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ABSTRACT

Cross-view image synthesis involves generating new images of a scene from dif-
ferent viewpoints or perspectives, given one input image from other viewpoints.
Despite recent advancements, there are several limitations in existing methods: 1)
reliance on additional data such as semantic segmentation maps or preprocessing
modules to bridge the domain gap; 2) insufficient focus on view-specific seman-
tics, leading to compromised image quality and realism; and 3) a lack of diverse
datasets representing complex urban environments. To tackle these challenges,
we propose: 1) a novel retrieval-guided framework that employs a retrieval net-
work as an embedder to address the domain gap; 2) an innovative generator that
enhances semantic consistency and diversity specific to the target view to improve
image quality and realism; and 3) a new dataset, VIGOR-GEN, providing diverse
cross-view image pairs in urban settings to enrich dataset diversity. Extensive
experiments on well-known CVUSA, CVACT, and new VIGOR-GEN datasets
demonstrate that our method generates images of superior realism, significantly
outperforming current leading approaches, particularly in SSIM and FID evalua-
tions.

1 INTRODUCTION

Aerial view

Ground view

Aerial-to-Ground Synthesis

Ground-to-Aerial Synthesis
Aerial image Ground image

building facade, roof, etc.
View-invariant semantics: 

road, roadbed, etc.
View-specific semantics: 

Figure 1: Cross-view image synthesis: Illustrating view-invariant semantics and view-specific se-
mantics in aerial or ground view .

Cross-view image synthesis aims to generate images from a new perspective or viewpoint that differs
from the original image, which synthesizes images from a given view (e.g., aerial or bird’s eye view)
to a target view (e.g., street or ground view), even when the target viewpoint was not originally
captured. It offers a wide range of applications, such as autonomous driving, robot navigation, 3D
reconstruction Mahmud et al. (2020), virtual/augmented reality Bischke et al. (2016), urban planning
Máttyus et al. (2017), etc. In this paper, we probe into the ground-to-aerial / aerial-to-ground view
synthesis based on a given source-view image (as illustrated in the upper half of Figure 1). This
task presents significant challenges, as it requires the model to comprehend and interpret the scene’s
geometry and object appearances from one view, and then reconstruct or generate a realistic image
from a different viewpoint.
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While promising, several key challenges plague existing cross-view image synthesis methods. 1)
Reliance on additional data. Existing methods often rely on extra information like semantic segmen-
tation maps Regmi & Borji (2018); Tang et al. (2019); Wu et al. (2022) or preprocessing modules
like polar-transformation Lu et al. (2020); Toker et al. (2021); Shi et al. (2022) to bridge the domain
gap between different views. These extra steps not only increase the computational burden but also
complicate the reverse generation process (e.g., ground-to-aerial synthesis). 2) Limited focus on
view-specific semantics. Most models primarily focus on view-invariant semantics between views,
neglecting the importance of view-specific semantics. View-invariant semantics refer to elements
that maintain fundamental similarity across views despite visual differences, such as roads viewed
from aerial and ground views (highlighted in translucent yellowish-green in Figure 1’s lower half).
Conversely, view-specific semantics represent objects with drastically different appearances across
viewpoints, exemplified by a building’s roof in aerial view versus its facade in ground view (high-
lighted in translucent blue in Figure 1’s lower half). While view-specific semantics help establish
correspondence between views, the neglect of view-specific semantics limits the fidelity and real-
ism of the synthesized images. 3) Lack of diverse datasets. Existing datasets for cross-view image
synthesis primarily focus on rural and suburban areas, overlooking the complexities of urban envi-
ronments. This lack of diversity in training data makes it challenging to develop models that can
effectively synthesize images in more realistic and challenging scenarios.

