM-style patch Afy.
Due to cost or data limitations, the same patch is applied to subsequent base model releases 61, 02,
and 63 without retraining. Over time, task performance mildly degrades. This raises two research
questions (RQs) motivated by practical deployment: (RQ1) From the developer’s perspective, when
will patching performance fall below a threshold (red dashed line)? (RQ2) From the business
planning standpoint, will computing resources be required or not by a future date (blue dashed line)

Under review as a conference paper at ICLR 2026

DF‘.’nWe”fﬁ'f.ﬁ? Continual Pretraining (by LLM vendor)
60 01 02 03 04 65 66 67
‘ Applying tg-Patch (by downstream developer)

[80 + ABQ] [61 + ABQ] oo [86 + ABQ] [67 + ABQ]
([] Observed Forecasted , Time

. Threshold

RQ2 (Finance Manager):
T Will cloud credits
o be required by tg?

[]
. 4
Current Time
L ¥

Performance Threshold
RQ1 (ML Engineer):
When will performance
drop below this line?

Performance Indicator SN2EMOG

to t1 t2 t3 tq ts te t7

Figure 1: Overview of PortLLM deployment over an extended period of time and patch degradation
forecasting. A downstream developer applies a patch Afy trained at ¢y to a continually evolved
base model Af;, i > 1, provided by an LLM vendor. As updates progress, the task performance
of models Af; + Afy degrades. Our forecasting algorithms use observed degradation trends to
estimate future performance (shaded region) and answer two critical deployment questions of when
and whether PortLLM patching will fail. Our framework enables proactive, cost-aware adaptation
decisions without requiring retraining at every base model release.

for retrainingﬂ Answering these questions requires modeling how patching performance changes
over time and developing algorithms to forecast future performance based on observed trends.

Our work presents the first systematic study of temporal degradation in patched LLMs. We conduct
extensive experiments on the Math Genie (Lu et al., 2024), BoolQ (Clark et al.l [2019), ARC-
Easy (Clark et al., 2018)), and WinoGrande (Sakaguchi et al.| 2021)) datasets using LLMs such
as Mistral-7B (Jiang et al.| 2023). We track PortLLM-style patched model performance across
successive base model updates and statistically quantify the rate and structure of degradation driven
by patch misalignment resulting from continual pretraining. We model these patterns as a time series
and propose statistical estimation and hypothesis testing algorithms to predict when and whether a
patch will fail in deployment settings, respectively. Our contributions are threefold:

1. We conduct the first large-scale experimental evaluations on the temporal reliability of patched
LLMs evolved via continual pretraining. While PortLLM (Khan et al.| [2025) conducted a feasibil-
ity study of temporal patch portability, we provide statistically significant evidence that gradual
performance decline occurs over time, even when tasks and architectures remain unchanged.

2. We perform statistical analysis of patching performance trends across model updates, quantifying
the gradual degradation process. Building on these empirical observations, we develop a time
series modeling framework that characterizes patching performance as a structured temporal
process. This formalizes degradation dynamics as a measurable property and provides the basis
for forecasting when adaptations are likely to fail.

3. Built on the modeling of degraded trends, we introduce lightweight, mathematically grounded
algorithms for (i) failure date estimation and (ii) target date hypothesis testing to detect patch
failure. Their principled monitoring of the temporal reliability of patched LLMs advises when or
whether to retrain, without requiring retraining at every base model release.

2 RELATED WORK

Parameter-Efficient Personalization. LL.Ms have achieved strong generalizability through scal-
ing (Kaplan et al., [2020)), instruction tuning (Ouyang et al., 2022), and reinforcement learning
from human feedback (Christiano et al., 2017), enabling extensive applicability across diverse tasks.
Continual learning research (de Masson D’ Autume et al., [2019; Sun et al., [2020) and continual

'Retraining consumes computational resources, diverts engineers from other tasks, and may require domain-
specific data that may be no longer available after a period of time. Forecasting the need for retraining enables
teams to plan data access and allocate developer resources effectively, even if compute is not the primary concern.

Under review as a conference paper at ICLR 2026

pretraining studies (Jin et al.,[2022) have further highlighted challenges arising from evolving cor-
pora and distributional drift, primarily focusing on full-model adaptation across sequential tasks
or datasets. While these advances enable broad task applicability, efficiently adapting models to
specific domains or applications remains an open challenge. Parameter-efficient fine-tuning (PEFT)
methods provide scalable alternatives to full-model adaptation by updating only a small subset of
parameters. Low-rank adaptation (LoRA) (Hu et al.| [2022), QLoRA (Dettmers et al., 2023)), and
related techniques use low-rank updating matrices to enable efficient adaptation. Adapter-based
methods (Houlsby et al.l 2019; Pfeiffer et al.| 2021) insert task-specific bottleneck layers that allow
for modularity and reuse. PortLLLM (Khan et al.| 2025) extends this line of research by injecting
task-related patches into evolved base models without additional training. While these methods have
demonstrated strong performance when evaluated on patched base models that evolved for a short
duration, their effectiveness under extended, continually pretrained base models remains largely
unevaluated. Our work studies the behavior of task-specific adaptations across many sequential LLM
updates, focusing on whether PortLLLM patches remain effective as the base model evolves.

Drift Modeling and Temporal Analysis. Performance degradation over time has been studied in
several domains through the lens of drift detection and anomaly analysis. Classical work on concept
drift (Gama et al.l 2014) and unsupervised anomaly detection (Chandola et al., |2009) provides
statistical tools for identifying failure trends in evolving systems. More recent efforts in dataset
shift detection (Rabanser et al.,[2019)) and concept drift characterization (Webb et al.| 2016) extend
these ideas to machine learning. These methods focus on evolving input distributions, whereas our
setting concerns parameter drift—continual pretraining shifts the base model so that a static PortLLM
patch gradually misaligns, even under fixed tasks and inputs. This patch-based misalignment creates
a qualitatively distinct failure mode as developers may unknowingly rely on patches that silently
degrade. Our work innovatively applies temporal techniques to address the performance degradation
observed in our large-scale experimental evaluations.

3 LARGE-SCALE EXPERIMENTAL STUDY AND EVIDENCE OF DEGRADATION

We aim to provide empirical grounding for whether the PortLLM patching method can maintain
long-term utility. We specifically investigate the performance of applying the same PortLLM patch
over time as the base model evolves through continual pretraining. We conduct multiple independent
repetitions of continual pretraining to ensure that the results are statistically significant.

3.1 DATASETS AND EXPERIMENTAL CONDITIONS

Datasets. We evaluate patching performance on four benchmarks spanning mathematical reason-
ing, reading comprehension, and commonsense inference, namely, MathGenie (Lu et al.| [2024]),
BoolQ (Clark et al., 2019), WinoGrande (Sakaguchi et al., 2021), and ARC-Easy (Clark et al., [2018)
(see Appendix [A|for more details). Continual pretraining is performed on UpVoteWeb (UpV|2024),
a filtered Reddit corpus that reflects evolving internet discourse and is a minutiae proxy for web-scale
mega-datasets curated for continual pretraining of base LLMs in production settings. Additional
experiments were performed on a broader collection of datasets structured into a time series (see
Appendix[l) to ensure generality across pretraining sources. Pretraining on this broader collection
introduces substantial distributional shifts across time steps, allowing us to model the temporal
evolution of data even more radically than typically observed in real-world scenarios.

Evolution of LLM’s Model Parameters. We simulate real-world evolution of LLMs by continually
pretraining a base model in successive stages and tracking performance of LLM-patches over time.
Specifically, we pretrain Mistral-7B (Jiang et al.,2023) on UpVoteWeb in 12 chronological two-week-
long segmentsﬂ yielding 13 model versions spanning five months. A single PortLLM patch A# is
trained at timestep ¢ = 0 and applied via addition in parameter space to all evolved base models 6, at
t € {1,...,12}. This will isolate the effect of misalignment between a PortLLM-style patch and the
base model, while keeping task, architecture, and patching procedure unchanged.

Reproducibility. Repetitions. All evaluations of PortLLM’s patching degradation are repeated over
5 independent continual pretraining repetitions to ensure statistical confidence. Experiments were

2We divided UpVoteWeb into equal token count segments. Appendix@ shows that varying segment density
yields similar degradation trends, indicating that our results are not sensitive to this choice.

