
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING-FREE MESSAGE PASSING
FOR LEARNING ON HYPERGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraphs are crucial for modelling higher-order interactions in real-world data.
Hypergraph neural networks (HNNs) effectively utilise these structures by mes-
sage passing to generate informative node features for various downstream tasks
like node classification. However, the message passing module in existing HNNs
typically requires a computationally intensive training process, which limits their
practical use. To tackle this challenge, we propose an alternative approach by decou-
pling the usage of hypergraph structural information from the model training stage.
This leads to a novel training-free message passing module, named TF-MP-Module,
which can be precomputed in the data preprocessing stage, thereby reducing the
computational burden. We refer to the hypergraph neural network equipped with
our TF-MP-Module as TF-HNN. We theoretically support the efficiency and ef-
fectiveness of TF-HNN by showing that: 1) It is more training-efficient compared
to existing HNNs; 2) It utilises as much information as existing HNNs for node
feature generation; and 3) It is robust against the oversmoothing issue while us-
ing long-range interactions. Experiments based on seven real-world hypergraph
benchmarks in node classification and hyperlink prediction show that, compared
to state-of-the-art HNNs, TF-HNN exhibits both competitive performance and
superior training efficiency. Specifically, on the large-scale benchmark, Trivago,
TF-HNN outperforms the node classification accuracy of the best baseline by 10%
with just 1% of the training time of that baseline.

1 INTRODUCTION

Higher-order interactions involving more than two entities exist in various domains, such as co-
authorships in social science (Han et al., 2009) and spreading phenomena in epidemiology (Jhun,
2021). Hypergraphs extend graphs by allowing hyperedges to connect more than two nodes, making
them suited to capture these complex relationships (Bick et al., 2023). To utilise such structures for
downstream tasks, learning algorithms on hypergraphs have garnered increasing attention.

Inspired by the success of graph neural networks (GNNs) (Wu et al., 2020), current research focuses
on developing hypergraph neural networks (HNNs) with a message passing module (MP-Module) that
can be compatible with various task-specific modules. The MP-Module enables information exchange
between connected nodes to generate informative node features for specific tasks (Feng et al., 2019;
Wang et al., 2023b; Telyatnikov et al., 2023). However, similar to other message passing neural
networks (Frasca et al., 2020; Wu et al., 2022), training the MP-Module makes loss computation
interdependent for connected nodes, resulting in a computationally intensive training process for
HNNs. This limits their practical applications, especially in the process of large-scale hypergraphs.

To address this challenge, our key solution is to develop a training-free MP-Module that shifts the
processing of hypergraph structural information from the training stage to the data pre-processing
phase. This approach is inspired by recent advancements in efficient GNNs (Wu et al., 2019a;
Gasteiger et al., 2019; Frasca et al., 2020), where training-free MP-Modules are typically implemented
as graph filters (Ortega et al., 2018). However, directly using existing hypergraph filters (Zhang et al.,
2019; Qu et al., 2022) presents two major obstacles. Firstly, these filters are specifically designed for
k-uniform hypergraphs, where all hyperedges must have the same size k, limiting their applicability
to more general hypergraph structures with varying hyperedge sizes. Secondly, the reliance on an
incidence tensor to represent the hypergraph presents significant challenges in practical usage. As

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Training pipeline of HNN vs. TF-HNN for node classification. Top row: HNN uses a
hypergraph structure to generate node features by a learnable MP-Module, which are then used by
a classifier, with the MP-Module and the classifier being trained together. For brevity, we omit the
MLP in HNN for the input node features. Bottom row: TF-HNN comprises only the classifier trained
for node classification and the TF-MP-Module that can be recomputed prior to classifier training.

the tensor dimension grows exponentially with nk, existing computational resources struggle to
perform multiplications involving such high-dimensional tensors. Thus, instead of adopting existing
hypergraph filters, we introduce a novel training-free MP-Module for hypergraphs.

In this work, we develop a novel, training-free message passing module, TF-MP-Module, for
hypergraphs to decouple the usage of hypergraph structure information from the model training stage.
To achieve this, we first construct a theoretical framework that provides a unified view of existing
HNNs (Huang & Yang, 2021; Chen et al., 2022; Chien et al., 2022; Wang et al., 2023a). Specifically,
this framework identifies the feature aggregation function as the core operator of MP-Modules in
existing HNNs. Based on these insights, we design the TF-MP-Module in two stages: 1) We make
the feature aggregation functions within the MP-Modules of four state-of-the-art HNNs (Huang &
Yang, 2021; Chen et al., 2022; Chien et al., 2022; Wang et al., 2023a) training-free by removing
their learnable parameters; and 2) To further enhance efficiency, we remove the non-linear activation
functions and consolidate the feature aggregation across L layers into a single propagation step.
Remarkably, this two-stage process unifies the chosen MP-Modules into a single formulation, despite
their different design philosophies. We refer to this unified formulation as the TF-MP-Module and
denote the hypergraph neural network equipped with it as TF-HNN. To demonstrate the efficiency
and effectiveness of TF-HNN, we provide a theoretical analysis showing three key advantages: 1)
TF-HNN is more training-efficient compared to existing HNNs; 2) TF-HNN can utilise as much
information as existing HNNs for generating node features; and 3) TF-HNN is robust against the
oversmoothness issue while taking into account the long-range information.

The main contributions of this work are summarised as follows:

●We present an original theoretical framework that identifies the feature aggregation function as
the core component of MP-Modules in existing HNNs, which processes the hypergraph structural
information. This insight provides a deeper understanding of existing HNNs.

● We develop TF-HNN, an efficient and effective model for hypergraph-structured data. To our
knowledge, TF-HNN is the first model that decouples the processing of hypergraph structural
information from model training, significantly enhancing training efficiency.

●We theoretically support the efficiency and effectiveness of TF-HNN by showing that: 1) It leads to
remarkably low training complexity when solving hypergraph-related downstream tasks; 2) It utilises
the same amount of information as existing HNNs for generating node features; and 3) It is robust
against the oversmoothing issue when utilising long-range information.

●We conduct extensive experiments in both node classification and hyperedge prediciton tasks to
compare TF-HNN with nine state-of-the-art HNNs. The empirical results show that the proposed
TF-HNN exhibits both competitive learning performance and superior training efficiency.

2 NOTATION

Hypergraph. Let H = {V,E ,H} be a hypergraph, where V = {v1, v2,⋯, vn} is the node set,
E = {e1, e2,⋯, em} is the hyperedge set, and H ∈ {0,1}n×m is an incidence matrix in which Hik = 1

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

means that ek contains node vi and Hik = 0 otherwise. Define DHV ∈ Rn×n
≥0 as a diagonal matrix of

node degrees and DHE ∈ Rm×m
≥0 as a diagonal matrix of hyperedge degrees, where DHVii and DHE

kk

are the number of hyperedges with vi and the number of nodes in ek, respectively. In the following
discussions, we assume the hypergraph does not have isolated nodes or empty hyperedges.1 Moreover,
we define: 1) The distance between two nodes on a hypergraph is the number of hyperedges in the
shortest path between them, e.g., the distance is one if they are directly connected by a hyperedge;
and 2) The k-hop neighbours of a node vi are all nodes with a distance of k or less.

Graph and clique expansion. Let G = {V,W} be a graph, where V = {v1, v2,⋯, vn} is the node set,
and W ∈ Rn×n

≥0 is the adjacency matrix of G in which Wij > 0 means that vi and vj are connected
and Wij = 0 otherwise. We set D ∈ Rn×n

≥0 as a diagonal node degree matrix for G, where Dii

is the sum of the i-th row of W. Moreover, we denote the graph Laplacian of G as L = D −W.
Given a hypergraphH = {V,E ,H}, its clique expansion is defined as a graph G = {V,W}, where V
remains unchanged, and Wij > 0 if and only if vi and vj are connected onH and Wij = 0 otherwise.
Therefore, each hyperedge inH is a clique in G.

Other notations. We set node features as XV = [x⊺v1 ,x
⊺
v2 ,⋯,x

⊺
vn]
⊺ ∈ Rn×d, which is a matrix that

contains d-dimensional features. We denote functions or variables at the l-th layer of a model using
the superscript (l) and use ⊕ for concatenation. We use Θ to represent the learnable weight matrix in
a model, MLP(⋅) for a multilayer perceptron (MLP), and σ(⋅) for non-linear functions (e.g., ReLU).
In subsequent sections, we presume that the node features are d-dimensional unless otherwise noted.

3 METHODOLOGY

We present in this section the hypergraph neural network with training-free message passing module
(TF-HNN) approach. Subsection 3.1 provides an overview of TF-HNN. In Subsection 3.2, we present
a theoretical framework that offers a unified view on existing HNNs. Building on the insights gained
from this theoretical framework, Subsection 3.3 details the design of our TF-MP-Module.

3.1 OVERVIEW

To enhance the GNN efficiency, Gasteiger et al. (2019) design APPNP by using the connection
between GCN (Kipf & Welling, 2017) and PageRank (Page et al., 1998), shifting learnable parameters
to an MLP prior to the message passing. Wu et al. (2019a) and Frasca et al. (2020) further improve
training efficiency by removing the MLP before the message passing, completing message passing in
preprocessing and making it training-free. Inspired by them, we design the TF-HNN that removes the
reliance on message passing at training. Generally, TF-HNN is described as the following framework:

Ŷ = φΘ(X̂V), X̂V = S(XV ,H), (1)
where φΘ(⋅) is a task-specific module, Ŷ denotes the task-specific output whose dimension is
task-dependent2, S(⋅) denotes an MP-Module that contains only pre-defined parameters allowing
it to be precomputed in the pre-processing phase, and X̂V ∈ Rn×d denote the features generated by
S(⋅). In the GNN literature, S(⋅) is implemented as the graph filter (Ortega et al., 2018). However,
we cannot directly use existing hypergraph filters (Zhang et al., 2019; Qu et al., 2022) for two main
reasons. Firstly, existing hypergraph filters are primarily designed for k-uniform hypergraphs, where
all hyperedges have size k. Secondly, these filters require the use of an incidence tensor, which
presents challenges in handling high-dimensional matrix multiplication. Hence, rather than relying
on existing methods, we design a novel function S(⋅) for hypergraphs, the TF-MP-Module. Since
our design is based on existing MP-Modules for hypergraphs, the next section introduces an original
framework that offers a unified perspective on current HNNs.

3.2 REVISITING HYPERGRAPH NEURAL NETWORKS

A traditional HNN for a certain downstream task is formulated as the following equation:
Ŷ = φΘ(X̂V), X̂V = ΦΘ(XV ,H), (2)

1Details about this assumption are in Appendix Q.
2For instance, in the node classification task, Ŷ ∈ Rn×c contains the logits for c categories; and in the

hyperlink prediction task, Ŷ ∈ Rmp contains the probability of mp potential hyperedges.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Overview for four state-of-the-art HNNs and our TF-HNN. In this table, γU , γE , γD, γ′l ∈
(0,1) are hyperparameters and I ∈ Rd×d denotes an identity matrix. Moreover, M is the training
computational complexity of the task-specific module, n is the node count, m is the hyperedge count,
m′ is the number of edges in the clique expansion, ∥H∥0 is the number of non-zero values in H, T is
the number of training epochs, L is the number of layers, and d is the feature dimension.

Name Type Hypergraph-Wise Feature Aggregation Function Training Computational Complexity

UniGCNII (Huang & Yang, 2021) Direct X
(l)
V =σ

⎛
⎝
((1−γU)D−1/2HV HD̃

−1/2
HE D−1HEH

⊺X
(l−1)
V +γUX(0)V)Θ

(l)⎞
⎠

O(M + TL(n +m + ∥H∥0)d + TLnd2)

Deep-HGNN (Chen et al., 2022) Direct X
(l)
V =σ

⎛
⎝
((1−γD)D−1/2HV HD−1HEH

⊺D
−1/2
HV X

(l−1)
V +γDX

(0)
V)((1 − γ

′
D)I + γ′DΘ(l−1))

⎞
⎠

O(M + TLm′d + TLnd2)

AllDeepSets (Chien et al., 2022) Indirect X
(l)
V =MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V))
⎞
⎠

O(M + TL∥H∥0d + TL(n +m)d2)

ED-HNN (Wang et al., 2023a) Indirect X
(l)
V =MLP

⎡⎢⎢⎢⎢⎣
(1 − γE)MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V))
⎞
⎠
+ γEX(0)V

⎤⎥⎥⎥⎥⎦
O(M + TL∥H∥0d + TL(n +m)d2)

TF-HNN (Ours) Direct X̂V = SXV O(M)

where φΘ(⋅) is a task-specific module, Ŷ denotes the task-specific output whose dimension is
task-dependent, ΦΘ(⋅) is a learnable message passing module, and X̂V ∈ Rn×d denote the features
generated by ΦΘ(⋅). The modules φΘ(⋅) and ΦΘ(⋅) are trained together with the supervision
given by the downstream tasks. See Figure 1 for the comparison between the training pipelines
of traditional HNNs and TF-HNN in the context of node classification. Existing HNNs use the
hypergraph structural information by the message passing module ΦΘ(⋅), we detail this module in
the next paragraph. Message passing module (MP-Module). The MP-Module in existing HNNs is
typically based on one of four mechanisms3: clique-expansion, star-expansion, line-expansion, or
incidence-tensor (Huang & Yang, 2021; Wang et al., 2023b; Chen et al., 2022; Chien et al., 2022;
Wang et al., 2023a; Yang et al., 2022; Antelmi et al., 2023; Kim et al., 2024). We summarize the
MP-Module using these mechanisms in Proposition 3.1, with the proof provided in Appendix C.