In this study, we propose a new cross-view image synthesis method that does not require semantic
segmentation maps or preprocessing modules while generating high-fidelity, realistic target-view
images by fully leveraging view-invariant and view-specific semantics. Inspired by the retrieval
task’s nature of measuring similarity in view-invariant semantics, we introduce a retrieval network as
an embedder to encode these semantics and guide the generation process. This approach obviates the
need for preprocessing or segmentation maps for cross-view image pairs. To enhance image quality
and realism, our method incorporates view-specific semantics, by adopting noise and modulated
style to diversify visual features. We fuse retrieval embedding and style at various layers to improve
consistency and image quality. Additionally, to address the scarcity of urban datasets for cross-view
image synthesis, we introduce VIGOR-GEN, a derived urban dataset. We validate our proposed
method through comprehensive experiments on CVUSA Zhai et al. (2017), CVACT Liu & Li (2019),
and the more challenging VIGOR-GEN dataset. Our model generates more realistic images and
significantly outperforms state-of-the-art methods, particularly in terms of SSIM and FID. Extensive
ablation studies corroborate the efficacy of each component in our method.

The main contributions are summarized as follows:

• Retrieval-Guided Framework for Bridging Domain Gap. We introduce a retrieval-guided
framework that leverages a retrieval network as an embedder. This network is trained to
measure the similarity of view-invariant between different views, effectively bridging the
domain gap without needing semantic segmentation maps or preprocessing modules. Our
model simplifies the synthesis process and makes reverse generation (e.g., ground-to-aerial)
more straightforward.

• Novel Generator for Enhanced Semantic Consistency and Diversity. Our proposed method
includes a new generator that incorporates both retrieval embedding and style information
at various layers. This approach improves the correspondence between views by leveraging
view-invariant semantics captured by the retrieval network, while also enhancing the diver-
sity and realism of view-specific semantics using noise and modulated style techniques.
This leads to synthesized images with higher fidelity and a more natural appearance.

• New Dataset for Urban Environments (VIGOR-GEN). We build a new derived dataset
called VIGOR-GEN, which provides a more challenging and realistic setting for train-
ing and evaluating cross-view image synthesis models, pushing the boundaries of the field
beyond existing rural and suburban datasets. Our method demonstrates superior perfor-
mance in synthesizing photo-realistic images from a single input image in another view, as
evidenced by its performance on well-known datasets, and the new VIGOR-GEN datasets.

2 RELATED WORK

Semantic-guided Cross-view Synthesis The first pipeline is to apply the semantic segmentation
maps of the target-view images to guide the generative model. Zhai Zhai et al. (2017) proposed a
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linear transformation module to generate a panorama via supervised information from a transformed
semantic layout of aerial images. Regmi and Borji Regmi & Borji (2018) designed two cGAN
models, X-fork and X-seq, for simultaneously predicting the target image as well as the semantic
map. Tang Tang et al. (2019) regarded cross-view image synthesis as an image-to-image translation
task. This work applied the semantic map of the target view and the source view image as inputs
and then obtained the predicted target images. To generate 360-degree panorama images, Wu Wu
et al. (2022) proposed PanoGAN as well as a new discrimination mechanism. Zhu Zhu et al. (2023)
proposed a Parallel Progressive GAN to stabilize the training of cross-view image synthesis and thus
generated rich details.

Preprocessing-Guided Cross-view Synthesis Another pipeline involves a preprocessing module
to assimilate the source view image into the target view image. Lu Lu et al. (2020) proposed a projec-
tion transformation module that is trained by height and semantic information estimated from aerial
images. However, this approach requires ground-truth height supervision for the dataset and carries
a complicated pipeline. Toker Toker et al. (2021) first applied the polar transformation proposed by
Shi Shi et al. (2019) to cross-view image synthesis, which greatly reduces the domain gap between
two views. Besides, Toker Toker et al. (2021) proposed a new multi-tasks framework Coming-
Down-to-Earth (CDE) for synthesis, where they postulated that retrieval and synthesis tasks are
orthogonal. This approach further improves the correspondence of generation but fails to produce
better image detail and quality. Shi Shi et al. (2022) proposed an end-to-end network that employs a
learnable geographic projection module to learn the projection relationship from the aerial view to
the ground view, and then feed the manipulated image into the later generator.

As a striking difference from existing works, without the help of semantic maps and preprocess-
ing, our model can synthesize a more realistic target-view image and retain rich details, capable of
realizing the mutual generation of ground panorama and aerial image.

Generative Model In recent years, diffusion model Rombach et al. (2022); Croitoru et al. (2023);
Ramesh et al. (2022); Saharia et al. (2022) achieved great success, which produces higher quality
images at the cost of a large amount of resources. In addition, there are still neglected problems in
cross-view image synthesis, as described in the next section. Moreover, earlier work on cross-view
generation does not yield better performance with more artifacts. Therefore, it is essential to study
a competitive GAN model before moving fully towards the diffusion model.