Under review as a conference paper at ICLR 2026

o Observed data

| 14 l—y = 10.509 — 0.501¢|
-y = 2,321 005

90 |-
S S——
go|
75 |-
70 |-
65 |-
60 |-
55 |-

BLEU

BLEU Score
Accuracy (%)

« Observed data
—y = 0.901 — 0.005¢
- -y = —0.104e 000

2 0 2

Timestep

MathGenie

BoolQ |

50 | | | | |
to 1/15 2/12 3/11 4/08 5/06 6/03 to 1/15 2/12 3/11 4/08 5/06 6/03

Accuracy

Timestep Timestep

—6— to-Patching (PortLLM) —&— No Patching —F— Periodic Patch Regeneration

Figure 2: PortLLM patching performance (blue “o”) for MathGenie and BoolQ over 13 temporal
checkpoints continually pretrained on the Reddit dataset. PortLLM patching outperforms the no-
patching baseline (black “¢”) by a significant margin (as in|Khan et al.|(2025))), while our experiments
reveal that its performance degrades steadily over time (Section [3). Error bars denote the standard
deviation across 5 independent repetitions of continually pretrained base models. The two example
plots on the side for MathGenie and BoolQ show linear and exponential curve fitting results for the
PortLLM patching performance of a single repetition. Finally, periodic patching (gray “[J”) at every
four time steps can boost performance at each refreshing step, but it may not be cost-effective if the
downstream developer can predict when PortLLM patching fails (Section E[)

repeated with unique random seeds. Exact seeds and configuration files will be released with the
codebase. Compute. All experiments were run on Nvidia A100 GPUs (40GB). Each continual
pretraining timestep was distributed across 8 GPUs and took approximately 2 wall-clock hours.
LoRA-based patch fine-tuning at each checkpoint required 15—45 minutes, depending on the task.
LoRA Configuration. For continual pretraining of base models, we applied LoRA with » = 64 and
o = 128 to all attention submodules (i.e., query, key, value, output projection) and feed-forward
layers (i.e., up, down, and gate projections, where applicable). For downstream fine-tuning, we used
a LoRA with » = 8 and o = 16 targeting the same set of LLM modules.

Metrics. We adopt the same evaluation metrics across all temporal checkpoints to ensure fair
comparisons. All tasks are evaluated using the LM-Eval-Harness framework (Gao et al.||2024) with
standardized decoding and scoring procedures. For MathGenie, we report the BLEU score (Papineni
et al., |2002) to measure the structural fidelity of generated math explanations. While absolute
correctness is difficult to verify at scale, BLEU provides a stable approximation of answer coherence.
Following established evaluation conventions, we report test accuracy as the primary metric for BoolQ,
ARC-Easy, and WinoGrande. These metrics enable us to track PortLLM’s patching performance as
the base model evolves.

3.2 EVIDENCE OF PATCHING DEGRADATION OVER TIME IN LARGE-SCALE EXPERIMENTS

We experimentally evaluate how PortLL.M’s patching strategy performs as the base model evolves
through continual pretraining. The two larger plots in Figure [2] present results on MathGenie and
BoolQ across 13 successive model checkpoints. A patch trained at timestep ¢ = 0 (blue line with “0”)
initially provides substantial gains over the no-patching baseline (black line with “¢””). However, its
effectiveness declines steadily with additional base model updates. Statistical analysis in Section[3.3|
further supports this observation: Linear and exponential decaying trends significantly outperform
constant/no trend across all benchmarks. While Figure 2] presents results on MathGenie and BoolQ,
we observe similar patterns on WinoGrande and ARC-Easy in Appendix [H| Despite differences in
domain and problem characteristics, all benchmarks reveal that the benefit of ¢y-patching erodes
predictably as the base model evolves. This evidence across diverse datasets augments the preliminary
finding from PortLLM (Khan et al.| [2025), providing the first systematic experimental evidence that
temporal degradation is not task-specific, but a broader limitation of the #y-patching strategy applied
to the continually evolving base LLMs.

Under review as a conference paper at ICLR 2026

We attribute the observed performance decline to the misalignment of the evolved base LLMs with the
to-patch. From an optimization perspective, continual pretraining modifies the optimization landscape
such that the descent direction guided by the ¢y-patch may no longer align with the new optimal
descent direction in the optimization landscape of the evolved base LLM. Long-term evolutions of
the base LLM can alter the optimization trajectory even more, resulting in much weaker adaptations.

Our experimental observation motivates the development of adaptation strategies that explicitly
account for temporal degradation. The gray curves with “CJ” in Figure [2] show the PortLLM per-
formance when patches are retained every 4 time steps for restoring alignment. While this tactic
of periodic patch regeneration can mitigate temporal degradation, it requires significant time and
monetary overhead for medium-term deployment if regeneration is performed more frequently than
necessary. Furthermore, it requires continual access to domain-specific data for patch retraining.
Section [will present forecasting algorithms that indicate when intervention is necessary.

3.3 TIME SERIES ANALYSIS AND DETECTION OF PATCH PERFORMANCE DEGRADATION

The two example scatter plots in the right panel of Figure 2] confirm that the performance of
PortLLM patching slowly degrades temporally. Both plots show observed data points (scatter
points), a linear curve fit (solid line), and an exponential curve fit (dashed line). We selected
linear and exponential parametric models based on our observation of the data that performance
degradation is generally consistent without abrupt jumps. The exponential curves are obtained by
performing a linear fit on log-transformed response variables (Faraday, |2005). The BoolQ data
points shown in Figure [2] aligns closely with a linear model, whereas MathGenie shows greater
variation but still follows the same slow decline. This supports modeling degradation with lin-
ear/exponential parametric trends. The use of a parametric model is further supported by the
remaining curve fitting plots shown in Figures[I0]to[I5]of Appendix [B] Tables [3]and] of Appendix[B]
further provide detailed statistical results for testing a linear/exponential trend of patching perfor-
mance against an intercept/constant performance. The p-values in Table [3) which shows results
for pretraining on the Reddit dataset, provide statistically significant evidence with p-value < 0.05
against an intercept model in 49 out of 50 tests. The evidence in Table [which shows results
for pretraining on the combined time-series dataset, is statistically significant in 16 out of 22 tests.
The combined time-series dataset introduces stronger tem-
poral distributional shifts than typical in practice, yet
we still see statistical significance, indicating our models
may remain robust under realistic temporal drift. For the
time ranges where the model performance should be high
enough to be practically useful, linear trends sufficiently
model the data for the algorithms in Section]

—True model g(t)
e Observed data points
O Future data points

Bo~_®

Slope 81

Performance
| Thresholds:
r p (relative)
-y (absolute)l

4 PROPOSED DEGRADATION FORECASTING
ALGORITHMS

PortLLM's Performance Indicator, ¥t

To identify an LLM’s downstream retraining needs, we P
propose two forecasting algorithms to facilitate techni- 0
cal and business planning, respectively. First, we use a

parameter estimation to identify the time when the perfor-
mance drops below a worst-tolerable threshold. Next, we
use hypothesis testing to predict whether the performance
at a future time will still be acceptable. We validate the
effectiveness of our proposed forecasting algorithms via
extensive training on various LLM benchmark datasets.

4.1 ASSUMPTIONS AND DEFINITIONS

To facilitate the presentation of the proposed performance
forecasting algorithms, we begin by mathematically mod-
eling the time series for LLM-patching performance with
assumptions justified by the statistical observations in Sec-

Figure 3: Illustration of the idea of
the forecasting algorithm for the worst-
tolerable performance thresholds, p
and v. Ground-truth model g(t) =
Bo + B1t is shown by the solid line. The
scatter points represent observed per-
formance indicators of the ground-truth
model corrupted by noise. The thresh-
olds p and ~y of worst-tolerable perfor-
mance are described by the dotted lines.
The times at which performance drops
below these thresholds, t; and tf/, are
denoted by dashed lines.

Under review as a conference paper at ICLR 2026

tion[3.3] Figure 3] shows in circles the temporal performance indicators y; associated with down-
stream task, with empty circles denoting future data points. We assume per the statistical evidence
in Section [3.3] that the data points are observations from a linear statistical model with a regression
function/ground-truth model g(t) = By + [1t represented by the solid line, corrupted by additive
white Gaussian noise (AWGN) ¢; with variance 062. Here, (3 is the intercept denoting the theoretical
performance at ¢ = 0 and /3; is the slope denoting the rate of change of the performance. This
linear statistical model captures the overall trend of the gradual performance degradation and the
fluctuations caused by various random factors as observed in Section [3.3]

Downstream developers wishing to forecast future performance may have predefined standards for
acceptable performance. We formalize these standards as thresholds that are used in formulation of
our algorithms. The horizontal dashed lines in Figure 3 represent two ways in which the thresholds
may be defined to accommodate different forecasting needs. In the first case of the dashed line
located p below the theoretical performance 3y at t = 0, the downstream developer is concerned
with relative performance. For example, suppose the downstream developer will tolerate a p = 5%
drop from the theoretical performance at ¢ = 0. In the second case, the downstream developer has
an absolute threshold -y as their worst-tolerable performance, e.g., an accuracy of at least v = 80%
is required. Mathematically, the performance cutoff time ¢7, and ¢, determined by the relative and
absolute thresholds p and ~, respectively, fulfills the following constraints:

(Relative) By — g(tZ) = p, (Absolute) g(t%) = 7.)

Figure [3| depicts the steps to obtain ¢} or ¢7 via the ground-truth model g(t). In the main paper,
we focus on formulating parameter estimation and hypothesis testing algorithms for the relative
thresholding scenario. See Appendix [F|for further estimation formulation for absolute thresholding.

4.2 PARAMETER ESTIMATION FORMULATION

When a worst-tolerable threshold of the patch performance is specified, future planning can be
facilitated by forecasting the time at which the PortLLM patch will need to be retrained. We ask:

RQ1 Given past performance indicators and a worst-tolerable performance threshold, at what
future time will patching performance drop below the threshold?