Proposition 3.1. Let x(l)vi be features of node i in the l-th message passing layer of a HNN based on
clique-expansion/star-expansion/line-expansion/incidence-tensor, ϕΘ(⋅) denotes a learnable node-
wise feature aggregation function, and NHvi

is the set of neighbours of vi on the hypergraph. For

i = 0, we have x
(0)
vi =MLP(xvi). For i ∈ Z+, we have x

(l)
vi = ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj).

Specifically, ϕΘ(⋅) defined in Proposition 3.1 can be categorized into two types: direct and indirect
feature aggregation functions. The direct approaches aggregate features of neighbouring nodes to that
of the target node directly (Huang & Yang, 2021; Wang et al., 2023b), while the indirect methods
aggregate features of neighbouring nodes to that of the target node via some virtual nodes (Chien
et al., 2022; Wang et al., 2023a; Yang et al., 2022). These approaches can be formulated as:

x(l)vi = f3(f0(x
(0)
vi) + f1(x

(l−1)
vi) + ∑

vj∈NHvi

f2(x
(l−1)
vj)), (3a)

x(l)vi = g2(g0(x
(0)
vi) + p

⊺g1(x
(l−1)
vi ,⊕vj∈NHvi

x(l−1)vj)), (3b)

where f0(⋅), f1(⋅), f2(⋅), f3(⋅), g0(⋅), g1(⋅), g2(⋅) represent seven learnable functions, and p ∈
Rnv is a vector used to aggregate the features of virtual nodes generated by g1(⋅). Here, nv is a
hyperparameter corresponding to the number of the virtual nodes, and Eq. (3a) and Eq. (3b) represent
the direct and indirect approaches respectively. Based on Propostion 3.1, the hypergraph structure is
only used to construct the neighbourhood set Nvi within the MP-Module of HNNs. Consequently,
the feature aggregation function ϕΘ(⋅) is the core component of the MP-Module in processing
hypergraph structural information. Moreover, based on Eq. (3a) and Eq. (3b), the usage of the
hypergraph structural information is not directly related to the learnable parameters and the non-linear
function. Therefore, in the next subsection, we design our TF-MP-Module by first removing the
learnable parameters for the feature aggregation function from existing HNNs to make it training-free.
To further improve its efficiency, we eliminate the non-linear function from the feature aggregation
process. Specifically, we design our model based on HNNs shown in Table 1.

3.3 TRAINING-FREE MESSAGE PASSING

We introduce the TF-MP-Module by removing the learnable parameters and the non-linear function
from four state-of-the-art HNNs shown in Table 1, which includes two methods with the direct feature
aggregation function and two methods with the indirect feature aggregation function.

3Details on these mechanisms can be found in Appendix B

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Learnable parameters removal. Based on the insights from Subsection 3.2, to develop a training-
free MP-Module, we first remove learnable parameters from the feature aggregation functions of
the selected HNNs. Specifically, we replace the learnable matrices in these functions with identity
matrices. This removal allows us to reformulate the feature aggregation functions as follows:

X
(l)
V = σ((1 − γU)D

−1/2
HV HD̃

−1/2
HE D−1HEH

⊺X
(l−1)
V + γUX(0)V), (4a)

X
(l)
V = σ((1 −γD)D

−1/2
HV HD−1HEH

⊺D
−1/2
HV X

(l−1)
V +γDX

(0)
V), (4b)

X
(l)
V = σ

⎛
⎝
D−1HVHσ(D−1HEH

⊺σ(X(l−1)V))
⎞
⎠
, (4c)

X
(l)
V = σ

⎡⎢⎢⎢⎢⎣
(1 − γE)σ

⎛
⎝
D−1HVHσ(D−1HEH

⊺σ(X(l−1)V))
⎞
⎠
+ γEX(0)V

⎤⎥⎥⎥⎥⎦
, (4d)

where Eq. (4a), Eq. (4b), Eq. (4c) and Eq. (4d) represent the simplified formulation of UniGCNII,
Deep-HGNN, AllDeepSets and ED-HNN, respectively. Notably, σ(⋅) only denotes a general non-
linear function without parameters, not implying that these formulas use the same function.

Linearisation. Inspired by the insights from Subsection 3.2, we further remove the non-linearity
from the functions represented by Eqs. (4a∼4d), thereby transforming an MP-Module with L feature
aggregation functions into a more efficient single propagation step. For the sake of brevity, we present
the simplification results as Proposition 3.2 and provide its mathematical proof in Appendix D.

Proposition 3.2. Let XV be input node features, X̂V be the output of the MP-Module of an
UniGCNII/AllDeepSets/ED-HNN/Deep-HGNN with L MP layers, and α∈[0,1). Assume that learn-
able parameters and the non-linearity are removed from the module. For each model, given a
hypergraph H ={V,E ,H}, there exists a clique expansion G = {V,W} to unify its output as the

following formula X̂V =((1−α)
LWL+α∑

L−1
l=0 (1−α)

lWl)XV .

This proposition shows that, via our simplification, the selected models can be unified into a single
formula. Based on this observation, our TF-MP-Module is designed as the following equation:

X̂ = SXV ,

where S = (1−α)LWL+α∑
L−1
l=0 (1−α)

lWl. Intuitively, in this formula, a larger α value emphasizes
the retention of the node’s inherent information, while a smaller α value increases the influence of
information from neighbouring nodes. We define that the L used to compute S is the number of
layers of an TF-MP-Module. To understand the behaviour of an L-layer TF-MP-Module, we present
the Proposition 3.3. For conciseness, we prove it in Appendix E.

Proposition 3.3. LetH = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with
self-loops. Assume that α ∈ [0,1), and S=(1 − α)LWL + α∑

L−1
l=0 (1 − α)

lWl. Then, for i ≠ j, we
have Sij > 0 if and only if vi is an L-hop neighbour of vj onH, and Sij = 0 otherwise.

By Proposition 3.3, an L-layer TF-MP-Module enables the information exchange between any node
vi and its L-hop neighbours on the hypergraph. In the next paragraph, we detail the generation of S.

Operator design. To use the TF-MP-Module in our TF-HNN, the key is designing W to generate S.
We achieve this using a hyperedge-size-based edge weight that is defined as:

WHij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

, (5)

where δ(⋅) is a function that returns 1 if ek connects vi and vj and returns 0 otherwise. We discuss
the connection between the clique expansion mentioned in Proposition 3.2 and the one defined in
Eq (5) in Appendix T. The main intuition behind the design of this edge weight is that, under certain
conditions, the value of WHij is positively correlated with the probability of nodes vi and vj having
the same label. Consequently, this edge weight design can make the weighted clique expansion fit the
homophily assumption, which is that connected nodes tend to be similar to each other (McPherson
et al., 2001). Appendix F elaborates on this intuition. Furthermore, inspired by previous works in the
graph domain (Wu et al., 2020), we generate S based on a symmetrically normalised WH with the
self-loop. Specifically, we generate the S by:

S = (1 − α)L(D̃
−1/2
H W̃HD̃

−1/2
H)

L
+ α

L−1
∑
l=0
(1 − α)l(D̃

−1/2
H W̃HD̃

−1/2
H)

l, (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H . In the next
section, we present the theoretical analysis to support the efficiency and effectiveness of our TF-HNN.

4 THEORETICAL ANALYSIS

In this section, we begin by showing the efficiency of the proposed TF-HNN by comparing its
training complexity with the traditional HNNs. Additionally, we demonstrate the effectiveness of our
TF-HNN by analyzing its information utilisation and its robustness against the oversmoothing issue.

Training complexity. As illustrated by Eq. (1), the TF-HNN in downstream tasks requires training
only the task-specific module. Additionally, since the TF-HNN relies on a pre-defined propagation
operator, its computations can be handled during data pre-processing. Consequently, the training
complexity of the TF-HNN is determined solely by the task-specific module. In contrast, on the
basis of Eq. (2), the HNNs involve training both the MP-Module and the task-specific module. The
MP-Module in HNNs includes complex learnable operations that facilitate message passing between
connected nodes on a hypergraph, inherently making the training of the HNNs more complex than
the TF-HNN. See Figure 1 for an example that qualitatively compares the training pipelines of the
TF-HNN and HNN in node classification. To provide a quantitative comparison, we summarize the
training computational complexity of the TF-HNN and the four state-of-the-art HNNs in Table 1.
This table shows that the training complexity of the TF-HNN is consistently lower than that of the
HNN, theoretically confirming the training efficiency of the proposed TF-HNN.

Information utilisation. The core strength of existing HNNs lies in their ability to utilise the informa-
tion embedded within hypergraph structures to generate powerful node features for downstream tasks.
Consequently, we analyse the effectiveness of our proposed TF-HNN by comparing its information
utilisation capabilities with those of existing HNNs and conclude that our methods utilise the same
amount of information as exising HNNs without any loss, which is summarised in Proposition 4.1.
For conciseness, we show the detailed proof for Proposition 4.1 in Appendix G.

Proposition 4.1. Let HvL
i

0 be the entropy of information4 used by an HNN with L feature aggregation

functions in generating the features of a node vi, H
vL
i

1 be the entropy of information used by an

TF-HNN with an L-layer TF-MP-Module for the same purpose, and H
vL
i

2 denote the entropy of

information within node vi and its L-hop neighbours on the hypergraph. Then, HvL
i

0 =H
vL
i

1 =H
vL
i

2 .

The proposition above theoretically demonstrates that TF-HNN is as effective as existing HNNs
in utilising information from pre-defined hypergraphs to generate node features. Specifically, both
TF-HNN and existing HNNs achieve this by aggregating neighbourhood information.

Robustness against the oversmoothing issue. According to Proposition 3.3, TF-HNN can use global
interactions within the given hypergraph to generate node features by deepening the TF-MP-Module.
However, as shown in a recent study (Chen et al., 2022), the message-passing-based models on
hypergraphs may suffer from the oversmoothing issue. This issue refers to the tendency of a model
to produce indistinguishable features for nodes in different classes as the model depth increases,
which consequently degrades the performance of the framework in downstream tasks. Consequently,
to further support the effectiveness of TF-HNN, we theoretically analyse its robustness against the
oversmoothing issue. Inspired by previous works in the graph domain (Eswaran et al., 2020; Yang
et al., 2021; Zhang et al., 2020), we show Proposition 4.2, with the proof provided in Appendix H.

Proposition 4.2. Let H = {V,E ,H} denote a hypergraph, G = {V,WH} be its clique expansion
with edge weights computed by Eq. (5), L be the graph Laplacian matrix of G computed by a
symmetrically normalised and self-loops added WH , XV represent the input node features, and
α ∈ [0,1) be a hyperparameter. We define that F (X) = tr(X⊺LX) + α

1−α tr[(X−XV)
⊺(X−XV)],

and Fmin as the global minimal value of F (X) for X ∈ Rn×d. Assume that: 1) X̂V = SXV ; 2) S is
computed by Eq. (6); 3) α > 0; and 4) L→ +∞. Then, F (X̂V) = Fmin.

Notably, minimising the first term of F (X) enhances feature similarity among connected nodes on
H, and minimising the second term of F (X) encourages the generated features of each node to retain

4We use “entropy of information” in a conceptual way - A detailed discussion is in Appendix U.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Dataset statistics. More details of these datasets are in Appendix I.
Name # Nodes # Hyperedges # Features # Classes Node Definition Hyperedge Definition

Cora-CA 2708 1072 1433 7 Paper Co-authorship
DBLP-CA 41302 22363 1425 6 Paper Co-authorship
Citeseer 3312 1079 3703 6 Paper Co-citation
Congress 1718 83105 100 2 Congressperson Legislative-Bills-Sponsorship
House 1290 340 100 2 Representative Committee
Senate 282 315 100 2 Congressperson Legislative-Bills-Sponsorship
Trivago 172738 233202 300 160 Accommodation Browsing Session

the distinct information from its input features. Therefore, node features that can minimise F (X)
capture two key properties: 1) neighbouring nodes on H have similar features; and 2) each node
contains unique information reflecting its individual input characteristics.