3 METHODOLOGY

In this section, we first introduce our architecture for cross-view image synthesis. Then, we give an
overview of the proposed network in Figure 2.

3.1 OVERVIEW OF RETRIEVAL-GUIDED FRAMEWORK

We propose a novel cross-view image synthesis framework that leverages a pre-trained and fixed
retrieval model to identify view-invariant semantics within a specific view, enabling an end-to-end
program without requiring preprocessing or additional input.

𝐿advSource

Target

Retrieval

Generator

𝐿𝑟𝑒𝑡.

embeddings

Source

Embedder
Generator

𝐿adv

Figure 2: Overview of the proposed framework.

The embedder, trained through contrastive
learning, maps view-invariant semantics into a
continuous space, allowing for fusion in the
deeper layers. This approach aims to ex-
tract embeddings that minimize visual differ-
ences, ensuring a smooth transformation of
view-invariant semantics from the source do-
main to the target domain via the generator,
thereby preserving the image structure.

Moreover, the embedding can also serve as the
condition in the discriminator to guide the gen-
erator to improve correspondence.
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Meanwhile, we consider the ability of the model to generate view-specific semantics in the target
domain by offering modulated style information. Although it is difficult to generate identical target-
view images, our goal is to ensure that the view-invariant semantics in the generated images are
consistent between the two views while the view-specific semantics remain as visually reasonable
as possible.

3.2 NETWORK ARCHITECTURE

The overall architecture of our network is illustrated in Figure 3. It consists of two components:
the mapping network and the retrieval network. The Mapping Network: Our network has a map-
ping network which has already been shown in several works Karras et al. (2019; 2020b;a); Choi
et al. (2020). The mapping network learns how to transform the noise sampled from a Gaussian
distribution to a new style distribution to better generate exclusive representations, thus yielding
detail-enriched images. The mapping network consists of four fully connected layers with non-
linearity. The Retrieval Network: We adopt the retrieval network proposed in Zhu et al. (2023)
because of its simplicity and effectiveness. It owns stacked attention layers for better feature extrac-
tion and encoding for retrieval. We utilize its shallower version SAIG-S here. This retrieval network
can settle visual differences and directly embed images from different views into a smooth space.
Please refer to the original paper and the Appendix of this paper for more details.
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Figure 3: Illustration of our network architecture. left: our network consists of a structure gen-
erator, a facade generator, a mapping network, and a retrieval embedder. right-top: the residual
blocks in our generator. right-bottom: the attentional AdaIN in different residual blocks.

3.3 STRUCTURE & FACADE GENERATION

Two-stage generation In general, the generative model controls the generation of structures at
low resolutions (≤ 32 × 32), while features such as facade and color will be affected in higher
resolutions (≥ 32×32) Karras et al. (2020b); Richardson et al. (2021); Yang et al. (2022). Therefore,
we refine the goals of the generator: at low resolution, the generator focuses on projecting the view-
invariant semantics into target-view space. Once the approximate structure of the target view has
been generated, the generator then turns its attention to how to generate facades while preserving
identity.

Attentional AdaIN The embedding extracted by the retrieval model contains the semantic infor-
mation of the location. Some work Huang & Belongie (2017); De Vries et al. (2017); Tao et al.
(2022); Park et al. (2019); Zhu et al. (2020) has explored how to incorporate the latent code into
feature maps to acquire target images. To better inject identity information into the image, we per-
form some changes to AdaIN Huang & Belongie (2017) to make feature maps more semantically
consistent with the given source image. Given an input X ∈ Rn×c×h×w, we first normalize it into
zero mean and unit deviation:
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X̂ =
X− µnc

σnc
, µnc =

1

hw

∑
hw

X, σnc =

√
1

hw

∑
hw

(X− µ2
nc) + ϵ (1)

where ϵ is a small constant to prevent the divisor from being zero, µnc denotes the mean and σnc

denotes the variance.