We denote available time steps as {to, t1, ..., ts }, where ¢; is the current time. We generalize the
linear statistical model presented in Section[4.1]to the cases where n;, > 1 performance indicators
are available at each time step t;, although for most resource-constrained applications, we expect
only one observation per time step, i.e., n;, = 1. Formally, we denote the jth performance indicator
at time ¢; as

y ~ N(Bo+ Biti,02), i€{0,1,....,I}andj € {1,...,n;,}.)
We examine a simplified case that, for any fixed ¢;, the observations {y,ﬁj) };“:Ll are uncorrelated.

Next, we outline the high-level idea for estimating ¢7. First, we note that in the thresholding defini-
tion (EI), the optimal time step ¢7 and the rate of the performance degradation j3; are deterministically
related, i.e., p = o — g(t}) = Bo— (Bo+ Bit;) = —Pat}. We can then apply the invariance principle
of maximum likelihood estimation (MLE) (Devore et al.,[2021)) to reduce the problem of estimating
t;, to estimating 31, followed by applying the deterministic mapping from j3; to ¢7. It can be shown
that the MLE for 3;, assuming n;, = n for all 4, is

A

_ I n j I n j I I
where 4y = Zizo Zj:l yf;l)/N rr= Zizo ijl 123 yfj)/N, N = Zi:O Nt t = Zi:O ti/(I +
1),and t = Zl t2 /(I + 1). Detailed steps to derive (3) are provided in Appendix Applying the

= 5—52(_527[+TI)7 (3)

=0 "1
invariance principle using the mapping ¢, = —p/ 3, we obtain the MLE for ¢ as follows:
tr=—p/p. @
In the specific case of uniform time steps, i.e., t; = ¢ Vi, the precision f; is
. Var (/) 1202
Var (1/t7) = = £ . 5
ar (1/17) 2 np?I(I+1)(I +2) ©)

Under review as a conference paper at ICLR 2026

Here, Var(Bl) is provided in of Appendix|Cl We note that, as I increases, the precision of the
cutoff time estimator decreases at the rate of O(1~3), implying that the width of the confidence
interval for 1/ f; shrinks at the rate of O(I~3/2). In the case that the time steps are not consecutive
integers, the variance also decreasing with increasing observations, but the variance also depends
on the spacing of the time steps. Figure [4] plots theoretical curves for the precision of ¢¥, where
sharp turnings are seen between the duration of observation I = 2 and 4. The estimation is also
more accurate for larger relative threshold p. Experimental validation results using this estimation
framework are provided in Section [4.4]

4.3 HYPOTHESIS TESTING FORMULATION

—p=05
. . sp=1
A downstream developer may have a time of interest, t = t,,, <« |\ | __ 'Z —5

for which the judgment of acceptable performance is required.
For example, if the base model is updated quarterly, the time
step of interest may be ¢, = 8, or two years after the patch .
is initially trained. In this case, the test may be performed 12 3 4 5 6 7 o8 9 10 1w
at I = 4, or one year after the initial training, to determine Duration of Observation, 1
whether retraining will be needed in the next year’s budget. Figure 4: Theoretical plot for the
Formally, we ask: variance of the estimator 1/ f; asa
function of the duration of obser-
vation, I. The variance decreases
at the rate of O(I~3), with sharp
turnings between I = 2 and 4. The
estimation is more accurate when
We define the null hypothesis Hy as the patch fails to meet the duration [is longer and the rel-
performance standards at time ¢,,,, and the alternative hypothesis ative threshold p is larger.

Hj, otherwise, namely,

Ho : 8o — g(tm) > p against Hj : By — g(tm) < p. 6)
This composite hypothesis testing is solved as a likelihood ratio test (LRT) (Hogg et al., 2019) as:

L(B € Ro) 4t L(B©
_ Supg (B g) def L(/A@) > 19 accepts Hy, @)
Supg L(B € R?) L(Buie)

where 8(0) = argmaxge p, L(B3) and Bumie = argmaxgegz L(B). L(B) defined in l) of Ap-
pendix [D]is the likelihood of the observations, Ry defined in is the feasible region of F Tor which
Hy is true, and 7o is a decision threshold. We show in Appendix [D]that the test statistic, z

RQ2 Give past performance indicators, a worst-
tolerable threshold, and a future time step of in-
terest, will patch performance fail to meet the
threshold at the future time step?

z =min(0,e) >n accepts Ho, 8)
where 17 < 0 is another decision threshold, ¢ = —tmﬂAl — p ~ N(pe, af), e &ef —tmpB1 — p, and

o? &« t?nVar(ﬁAl). We note that the null hypothesis can also be written as Hy : 1. > 0. Here, €

captures the estimated margin by which the patch’s performance at ¢, exceeds the threshold p.

The false negative rate (FNR), i.e., the proba- Ty e | N — 1 =05, 4 =05
bility of predicting that retraining is not needed ‘ Y iy Sl
at t;,, when it is actually needed, and the false =% =3
positive rate (FPR) are given by

FNR =P(2 < 7 | pe > 0) = ®(5H2), (9a)

-l =1, pl =1
e =2, pl = —2
He=3,p=-3

= — He—M FPR FPR

FPR =P(z > n | pre < 0) = ©(#<-1). (9b) @) (b
Theoretical ROC curves are plotted in Figure 5]

We find that while the LRT itself is close to op- Figure 5: Theoretical ROC curves for hypothesis
timal, the hyperparameters control the difficulty testing. We use time step of interest ¢,, = 8, rela-
of the problems. For example, the test can make tive threshold p = 1, for duration of observations
more accurate decisions when /i, under Hy and (a) / = 4 and (b) I = 6. Here, g denotes the
H; are more different, or when the duration of performance margin for H;. For p! further from
observed I is longer. See Sectiond.4]for experi- zero or longer observation durations, the hypothe-
mental validation for this test. sis testing tends to be more accurate.

Under review as a conference paper at ICLR 2026

=02 || —p=008] L =02 u —
—p=015|] L —p =006l | —p=0.15|| —
-—p = 0.1 © - p = 0.04 - p=01 LN —p

p = 0.05] R p=0.02|]m * N p = 0.05[]g = .)

P
L r
M
MSE
MSE

3 0 B 0 B 3 % 3 0 B 0 B 3 % 3 0 5 0 B % 3 0 B g B 5 % 3 0 B g B
Duration of observation, 1 Duration of observation, I Duration of observation, I Duration of observation, I Duration of observation, I

(a) (b) (© (@ (e

Figure 6: MSE of estimate for the time, f;, at which performance drops below the worst-tolerable
threshold as a function of the duration of observation, I for different relative thresholds, p. The curves
are averaged across 5 repetitions. The benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande,
(d) MathGenie (patch #1), and (e) MathGenie (patch #2). MSE decreases with increasing I, and the
largest drops occur for smaller /. As downstream task performance indicators are observed for longer
duration, we expect estimates of f; to be more accurate.

4.4 EXPERIMENTAL VALIDATION OF THE EFFECTIVENESS OF PROPOSED ALGORITHMS

We validate our forecasting methods on a base model continually pretrained on UpVoteWeb (UpV},
2024) data and fine-tuned using downstream benchmarks: ARC-Easy (Clark et al., |20 1’8),
BoolQ (Clark et al.; 2019), WinoGrande (Sakaguchi et al.,[2021), and MathGenie (Lu et al.,|2024)). E]

Parameter Estimation. Figure [7] shows two

representative examples of parameter estima-

tion scenarios on repetitions #2 and #3 of ARC- !

Easy. In Figure[7(a), the upper and lower dashed 5 M S A

lines coincide with the predicted performance at < g o

t = 0, By, and the predicted performance minus preed do e

the threshold, Bo — p. Observed performance B R S
. . Timestep Timestep

drops below the lower dashed line at approxi-

mately ¢ = 5, while the prediction is at f;’; =4.3. @ ®)

lI)n thiircafle ’ E[}:?of;wgsttrefrgﬁivgl?pfr :vo_ulgl Figure 7: Estimation results for tolerance threshold
S.e C.‘l’ fC o - 3 b)o the i eto € Giet, P = 0-15 on (a) repetitions #2 and (b) #3 of ARC-

muiarty, i 1gure - the estumator predicts Easy using I = 3 as the latest observation. The
that retraining is needed slightly before it actu- estimates are i* — 4.31 for (a) and #* = 3.97
ally is; in this case, the downstream developer for (b). Both eslzimates would correctlypdirect the

may think that retraining is needed before ¢ = 4. d t devel to retrain before ¢ —
For each plot, we used f; = I — 3 so that ob- ownstream developer to retrain before o.

servations from ¢t = 0 to ¢ = 3 were used for estimation. If the base model is updated quarterly, the
downstream developer could predict performance after nine months.