Based on Proposition 4.2, a deep TF-MP-Module tends to assign similar features to connected nodes
on a hypergraph while maintaining the unique input information of each node. Hence, even with an
extremely large number of layers, the TF-MP-Module can preserve the unique input information
of each node, making it robust against the oversmoothing issue. This property further ensures the
effectiveness of our TF-HNN. Section 6 empirically supports the analysis presented in this section.

5 RELATED WORK

Recent efforts have leveraged hypergraphs to improve node feature learning for downstream
tasks (Bick et al., 2023). The predominant models in this area are hypergraph neural networks
(HNNs) with a message passing module that enables information exchange between connected
nodes (Antelmi et al., 2023). However, as noted for graph counterparts (Wu et al., 2019a; Frasca
et al., 2020) for their graph counterparts, HNNs suffer from low learning efficiency. Two recent works
attempt to mitigate this limitation (Feng et al., 2024; Tang et al., 2024). In Feng et al. (2024), an HNN
named HGNN (Feng et al., 2019) is distilled into an MLP during training; while in (Tang et al., 2024),
hypergraph structural information is integrated into an MLP via a loss function computed by the sum
of the maximum node feature distance in each hyperedge. These approaches primarily focus on re-
ducing model inference complexity via a dedicated training process. However, these designs still lead
to hypergraph machine learning models with computationally intensive training procedures. For in-
stance, the distillation process in (Feng et al., 2024) necessitates training a HNN with a computational
complexity of O(M +TLm′d+TLnd2), where with M is the training computational complexity of
the task-specific module, n is the node count, m′ is the number of edges in the clique expansion, L is
the number of layers, and d is the feature dimension. Given that many existing models are applied
to semi-supervised hypergraph node classification settings, which involve the simultaneous use of
training and test data (Huang & Yang, 2021; Chien et al., 2022; Wang et al., 2023a;b; Joachims et al.,
1999; Chapelle et al., 2009), reducing the training complexity of hypergraph-based models remains a
critical yet underexplored challenge. We address this challenge with a novel model named TF-HNN,
which is the first to decouple the processing of hypergraph structural information from model training.
This decoupling significantly improves training efficiency.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Task description. We conduct experiments in two tasks: hypergraph node classification and hyperlink
prediction. In hypergraph node classification (Wang et al., 2023a;b; Duta et al., 2023), we are given
the hypergraph structure H, node features XV , and a set of labelled nodes with ground truth labels
Ylab = {yv}v∈Vlab

, where yvi ∈ {0,1}
c be a one-hot label. Our objective is to classify the unlabeled

nodes within the hypergraph. In hyperlink prediction (Chen & Liu, 2023), we are given node features
XV , a set of observed real and fake hyperedges Eob, and a set of potential hyperedges Ep. The task
requires the model to distinguish between real and fake hyperedges in Ep using XV and Eob.

Dataset and baseline. We conduct experiments on seven real-world hypergraphs: Cora-CA, DBLP-
CA, Citeseer, Congress, House, Senate, which are from (Chien et al., 2022) and Trivago from (Kim
et al., 2023). We use nine HNNs as baselines. Five of these baselines utilize direct feature aggregation,
including HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), UniGCNII (Huang & Yang, 2021),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Node classification accuracy (%) for HNNs and TF-HNN. The best result on each dataset is
highlighted in bold font. The second and third highest accuracies are marked with an underline.

Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean
HGNN 82.64 ± 1.65 91.03 ± 0.20 72.45 ± 1.16 91.26 ± 1.15 61.39 ± 2.96 48.59 ± 4.52 74.56
HCHA 82.55 ± 0.97 90.92 ± 0.22 72.42 ± 1.42 90.43 ± 1.20 61.36 ± 2.53 48.62 ± 4.41 74.38
HNHN 77.19 ± 1.49 86.78 ± 0.29 72.64 ± 1.57 53.35 ± 1.45 67.80 ± 2.59 50.93 ± 6.33 68.12
UniGCNII 83.60 ± 1.14 91.69 ± 0.19 73.05 ± 2.21 94.81 ± 0.81 67.25 ± 2.57 49.30 ± 4.25 76.62
AllDeepSets 81.97 ± 1.50 91.27 ± 0.27 70.83 ± 1.63 91.80 ± 1.53 67.82 ± 2.40 48.17 ± 5.67 75.31
AllSetTransformer 83.63 ± 1.47 91.53 ± 0.23 73.08 ± 1.20 92.16 ± 1.05 51.83 ± 5.22 69.33 ± 2.20 76.93
PhenomNN 85.81 ± 0.90 91.91 ± 0.21 75.10 ± 1.59 88.24 ± 1.47 70.71 ± 2.35 67.70 ± 5.24 79.91
ED-HNN 83.97 ± 1.55 91.90 ± 0.19 73.70 ± 1.38 95.00 ± 0.99 72.45 ± 2.28 64.79 ± 5.14 80.30
Deep-HGNN 84.89 ± 0.88 91.76 ± 0.28 74.07 ± 1.64 93.91 ± 1.18 75.26 ± 1.76 68.39 ± 4.79 81.38
TF-HNN (ours) 86.54 ± 1.32 91.80 ± 0.30 74.82 ± 1.67 95.09 ± 0.89 76.29 ± 1.99 70.42 ± 2.74 82.50

Citeseer Cora-CA DBLP-CA Congress House Senate
100

101

102

Re
la

tiv
e

Tr
ai

ni
ng

 T
im

e

1X

18X

38X

6X

2X

4X
3X

2X

7X

61X

1X

42X
61X

13X

6X
4X

5X

24X

10X

49X

1X

13X

28X

13X

4X
5X

3X

114X

7X

41X

1X

9X
12X

38X 44X

11X 13X

42X

8X

30X

1X

3X

9X
13X

10X

4X 4X
3X

5X 6X

1X

14X

69X 68X 71X

11X
9X

42X

11X

32X

TF-HNN (Ours) Deep-HGNN AllDeepSets AllSetTransformer ED-HNN HCHA HGNN UniGCNII HNHN PhenomNN

Figure 2: The relative training time required for HNNs and TF-HNN to achieve optimal performance.

1 5 10
Relative Training Time

90

95

100

AU
C

(%
)

1X
4X

6X

2X 4X

TF-HNN (Ours)
Deep-HGNN
AllSetTransformer
ED-HNN
PhenomNN

(a) Cora-CA.

1 5 10
Relative Training Time

90

95

100

AU
C

(%
) 1X 3X3X 4X 9X

TF-HNN (Ours)
Deep-HGNN
AllSetTransformer
ED-HNN
PhenomNN

(b) Citeseer.

1 5 10
Relative Training Time

75

80

85

AU
C

(%
)

1X

2X
3X

4X

7X

TF-HNN (Ours)
Deep-HGNN
AllSetTransformer
ED-HNN
PhenomNN

(c) House.
Figure 3: Hyperlink prediction AUC (%) and relative training time for HNNs and TF-HNN.

PhenomNN (Wang et al., 2023b), and Deep-HGNN (Chen et al., 2022). The remaining four baselines
employ indirect feature aggregation, consisting of HNHN (Dong et al., 2020), AllDeepSets (Chien
et al., 2022), AllSetTransformer (Chien et al., 2022), and ED-HNN (Wang et al., 2023a). The dataset
statistics are summarized in Table 2, with detailed descriptions of datasets available in Appendix I.

Metric. Following previous works (Wang et al., 2023a; Chen & Liu, 2023), we evaluate models for
node classification and hyperlink prediction with classification accuracy and the Area Under the ROC
Curve (AUC), respectively. Similar to Wu et al., we employ the relative training time rf , defined as
rf = tf /tS to evaluate the efficiency of the models, where tf is the training time to achieve optimal
performance for the evaluated model, and ts is the training time for optimal performance of TF-HNN.

Implementation. For node classification, we follow previous works (Wang et al., 2023a; Duta et al.,
2023) to use a 50%/25%/25% train/validation/test data split and adapt the baseline classification
accuracy from them5. Additionally, similar to these works, we implement the classifier based on MLP
for our TF-HNN and report the results from ten runs. For hyperlink prediction, existing works (Chen
& Liu, 2023) primarily focus on the design of the prediction head, with no reported results for applying
our baseline HNNs to this task; so we report all results from five runs conducted by ourselves. We
employ the deep set function implemented by (Chien et al., 2022) as the prediction head for our
method and baseline methods due to its simplicity. We use a 50%/25%/25% train/validation/test
data split and ensure each split contains five times as many fake hyperedges as real hyperedges.
TF-HNN and HNNs only use real hyperedges in training and validation sets to do message passing.
All experiments were on an RTX 3090 with PyTorch, and our code with running commands is at
https://anonymous.4open.science/r/TF-HNN. More details are in Appendix L and Appendix S.

6.2 COMPARISON WITH BASELINES

Node classification. We summarize the classification accuracy and relative training time of the
TF-HNN and HNNs in Table 3 and Figure 2, respectively. Table 3 demonstrates that TF-HNN not

5Since there are no reported results for Deep-HGNN under the chosen data split, we use our own results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Node classification accuracy (%) and
training time for models on Trivago.
Metric / Methods Deep-HGNN ED-HNN TF-HNN (Ours)

Accuracy (%) 84.06 ± 1.70 48.38 ± 1.35 94.03 ± 0.51
Training Time (s) 3352.35 ± 1039.83 143.92 ± 34.64 38.09 ± 6.65

Table 5: Hyperlink prediction AUC (%) and
training time for models on Trivago.
Metric / Methods Deep-HGNN ED-HNN TF-HNN (Ours)

AUC (%) 84.26 ± 1.62 69.44 ± 7.09 95.71 ± 1.00
Training Time (s) 1873.67 ± 559.55 1311.01 ± 627.99 484.00 ± 110.99

2 4 8 16 32 64
The Number of Layers

65

75

85
Ac

cu
ra

cy
 (%

)

= 0
= 0.2

= 0.4
= 0.6

(a) Cora-CA.

2 4 8 16 32 64
The Number of Layers

55

65

75

Ac
cu

ra
cy

 (%
)

= 0
= 0.2

= 0.4
= 0.6

(b) Citeseer.

2 4 8 16 32 64
The Number of Layers

35

55

75

Ac
cu

ra
cy

 (%
)

= 0
= 0.2

= 0.4
= 0.6

(c) House.

2 4 8 16 32 64
The Number of Layers

35

55

75

Ac
cu

ra
cy

 (%
)

= 0
= 0.2

= 0.4
= 0.6

(d) Senate.
Figure 4: The impact from the hyperparameters of TF-MP-Module in node classification.

only leads to the best results across four datasets (Cora-CA, Congress, House, and Senate) but also
results in the highest average mean accuracy overall. These findings confirm the effectiveness of
TF-HNN in generating powerful node features for node classification. As discussed in Section 4,
we attribute this effectiveness to the ability of TF-HNN to match the power of existing HNNs in
utilising neighbourhood information to generate node features, while requiring the optimization of
fewer parameters. This makes the TF-HNN more efficient in utilising training data and reduces the
risk of overfitting, thereby outperforming more complex HNN counterparts. On the other hand, as
shown in Figure 2, the TF-HNN consistently needs less training time to achieve superior performance
compared to the HNNs. This highlights the high training efficiency of TF-HNN in downstream tasks.

Hyperlink prediction. Figure 3 shows the results for hyperlink prediction, which exhibit a pattern
similar to that observed in the hypergraph node classification task: the TF-HNN outperforms the
HNNs while requiring less training time. An interesting observation is that the training efficiency
improvement from TF-HNN is smaller in the hyperlink prediction task compared to the node
classification task. The intuition is that the task-specific module used for hyperlink prediction is more
computationally expensive than the one used for hypergraph node classification. Specifically, the
hyperlink predictor needs to generate a prediction for each hyperedge by aggregating the features of
the nodes connected by the hyperedge, whereas the node classifier only needs to perform forward
propagation for each individual node. Appendix M shows that the efficiency improvement provided
by TF-HNN is inversely correlated with the complexity of the task-specific module.