Subsequently, the modulation parameters γ and β are learned by MLP from the retrieval feature r̂ :

γr = MLP γ(r̃), βr = MLP β(r̃) (2)

Then, the denormalization can be realized as follows:

X̂r = γrX̂+ βr (3)

To decide which region and to what extent it can reinforce the retrieval embedding on the image
feature, we utilize input X to learn to obtain a weight map M . It can be described as:

M = Sigmoid(Conv(X̂)) (4)

where Sigmoid denotes the sigmoid activate function. In the ideal case, we expect the modulation
of retrieval embeddings to work on the areas where the source view is relevant to the target view.

Finally, the feature maps are summed by M on the pixel-wise level:

X̃ = X̂r ·M + X̂ · (1−M) (5)

Different residual modules Residual structures have been widely applied in prior work Regmi &
Borji (2018); Tang et al. (2019); Wu et al. (2022); Shi et al. (2022); Zhu et al. (2023) on cross-view
image synthesis to aid in structure generation. However, other work Karras et al. (2019; 2020b)
argues that residual structures introduce varying degrees of artifacts and blurring in generation,
especially in facade generation. Therefore, the modules for generating structures and facades have
to be carefully considered, according to different task objectives.

For structure generation, we use a residual structure similar to previous methods, except for the use
of an improved AdaIN in the normalization layer. Both the principal and residual paths are injected
with retrieval embedding to facilitate the construction of the structure. For facade generation, we
follow the network design of previous work Karras et al. (2019; 2020b), but the residual structure is
also used. The input latent is first fed into AdaIN and the convolution layer to fuse the modulated
style. The residual structure is designed to be set after the convolution layer and continue to fuse
the embedding through an improved AdaIN. The residual path is then multiplied by a layer scale
Touvron et al. (2021); Sauer et al. (2023) to perform gradual fading.

Generator As shown in Figure 3, our generator first gains the retrieval embedding from the source
images Xs as the input, which is then integrated into a fully connected layer and is reshaped to be
equally proportional to the target image Xt in length and width. The latent feature synthesized by
the structure generator is then concatenated with a noise vector sampled from the Gaussian distribu-
tion. The generator gradually increases the scale of the feature map and eventually converts it into
an image. Each residual block in the decoder contains 1) Normalization layers integrating style in-
formation or retrieval information; 2) Convolutional layers with spectral normalization Miyato et al.
(2018) and 3) Activate function.

Discriminator To guide our generator to synthesize more realistic and semantically consistent
images with the source image, we adopt the idea of a one-way discriminator proposed in Tao et al.
(2022). It first extracts the features of the synthesized image and then concatenates them with the
spatially extended embedding vector. The discriminator should assign the realistic and matching
images with high scores, and the fake or mismatched images with low scores. The details of the
discriminator are presented in the Appendix.
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3.4 LOSS FUNCTION

Discriminator Loss Since the one-way discriminator is employed, we apply the same adversarial
loss Tao et al. (2022) except for the gradient penalty to train our network.

LD
adv =− EX∼Pr

[min(0,−1 +D(X, Ã))]

− (1/2)EX̂∼Pg
[min(0,−1−D(X̂, Ã))]

− (1/2)EX∼Pmis [min(0,−1−D(X, Ã)))]

(6)

where Ã refers to the retrieval embeddings of the real image X and X̂ denotes the synthesized image.

Generator Loss The reconstruction loss is employed to ensure that the target Xt is equivalent to
the final result Xr on a pixel-wise level. It can defined as follows:

Lrec = ∥Xt − Xr∥1 (7)

To further improve the realism, we follow the Learned Perceptual Image Patch Similarity (LPIPS)
Zhang et al. (2018) loss. Thus, the perceptual loss is defined as:

Lperc = ∥ϕ(Xt)− ϕ(Xr)∥1 (8)

where ϕ denotes the pre-trained VGG network.

To ensure that the synthesized image has the same shared information as the target image, we use
identity loss, which is defined as:

Lid =1− cos(R(Xr), R(Xt))

+ 1− cos(R(X
′

r), R(X
′

t))
(9)

where cos(., .) denotes the cosine similarity between the output embedding vectors and X′

r means
the low-resolution generated image. R denotes the pre-trained retrieval network as in Sec. 3.2.

