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Abstract—We consider a disjoint cover (partition) of an undi-
rected weighted finite graph G by |J | connected subgraphs
(clusters) Sjj∈J and select a function ψj ≥ 0 on each of the
clusters. For a given signal f on G its weighted average samples
are defined via inner products {〈ψj , f〉}j∈J . The goal of the
paper is to describe subspaces of bandlimited functions for which
there exist quadrature formulas with positive coefficients based
on weighted average samples.

Index Terms—combinatorial graphs, combinatorial Laplace
operators, cubature formulas on graphs, frames, Poincaré and
Plancherel-Polya-type inequalities

I. INTRODUCTION

During last years in connection with a variety of important
applications, the problems about sampling, interpolation and
quadrature formulas in the setting of combinatorial graphs
attracted attention of many mathematicians and engineers.
Here are some of the relevant papers [1]- [3], [6], [8], [10]-
[20].

In the present paper we consider an undirected weighted
finite graph G which is equipped with positive, symmetric
weights w(v, u) for every edge (v, u). Let {Sj}j∈J be a family
of connected subgraphs (clusters) which form a disjoint cover
of the set of vertices V (G). We select a set of functions ψj ≥ 0
where ψj has non-trivial support in Sj . Throughout the paper
the notation Ξ(G) = ({Sj}j∈J , {ψj}j∈J) will be used. For a
given signal f on G its weighted average samples are defined
via inner products {〈ψj , f〉}j∈J . Let `2(G) denote the space
of all complex-valued functions with the inner product

〈f, g〉 =
∑

v∈V (G)

f(v)g(v),

and let L : `2(G) 7→ `2(G) be the combinatorial Laplace
operator associated with the graph G, i.e.

(Lf)(v) =
∑

u∈V (G)

(f(v)− f(u))w(v, u). (1)

A subspace of bandlimited functions Eω(G) ⊂ `2(G), ω > 0
is defined as the span of all eigenfunctions of combinatorial
Laplace operator L whose corresponding eigenvalues which
are not greater than ω > 0. Our main result is the following.

Theorem 1.1: For a given G and Ξ = Ξ(G) =
({Sj}j∈J , {ψj}j∈J), there exist non-negative weights β̃j and a

positive constant C̃(G,Ξ) > 0 such that the following formula
holds for all f ∈ Eω(G)∑

v∈V (G)

f(v) =
∑
j

β̃j〈ψj , f〉,

as long as
0 ≤
√
ω < C̃(G,Ξ), (2)

In connection with this statement one has to verify if there
exist graphs for which the corresponding interval [0, C̃(G,Ξ))
contains non-trivial eigenvalues of the Laplacian L. We answer
this question in section III where we prove in Lemma 4.4 that
for a community graph G = ∪j∈JSj (see [7]) and any δ > 0
the interval (0, δ) contains at least |J | − 1 nontrivial frequen-
cies (counted with multiplicity) of the corresponding Laplace
operator L if the weights of edges between communities are
small enough.

II. MARCINKIEWICZ-ZYGMUND-TYPE INEQUALITIES IN
`2(G).

For a finite G we consider the following assumptions and
notations. We assume that S = {Sj}j∈J form a disjoint cover
of V (G) ⋃

j∈J
Sj = V (G). (3)

Let Lj be the Laplacian for the induced subgraph Sj .
We assume that every Sj ⊂ V (G), j ∈ J, is a finite and
connected graph with more than one vertex. The spectrum of
the operator Lj will be denoted as 0 = λ0,j < λ1,j ≤ ... ≤
λ|Sj |−1,j and we use {ϕk,j}

|Sj |
k=0 for an corresponding o.n.b.

of eigenfunctions. In particular, the first non-zero eigenvalue
for a subgraph Sj is λ1,j , and ϕ0,j = 1/

√
|Sj |.

Let ‖∇jg‖`2(Sj), g ∈ `2(Sj), be the weighted gradient for
the induced subgraph Sj , i.e.

‖∇jg‖`2(Sj) =

 ∑
u,v∈V (Sj)

1

2
|g(u)− g(v)|2w(u, v)

1/2

.

(4)
With every Sj , j ∈ J, we associate a function ψj ∈ `2(Sj)
whose support is in Sj and introduce the functionals Ψj on
`2(Sj) defined by these functions 〈ψj , f〉, i.e.