Scalability of state-of-the-art models. We compare the scalability of our TF-HNN against the
top two methods from previous experiments, Deep-HGNN and ED-HNN. Deep-HGNN uses a
direct feature aggregation function, while ED-HNN uses an indirect feature aggregation function.
We evaluate the performance of all methods on node classification and hyperlink prediction using
the large-scale hypergraph benchmark, Trivago, with the results detailed in Table 4 and Table 5,
respectively. The results show that TF-HNN not only surpasses its competitors in performance but
also dramatically reduces training time. Remarkably, in node classification, TF-HNN improves the
accuracy by 10% over the best baseline, Deep-HGNN, while using only 1% of its training time. These
findings underscore the scalability and value of TF-HNN for large-scale hypergraph applications.6
Due to the space limit, additional discussions and experiments are in Appendix N, O, P, R, S, and V.

6.3 ANALYSIS

We conduct a series of analyses on the components within the proposed TF-HNN model in node
classification on the Cora-CA, Citeseer, House, and Senate datasets.

Impacts from the TF-MP-Module. In this study, we evaluate the effectiveness of our proposed
TF-MP-Module within the TF-HNN framework by comparing it to two training-free message passing
methods developed for graphs: SGC (Wu et al., 2019a) and SIGN (Frasca et al., 2020). To adapt
these methods to hypergraphs, we first project the given hypergraph into its clique expansion (CE),

6On Trivago, Deep-HGNN’s training time is much higher for node classification than hyperlink prediction.
This is because a 64-layer model largely improves node classification accuracy, while a 2-layer model suffices
for hyperlink prediction, as deeper models offer no benefit. The extra layers account for the longer training time.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: The impact from the TF-MP-Module in node classification. The best results are in bold font.
Cora-CA Citeseer Senate House Avg. Mean

SGC with CE 81.60 ± 1.68 71.42 ± 2.15 47.18 ± 6.48 56.16 ± 3.21 64.09
SIGN with CE 86.04 ± 1.53 73.62 ± 1.79 64.93 ± 3.15 73.75 ± 1.91 74.59

TF-MP-Module (ours) 86.54 ± 1.32 74.82 ± 1.67 70.42 ± 2.74 76.29 ± 1.99 77.02

Table 7: The impact from the weighted S in node classification. The best results are in bold font.
Cora-CA Citeseer Senate House Avg. Mean

TF-HNN without Weighted S 84.90 ± 1.55 74.75 ± 1.62 68.87 ± 4.57 75.57 ± 1.81 76.02
TF-HNN with Weighted S 86.54 ± 1.32 74.82 ± 1.67 70.42 ± 2.74 76.29 ± 1.99 77.02

as introduced in Section 2, and then apply SGC and SIGN to this projected structure. Notably,
we only replace the TF-MP-Module with SGC using CE and SIGN with CE, while keeping all
other components of the TF-HNN unchanged. Table 6 show that our TF-MP-Module consistently
outperforms the alternatives across all datasets. The superior performance of our method over
SGC with CE is due to SGC with CE being a special case of our TF-MP-Module with α = 0,
which, as discussed in Proposition 4.2, can cause node features to become overly similar to their
neighbours, reducing distinctiveness. For SIGN with CE, the method concatenates features from
different neighbor hops with the initial node features and processes them through a classifier, forcing
it to handle both feature merging and classification, which increases complexity and can hinder
convergence. In contrast, our TF-MP-Module directly merges neighbouring node information using
the operator in Eq. (6), allowing the classifier to focus solely on classification, thereby simplifying
the learning process and improving performance. These findings highlight the greater capacity of our
TF-MP-Module compared to existing graph-based training-free modules in processing hypergraph
structures, further underscoring its unique value for hypergraph machine learning.

Impacts from hyperparameters of TF-MP-Module. We focus on two key hyperparameters of
the TF-MP-Module: the number of layers and the α. As illustrated in Figure 4, models with α > 0
exhibit more consistent accuracy as the number of layers increases compared to models with α = 0.
We attribute this consistency to the robustness discussed in Proposition 4.2, where a positive α helps
retain the distinct information of each node, thereby mitigating the oversmoothing issue. Additionally,
we observe that a positive α significantly enhances performance in the House and Senate datasets,
which are more heterophilic, compared to the Cora-CA and Citeseer datasets. This suggests that
retaining the distinct information of each node is more beneficial for heterophilic datasets.

Impacts from the weighted S. We define S based on Eq. (5) as weighted S. In contrast, in this
experiment, for the framework without weighted S, S is generated using an adjacency matrix W of a
clique expansion with all positive values set to one. As shown in Table 7, adding weighted S further
enhances performance, highlighting its informativeness.

7 CONCLUSION

In this paper, we propose a novel model called TF-HNN. The key innovation of TF-HNN is an
original training-free message passing module (TF-MP-Module) tailored for data on hypergraphs.
We present both theoretical and empirical evidence demonstrating that TF-HNN can efficiently and
effectively address hypergraph-related downstream tasks. To our knowledge, TF-HNN is the first
model to shift the integration of hypergraph structural information from the model training stage to
the data pre-processing stage, significantly enhancing training efficiency. The proposed TF-HNN can
advance the field of hypergraph machine learning research by not only improving the efficiency of
using observed hypergraph structures to solve downstream tasks, but also serving as a simple starting
point for the development of future hypergraph machine learning models.

Limitation and future work. Learning tasks on hypergraphs can generally be defined at the node,
hyperedge, and hypergraph levels. In this paper, we empirically test our TF-HNN on node-level and
hyperedge-level tasks, with the main limitation being the lack of empirical results on hypergraph-level
tasks. To our knowledge, designing task-specific modules to generate hypergraph-level features based
on existing node features itself remains a challenging topic in the literature. Therefore, we consider
the application of our TF-HNN to hypergraph-level tasks as future work. Another future direction of
our work is to design a training-free module for explicit hyperedge-node importance learning. Finally,
developing an automated and efficient hyperparameter search method for hypergraph neural networks
presents a promising avenue for further enhancing model efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pp. 17–24, 2006.

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and Dingqi
Yang. A survey on hypergraph representation learning. ACM Computing Surveys, 56(1):1–38,
2023.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Christian Bick, Elizabeth Gross, Heather A Harrington, and Michael T Schaub. What are higher-order
networks? SIAM Review, 65(3):686–731, 2023.

O. Chapelle, B. Scholkopf, and A. Zien, Eds. Semi-supervised learning (chapelle, o. et al., eds.;
2006) [book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009. doi:
10.1109/TNN.2009.2015974.

Can Chen and Yang-Yu Liu. A survey on hyperlink prediction. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. Preventing over-smoothing for hypergraph neural
networks. arXiv preprint arXiv:2203.17159, 2022.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function frame-
work for hypergraph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
ICML Graph Representation Learning and Beyond Workshop, 2020. URL https://arxiv.
org/abs/2006.12278.

Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Liò. Sheaf hypergraph networks. Advances
in Neural Information Processing Systems, 36, 2023.

Dhivya Eswaran, Srijan Kumar, and Christos Faloutsos. Higher-order label homogeneity and
spreading in graphs. In Proceedings of The Web Conference 2020, pp. 2493–2499, 2020.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558–3565, 2019.

Yifan Feng, Yihe Luo, Shihui Ying, and Yue Gao. LightHGNN: Distilling hypergraph neural
networks into MLPs for 100x faster inference. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=lHasEfGsXL.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Dmitriy Genzel and Eugene Charniak. Entropy rate constancy in text. In Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, pp. 199–206, 2002.

Yi Han, Bin Zhou, Jian Pei, and Yan Jia. Understanding importance of collaborations in co-authorship
networks: A supportiveness analysis approach. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 1112–1123. SIAM, 2009.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
2021.

11

https://openreview.net/forum?id=hpBTIv2uy_E
https://arxiv.org/abs/2006.12278
https://arxiv.org/abs/2006.12278
https://openreview.net/forum?id=lHasEfGsXL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bukyoung Jhun. Effective epidemic containment strategy in hypergraphs. Physical Review Research,
3(3):033282, 2021.

Thorsten Joachims et al. Transductive inference for text classification using support vector machines.
In Icml, volume 99, pp. 200–209. Citeseer, 1999.

Jinwoo Kim, Saeyoon Oh, Sungjun Cho, and Seunghoon Hong. Equivariant hypergraph neural
networks. In European Conference on Computer Vision, pp. 86–103. Springer, 2022.

Sunwoo Kim, Dongjin Lee, Yul Kim, Jungho Park, Taeho Hwang, and Kijung Shin. Datasets, tasks,
and training methods for large-scale hypergraph learning. Data Mining and Knowledge Discovery,
37(6):2216–2254, 2023.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: an in-depth and step-by-step guide. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6534–6544, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Carl D Meyer and Ian Stewart. Matrix analysis and applied linear algebra. SIAM, 2023.

Vu Nguyen. Bayesian optimization for accelerating hyper-parameter tuning. In 2019 IEEE second
international conference on artificial intelligence and knowledge engineering (AIKE), pp. 302–305.
IEEE, 2019.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford Digital Library Technologies
Project, 1998. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.31.1768.

Ruyuan Qu, Hui Feng, Chongbin Xu, and Bo Hu. Analysis of hypergraph signals via high-order total
variation. Symmetry, 14(3):543, 2022.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):
50–64, 1951.

Bohan Tang, Siheng Chen, and Xiaowen Dong. Hypergraph-mlp: learning on hypergraphs without
message passing. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 13476–13480. IEEE, 2024.

Lev Telyatnikov, Maria Sofia Bucarelli, Guillermo Bernardez, Olga Zaghen, Simone Scardapane,
and Pietro Lio. Hypergraph neural networks through the lens of message passing: a common
perspective to homophily and architecture design. arXiv preprint arXiv:2310.07684, 2023.

A Helen Victoria and Ganesh Maragatham. Automatic tuning of hyperparameters using bayesian
optimization. Evolving Systems, 12(1):217–223, 2021.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=RiTjKoscnNd.

12

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
https://openreview.net/forum?id=RiTjKoscnNd

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy
functions to hypergraph neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 35605–35623. PMLR, 23–29 Jul 2023b.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,
2001.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019a.

Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
optimization for machine learning models based on bayesian optimization. Journal of Electronic
Science and Technology, 17(1):26–40, 2019b.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hyper-
graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
1efa39bcaec6f3900149160693694536-Paper.pdf.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Semi-supervised hypergraph
node classification on hypergraph line expansion. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 2352–2361, 2022.

Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang,
Zengfeng Huang, and David Wipf. Graph neural networks inspired by classical iterative algorithms.
In International Conference on Machine Learning, pp. 11773–11783. PMLR, 2021.

Hongwei Zhang, Tijin Yan, Zenjun Xie, Yuanqing Xia, and Yuan Zhang. Revisiting graph convolu-
tional network on semi-supervised node classification from an optimization perspective. arXiv
preprint arXiv:2009.11469, 2020.

Songyang Zhang, Zhi Ding, and Shuguang Cui. Introducing hypergraph signal processing: The-
oretical foundation and practical applications. IEEE Internet of Things Journal, 7(1):639–660,
2019.

A IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

B BACKGROUND OF HYPERGRAPH MESSAGE PASSING

Clique expansion. Given a hypergraph H = {V,E ,H}, its clique expansion is defined as a graph
G = {V,W}, where V remains unchanged, and Wij > 0 if and only if vi and vj are connected by a
hyperedge onH and Wij = 0 otherwise. Hence, each hyperedge inH is a clique in G.

13

https://proceedings.neurips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Star expansion. Given a hypergraphH={V,E ,H}, its star expansion is defined as a bipartite graph
G = {V ⋃V

′,W}, where vi ∈ V is a node inH, hypernode vej ∈ V
′ corresponds to the hyperedge ej

inH, and there is an edge between vi and vej if and only if ej contains vi inH.

Line expansion. Given a hypergraph H = {V,E ,H}, its line expansion is defined as a graph
G = (Vl,W). The node set Vl of G is defined by vertex-hyperedge pair {(v, e) ∣ v ∈ e, v ∈ V, e ∈ E}
from the original hypergraph. The adjacency matrix W ∈ {0,1}∣Vl∣×∣Vl∣ is defined by pairwise relation
with W(ul, vl) = 1 if either v = v′ or e = e′ for ul = (v, e), vl = (v

′, e′) ∈ Vl. In the following
sections, we refer the nodes on a line expansion as line-nodes. Notably, a node vi on the original
hypergraph corresponds to multiple line-nodes, each representing a vertex-hyperedge pair involving
vi. These line-nodes are interconnected and also connect to line-nodes corresponding to the 1-hop
neighbors of vi on the given hypergraph.