To systematically validate our estimation algorithm, we consider the mean squared error (MSE)
(1/M) Z%Zl (th — f;j)Q where M = 5 repetitions and I is the index of the time for the most recently
observed data point. From l) the variance of 51 decreases at a rate of O(I~2). Because ¢*

is deterministically related to Bl, we expect the MSE of f;’; to decrease as [increases. Figure

empirically shows that the error decreases when the duration of observation increases. The largest
drop in error occurs from I = 2 to 3, indicating that estimation will be much more reliable after
at least three downstream patching rounds. This drop is especially pronounced for ARC-Easy and
MathGenie. For WinoGrande and BoolQ, MSE decreases approximately linearly from I = 0 to 6.
Figure [8| also reveals that estimation is consistently more accurate for smaller p and Figure 16| of
Appendix@provides a more direct visualization—when p is smaller, ¢7 is also smaller, so there is a

Because the true parameters 3; and Sy are unavailable from the real benchmark data, we use the best
estimate from 9 available time steps as a proxy for the ground truth.

*By observing the data, we found that ¢ € [0, 8] is the interval for which the trend is best considered linear.
This coincides with the practical nature of time of interest for prediction because PortLLM patching performance
will be too low to be useful after ¢ = 8.

Under review as a conference paper at ICLR 2026

Table 1: Hypothesis testing example on Table 2: AUC results for hypothesis testing. Prediction is

rep. #2 of BoolQ using p = 0.1 and much more accurate when s, is far from zero and when
tm = 5. The test correctly selects Hi more time steps have been observed.
when n = —0.001 but incorrectly de-
cides Hp when n= —0.01. I u® Range u! Range AUC Downstream Metric
Datasets
I Test Decision Decision 5 0.05+0.05 —0.134+0.03 1.000 AE,BQ,WG Acc
statz thres thres 5 0.50=£0.50 —3.50 £ 0.50 0922 MG BLEU
n=-001 n=-0001 5 005+005 —0.08£0.03 0885 AE,BQ, WG Acc
1 0000 Hy Ho 5 0504050 —250+£050 0816 MG BLEU
5 0017 H, H, 4 0054005 —0.13+£0.03 0958 AE,BQ,WG Acc
3 ~0.002 Hy H, 4 0.5040.50 —3.50 £0.50 0.680 MG BLEU
1 _0005 H, H, 4 005+0.05 —0.08£0.03 0715 AE,BQ,WG Acc
5 _0.003 H H 4 050+050 —250£050 0575 MG BLEU
0 1

AE: ARC-Easy, BQ: BoolQ, WG: WinoGrande, MG: MathGenie

smaller duration between the time of prediction and the predicted event. Appendix [E]also presents
results on each repetition individually.

Multiple observations per time step (n > 2) can be obtained by bootstrapping downstream test data
with little compute overhead. For example, on ARC-Easy with p = 0.1, Figure §|shows that MSE
drops substantially from n = 1 to n = 2, with smaller but noticeable reductions up to n = 8. The
trend holds across different p values, with smaller p yielding lower overall error.

Hypothesis Testing. Table [1]illustrates our hypothesis 20

testing algorithm using time of interest ¢,,, = 5 and the ; —1 Sample
relative threshold p = 0.1, where the true margin pe = | | i zzﬁigi:
—0.017 < 0 falls in the feasible region of Hy. This case D o 8 Samples

is difficult since the margin is close to zero. At I = 3, the
third row of Table[T] the test statistic is z = —0.002. For a
choice decision threshold n = —0.001 we decide Hy, but 0
for n = —0.01 we decide Hy. A similar pattern holds in |

the other rows, with correct decisions at 7 = —0.001 but

typically incorrect at 7 = —0.01. This shows the influence Figure 8: MSE for ¢* for n > 1 ob-
of threshold choice on testing when the true margin is near servations per time step. The most sub-
zero, i.e., the decision is inherently a different problem. stantial improvement is observed from
n = 1 to 2. The results indicate that
bootstrapping downstream testing data
can increase the prediction accuracy of
t, for downstream developers.

S

......

To further assess general performance, we validate the
effectiveness of our hypothesis testing algorithm by calcu-
lating area under the curve (AUC) values for ROC curves
using experimental data grouped in Table Here, ! de-
notes 1. on hypothesis H;. We generate tests by varying the worst-tolerable performance threshold p
selection and the time step of interest ¢, selection across four benchmarks. ROC curves for accu-
racy tasks (ARC-Easy, BoolQ, WinoGrande) are drawn separately from BLEU tasks (MathGenie).
Because the hypotheses can be written as Hy : ¢ > 0 and H; otherwise, we group test cases for
ranges of 11, values. Take the second row as an example, grouping test cases with p. € [0, 1] for Hy
and . € [—4, —3] for H; to calculate error rates and draw the ROC curves yields an AUC of 0.922.
Overall, FNR is consistently very low, while the FPR depends on how far i, under H; lies from zero.
Longer duration of observation I also improves test accuracy.

5 CONCLUSION

We presented the first systematic study of the temporal performance degradation of patched LLMs.
Statistical analysis from large-scale experiments revealed that temporal patching consistently exhibits
predictable performance declines as base LLMs evolve. To proactively manage this degradation in
deployment, our proposed statistical forecasting tools can advise developers on when and whether
patches would fail. Running these tools in simulated PortLL.M deployment scenarios demonstrated
that estimation precision improves significantly when the observation duration I exceeds 2—4 time
steps and when using two performance measures per time step. The proposed statistical forecasting
tools can assist downstream developers in making informed technical and business decisions about
patch reuse as base LLMs evolve.

Under review as a conference paper at ICLR 2026

REFERENCES

UpVoteWeb-24-600M, 2024. URL <https://huggingface.co/datasets/OpenCo7/
UpVoteWeb>.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedial

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877-1901, 2020.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3):1-58, 2009.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. TheoremQA: A theorem-driven question answering dataset. In Conference on Empirical
Methods in Natural Language Processing. ACL, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Nations of
the Americas Chapter of the Association for Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Cyprien de Masson D’ Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. In Advances in Neural Information Processing Systems,
volume 32, 2019.

DeepSeek-Al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. In Advances in Neural Information Processing Systems, volume 36, pages
10088-10115, 2023.

Jay L. Devore, Kenneth N. Berk, and Matthew A. Carlton. Point estimation. In Modern Mathematical
Statistics with Applications, pages 397-449. Springer International Publishing, Cham, 2021.

Julian J Faraday. Transformations. In Linear models with R, chapter 7. Chapman & HLL/CRC, New
York, 2005.

Jodo Gama, Indre Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):1-37, 2014.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 2024. URL https://zenodo.org/records/12608602,

10

<https://huggingface.co/datasets/OpenCo7/UpVoteWeb>
<https://huggingface.co/datasets/OpenCo7/UpVoteWeb>
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. Advances
in Neural Information Processing Systems, 2021.

Robert V. Hogg, Joseph W. McKean, and Allen T. Craig. Optimal tests for hypotheses. In Introduction
to Mathematical Statistics, chapter 8, pages 469-514. Pearson, 8 edition, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pages 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, volume 1, pages 1-20, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora. In

BigScience Episode #5 — Workshop on Challenges & Perspectives in Creating Large Language
Models. ACL, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Rana Muhammad Shahroz Khan, Pingzhi Li, Sukwon Yun, Zhenyu Wang, Shahriar Nirjon, Chau-
Wai Wong, and Tianlong Chen. PortLLM: Personalizing evolving large language models with
training-free and portable model patches. In International Conference on Learning Representations,
2025.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arxiv:2308.07317, 2023.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema challenge. In
International Conference on Principles of Knowledge Representation and Reasoning, 2012.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
OpenOrca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/datasets/Open—-Orca/OpenOrca, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. In Transactions on Machine Learning Research, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The Flan Collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688, 2023.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to Explain: Multimodal reasoning via thought chains for
science question answering. In Advances in Neural Information Processing Systems, 2022.

11

https://https://huggingface.co/datasets/Open-Orca/OpenOrca
https://https://huggingface.co/datasets/Open-Orca/OpenOrca

Under review as a conference paper at ICLR 2026

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. MathGenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, pages
2732-2747, Bangkok, Thailand, August 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems,
volume 35, pages 27730-27744, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for automatic
evaluation of machine translation. In 40th Annual Meeting of the Association for Computational
Linguistics, pages 311-318, 2002.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction Tuning
with GPT-4. arXiv preprint arXiv:2304.03277, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics, pages
487-503. Association for Computational Linguistics, April 2021.

Stephan Rabanser, Stephan Glinnemann, and Zachary Lipton. Failing loudly: An empirical study
of methods for detecting dataset shift. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An
adversarial Winograd schema challenge at scale. In Communications of the Association for
Computing Machinery, volume 64, pages 99—106. ACM, 2021.

Zhihong Shao, Peiyi Wang, Runxin Xu Qihao Zhu, Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Qingkai Sun, Haolin Qian, Xipeng Qiu, and Xuanjing Huang. LAMOL: LAnguage MOdeling for
lifelong language learning. In International Conference on Learning Representations, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.
https://github.com/tatsu—lab/stanford_alpacal, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
LLMs. arXiv preprint arXiv:2501.12599, 2025.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. MathCoder: Seamless code integration in LLMs for enhanced
mathematical reasoning. In Twelfth International Conference on Learning Representations, 2024a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqgiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating College-Level
Scientific Problem-Solving Abilities of Large Language Models. In International Conference on
Machine Learning, 2024b.

Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean. Characterizing
concept drift. Data Mining and Knowledge Discovery, 30(4):964-994, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pages 24824-24837, 2022.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. ReClor: A reading comprehension dataset
requiring logical reasoning. In International Conference on Learning Representations, 2020.

12

https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2026

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). ACL, May 2022.

13

Under review as a conference paper at ICLR 2026

o

Timestep Timestep Timestep Timestep Timestep

(@) (b) (© (d) (e

Figure 9: Model fitting results using various pretrain data. Linear (solid black lines) and exponential
(dashed blue lines) fits are shown for (a) MathGenie repetition 1, (b) MathGenie repetition 3, (c)
MathGenie repetition 4, (d) MathGenie repetition 5, and (e) Reddit. As in the case of using the Reddit
pretrain dataset, the linear and exponential fits produce similar trends.

A DOWNSTREAM FINETUNING DATASETS

MathGenie (Lu et al.,[2024) is a synthetic dataset of verified math problems generated by rephrasing
and validating questions derived from GSMS8K (Cobbe et al.| 2021) and MATH (Hendrycks et al.,
2021). It supports high-quality evaluation of multi-step mathematical reasoning through natural
language explanations.

BoolQ (Clark et al.,[2019) is a binary reading comprehension task, consisting of naturally occurring
yes/no questions paired with short passages from Wikipedia.

WinoGrande (Sakaguchi et al., 2021) is a large-scale commonsense reasoning dataset structured
as pronoun resolution problems. It is designed to be more challenging than the original Winograd
Schema Challenge (Levesque et al., [2012), offering high lexical diversity and reduced bias.

ARC-Easy (Clark et al., [2018)) is a standardized science Q&A benchmark targeting elementary-
school-level multiple-choice questions, emphasizing recalling science facts and basic reasoning.

B ADDITIONAL RESULTS ON MODEL FITTING

Results for model fitting where the base model is pretrained on the combined time-series dataset are
shown in Figures[Q]and [I0] It is possible that the temporal variety of pretraining datasets affects the
linearity of the trend. Curve fitting plots for pretraining on the Reddit temporal dataset are shown in
Figures[TT} [12} [T3] [T4] and[T3] The model fitting results support the claim that patch performance on
a continuously-updated base model degrades with a predictable trend. In some cases, for example
repetitions 2 and 5 in Figures[I5]and[I2] a linear trend fits the observations well for all time steps.
In other cases, the performance degrades linearly for the first part of the time series, then plateaus
for later time steps. This case can be observed in repetitions 1 and 3 in Figures[TT]and[I3] For later
time steps, when most of the nonlinearity occurs, the patch performance has degraded below what is
acceptable for most applications.

The statistical results for model fitting on linear and exponential models where the base model is
pretrained on Reddit data are shown in Table[3] Results for pretraining on various datasets are shown
in Table[d] In most cases, there is statistically significant evidence for rejecting a constant trend in
favor of a more complex model.

C DERIVATION TO OBTAIN CLOSED-FORM SOLUTIONS FOR 3y AND (3; AND
THEIR VARIANCE

Here, we present the general case where the time steps may not be consecutive integers and there are
ng, > 1 available observations at each ¢;. Let the I available time steps be denoted as {to, ¢1,...,tr}

and denote the corresponding n;, observations at ¢; as {yt(l), yg), e ,ygl”)}. We organize all

variables for ,@ estimation into the matrix—vector form below:

14

Under review as a conference paper at ICLR 2026

Table 3: Curve fitting results for patching an evolved base model continually pretrained on the
Reddit temporal dataset. For each test, the null hypothesis (Hy) is an intercept model (flat trend).
For each repetition and benchmark, we test against linear and exponential trends (H;). For almost
all benchmarks, the p-values indicate statistically significant evidence against the flat trend. The
exponential fit results are obtained by performing a linear fit on log-transformed response variables.

Benchmark H; F-statistic ~ p-value Adjusted R?
Repetition 1 ARC (Easy) Linear 23.9 1074 0.66
Repetition 1 ARC (Easy) Exponential ~ 26.0 1074 0.68
Repetition 1 BoolQ Linear 10.8 1072 0.45
Repetition 1 BoolQ Exponential ~ 10.9 1072 0.45
Repetition 1 MathGenie (patch 1) Linear 12.4 1073 0.49
Repetition 1 MathGenie (patch 1) Exponential ~ 13.2 1073 0.51
Repetition 1 MathGenie (patch 2) Linear 23.8 1074 0.66
Repetition 1 MathGenie (patch 2) Exponential ~ 36.9 1074 0.75
Repetition 1 WinoGrande Linear 9.0 1072 0.40
Repetition 1 WinoGrande Exponential 9.6 1072 0.42
Repetition 2 ARC (Easy) Linear 528.6 10710 0.98
Repetition 2 ARC (Easy) Exponential ~ 1133.8 10712 0.99
Repetition 2 BoolQ Linear 709.2 101 0.98
Repetition 2 BoolQ Exponential ~ 944.3 101 0.99
Repetition 2 MathGenie (patch 1) Linear 118.5 1077 0.91
Repetition 2 MathGenie (patch 1) Exponential ~ 206.6 1078 0.94
Repetition 2 MathGenie (patch 2) Linear 39.7 1074 0.76
Repetition 2 MathGenie (patch 2) Exponential ~ 151.3 1077 0.93
Repetition 2 WinoGrande Linear 18.4 1073 0.59
Repetition 2 WinoGrande Exponential ~ 20.8 1073 0.62
Repetition 3 ARC (Easy) Linear 452.4 10710 0.97
Repetition 3 ARC (Easy) Exponential ~ 1102.7 10712 0.99
Repetition 3 BoolQ Linear 6.6 1072 0.32
Repetition 3 BoolQ Exponential 4.2 107! 0.21
Repetition 3 MathGenie (patch 1) Linear 347.9 107° 0.97
Repetition 3 MathGenie (patch 1) Exponential ~ 302.9 107 0.96
Repetition 3 MathGenie (patch 2) Linear 34.4 1074 0.74
Repetition 3 MathGenie (patch 2) Exponential ~ 150.0 1077 0.93
Repetition 3 WinoGrande Linear 23.4 1073 0.65
Repetition 3 WinoGrande Exponential ~ 23.4 1073 0.65
Repetition 4 ARC (Easy) Linear 213.2 1078 0.95
Repetition 4 ARC (Easy) Exponential ~ 261.7 1078 0.96
Repetition 4 BoolQ Linear 224.0 1078 0.95
Repetition 4 BoolQ Exponential ~ 202.6 1078 0.94
Repetition 4 MathGenie (patch 1) Linear 55.8 107° 0.82
Repetition 4 MathGenie (patch 1) Exponential ~ 96.8 106 0.89
Repetition 4 MathGenie (patch 2) Linear 44.4 1075 0.78
Repetition 4 MathGenie (patch 2) Exponential ~ 97.4 106 0.89
Repetition 4 WinoGrande Linear 33.5 1074 0.73
Repetition 4 WinoGrande Exponential ~ 39.2 10~4 0.76
Repetition 5 ARC (Easy) Linear 321.2 1079 0.96
Repetition 5 ARC (Easy) Exponential ~ 335.3 107 0.97
Repetition 5 BoolQ Linear 194.7 1078 0.94
Repetition 5 BoolQ Exponential ~ 189.2 1078 0.94
Repetition 5 MathGenie (patch 1) Linear 11.2 1072 0.46
Repetition 5 MathGenie (patch 1) Exponential ~ 17.0 1073 0.57
Repetition 5 MathGenie (patch 2) Linear 25.3 1074 0.67
Repetition 5 MathGenie (patch 2) Exponential =~ 24.2 1074 0.66
Repetition 5 WinoGrande Linear 30.2 10~4 0.71
Repetition 5 WinoGrande Exponential ~ 34.0 10~4 0.73
1
yt() X/
_ |1 2x1 I nex1 . g, X2
Xt;, = |:t:| eR yYt, = : eR y andXti = . € R 7, (10)
?

15

Under review as a conference paper at ICLR 2026

Table 4: Model fitting statistical results for base models pretrained on the combined time-series
dataset. In each case, the alternative hypothesis H; is tested against an intercept trend. Only 5 time
steps from ¢ = 4 to ¢t = 8 are available for MathGenie. 16 out of 22 cases are statistically significant
with p-value < 0.05 against the flat trend.