Ψj(g) =
∑

v∈V (Sj)

ψj(v)g(v), g ∈ `2(Sj). (5)



Notation χj will be used for the characteristic function of Sj

and we use fj for fχj , f ∈ `2(G).

We assume that 〈ψj , ϕ0,j〉 6= 0 for every j ∈ J and
introduce the following notations

Aj =
‖ψ‖2

λ1,j |〈ψj , ϕ0,j〉|2
, AΞ = max

j∈J
Aj ,

Ξ = ({Sj}j∈J , {ψj}j∈J) , (6)

and define the functions

ζj =
ψj

|Sj |1/2〈ψj , ϕ0,j〉
, 〈ψj , ϕ0,j〉 6= 0.

The following Poincare-type inequality can be proved.
Theorem 2.1: Let G be a connected finite graph and S =
{Sj} is its disjoint cover by finite sets. Let Lj be the Laplace
operator of the induced subgraph Sj whose first nonzero
eigenvalue is λ1,j and ϕ0,j = 1/

√
|Sj | is its normalized

eigenfunction with eigenvalue zero. Assume that for every j
function ψj ∈ `2(G) has support in Sj , and 〈ψj , ϕ0,j〉 6= 0.
Then the following inequality holds true for every f ∈ `2(G)

∑
j∈J

∑
v∈V (Sj)

|fj(v)− 〈ζj , f〉χj(v)|2 ≤ AΞ‖∇f‖2`2(G), (7)

where fj = fχj .
We set

aΞ = max
j∈J

1

|〈ψj , ϕ0,j〉|2
, cΞ = max

j∈J
‖ψj‖2,

and then pick any ω > 0, τ > 0 which satisfy the inequality

ω(1 + τ)AΞ < 1. (8)

By using (7) we prove the following Marcinkiewicz-
Zygmund-type (Plancherel-Polya-type, or frame) inequalities
in the norm of `2(G).

Theorem 2.2: In the previous notations for every f ∈ Eω(G)
with ω satisfying (8) the Marcinkiewicz-Zygmund-type in-
equality holds true

(1− µ)τ

(1 + τ)aΞ
‖f‖2 ≤

∑
j∈J
|〈ζj , f〉|2 ≤ cΞ‖f‖2, (9)

where µ = ω(1 + τ)AΞ < 1.

III. MARCINKIEWICZ-ZYGMUND-TYPE INEQUALITY IN
`1(G)

Consider a finite dimensional space R|J| of all sequences
{αj}, 1 ≤ j ≤ |J |, equipped with the norm

|||{αj}j∈J ||| =
∑
j∈J
|αj | |Sj |, (10)

where |Sj | is cardinality of a subgraph Sj , and define the
following sampling operator Q as

Q : f ∈ Eω(G) 7→ {fj}j∈J = {〈ζj , f〉}j∈J ∈ R|J|. (11)

The Marcinkiewicz-Zygmund-type inequality (9) already
shows that Q is continues and injective. However, we will
need a more accurate version of (9) in the norm `1(G).

We set
CΞ =

√
|J |max

j∈J
(Aj |Sj |). (12)

Theorem 3.1: In the same notations as above, if
√
ω CΞ = γ ∈ (0, 1/2), (13)

then the following double inequality holds

(1− γ)
∑

v∈V (G)

|f(v)| ≤
∑
j

〈ζj , f〉||Sj | ≤

(1 + γ)
∑

v∈V (G)

|f(v)|, (14)

for every f ∈ Eω(G).
Indeed, we have∑

v∈V (Sj)

|fj(v)− 〈ζj , f〉χj(v)|2 ≤ Aj‖∇jfj‖2`2(Sj),

and together with the Schwartz inequality it gives∑
v∈V (Sj)

|fj(v)− 〈ζj , f〉χj(v)| ≤

|Sj |1/2

 ∑
v∈V (Sj)

|fj(v)− 〈ζj , f〉χj(v)|2
1/2

≤

√
|Sj |Aj ‖∇jfj‖`2(Sj).

We also have the inequality

∑
j∈J
‖∇jfj‖`2(Sj) ≤ |J |1/2

∑
j∈J
‖∇jfj‖2`2(Sj)

1/2

≤

√
|J |‖∇f‖`2(G),

which implies∑
j∈J

∑
v∈V (Sj)

|fj(v)− 〈ζj , f〉χj(v)| ≤

∑
j∈J

√
|Sj |Aj‖∇jfj‖`2(Sj) ≤

√
|J |max

j∈J
(|Sj |Aj)‖∇f‖`2(G).