Incidence tensor. A k-uniform hypergraph can be represented by a k-dimensional supersymmetric
tensor such that for all distinct node sets {v1, . . . , vk} ∈ V , Ti1,...,id =

1
(k−2)! if hyperedge e =

{v1, ..., vk} ∈ E , and Ti1,...,id = 0 otherwise.

C PROOF OF PROPOSITION 3.1

Proof. In this section, we provide proofs for the clique-based, star-based, tensor-based and line-based
methods respectively.

For the clique-based approaches,there are two specific designs for this type of approaches. The first
design is based on the hypergraph convolution operator (Feng et al., 2019; Yadati et al., 2019; Bai et al.,
2021; Duta et al., 2023; Chen et al., 2022), which is derived from the hypergraph Laplacian (Agarwal
et al., 2006). The second design (Wang et al., 2023b) relies on an optimization algorithm that
minimizes a handcrafted hypergraph energy function. Despite the differences in their designs, these
methods start by using an MLP to project the given node features to the latent space, namely, for i = 0,
we have x

(0)
vi =MLP(xvi). Moreover, these methods are analogous to using matrix multiplication

between the adjacency matrix of a clique expansion, denoted as W, and the node features XV to
facilitate information exchange among connected nodes on hypergraphs. Therefore, for i ∈ Z+, the
node-wise form of this type of methods can be summarized as:

x(l)vi = f3(f0(x
(0)
vi) + f1(x

(l−1)
vi) + ∑

vj∈NGvi

f2(x
(l−1)
vj)), (7)

where f0(⋅), f1(⋅), f2(⋅), f3(⋅) represent three learnable functions, and NHvi
is the set of 1-hop

neighbours of vi on the hypergraph. Here the right-hand side of Eq. (7) is a special case of
ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj).

For the star-based approaches, three primary designs exist for this type of approach. Despite the
differences in their designs, these methods start by using an MLP to project the given node features
to the latent space, namely, for i = 0, we have x(0)vi =MLP(xvi). Moreover, the first type of methods,
as presented in (Huang & Yang, 2021), directly applies existing GNNs to a star expansion graph,
initializing the features of hypernode vej as the mean of the features of nodes connected by the
hyperedge ej . Due to the linear generation of hypernode features, for i ∈ Z+, the node-wise form of
this method can be expressed as Eq.(7). Additionally, (Chien et al., 2022) integrates set functions
with star expansion to create HNNs, while (Wang et al., 2023a) develops a model by studying the
information diffusion process on a hypergraph using star expansion. The node-wise forms of the
models in (Chien et al., 2022) and (Wang et al., 2023a) can be summarized as:

x(l)vi = g2(g0(x
(0)
vi) + p

⊺g1(x
(l−1)
vi ,⊕vj∈NHvi

x(l−1)vj)), (8)

g0(⋅), g1(⋅), g2(⋅) represent three learnable functions, NHvi
is the set of 1-hop neighbours of vi on

the hypergraph, and p ∈ Rmvi is a vector used to aggregate the features of hypernodes generated by
g1(⋅). Here, mvi is the number of hyperedges containing vi. Here the right-hand side of Eq. (8) is a
special case of ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj).

For tensor-based approaches, these approaches facilitate message passing among connected nodes
using the incidence tensor. These methods start by using an MLP to project the given node features to
the latent space, namely, for i = 0, we have x

(0)
vi =MLP(xvi). Moreover, as noted by the Theorem

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Overview for four state-of-the-art HNNs. In this table, γU , γE , γD, γ′l ∈(0,1) are hyperpa-
rameters and I ∈ Rd×d denotes an identity matrix.

Name Type Message Passing Function

UniGCNII (Huang & Yang, 2021) Direct Message Passing X
(l)
V =σ

⎛
⎝
((1−γU)D−1/2HV HD̃

−1/2
HE D−1HEH

⊺X
(l−1)
V +γUX(0)V)Θ

(l)⎞
⎠

Deep-HGNN (Chen et al., 2022) Direct Message Passing X
(l)
V =σ

⎛
⎝
((1−γD)D−1/2HV HD−1HEH

⊺D
−1/2
HV X

(l)
V +γDX

(0)
V)((1 − γ

′
D)I + γ′DΘ(l))

⎞
⎠

AllDeepSets (Chien et al., 2022) Indirect Message Passing X
(l)
V =MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V))
⎞
⎠

ED-HNN (Wang et al., 2023a) Indirect Message Passing X
(l)
V =MLP

⎡⎢⎢⎢⎢⎣
(1 − γE)MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V))
⎞
⎠
+ γEX(0)V

⎤⎥⎥⎥⎥⎦

3.3 of (Chien et al., 2022), practically, they are implemented by combining set functions with a star
expansion. Consequently, for i ∈ Z+, the node-wise forms of these methods are specific instances of
Eq. (8), where the right-hand side is a special case of ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj).

For line-based approaches, these approaches (Yang et al., 2022) generate node features using hyper-
graph structural information in four steps. Firstly, these methods start by using an MLP to project
the given node features to the latent space, namely, for i = 0, we have x

(0)
vi = MLP(xvi). Then,

the hypergraph is projected onto its corresponding line expansion graph, where the features of
each line-node are initialised as the features of its corresponding node on the original hypergraph.
Next, a GNN is applied to this line expansion graph to facilitate message passing among connected
line-nodes. Finally, the features of each node vi on the hypergraph are generated by aggregating
the features of the line-nodes corresponding to vi. This method can be summarized as Eq. (8),
with three key differences from star-based approaches. Firstly, NHvi

contains the m-hop neighbors
of vi, which includes all nodes with a path to vi. Secondly, the line-based method utilises only
one layer for generating node features, with the number of feature aggregation functions usually
referring to the number of GNNs used to implement g1(⋅). As a result, for i ∈ Z+, we still have
x
(l)
vi = ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj).

D PROOF OF PROPOSITION 3.2

To recap, the overview of UniGCNII, Deep-HGNN, AllDeepSets, and ED-HNN is in Table 8.

Before proving Proposition 3.2, we first prove the following Lemmas.
Lemma D.1. Let H ∈ {0,1}n×m be an incidence matrix of a hypergraph, DHV ∈ Rn×n is a
diagonal matrix with node degrees, DHE ∈ Rm×m is a diagonal matrix with hyperedge degrees,

D̃HEjj ∈ Rm×m is a diagonal matrix with D̃HEjj =
∑n

i=1 HijDHV
ii

DHE
jj

, γU ∈ (0,1) and WU = (1 −

γU)D
−1/2
HV HD̃

−1/2
HE D−1HEH

⊺. We have: WU is the adjacency matrix of a clique expansion.

Proof. We have:

WUij = (1 − γU)
m

∑
k=1

HikHjk

D
1/2
HVii

DHE
kk
D̃

1/2
HE

kk

.

Here WUij > 0 if and only if vi and vj are connected by a hyperedge ek onH, otherwise WUij = 0.
Therefore, WU is the adjacency matrix of a clique expansion.

Lemma D.2. Let H ∈ {0,1}n×m be an incidence matrix of a hypergraph, DHV ∈ Rn×n is a diagonal
matrix with node degrees, DHE ∈ Rm×m is a diagonal matrix with hyperedge degrees, γD ∈ (0,1)
and WD = (1−γD)D

−1/2
HV HD−1HEH

⊺D
−1/2
HV . We have: WD is the adjacency matrix of a clique

expansion.

Proof. We have:

WDij = (1 − γD)
m

∑
k=1

HikHjk

D
1/2
HVii

D
1/2
HVjj

DHE
kk

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Here WDij > 0 if and only if vi and vj are connected by a hyperedge ek onH, otherwise WDij = 0.
Therefore, WD is the adjacency matrix of a clique expansion.

Lemma D.3. Let H ∈ {0,1}n×m be an incidence matrix of a hypergraph, DHV ∈ Rn×n be a diagonal
matrix with node degrees, and DHE ∈ Rm×m be a diagonal matrix with hyperedge degrees. We have:
WS =D

−1
HVHD−1HEH

⊺ is the adjacency matrix of a clique expansion.

Proof. We have:

WSij =
m

∑
k=1

HikHjk

DHViiDHEkk

.

Here WSij > 0 if and only if vi and vj are connected by a hyperedge on H, otherwise WSij = 0.
Therefore, WS is the adjacency matrix of a clique expansion.

With the Lemmas above, we present the proof of Proposition 3.2 as follows.

Proof. For an UniGNN (Huang & Yang, 2021) with L feature aggregation functions, devoid non-
linear activation and by setting the learnable transformation matrix to the identity matrix, its MP-
Module can be reformulated as:

X
(L)
V = ((1 − γU)

L
(D
−1/2
HV HD̃

−1/2
HE D−1HEH

⊺
)
L
+ γU

L−1
∑
l=0
(1 − γU)

l
(D
−1/2
HV HD̃

−1/2
HE D−1HEH

⊺
)
l
)XV .

Based on Lemma D.1, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D

−1/2
HV HD̃

−1/2
HE D−1HEH

⊺ and α = γU .

For a Deep-HGNN (Chen et al., 2022) with L feature aggregation functions, devoid non-linear
activation and by setting the learnable transformation matrix to the identity matrix, its MP-Module
can be reformulated as:

X
(L)
V = ((1 − γD)

L
(D
−1/2
HV HD−1HEH

⊺D
−1/2
HV)

L
+ γD

L−1
∑
l=0
(1 − γD)

l
(D
−1/2
HV HD−1HEH

⊺D
−1/2
HV)

l
)XV .

Based on Lemma D.2, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D

−1/2
HV HD−1HEH

⊺D
−1/2
HV and α = γD.

For an AllDeepSets (Chien et al., 2022) with L feature aggregation functions, devoid non-linear
activation and by setting the learnable transformation matrix to the identity matrix, its MP-Module
can be reformulated as:

X
(L)
V = (D−1HVHD−1HEH

⊺
)
LXV .

Based on Lemma D.3, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D−1HVHD−1HEH

⊺ and α = 0.

For an ED-HNN (Wang et al., 2023a) with L feature aggregation functions, devoid non-linear
activation and by setting the learnable transformation matrix to the identity matrix, its MP-Module
can be reformulated as:

X
(L)
V = ((1 − γE)

L
(D−1HVHD−1HEH

⊺
)
L
+ γE

L−1
∑
l=0
(1 − γE)

l
(D−1HVHD−1HEH

⊺
)
l
)XV .

Based on Lemma D.3, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D−1HVHD−1HEH

⊺ and α = γE .

E PROOF OF PROPOSITION 3.3

We first introduce some concepts about neighbours on hypergraphs and graphs: 1) The k-th hop
neighbours of a node vi on a hypergraph are exactly k hyperedges away from vi; and 2) The k-hop
neighbours of a node vi on a graph are all nodes with a distance of k or less, while the k-th hop

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

neighbours are exactly k edges away from vi. Before proving Proposition 3.3, we introduce some
Lemmas.

Based on the definition of clique expansion, we present the following Lemma without a proof:
Lemma E.1. Let H = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with
self-loops. For any node vi, let N 1

Hvi
be the node set containing the 1-hop neighbours of vi on H,

and N 1
Gvi

be the node set containing the 1-hop neighbours of vi on G. Then, N 1
Gvi
= N 1

Hvi
⋃{vi}.

Moreover, we present the following Lemma about S:
Lemma E.2. Let H = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with
self-loops. Assume that α ∈ [0,1), and S=(1 − α)LWL + α∑

L−1
l=0 (1 − α)

lWl. Then, for i ≠ j, we
have Sij > 0 if and only if vi is a L-hop neighbour of vj on G, and Sij = 0 otherwise.

Proof. According to previous works in graph theory (West et al., 2001), the element Wl
ij represents

the number of walks of length l from node vi to node vj on the graph G. Since W includes self-
loops, Wl

ij also accounts for paths where nodes can revisit themselves. Hence, for i ≠ j, we have
Wl

ij > 0 if and only if vi is a l-hop neighbour of vj on G, and Sij = 0 otherwise. As a result, for
S = (1 − α)LWL + α∑

L−1
l=0 (1 − α)

lWl and i ≠ j, we have Sij > 0 if and only if vi is a L-hop
neighbour of vj on G, and Sij = 0 otherwise.

On the basis of Lemmas E.3 and E.2, the proof of Proposition 3.3 can be transformed into the proof
of the following Lemma:
Lemma E.3. LetH = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with self-
loops. For any node vi, letN l

Hvi
be the node set containing the l-hop neighbours of vi onH, andN l

Gvi
be the node set containing the l-hop neighbours of vi on G. Then, for l ∈ Z+, N l

Gvi
= N l

Hvi
⋃{vi}.

Proof. We prove this Lemma based on the mathematical induction.