082

Accuracy

Accuracy

Benchmark Hy F-statistic =~ p-value Adjusted R?
Repetition 1 MathGenie Linear 107.5 1073 0.96
Repetition 1 MathGenie Exponential ~ 106.2 1073 0.96
Repetition 3 MathGenie Linear 3.7 107t 0.41
Repetition 3 MathGenie Exponential 3.4 107t 0.37
Repetition 4 MathGenie Linear 7.4 107t 0.61
Repetition 4 MathGenie Exponential 6.9 107t 0.59
Repetition 5 MathGenie Linear 11.2 1072 0.72
Repetition 5 MathGenie Exponential ~ 10.9 1072 0.71
Reddit Linear 4.1 107t 0.25
Reddit Exponential 3.3 107t 0.21
Repetition 1 ARC (Easy) Linear 12.3 1072 0.62
Repetition 1 ARC (Easy) Exponential ~ 12.1 1072 0.61
Repetition 2 ARC (Easy) Linear 9.9 1072 0.56
Repetition 2 ARC (Easy) Exponential 9.4 1072 0.54
Repetition 1 BoolQ Linear 10.6 1072 0.58
Repetition 1 BoolQ Exponential ~ 10.6 1072 0.58
Repetition 2 BoolQ Linear 92.2 1074 0.93
Repetition 2 BoolQ Exponential ~ 93.2 1074 0.93
Repetition 1 WinoGrande Linear 6.5 1072 0.44
Repetition 1 WinoGrande Exponential 6.2 1072 0.43
Repetition 2 WinoGrande Linear 143.6 1075 0.95
Repetition 2 WinoGrande Exponential ~ 127.0 1075 0.95

Accuracy

°

3

Timestep

(@)

Accuracy

089

8

3

Timestep

(b)

Timestep

(©

2 3 4 5 6 7

Timestep

(@

Timestep

()

Timestep

®

Figure 10: Curve fitting results for linear fit (solid black line) and exponential fit (dashed blue line)
for models pretrained on the time series collection dataset. The two rows show two repetitions, and
the benchmarks are (a) and (d) ARC-Easy, (b) and (e) BoolQ, and (c) and (f) WinoGrande. As for
the evaluations where the Reddit pretrain dataset is used, the linear and exponential curves predict a

similar trend.

Further, we define

e RV*2 and yp =

16

Yio
Y,

Yt

c RNXl

Y

Under review as a conference paper at ICLR 2026

BLEU
BLEU

TS .

Accuracy
Accuracy
Accuracy

Timestep‘ Timestep \ Timestep Timestep Timestep

(a) (b) (©) (@) (e)

Figure 11: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 1). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

BLEU
BLEU

Accuracy
Accuracy
Accuracy
s B g B s § ¢

Timestep’ i Timestep . Timestep Timestep Timestep

(a) (b) () (d) (e)

Figure 12: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 2). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

BLEU
BLEU

Accuracy
Accuracy
Accuracy

Timestep' Timestep Timestep) Timestep Timéstep

(a) (b) (© (d) (e)

Figure 13: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 3). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s
patch 1 and (e) MathGenie’s patch 2.

BLEU
BLEU

Accuracy
Accuracy
Accuracy
g s & 5 §_¢8

Timestep Timestep Timestep Timestep

Timestep

(a) (b) (© (d (e)

Figure 14: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal

dataset (repetition 4). Benchmarks are (a) ARC-Easy, (b) BoolQ, (c) WinoGrande, (d) MathGenie’s

patch 1 and (e) MathGenie’s patch 2.

where N = Efil ny,. With these definitions, we can write the maximum likelihood solution,
Buie = (X7 X7) ' X y7. (12)

Taking a special case of n;, = n,Vi € {0,1,..., I}, we can develop a closed-form solution for B In
this case, X;XT can be written as

17

Under review as a conference paper at ICLR 2026

0o o Observed data 076
osol S —y = 0.901 — 0.005¢ o °
P —0.006¢
3“” o --~_/.7 0.104e 5.“72 i
3
S . 8 o o
3 om 3 0w o
2 085 g 0.66
08 08
083 0.62
02 0
Timestep Timestep Timestep
(@ (b) ©

Figure 15: Curve fitting plots for patching an evolved base model pretrained on the Reddit temporal
dataset (repetition 5). Benchmarks are (a) BoolQ, (b) WinoGrande, and (c) MathGenie’s patch 2.

I n I n
L ; "1 t;
XiXp = | Zo g L lam E f] (13)
Ei:O Zj:l tl Z’L OZ] 1 1
where
1 < 1<
t=—- t; d t=—- t2. 14
I+1§) o I+1; i (1
The inverse is given by
o5 S RN S] (15)
r n(I+1)({F—) [t 1
Now,
-
Xpyr=n(I+1)[yr 7] (16)
where ,
e 1 e ()
yr = NZZy and (17a)
=0 j=1
det 1
rr = Zthyt : (17b)
=0 j=1
Hence, (12)) can be simplified to
B _ 1 EZZI — t_T‘[(18)
t—t2 |—tyr+rr|’

Note thatin the case t; =i Vi, t = (I +1)71Y i =1I/2andt= (I + 1)1 ,i> = I(2] +1)/6.
In this case, (T8)) simplifies to
A 2 121 + 1)yr — 31y
- . 19
'6 ([+2) [—3Iy1+67“[(19)
With the solution for B formulated, it is instructive to also consider the variance of the estimator. The
variances and covariance for the statistics are

ot ol
Var(yr) = N m’ (20)

Var(ry) Var(Zthytl) el ZZVar 1yt(7) (21)

1=0 j=1 =0 j=1

18

Under review as a conference paper at ICLR 2026

2 € 7 —
1 TR Z —) = i Var(y;) (22)
and
s~ B 1l v
= j i 2
COV(y[,rI) I+12ZZtE])] ﬁzztlae (23)
=0 j=1 =0 j=1
a’n ot
= 5 = tVar(y). 24
Note that in the last two equations, we use the independence of the y(]) and y(]) observations for all
(4,4) # (i, j") to move the variance operator inside of the summation.
The variance of Bo in is given by
~ 1 s
Var(8y) = m[i‘?\/ar(g]) +#Var(ry) — 2ttCov(yr,11)] (25a)
1 - o? o o? - o?
t ~—— +tt < — 2t < 25b
=) [ES R Y n(d 1) (25b)
ot -
= ——(t -1 25
TS (A (25¢)
t
== Var(gr). (25d)
The variance of Bl in is given by
N 1 _
Var(8) = m[?\/ar(yj) + Var(rr) — 2tCov(3y, r1)] (26a)
o2 2 o2
= P t—— -2t ——= 26b
(t—tQQ[nI+1)+n(I+1) n(l +1) (26b)
o2
= — t—1 26
n(I+1)(t—t2)2() (26)
1 _
In the case t; = i Vi, t — > = I(I +2)/12 and
t 2(21 + 1) -~ 202(21 +1)
Var(3 = Var = —=Var = 27
Similarly,
. 12 1202
V. = ——Var(yr) = ———Var(y _ 28
ar(ﬂl) i a‘r(yf) I(I+2) ar(l/l) (I+1)(I+2) ()

From (2 1.| and , it can be seen that, as I increases, the variance of /3, goes to zero at the rate of

O(I71), and the variance of /3; goes to zero much more quickly at the rate of O(I~3). We expect
estimation accuracy for the rate of degradation, 3, to improve two orders of magnitude faster than for

the theoretical initial performance, 3, as more indicators y(j) are observed along the time. Similar
trends hold when ¢; # 7 in general, but the variance also depends on the spacing of the time steps.

19

Under review as a conference paper at ICLR 2026

D FORMULATION OF TEST STATISTIC FOR HYPOTHESIS TESTING

In this section, we use a likelihood ratio to define a test statistic that may be used for hypothesis
testing. We begin by defining regions of 3 corresponding to each hypothesis. In the case of the
absolute threshold we have

Ro = {(Bo, B1) : Bo — g(tm) > p} (29)

where 3 € Ry when the null hypothesis is true and 3 € R; = R?\ R, when the alternative hypothesis
is true. To proceed with hypothesis testing, define the likelihood of the observed performance

parameterized by 3 as
L(B) = p(yr; B) (30)
and the likelihood ratio test

;SalﬁpL(ﬁ) aet L(B©)
— = 30) — B —
= SlﬁlapL(ﬁ) = L Bn)’ where 3\ = arﬁgenll%ixL(ﬁ) and Bug = a;ggll{ezle(ﬁ) (31)

as the ratio of the likelihood parameterized by the best parameters given Hy to the global maximum
of the likelihood function.