After we obtain∑
j∈J

∑
v∈V (Sj)

|fj(v)− 〈ζj , f〉χj(v)| ≤

√
ω CΞ

∑
v∈G
|f(v)|, f ∈ Xω(G), fj = f |Sj ,

here CΞ =
√
|J |maxj∈J (|Sj |Aj). Theorem is proven.



IV. A POSITIVE QUADRATURE FORMULA

Suppose E is a linear normed space, F ⊂ E is a subspace
of E , and B is a convex cone in E , which determines an order
on E . The following theorem can be found in [4], [9] and it
will be used in proving our cubature formulas.

Theorem 4.1: (Bauer-Namioka). Let Θ be a linear form on
a subspace F of E . There exists a continuous positive linear
extension of Θ to E if and only if there exists a neighborhood
U of 0 such that the set Θ(F ∩ (U + B)) is bounded from
below.

We consider the sampling operator Q which is continuous
and injective. It is worth to emphasize that in general one can
expect only an inclusion R(Q) ⊂ R|J| and not an equality
R(Q) = R|J|. The continues inverse operator Q−1 is defined
on R(Q) :

Q−1 ({fj}j∈J) = f ∈ Eω(G), (15)

and it means that every sequence {fj}j∈J ∈ R(Q) is mapped
to a unique function in Eω(G) for which fj = 〈f, ζj〉, 1 ≤
j ≤ |J |. We pick a number 0 < γ < 1/2 and introduce the
functional Θ on R(Q) by using the formula

Θ ({fj}) =
∑

v∈V (G)

Q−1 ({fj}) (v)− 1− 2γ

1− γ
|||{fj}||| =

∑
v∈V (G)

f(v)− 1− 2γ

1− γ
∑
j

〈ζj , f〉|Sj |, {fj} ∈ R(Q), (16)

where f = Q−1({fj}) is a unique function in Eω(G) for
which 〈f, ζj〉 = fj for all j.

To apply Theorem 4.1 we treat
(
R|J|, ||| · |||

)
as the space

E , the (R(Q), ||| · |||) as the subspace F , and also

B = {{sj}j∈J ∈ E : sj ≥ 0, 1 ≤ j ≤ |J |} ,

U = {{sj}j∈J ∈ E : |||{sj}j∈J ||| ≤ 1} .

Since by assumption the functions ψj are not negative, the
functionals 〈ζj , ·〉 are also non-negative.

Lemma 4.2: If the functionals 〈ζj , ·〉, j ∈ J, are positive
and the positive γ in (13) is less than 1/2 then the functional
Θ is bounded from below on the set F ∩ (U + B). Namely,
the following estimate holds

Θ(F ∩ (U + B)) >
2γ

γ − 1
, 0 < γ < 1/2.

We are ready to formulate our statement about existence of
quadrature formulas with positive weights.

Theorem 4.3: If the constant

γ =
√
ω CΞ

satisfies
0 < γ < 1/2,

then there exist weights βj

1− 2γ

1− γ
|Sj | ≤ βj ≤

3− 2γ

1− γ
|Sj |, (17)

such that the following formula holds for all f ∈ Eω(G)∑
v∈V (G)

f(v) =
∑
j

βj〈ζj , f〉,

where
CΞ =

√
|J |max

j∈J
(|Sj |Aj), (18)

Aj =
‖ψj‖2

λ1,j |〈ψj , ϕ0,j〉|2
, Ξ = ({Sj}j∈J , {ψj}j∈J) .

The condition that the constant γ =
√
ωCΞ is less than 1/2

implies the following interval for frequencies

0 ≤ ω < 1

4C2
Ξ

. (19)

In this connection the important question arises: for what
graphs does the interval

[
0, 1

4C2
Ξ

)
contain non-trivial eigen-

values of the Laplacian LG?
Lemma 4.4: For every natural N and any ρ > 0 there exist

community graphs with N communities such that the interval
[0, ρ) contains at least N−1 non-trivial eigenvalues (counting
with multiplicities) of the corresponding Laplace operator.

The proof of this lemma shows that if in a community graph
the weights of edges between communities are sufficiently
small compared to weights of edges inside communities, then
there are ”many” eigenvalues of a Laplacian which are close
to zero.
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