Firstly, for the base case with l = 1, according to Lemma E.3, this case can be proved by the definition
of the clique expansion.

Secondly, for the inductive step, we assume that N k
Gvi
= N k

Hvi
⋃{vi}. Let N̂ k

Gvi
be the 1-hop

neighbours of the k-hop neighbours of vi on the graph G, and N̂ k
Hvi

be the 1-hop neighbours

of the k-hop neighbours of vi on the hypergraph H. Then, we have N k+1
Gvi
= N̂ k

Gvi ⋃
N k
Gvi

and

N k+1
Hvi
= N̂ k

Hvi
⋃N

k
Hvi

. According to the result in the base case, we have N k+1
Hvi
= N k+1

Hvi
⋃{vi}.

By induction, for l ∈ Z+, N l
Gvi
= N l

Hvi
⋃{vi}.

F DISCUSSION ABOUT EQ. (5)

To recap, for a given hypergraph H={V,E ,H}, the edge weight between vi and vj in our clique
expansion is defined as:

WHij
=

m

∑
k=1

δ(vi, vj , ek)

DHE
kk

,

where δ(⋅) is a function that returns 1 if ek connects vi and vj and returns 0 otherwise. In this section,
we discuss the relationship between this edge weight and the probability of nodes vi and vj being in
the same category.

We summarise the relationship between this edge weight and the probability of nodes vi and vj being
in the same category as the following Lemma:
Lemma F.1. Let pi,j denote the probability of vi and vj having the same label, p′i,j represent the
probability of vi and vj being connected by a hyperedge that contains only nodes with the same
label, and p̂ek be the probability of ek containing nodes with different labels. Then, pi,j is positively
correlated with WHij if the following conditions hold:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

a) Hyperedges with higher degrees are more likely to connect nodes with different labels, and
p̂ek = g1(

1
DHE

kk

), where g1(⋅) is a function, for any x, y > 0, with g1(x) ⋅ g1(y) = g1(x+ y),

dg1
dx
< 0, and g1(x) ∈ (0,1).

b) pi,j is positively correlated with p′i,j , namely, pi,j =g2(p′i,j), where g2(⋅) is a function for
any x > 0 with dg2

dx
>0 and g2(x) ∈ (0,1).

Proof. According to the pre-defined condition a), we can have:
p
′
i,j =1− Π

ek∈Êvi,vj
p̂ek =1− Π

ek∈Êvi,vj
g1(

1

DHE
kk

) = 1 − g1(∑
ek∈Êvi,vj

1

DHE
kk

) = 1 − g1(
m

∑
k=1

δ(vi, vj , ek)
DHE

kk

) = 1 − g1(WHij
), (9)

where Êvi,vj is a set containing hyperedges connecting vi and vj . Based on Eq. (9) and the pre-defined
condition b) we can have:

pi,j = g2(p
′
i,j) = g2(1 − g1(WHij)). (10)

The derivative of Eq. (10) with respect to WHij is:
dpi,j

dWHij

=
d g2

dWHij

=
d g2
dp′i,j

⋅
dp′i,j
d g1

⋅
d g1

dWHij

= −1 ⋅
d g2
dp′i,j

⋅
d g1

dWHij

.

On the basis of our pre-defined conditions a) and b), we have dg2
dp′i,j

> 0 and dg1
dWHij

< 0, thereby we
have:

dpi,j

dWHij

= −1 ⋅
d g2
dp′i,j

⋅
d g1

dWHij

> 0.

As a result, pi,j is positively correlated with WHij .

G PROOF OF PROPOSITION 4.1

Before proving Proposition 4.1, we first present two Lemmas.

Lemma G.1. Let H0 denote the entropy of the information that an HNN utilises by L feature

aggregation function ϕΘ(⋅) introduced in Propostion 3.1 for generating features of vi, and H
vL
i

2
denote the entropy of information within node vi and its L-hop neighbours on the hypergraph. Then,

H
vL
i

0 =H
vL
i

2 .

Proof. Based on the mathematical induction, we start by proving this Using mathematical induction,
we first prove this lemma for the case where NHvi

includes only the 1-hop neighbours of vi, which
applies to all models except the line-based models discussed in Appendix B.

Firstly, for the base case with L = 1, the message passing layer for generating the features of vi can
be reformulated as:

x(1)vi = ϕΘ(x
(0)
vi

,x(0)vi ,⊕vj∈NHvi
x(0)vj), (11)

where NHvi
is a set containing the 1-hop neighbours of vi on the hypergraph. Hence, the entropy of

the input information utilised to generate x
(1)
vi is Hv1

i

2 , namely, we have H
v1
i

0 =H
v1
i

2 .

Secondly, for the inductive step, we assume that Hvk
i

0 = H
vk
i

2 . Moreover, we have the feature
generation function as:

x(k+1)vi = ϕΘ(x
(k)
vi ,x(0)vi ,⊕vj∈NHvi

x(k)vj). (12)

Based on the assumption about L = k, for L = k + 1, ⊕vj∈NHvi
x
(k)
vj contain the information from

the (k + 1)-hop neighbours of vi and x
(k)
vi contain the information from the k-hop neighbours of vi.

Let N l
Hvi

denote a set containing l-hop neighbours of vi. Based on information theory (Kullback,

1997), we have the information entropy of N k
Hvi

is zero with the information of N k+1
Hvi

is given, as

N k
Hvi
⊆ N k+1

Hvi
. As a result, based on the feature aggregation function introduced in Eq. (12), we have

H
vk+1
i

0 =H
vk+1
i

2 .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By induction, for L ∈ Z+, HvL
i

0 =H
vL
i

2 .

Now, we conduct the proof for the line-based models.

Let HvL
i

L denote the entropy of the information contained by the L-hop neighbours of the line-nodes
corresponding to vi. According to previous papers in the GNN literature (Wu et al., 2020), the
entropy of information used by an L-layer GNN to generate the features of line-nodes corresponding

to vi is HvL
i

L . Based on the discussion in Appendix B and Appendix 3.1, we have H
vL
i

0 =H
vL
i

L . By
definition, the line-nodes corresponding to vi are only connected to each other and the line-nodes

corresponding to the 1-hop neighbours of vi. Therefore, we have HvL
i

L =H
vL
i

2 . Accordingly, we have

H
vL
i

0 =H
vL
i

2 .

Lemma G.2. Let H1 denote the entropy of the information that an TF-HNN with an L-layer TF-MP-

Module utilises to generate features of vi, and H
vL
i

2 denote the entropy of information within node vi

and its L-hop neighbours on the hypergraph. Then, HvL
i

1 =H
vL
i

2 .

Proof. For the feature generation of vi, an L-layer TF-MP-Module can be directly reformulated as:
x̂vi = fl0(xvi) + fl1(⊕vj∈NL

Hvi

xvj), (13)

where fl0 and fl1 are two linear functions, and NL
Hvi

is a set containing L-hop neighbours of vi
on the hypergraph. Hence, we have the entropy of the input information utilised by an L-layer

TF-MP-Module for generating features of vi is HvL
i

2 , namely, HvL
i

1 =H
vL
i

2 .

After having the Lemmas above, we prove Proposition 4.1 as follows:

Proof. Based on Lemma G.1, we have H
vL
i

0 =H
vL
i

2 . Moreover, according to Lemma G.2, we have

H
vL
i

1 =H
vL
i

2 . As a result, HvL
i

0 =H
vL
i

1 =H
vL
i

2 .

H PROOF OF PROPOSITION 4.2

Before proving Proposition 4.2, we first prove the following Lemma.

Lemma H.1. LetH = {V,E ,H} denote a hypergraph, G = {V,WH} be its clique expansion with
edge weights computed by Eq. (5), L be the graph Laplacian matrix of G computed by a symmetrically
normalised and self-loops added WH , XV represent the input node features, and α ∈ (0,1). We
set F (X) = tr(X⊺LX) + α

1−α tr[(X −XV)
⊺(X −XV)], and X⋆ as the global minimal point for

F (X). Then, we have:

X⋆ = (In − (1 − α)D̃
−1/2
H W̃HD̃

−1/2
H)

−1
αXV , (14)

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H .

Proof. Taking the partial derivative of F with the respective of X, we have:
∂F

∂X
= 2LX +

2α

1 − α
(X −XV).

By setting ∂f
∂X
= 0, we have:

X⋆ = (L +
α

1 − α
)
−1 α

1 − α
XV = (In − (1 − α)D̃

−1/2
H W̃HD̃

−1/2
H)

−1
αXV ,

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H .

Since the second-order derivative of F with the respect of X is:
∂2f

∂2X
= 2L +

2α

1 − α
In. (15)

Given L ∈ Rn×n is a graph Laplacian matrix, which is positive semi-definite, and, for α ∈ (0,1),
2α
1−αIn ∈ R

n×n
+ is a diagonal matrix, which is positive definite. Accordingly, we have the righthand

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

side of Eq.(15) is a positive definite matrix for α ∈ (0,1). As a result, for α ∈ (0,1), X⋆ in Eq. (14)
is the global minimal point for F .

With the Lemma above, we present the proof of Proposition 4.2 as follows.

Proof. LetH = {V,E ,H} denote a hypergraph and G = {V,WH} be its clique expansion with edge
weights computed by Eq. (5). According to Eq. (6), the output of an L-layer TF-MP-Module can be
reformulated as:

X̂V = ((1 − α)
L
(D̃
−1/2
H W̃HD̃

−1/2
H)

L
+ α

L−1
∑
l=0
(1 − α)l(D̃

−1/2
H W̃HD̃

−1/2
H)

l
)XV ,

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H . When L→ +∞,
the left term tends to 0 and the right term becomes a convergent geometric series (Meyer & Stewart,
2023). Hence, for L→ +∞, this equation can be further represented as:

X̂V = (In − (1 − α)D̃
−1/2
H W̃HD̃

−1/2
H)

−1
αXV .

Based on Lemma H.1, we have F (X̂V) = Fmin.

I DETAILS OF BENCHMARKING DATASETS

Our benchmark datasets consist of existing six datasets (Cora-CA, DBLP-CA, Citeseer and House
from (Chien et al., 2022), Congress and Senate from (Wang et al., 2023a)). In co-citation networks
(Citeseer), all documents cited by a particular document are connected by a hyperedge. For co-
authorship networks (Cora-CA, DBLP-CA), all documents co-authored by a single author are grouped
into one hyperedge. The node features in these co-citation and co-authorship networks are represented
using bag-of-words models of the corresponding documents, with node labels corresponding to the
paper classes. In the House dataset, each node represents a member of the US House of state-of-the-
arts, with hyperedges grouping members of the same committee. Node labels denote the political
party of the state-of-the-arts. In the Congress dataset, nodes represent US Congresspersons, with
hyperedges linking the sponsor and co-sponsors of bills introduced in either the House or the Senate.
In the Senate dataset, nodes also represent US Congresspersons, but hyperedges link the sponsor and
co-sponsors of Senate bills only. Nodes in both datasets are labeled by political party affiliation.

J ADDITIONAL EXPERIMENTAL RESULTS

Table 9: The hyperlink prediction AUC (%) for HNNs and TF-HNN. The best result on each dataset
is highlighted in bold font.

Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean
AllSetTransformer 95.51 ± 0.46 95.77 ± 1.01 95.98 ± 0.73 71.56 ± 0.07 80.28 ± 3.33 63.56 ± 1.15 83.78
PhenomNN 97.60 ± 0.74 96.11 ± 0.86 96.13 ± 0.92 70.68 ± 0.34 74.57 ± 3.02 58.46 ± 1.98 82.26
ED-HNN 97.61 ± 0.83 95.71 ± 2.10 96.04 ± 0.85 71.48 ± 0.12 81.09 ± 3.47 65.96 ± 1.79 84.64
Deep-HGNN 97.00 ± 0.50 97.60 ± 0.18 96.45 ± 0.55 71.34 ± 0.28 78.84 ± 6.20 62.06 ± 3.13 83.88
TF-HNN (ours) 97.87 ± 0.65 97.96 ± 2.43 96.95 ± 0.97 72.33 ± 0.14 82.18 ± 3.70 65.04 ± 0.97 85.39

Table 10: The training time for HNNs and TF-HNN in hyperlink prediction. The best result on each
dataset is highlighted in bold font.

Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean
AllSetTransformer 20.82 ± 5.27 64.07 ± 5.75 9.18 ± 2.75 2086.49 ± 244.37 51.76 ± 13.03 33.15 ± 8.26 377.58
PhenomNN 14.34 ± 2.72 365.47 ± 144.07 25.87 ± 9.60 1029.77 ± 200.26 130.82 ± 18.67 30.89 ± 3.50 266.19
ED-HNN 8.03 ± 1.71 65.84 ± 8.52 11.28 ± 2.71 899.00 ± 162.75 75.01 ± 10.62 53.81 ± 8.34 185.50
Deep-HGNN 12.31 ± 2.72 107.97 ± 37.50 8.49 ± 1.68 795.25 ± 173.54 36.33 ± 7.74 7.82 ± 1.32 161.36
TF-HNN (ours) 3.22 ± 1.99 29.36 ± 6.31 2.75 ± 1.26 501.66 ± 111.99 17.83 ± 4.98 3.19 ± 1.31 93.00

K NEGATIVE SAMPLING FOR HYPERLINK PREDICTION

We adapt the algorithm from (Chen & Liu, 2023) for this purpose. For each (positive) hyperedge
e ∈ E, we generate a corresponding negative hyperedge f , where α × 100% of the nodes in f are

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: The node classification accuracy (%) for TF-HNN, HyperGCL, and HDSode. The best
result on each dataset is highlighted in bold font.

Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean
HyperGCL 83.02 ± 1.36 91.12 ± 0.28 70.70 ± 1.77 94.30 ± 0.75 65.25 ± 7.93 48.76 ± 4.73 75.53
HDSode 85.60 ± 1.07 91.55 ± 0.33 73.68 ± 1.99 90.58 ± 1.72 71.58 ± 1.60 59.72 ± 5.60 78.79
TF-HNN (ours) 86.54 ± 1.32 91.80 ± 0.30 74.82 ± 1.67 95.09 ± 0.89 76.29 ± 1.99 70.42 ± 2.74 82.50

Table 12: The training time (s) for TF-HNN, HyperGCL, and HDSode. The best result on each dataset
is highlighted in bold font.

Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean
HyperGCL 33.94 ± 3.86 722.25 ± 137.08 7.94 ± 1.72 1384.02 ± 160.35 108.08 ± 6.38 14.67 ± 1.23 378.48
HDSode 2.05 ± 0.66 531.43 ± 144.96 49.70 ± 4.39 213.87 ± 0.15 5.05 ± 0.99 72.23 ± 32.53 145.72
TF-HNN (ours) 0.22 ± 0.12 4.39 ± 0.45 1.12 ± 0.30 0.98 ± 0.35 1.01 ± 0.51 0.19 ± 0.10 1.32

from e and the remaining are from V /{e}. Denote the negative hyperlink set as F . The number α
controls the genuineness of the negative hyperlinks, i.e., higher values of α indicate that the negative
hyperlinks are closer to the true ones. Additionally, we define β to be the number of times of negative
sampling which controls the ratio between positive and negative hyperlinks. In practice, we set
α = 0.5 and β = 5.

L REPRODUCIBILITY STATEMENT

Our code and data are available at: https://anonymous.4open.science/r/TF-HNN. To ensure the
reproducibility of our results, we provide detailed hyperparameter settings used in our experiments.
The configurations for the TF-HNN model on the hypergraph node classification task and the
hyperlink prediction task are listed below.

Table 13: Hyperparameter settings for TF-HNN on the hypergraph node classification task.

Dataset TF-HNN Layers MLP Layers MLP Hidden Dimension Learning Rate Alpha Dropout Weight Decay

Cora-CA 2 3 1024 0.001 0.3 0.7 0.0
DBLP-CA 2 3 1024 0.0006 0.15 0.7 0.0
Citeseer 8 3 1024 0.001 0.65 0.9 0.0
House 16 3 128 0.005 0.7 0.9 0.0
Congress 1 3 1024 0.0001 0.05 0.8 0.0
Senate 2 7 512 0.005 0.6 0.5 0.0

In practice, we conduct the hyperparameter search based on grid search. For the hypergraph node
classification task listed in Table 13, we apply grid search to the following hyperparameters:

● The number of layers of TF-MP-Module, whose search space is {1,2,4,8,16}.

● The α of TF-MP-Module, whose search space is {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7}.

● The number of layers of the node classifier, whose search space is {3,5,7}.

● The hidden dimension of the node classifier, whose search space is {128,256,512,1024}.

● The learning rate for node classifier, whose search space is {1×10−4,2×10−4,3×10−4,4×10−4,5×
10−4,6 × 10−4,7 × 10−4,8 × 10−4,9 × 10−4,1 × 10−3,5 × 10−3}.

● The dropout rate for node classifier, whose search space is {0.5,0.6,0.7,0.8,0.9}.

For the hyperlink prediction task listed in Table 14, we apply grid search to the following hyperpa-
rameters:

● The number of layers of TF-MP-Module, whose search space is {1,2,4,8,16,32,64}.

● The α of TF-MP-Module, whose search space is {0.0,0.01,0.05,0.1,0.5}.

● The number of layers of the hyperedge predictor, whose search space is {3}.

● The hidden dimension of the hyperedge predictor, whose search space is {128,256}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 14: Hyperparameter settings for TF-HNN on the hyperlink prediction task.

Dataset TF-HNN Layers Predictor Layers Predictor Hidden Dimension Learning Rate Alpha Dropout

Cora-CA 64 3 256 0.0005 0.5 0.0
Citeseer 2 3 256 0.0005 0.5 0.0
House 4 3 128 0.0002 0.0 0.0

● The learning rate for node classifier, whose search space is {1×10−4,2×10−4,3×10−4,4×10−4,5×
10−4}.

● The dropout rate for node classifier, whose search space is {0.0,0.2,0.4,0.6,0.8}.

M EFFICIENCY IMPROVEMENT FROM TF-HNN

In this section, we theoretically discuss that the efficiency improvement provided by TF-HNN is
inversely correlated with the complexity of the task-specific module. Specifically, we prove a Lemma.
Lemma M.1. Let M denote the training complexity of the task-specific module and, J denote the
training complexity of an HNN. Since an TF-HNN only requires the training of the task-specific
module, we approximate its training complexity with the function ts(M) = M . Similarly, we
approximate the training complexity of an HNN with the function th(M,J) =M + J . Furthermore,
We quantify the efficiency improvement brought by TF-HNN using the ratio r(M,J) = th(M,J)

ts(M) ,
where a larger r(M,J) indicates a greater efficiency improvement provided by the TF-HNN. Then
we have ∂r

∂M
< 0.

Proof. We can reformulate the r(M,J) as:

r(M,J) =
M + J

M
.

Taking the partial derivative of r with the respective of M , we have:
∂r

∂M
= −

J

M2
< 0.

N ADDITIONAL DISCUSSION AND RESULTS ABOUT APPNP

The APPNP (Gasteiger et al., 2019) has contributed to the development of more efficient GNN
models by shifting learnable parameters to an MLP prior to message passing. In this section, we
aim to clarify the differences between the APPNP method proposed in [1] and our TF-HNN in two
different perspectives.

●Methodological Design: The key difference in the model design is that APPNP requires running the
message passing process during model training, whereas our TF-HNN performs message passing
only during data preprocessing. According to Eq. (4) in [1], APPNP employs a message-passing
block after a multi-layer perceptron (MLP). The MLP uses the given original node features to generate
latent features for the nodes, which then serve as inputs for message passing. This design requires
the message-passing block to be executed during each forward propagation in the training
phase, making it incompatible with preprocessing. In contrast, the training-free message-passing
module in TF-HNN directly takes the given original node features as inputs, enabling it to be fully
precomputed during the data preprocessing stage, thereby eliminating the need for computation
during training, which further enhances the training efficiency. Notably, Table 2 below demonstrates
that TF-HNN is more training efficient than an APPNP with clique expansion. As a result, we argue
the APPNP in [1] does not diminish the core novelty of our TF-HNN, which is the first model to
decouple the message-passing operation from the training process for hypergraphs.

● Practical differences: In Tables 15 and 16, we empirically demonstrate that, for hypergraph-
structured data, TF-HNN is both more training efficient and more effective than APPNP with the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 15: The node classification accuracy (%)
for TF-HNN, and APPNP+CE. The best result
on each dataset is in bold font.

Methods / Datasets Cora-CA Citeseer

TF-HNN 86.54 ± 1.32 74.82 ± 1.67
APPNP+CE 86.01 ± 1.35 74.32 ± 1.57

Table 16: The training time (s) for TF-HNN and
APPNP+CE corresponding to results in Table 15.
The best result on each dataset is in bold font.

Methods / Datasets Cora-CA Citeseer

TF-HNN 0.22 ± 0.12 1.12 ± 0.30
APPNP+CE 0.73 ± 0.16 4.61 ± 0.88

Table 17: Results for baselines with/without learnable parameters in node classification. The best
result on each dataset is highlighted in bold font. Here +LP /−LP means the model with/without
learnable parameters

Dataset AllDeepSets UniGNN ED-HNN Deep-HGNN
+LP −LP +LP −LP +LP −LP +LP −LP

Cora-CA 81.97 ± 1.50 82.53 ± 0.70 83.60 ± 1.14 84.82 ± 1.56 83.97 ± 1.55 85.69 ± 0.96 84.89 ± 0.88 86.22 ± 1.33
Citeseer 70.83 ± 1.63 71.10 ± 2.33 73.05 ± 2.21 73.96 ± 1.67 73.70 ± 1.38 74.08 ± 1.51 74.07 ± 1.64 74.64 ± 1.52

clique expansion defined in our Eq. (5). For training efficiency, since APPNP requires message-
passing computations during each forward propagation step in training, its training time is at least
3 times longer than that of TF-HNN. For effectiveness, our results show that TF-HNN, which
performs message passing in the original feature space, achieves better performance compared
to APPNP, which projects features into a latent space by an MLP before message passing. We
hypothesize that this improvement may be attributed to the MLP in APPNP which may potentially
not be able to fully retain information from the original node features during the projection to the
latent space.

Besides the two key differences between APPNP and our TF-HNN above, we also hope to emphasize
the unique theoretical contribution of our paper for hypergraph machine learning. While the
mechanism of graph neural networks (GNNs) is well-studied, the foundational component of HNNs
is not clearly identified until our work. In Section 3.2, we identify the feature aggregation function as
the core component of HNNs, and we show that existing HNNs primarily enhance node features by
aggregating features from neighbouring nodes. This insight encompasses various HNN models and
provides researchers with a deeper understanding of the behaviour of existing HNNs.

As a result, while APPNP represents a significant contribution to the field, it does not diminish the
unique value and contributions of TF-HNN for hypergraphs.

O ADDITONAL RESULTS ABOUT REMOVING LEARNABLE PARAMETERS
FROM BASELINES

In Table 17, we present experiments that remove only the learnable parameters from the node feature
generation process in the baselines. In this setup, all the baselines studied in Eq. (4a) to Eq. (4d)
(AllDeepSets, UniGNN, ED-HNN, Deep-HGNN) directly apply non-learnable message passing to
the original node features. These results confirm that removing the learnable parameters and directly
applying message passing on the original given node features can enhance the model performance.
These results, together with the ablation study on the weight design for S presented in Table 7 of
our submission, demonstrate that both the removal of learnable parameters and the design of our S,
contribute to the effectiveness of our TF-HNN.

P ADDITONAL RESULTS ON YELP

In this section, we conduct experiments on a dataset named Yelp from (Chien et al., 2022), and
the results are summarized in Table 18. For HGNN, HCHA, HNHN, UniGCNII, AllDeepSets, and
AllSetTransformer, we directly use the accuracy reported in (Chien et al., 2022) and record the
training time by running the models with the hyperparameters provided in (Chien et al., 2022) on our
RTX 3090 GPUs. For ED-HNN and Deep-HGNN, we report both accuracy and training time based on
runs using the optimal hyperparameters we identified. Due to out-of-memory issues with PhenomNN
on our RTX 3090 GPUs, we did not include it in the table. The results demonstrate that our model

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 18: Results for HNNs and TF-HNN on Yelp. The best results are highlighted in bold font. The
second-best results are marked with an underline.

HGNN HCHA HNHN UniGCNII AllDeepSets AllSetTransformer ED-HNN Deep-HGNN TF-HNN (ours)
Accuracy (%) 33.04 ± 0.62 30.99 ± 0.72 31.65 ± 0.44 31.70 ± 0.52 30.36 ± 1.57 36.89 ± 0.51 35.03 ± 0.52 35.04 ± 2.64 36.06 ± 0.32
Time (s) 326.15 ± 4.55 147.54 ± 0.87 70.35 ± 0.52 108.21 ± 5.87 193.43 ± 2.84 158.19 ± 0.66 225.64 ± 28.52 889.14 ± 40.79 6.54 ± 0.96

is both effective and efficient on this dataset. Specifically, our model achieves a general second-
best performance among the baselines, with accuracy only 0.83% lower than AllSetTransformer,
while being 24 times faster. These findings further highlight the effectiveness and efficiency of our
proposed TF-HNN.