The estimate ﬁ(o) is the results of a constrained optimization problems. For this problem, the
constraint may be active or inactive. If it is active, the constraint holds with equality. If it is inactive,
the optimization result is equivalent to the unconstrained MLE estimation given in (I2). In our case,

the constraint (with equality) can be written as [0 — t,,] [Bo Bl]T = p. Defining,
c¥o —tn" (32)
and
r&y (33)
we can write the constraint in terms of the known constants, ¢ and r, as
c'"B=r, ceR¥*>' reR. (34)
Defining Bu = BMLE as the unconstrained results given in , it can be shown that
Be =By —elc (X7 X)) te] H(XJXp) " te, where (35a)
e B, - (35b)

This can be viewed as the unconstrained result, Bu, plus a correction term dependent on the error
between the unconstrained result and the constraint, e. Because the constraint is ¢’ 3 > r, the

constraint is active when e = ¢ B —r < 0andif e > 0 we use unconstrained result 3,, and we wish
for the correction term to be zero. Therefore we can consolidate both cases into one equations as

B =B, — min(0,e)[c" (X7 X7) '] H(X]X7) e (36)

With the constrained regression problem solved, we turn to finding a test statistic based on the
likelihood ratio defined in (31). The log-likelihood ratio is given by

m__ﬁzz O~y — (i B — wi!)?] 37
€ =0 j=1

where we use x;, = [1,#;]T from . Expanding the squared terms in ,

I n
202 In\ = (Z Z 2x,. y) B —)+ Z Z)2 — ZZ(XZ,@(O))Q (398)

1=0 j=1 =0 j=1 =0 j=1

Note that the left-hand side is an increasing function of A. From (36),

B — B, = —min(e,0)[c" (X7 X7) '] (X7 Xr) e, (39)

20

Under review as a conference paper at ICLR 2026

Further, note that Zf:o > 2%, y,gj) = 254 X, so the first term of can be written as

I n
(8 = Buir) (3° D 2% u?) = —2min(e, 0)[eT (XFXr) e 97 X (X7 X)L
i=0 j=1
(40a)

= —2min(e, 0)[c" (X1 X7) '] 718, ¢ (40b)

The second and third terms in (38)) can be written as

I n I n
ZZ(XZBu)z _ ﬁJX;XTﬂu and ZZ(XZﬂ(O))Q — B(O)TX;XTé(O)' (41)

i=0 j=1 i=0 j=1

From (36)),
BOTX X780 = 3] XX 1B, +min(e,0)[c" (X7 X7) e L) Hmin(0, e) — 28, c]. (42)
From (39), (4T)), and @2)), (38) can be written as

202In A = min(0, e)[c" (X X7) tc] ™t [—2,@Ic — (min(0,€) — Z,G'Ic)] (43a)
= —(min(e,0))*[e” (X7 X7)""e] ! (43b)

From (@3)), we may define a test statistic
z = min(0, e) (44)

as an increasing function of the likelihood ratio. To better understand how to perform tests on z, we
consider the distribution of e, defined in (35p). Note that, using the definitions of ¢ and r in (32)) and

(33),
e = —tmB1mLE — p- 45)

The distribution of e is determined by the distribution of BLMLE which is a weighted sum of the

(normally distributed) observations, {yt(])}, so e is also Gaussian. In the case of linear regression

where the observations {y,fj)} are Gaussian and independent, the MLE estimator is equivalent to the
least squares (LS) estimator, which is unbiased. Because the MLE estimator is unbiased, the mean of
e is given by
def
Ele] = ~tmB1 —p = pre (46)
where (; is the deterministic but unknown true model parameter. The variance of e is given by
t2, Var($3;). From (28), when ¢; = i Vi this is equivalent to

2 2
12t7 o def o

Var(e) = - = o;. 47)

I+ 1)(I +2)

where o2 is the noise variance.

E ADDITIONAL ESTIMATION VALIDATION RESULTS

Here, we show additional estimation validation results. In Figure we plot MSE for f; against p.
As in Section 4.4} we find that error is smaller for smaller p.

In Figures we plot squared estimation error for ¢ against varying I and p. These results are
the same as in Section[d.4]and Figure [T6|except that individual repetitions are shown instead of an
average across repetitions.

21

Under review as a conference paper at ICLR 2026

MSE

MSE

MSE

(b)

»

©

»

()]

»

()

Figure 16: MSE of estimate for the time at which performance drops below the worst-tolerable
threshold, f;, as a function of the worst-tolerable threshold p for maximum available time steps, .
The curves are averaged across 5 repetitions. The benchmarks are (a) ARC-Easy, (b) BoolQ, (c),
WinoGrande, (d), MathGenie (patch 1), and (¢) MathGenie (patch 2). Error increases with increasing
p. Larger p requires prediction of time steps further in the future, which makes the estimation task
more difficult so that MSE is higher. In general, we expect short-term predictions to be more accurate

than long-term predictions.

[—p=02 —p=02 —p=02 " [—p=02
p=0.15 p=0.1 p=0.13 b p=0.1
o p=01 L L p=01 Cw p=0.1 o p=01
E p = 0.0 _%, E 3 p=0.0: u%m p = 0.05 JSJ p=0.05
i i i i i
(@) (b) © (d) ©)
Figure 17: Squared error for ¢¥ estimations on ARC-Easy. Five repetitions are shown. Error is
consistently low for p = 0.05. For larger p, error depends heavily on I. Larger I produces a smaller
variance of the estimator.
[—p = 0.08] [—p = 0.08]
l----p = 0.06 |===-p = 0.06]
p=0.04 p=0.04
p =002 p=0.02

Squared Error

Squared Error

Squared Error

Squared Error

Squared Error

s
I

(a)

Figure 18: Squared error for ¢7, estimations on BoolQ.

(b)

Squared Error

(©

(d)

Five repetitions are shown.

(e)

(b) (©) (@ (e)

Figure 19: Squared error for ¢7 estimations on WinoGrande. Five repetitions are shown.

F FORMULATIONS FOR THE ABSOLUTE PERFORMANCE THRESHOLD,

Here, we provide formulations for an estimation framework when the worst-tolerable threshold is
the absolute threshold, ~, defined in H Here, the time we seek to estimate, t, depends on both
the theoretical ground-truth performance at ¢ = 0, 5y, and the slope of performance degradation, 3;.

22

Under review as a conference paper at ICLR 2026

s S
e
e e

Squared Error
Squared Error

Squared Error

—r— —r=3 —

Il

©
AR
(I
[N
—ww o

Squared Error

Squared Error
Squared Error
Squared Error

s 8.
& &
Bw Bl
E s
S N
3 & "

0 S 1 " 0

222> s 2 e o
"0 002 004 006 008 01 012 014 016 018 02 "0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02

» »

(a) (b) (© (d) (e)

Figure 22: Squared error for ¢7, estimations on ARC-Easy. Five repetitions are shown.

Squave: Error
Squareid Error

Squared Error

Squared Eﬂrror

Squgve; Emor

» P »

(@ (b) (©)

Figure 23: Squared error for ¢} estimations on BoolQ.

5 5
il ik 1 »
S 8. BN
3 T 3
g g, P
=3 - =3
D w 12} @ 15

»

(a) (b) (© (@) (e)

Figure 24: Squared error for ¢}, estimations on WinoGrande. Five repetitions are shown.

Namely,
_ 77— Bo (48)

Under review as a conference paper at ICLR 2026

Squared Error
Squared Error

Squared Error
Squared Error

b 05 1 s 2 25 & a5 4 45 5

» » » P »

(a) (b) (© (d) (e)

Squared Error
Squared Error

Squared Error
Squared Error

» » » 3 »

(a) (b) (©) (d (e)

Figure 26: Squared error for ¢} estimations on MathGenie patch 2. Five repetitions are shown.

We begin by showing the estimators for 5y and 31, then use those estimators to estimate ¢7,. It can be
shown that the maximum likelihood estimator (MLE) for the theoretical initial performance (5, and
the rate of performance degradation (31, assuming n;, = n for all 7, are

Bo 1 tyy — try
V= 25 49
{61 t—12 | —lyr+rr “9)
_ I n j I n j I T I
where yr = > 0> 0 yg)/N, L= ig 2jet bi yt(ij)/N’ N=3_gm.t=3_oti/(I+
1),and t = Zf:o t? /(I + 1). We provide the detailed steps to obtain in Appendix [Cl By the
MLE invariance principle (Devore et al.,[2021)), we can write the MLE estimator for tfy in terms of
the MLE estimators for the model parameters, 51 and Sy, as

£ = (v = Bo)/Br- (50)
In Appendix[C] we show that,

- 1202

Var(f;) =

CnI(I+1)(I+2) oD

5 202(2I4+1)
and Var(5y) = W+ 12)

when t; = ¢ Vi. Hence, we expect the variance of ti‘/ to decrease as [increases.

G VARYING PRETRAIN DATASET SIZES

We study the impact of the density of the pretrain datasets on downstream task performance. Theoret-
ical analysis indicates that our algorithms will not be substantially affected by variable dataset size.
Consider two datasets from the same temporal period which may be used for the same base model
update: D,y has 20k tokens and Diyge has 200k tokens. Because they are based in the same time
period, both datasets will be drawn from the same distribution and are expected to produce the same
gradient descent directions. Formally, we write

]E[g(Dsmall)] - E[g(plarge)]y Var(g (Dsmall)) > Var(g (Dlarge)) . (52)

where G(D) returns the normalized gradient updates from dataset D. This analysis indicates that,
while increasing the dataset size reduces the variance of the gradient updates, it does not affect the
optimization landscape substantially, hence patch degradation is not substantially affected.