Q THE ASSUMPTION ABOUT THE STRUCTURE OF HYPERGRAPH

In Section 2, we assume that the hypergraph does not contain isolated nodes or empty hyperedges to
maintain consistency with prior works Huang & Yang (2021); Chien et al. (2022); Kim et al. (2022);
Chen et al. (2022) in the literature. This assumption is based on the observation that most existing
hypergraph neural networks (HNNs) use node degree or hyperedge degree as denominators during
forward propagation. This inherently presumes these values are nonzero—i.e., there are no isolated
nodes or empty hyperedges—since division by zero is undefined. Moreover, we emphasize that this
assumption does not compromise the practical applicability of our method. Consistent with prior
works, we address scenarios where zero degrees occur by assigning a default value of 1 to such cases.

R ADDITIONAL DISCUSSION ABOUT THE SUPERIOR PERFORMANCE,
ESPECIALLY ON THE LARGE-SCALE HYPERGRAPH

Generaly, we attribute the superior performance of TF-HNN primarily to its more efficient utilization
of node information from the training data compared to baseline models.

Baseline models with training-required message-passing modules process node information by first
using a trainable module to project node features into a latent space, and then performing trainable
message passing within that space. Learning a latent space that preserves the unique characteristics
of individual nodes is extremely challenging, especially for large-scale hypergraphs. This difficulty
is compounded by computational constraints: both the projection and message-passing operations
require computing gradients for backpropagation, which are extremely resource-intensive. To prevent
out-of-memory (OOM) errors during experiments on the large-scale hypergraph Trivago, the hidden
dimensions of these baseline models need to be limited to a maximum of 256. This dimension
constraint, introduced by GPU memory limitations, makes it difficult for the model to fully preserve
information that is helpful for classifying a large number of nodes.

In contrast, TF-HNN performs message passing directly on the original node features during the data
pre-processing stage without requiring any trainable parameters. This allows TF-HNN to preserve
node-specific information without incurring the expensive memory requirements associated with
training-required models. Notably, our experimental results align with previous observations in the
Graph Neural Network (GNN) literature. For example, training-free models like SIGN (Frasca et al.,
2020) have been shown to outperform training-required models like GCN (Kipf & Welling, 2017) on
large-scale graphs such as the Protein-Protein Interaction (PPI) network by a significant margin.

Table 19: Hyperparameter search time for ED-HNN and our TF-HNN in the node classification task
on Cora-CA.

ED-HNN TF-HNN tTF /tED

Runtime for Completing the Grid Search (hours) 48.95 2.74 0.06

S HYPERPARAMETER SEARCH

Our hyperparameter tuning process strictly adheres to standard practices by using the validation set,
not the test set, to determine optimal settings. Following the codes of prior works (Chien et al.,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Heatmaps for datasets used in hypergraph node classification.

(b) Heatmaps for datasets used in hyperlink prediction.

Figure 5: Heatmaps of validation and test performance under varying learning rate and α.

2022; Wang et al., 2023b;a), our code records the best performance on the validation set, the training
epoch that achieved the best performance on the validation set and the performance of this recorded
training epoch on the test set. The hyperparameters yielding the best results on the validation set were
adopted as the final settings for our model. Moreover, we provide heatmaps of the hyperparameters
across the various validation and test sets used in the experiments in Figure 5. The hyperparameters
yielding the best results on the validation set which were highlighted with a green rectangle were
adopted as the final settings for our model.

Generally, the efficient search for the optimal hyperparameters is challenging within the hypergraph
machine learning literature. However, with the fast training speed of TF-HNN, our hyperparameter
searching process is still efficient compared with previous methods. Table 19 shows the hyperparame-
ter searching time used for TF-HNN and ED-HNN (Wang et al., 2023a) in node classification on the
Cora-CA dataset in our 8 RTX GPUs server. For TF-HNN, we run the hyperparameter combinations
mentioned in Appendix L, and for ED-HNN, we run the hyperparameter combination mentioned in
Appendix F.3 of their paper. Specifically, according to the discussion and table 6 in Appendix F.3
of Wang et al. (2023a), ED-HNN does grid search for the following hyperparameters:

● The number of layers of ED-HNN, whose search space is {1,2,4,6,8}.

● The number of layers of an MLP projector, ϕ̂, whose search space is {0,1,2,4,6,8}.

● The number of layers of an MLP projector, ρ̂, whose search space is {0,1,2,4,6,8}.

● The number of layers of an MLP projector, φ̂, whose search space is {0,1,2,4,6,8}.

● The number of layers of the node classifier, whose search space is {1,2,4,6,8}.

● The hidden dimension of ϕ̂, φ̂, and ρ̂, whose search space is {96,128,256,512}.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

● The hidden dimension of the node classifier, whose search space is {96,128,256,512}.

Based on the results presented in Table 19, our hyperparameter search process requires only about
6% of the time required by ED-HNN, demonstrating its efficiency. We treat develop a more efficient
hyperparameter search method for hypergraph neural networks based on the methods like Bayesian
Optimisation (Victoria & Maragatham, 2021; Wu et al., 2019b; Nguyen, 2019) as a future work.

T DISCUSSION ABOUT PROPOSITION 3.2

We summarise the connection between the clique expansion mentioned in Proposition 3.2 and the
clique expansion defined in Eq (5) as the following Lemmas:

Lemma T.1. For both the W of the clique expansion mentioned in Proposition 3.2 and the one
defined in Eq (5), we have Wij > 0 if and only if vi and vj are connected on the given hypergraph
and Wij = 0 otherwise.

Proof. Here we first prove this lemma for the clique expansion mentioned in Proposition 3.2.

Based on the definition of clique expansion and Lemmas D.1, D.2, D.3, we can directly conclude
that, for the weight matrix W of the clique expansion mentioned in Proposition 3.2, Wij > 0 if and
only if vi and vj are connected on the given hypergraph and Wij = 0 otherwise.

For the W defined in Eq (5), we have:

Wij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

,

where δ(⋅) is a function that returns 1 if ek connects vi and vj and returns 0 otherwise. Since
1

DHE
kk

> 0, we have Wij = 0 if and only if, ∀k ∈ [1,2,3,⋯,m], δ(vi, vj , ek) = 0, namely, vi and

vj are not connected on the hypergraph. Further, we can have Wij > 0 if and only if there exist a
k ∈ [1,2,3,⋯,m] to make δ(vi, vj , ek) = 1, namely, vi and vj are connected on the given hypergraph.

Lemma T.2. Let E = {e1, e2,⋯, eK} denote the set of hyperedges connecting vi and vj . Then, for
both the clique expansion mentioned in Proposition 3.2 and the clique expansion defined in Eq (5),
we have dWij

d ∣ek ∣ < 0, ∀ek ∈ E, where ∣ek ∣ represents the size of ek.

Proof. Here we first prove this lemma for the clique expansion mentioned in Proposition 3.2.

Based on the discussion in Section D, for UniGNN (Huang & Yang, 2021), we have

Wij = (1 − γU)
m

∑
k=1

HikHjk

D
1/2
HVii

DHE
kk
D̃

1/2
HE

kk

=
m

∑
k=1

(1 − γU)∑
n
k′=1Hk′kDHV

k′k′

D
1/2
HVii

HikHjk

D
1/2
HE

kk

= ∑
ek∈E

ωk

∣ek ∣1/2
,

where ωk =
(1−γU)sk

D
1/2
HV

ii

and sk is the sum of degrees of nodes with ek. Since ωk > 0 and the design of

UniGNN only considers the positive square root, we have:
dWij

d ∣ek ∣
= −

ωk

2∣ek ∣3/2
< 0.

Based on the discussion in Section D, for Deep-HGNN (Chen et al., 2022), we have:

Wij = (1 − γD)
m

∑
k=1

HikHjk

D
1/2
HVii

D
1/2
HVjj

DHE
kk

=
(1 − γD)

D
1/2
HVii

D
1/2
HVjj

m

∑
k=1

HikHjk

DHE
kk

= ω ∑
ek∈E

1

∣ek ∣
,

where ω = (1−γD)
D

1/2
HV

ii

D
1/2
HV

jj

. Since ω > 0, we have:

dWij

d ∣ek ∣
= −

ω

∣ek ∣2
< 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Based on the discussion in Section D, for AllDeepSets (Chien et al., 2022) and ED-HNN (Wang
et al., 2023a), we have:

Wij =
m

∑
k=1

HikHjk

DHViiDHEkk

=
1

DHVii

m

∑
k=1

HikHjk

DHE
kk

= ω ∑
ek∈E

1

∣ek ∣
,

where ω = 1
DHV

ii

. Since ω > 0, we have:

dWij

d ∣ek ∣
= −

ω

∣ek ∣2
< 0.

Finally, we demonstrate the proof for the clique expansion defined in Eq (5):

Wij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

= ∑
ek∈E

1

∣ek ∣
.

Then, we have:
dWij

d ∣ek ∣
= −

1

∣ek ∣2
< 0.

U DISCUSSION ABOUT PROPOSITION 4.1

In Proposition 4.1, the "information" refers to the contextual information embedded in the node
features, while "information entropy" denotes the entropy of this contextual information. Typically,
node features are generated based on specific contextual information. For example, in co-citation
datasets where nodes represent research papers, the features of a node are often derived from
keywords or sentences in the paper abstract. Consequently, the contextual information embedded
in such node features corresponds to these keywords or sentences. According to prior works in
Linguistics (Shannon, 1951; Genzel & Charniak, 2002), the information entropy of these keywords
or sentences can be computed using the Shannon entropy formula: H(X) = −∑x∈X p(x) log p(x),
represents the keywords or sentences, x denotes a token within X , and p(x) can be defined using
various methods, such as an n-gram probabilistic model mentioned in (Genzel & Charniak, 2002).

While we did not compute the exact Shannon entropy here, we use “entropy” in a conceptual way to
refer to the amount of information helpful for the downstream task. From this perspective, the key
takeaway from the proposition is to highlight that both HNN with an L-layer feature aggregation
function and TF-HNN with an L-layer TF-MP-Module can leverage the hypergraph structure to
enhance the features of each node by aggregating features containing contextual information from
its L-hop neighbouring nodes. For instance, in a co-citation hypergraph, if within L-hop a node is
connected to several nodes with features containing contextual information about machine learning
and others with features related to biology, the feature aggregation process will incorporate both
machine learning and biology related features into the node’s features.

V ADDITONAL RESULTS ABOUT THE PREPROCESSING TIME

Table 20: The training time (s) and preprocessing time (s) for TF-HNN in node classification.
Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean

Training 0.22 ± 0.12 4.39 ± 0.45 1.12 ± 0.30 0.98 ± 0.35 1.01 ± 0.51 0.19 ± 0.10 1.32
Preprocessing 0.0012 ± 0.0002 0.0401 ± 0.0011 0.0220 ± 0.0012 0.0016 ± 0.0001 0.0080 ± 0.0001 0.0009 ± 0.0001 0.012

Let m be the number of edges of the clique expansion used in our TF-MP-Module, then the
theoretical complexity of this module is O(m). Moreover, unlike the training-required message-
passing operators used in existing HNNs, which must be computed during forward propagation in
each training epoch and require gradient descent computations for backpropagation, our training-free
message-passing operator only needs to be computed once during a single forward propagation in
preprocessing. Therefore, in practice, this training-free message-passing operator is quite fast. We
summarise the runtime in Table 20. These results indicate that the average preprocessing time of
our training-free message-passing operator is only about 1% of the average training time for our
TF-HNN.

27

	Introduction
	Notation
	Methodology
	Overview
	Revisiting Hypergraph Neural Networks
	Training-Free Message Passing

	Theoretical Analysis
	Related Work
	Experiments
	Experimental Setup
	Comparison with Baselines
	Analysis

	Conclusion
	Impact Statements
	Background of Hypergraph Message Passing
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Discussion about Eq. (5)
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Details of Benchmarking Datasets
	Additional Experimental Results
	Negative Sampling for Hyperlink Prediction
	Reproducibility Statement
	Efficiency Improvement from TF-HNN
	Additional Discussion and Results About APPNP
	Additonal Results About Removing Learnable Parameters From Baselines
	Additonal Results On Yelp
	The assumption about the structure of hypergraph
	Additional Discussion about the superior performance, especially on the large-scale hypergraph
	Hyperparameter Search
	Discussion about Proposition 3.2
	Discussion about Proposition 4.1
	Additonal Results About the Preprocessing Time