24

Under review as a conference paper at ICLR 2026

Table 5: Downstream scores with base vs. dense datasets at ¢t = 3,6,9. Differences were not
statistically significant (p > 0.05 in all cases; p > 0.1 in 10/12)

Task Timesteps Base/Dense Diff p-Value
t=3 t = 4 (base) t = 4 (dense)

Math Genie 7.367 6.613 5.896 -0.717 0.744

BoolQ 0.856 0.85 0.869 0.019 0.254

Arc-Easy 0.703 0.675 0.675 0.00 0.995

WinoGrande 0.5865 0.577 0.685 0.108 0.068

t==6 t = 7 (base) t = 7 (dense)

Math Genie 4.794 4.635 4.555 -0.08 0.933
BoolQ 0.834 0.824 0.845 0.021 0.435
Arc-Easy 0.637 0.627 0.657 0.030 0.729
WinoGrande 0.575 0.568 0.639 0.071 0.063

t=9 t=10(base) t = 10 (dense)

Math Genie 3.938 3.518 3.375 -0.143 0.847
BoolQ 0.817 0.806 0.831 0.025 0.428
Arc-Easy 0.607 0.592 0.624 0.032 0.554
WinoGrande 0.556 0.572 0.610 0.038 0.195

To test this hypothesis, we increased the dataset size from 20 million tokens to 100 million tokens at
t=3,t=6,andt = 9. We drew each dataset from a 2-week period in UpVoteWeb (UpV, 2024).
In Table [5] we report the average downstream evaluation results across two repetitions for before
training, after training with the base dataset, and after training with the dense dataset. To test the
statistical significance of the difference in downstream evaluation results on the two dataset densities,
we performed ¢-tests and report p-values. We do not observe a statistically significant difference
between the base and dense dataset results. The p-value is greater than 0.05 in all cases and greater
than 0.1 in 10 out of 12 cases.

H ADDITIONAL BENCHMARKS

Figure 27] presents PortLLM-style patch results on two additional benchmarks: WinoGrande and
ARC-Easy. Both tasks display clear degradation trends over time, reinforcing our core finding that
patch misalignment increases with continual pretraining of the base model. On WinoGrande, the
fixed patch degrades rapidly and eventually underperforms even the unpatched base model. This
suggests that for sensitive commonsense reasoning tasks, static patches can be actively detrimental,
worsening performance compared to not patching at all. The result highlights a cautionary implication
of relying on frozen patches strategies in domains that are especially brittle to representation drift. On
ARC-Easy, static patching and periodic patching closely follow the trend of the evolving base model.
However, periodic patching performs inconsistently, sometimes performing worse than fixed patching.
We attribute this to the limited size of ARC-Easy’s training split, which makes it prone to overfitting.
Unlike the initial £y patch, which benefits from a more generalizable optimization trajectory, periodic
patches are retrained on narrow snapshots of data without retuning hyperparameters. While tuning
could improve periodic patch performance, it would incur significant computational overhead and
cause unfair comparison between patches. Together, these results further underscore the practical
need for adaptive monitoring and estimation strategies. Reliance on manual refresh intervals or
naive reuse of PortLLM-style patches may fail silently or introduce instability in tasks with limited
supervision or high sensitivity.

25

Under review as a conference paper at ICLR 2026

T T

75 - m 80 |- :\\ |

< f . < 750 |

= = 70 -

g 05 g 65)

5 60 — § 60 |

< 55| 2 < %5 1

50 N

o0 i | 45 ARC-Easy |

45— | | | WinoGrande 40 — | | | | 1-asy

to 1/15 2/12 3/11 4/08 5/06 6/03 to 1/15 2/12 3/11 4/08 5/06 6/03
Timestep Timestep

—o— tp-Patching (PortLLM) —¢— No Patching =~ —=— Periodic Patch Regeneration

Figure 27: PortLLM patching performance (blue “o”’) for WinoGrande and ARC-Easy over 13
temporal checkpoints continually pretrained on the Reddit dataset. While PortLLM patching initially
outperforms the no-patching baseline (black “¢”) as in |Khan et al.[|(2025), our experiments reveal
that its performance degrades steadily over time (Section [3). On WinoGrande, periodic patching
(gray “0J”) improves performance at each refresh point. However, for ARC-Easy, periodic patching
provides limited gains and occasionally underperforms fixed patching, suggesting sensitivity to task-
specific data scarcity or overfitting. Error bars denote the standard deviation across 5 independent
repetitions of continually pretrained base models. Forecasting methods (Section[d) may enable more
efficient adaptation decisions by anticipating when patch failure occurs.

I STRUCTURED/COMBINED TIME-SERIES DATASET

To assess patch robustness across varied continual pretraining sources, we performed additional
experiments using a collection of independent datasets structured into a time series. Each dataset
or subset represents a temporally distinct pretraining phase, simulating the evolving corpora often
encountered in production-scale LLM training pipelines. The datasets are ordered as follows:
OpenOrca (Lian et al.,[2023)) is a large-scale, augmented version of the FLAN Collection (Longpre
et al.l 2023)). 1t contains approximately 1 million GPT-4 completions and 3.2 million GP1-3.5
completions. OpenPlatypus (Lee et al.| [2023) is a reasoning-focused dataset which aggregates
multiple logical and scientific teasoning benchmarks such as PRM800K (Lightman et al., [2023]),
MATH (Hendrycks et al., 2021}, ScienceQA (Lu et al.l 2022), SciBench (Wang et al., 2024b),
ReClor (Yu et al. 2020), and TheoremQA (Chen et al.| 2023), applying similarity filtering for
question diversity. Math Genie (Lu et al., |2024) is a synthetic dataset of verified math problems
generated by rephrasing and validating questions derived from GSM8K (Cobbe et al., [2021) and
MATH (Hendrycks et al., 2021)). Alpaca-GPT (Peng et al.,[2023)) is an instruction-following dataset
generated by GP1-4 using the original Alpaca prompts (Taor1 et al.l 2023), maintaining the Alpaca
format but improving response quality through higher-capability completions. Cosmopedia (Ben Allal
et al.,2024) is a synthetic dataset of textbook-style and web-derived documents generated by Mixtral-
8x7B-Instruct-v0.1 (Jiang et al.l [2024). It contains over 30 million files and 25 billion tokens
spanning topics such as math, science, storytelling, and general knowledge. We used three subsets
from Cosmopedia: Khan Academy, WikiHow, and OpenStax.

Figure|28|shows patch performance across four benchmarks under temporally structured pretraining
sources. These results emphasize the important role of optimization landscape alignment for effective
patch transfer. In general, applying a fixed patch from t = 0 leads to consistent degradation over
time. However, when the patch and continual pretraining data become aligned, as in MathGenie,
performance improves rather than degrades, indicating that landscape compatibility can enhance
generalization even without retraining. In contrast, BoolQ, WinoGrande, ARC-Easy exhibit steady
performance decay, consistent with our findings in Section [3.2] that attribute degradation to increasing
misalignment between the patch and the evolving base model.

26

Under review as a conference paper at ICLR 2026

20 F .
90 .
15 - = =
5 S
@ 10| : Z 85| |
Q
2 50 . $
0 80 =
\ \ \ \ \ ‘MathGenie \ \ \ \ \ \ \ BOO‘IQ
to 1 2 3 4 5 6 17 to 1 2 3 4 5 6 7
Timestep Timestep
T T T T 85 T T T T T T T T
75 | .
SRS | S 80| .
> >
g 65 N 3
3 3
3 60f | 3™ i
55 |- .
| | | | ___ WinoGrande 0 | | | | | AR‘C-Ea‘syf
to 1 2 3 4 5 6 17 to 1 2 3 4 5 6 17
Timestep Timestep

—o— tp-Patching (PortLLM) —¢— No Patching

Figure 28: Patch effectiveness across independent pretraining phases structured as a synthetic time
series. We evaluate PortLLM-style patch robustness under continual pretraining using 7 distinct
datasets: OpenOrca, OpenPlatypus, MathGenie, AlpacaGPT and three subsets from Cosmopedia
(Khan Academy, WikiHow and OpenStax). Each dataset represents a temporally isolated pretraining
phase, simulating evolving corpora in real-world LLM deployments. As shown, fixed patches trained
at t = 0 degrade predictably as the base LLM evolves, despite task and architecture remaining
constant. But when the patch and base LLM become well-aligned (e.g., MathGenie on MathGenie),
patch performance improves over time. Together, these trends highlight the impact of pretraining
drift on patch viability and support the hypothesis that degradation arises from misalignment of
optimization landscapes.

27

	Introduction
	Related Work
	Large-Scale Experimental Study and Evidence of Degradation
	Datasets and Experimental Conditions
	Evidence of Patching Degradation Over Time in Large-Scale Experiments
	Time Series Analysis and Detection of Patch Performance Degradation

	Proposed Degradation Forecasting Algorithms
	Assumptions and Definitions
	Parameter Estimation Formulation
	Hypothesis Testing Formulation
	Experimental Validation of the Effectiveness of Proposed Algorithms

	Conclusion
	Downstream Finetuning Datasets
	Additional Results on Model Fitting
	Derivation to Obtain Closed-Form Solutions for 0 and 1 and Their Variance
	Formulation of Test Statistic for Hypothesis Testing
	Additional Estimation Validation Results
	Formulations for the Absolute Performance Threshold,
	Varying Pretrain Dataset Sizes
	Additional Benchmarks
	Structured/Combined Time-Series Dataset