To prevent the model from generating repetitive content, we apply a diversity loss Mao et al. (2019);
Lee et al. (2020) between a pair of local code Zlocal. The diversity loss is defined as:

Ldiv =
dz(zlocal1 , zlocal2)

dI(G(w, zlocal1 , Ã), G(w, zlocal2 , Ã))
(10)

where dz(., .) and dI(., .) denote the L1 distance between the latent codes or images, G is the
generator.

The adversarial loss of the generator is as follows:

LG
adv = Ex̂∼Pg

[D(X̂, Ã)] (11)

The total loss for the generator is a weighted sum of the above losses, formulated as:

LG = LG
adv + λrecLrec + λpercLperc + λidLid + λdivLdiv (12)

4 VIGOR-GEN DATASET

For cross-view image synthesis, the commonly used CVUSA Zhai et al. (2017) and CVACT Liu
& Li (2019) datasets are primarily field and sub-urban images with an open field of view and less
occlusion. The buildings on both datasets are mostly cottages or bungalows, with simple facade
information. In contrast to the above datasets, the images with soaring skyscrapers in urban areas
often have narrower views and more occlusions, while the complex street surroundings and building
facades raise greater challenges to generative networks. To fit realistic scenarios, the cross-view
image synthesis generates the need for an urban area dataset. To this end, we have collected a
derived dataset of cross-view urban images, VIGOR-GEN, consisting of 103,516 image pairs.

6
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All images are collected from Google Map API map. The dataset is mainly extended on cross-view
image retrieval dataset VIGOR Zhu et al. (2021). To ensure that images synthesized across different
views have the same identity as the source image, this task usually requires center-aligned image
pairs to avoid ambiguities, so the original VIGOR urban dataset (which is set to be non-centrally
aligned) cannot be directly applied to this task. To extend the application of this dataset, we present
a derived dataset in this work so that it can be used for cross-view image synthesis. Table 1 shows
the comparison of different datasets.

Table 1: The comparison of VIGOR-GEN and other existing open panorama-aerial cross-view im-
age datasets

Dataset CVUSA CVACT VIGOR VIGOR-GEN

Area field suburban urban urban
Satellite resolution 750× 750 1200× 1200 640× 640 640× 640

Panorama resolution 1232× 224 1664× 832 2048× 1024 2048× 1024

Roughly centered Yes Yes No Yes
Application Retrieval, Generation Retrieval, Generation Retrieval Retrieval, Generation

#Satellite Image 44,416 44,416 90,618 103,516
#Panorama Image 44,416 44,416 105,214 103,516

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

Datesets. We perform our experiments on the panorama-aerial dataset CVUSA, CVACT, and our
newly proposed VIGOR-GEN. Following Toker et al. (2021); Shi et al. (2022), the CVUSA and
CVACT consist of 44,416 image pairs with the train/test split of 35,532/8,884. The VIGOR-GEN
dataset consists of 51,366 images for training and 51,250 images for testing. The resolution of the
panorama is set at 128×512 in CVUSA and 256×512 in both CVACT and VIGOR-GEN. All aerial
images are set to a resolution of 256× 256.

Metrics. Following previous work Regmi & Borji (2018); Lu et al. (2020); Toker et al. (2021);
Shi et al. (2022), we adopt the widely used Structural-Similarity (SSIM), Peak Signal-to-Noise Ratio
(PSNR) and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) to measure the
similarity at the pixel-wise level and feature-wise level, respectively. Meanwhile, the realism of
the images is measured by Fréchet Inception Distance (FID) Heusel et al. (2017). We report the
Recall@1 (R@1) in our experiment using another cross-view image retrieval model SAIG-D Zhu
et al. (2023), which indicates whether the resulting images describe the same location.

Training Details. The experiments are implemented using PyTorch. We train our model with 200
epochs using Adam Kingma & Ba (2014) optimizer and β1 = 0.5, β2 = 0.999. The learning rate
of the generator and discriminator is set to 0.0001 and 0.0004, respectively. Please refer to the
Appendix for more details about training.

5.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compared our method with Pix2Pix Isola et al. (2017), XFork Regmi & Borji (2018), Selec-
tionGAN Tang et al. (2019), PanoGAN Wu et al. (2022), CDE Toker et al. (2021) and S2SP Shi
et al. (2022), PPGAN Zhu et al. (2023), Sat2Density Qian et al. (2023), ControlNet Zhang et al.
(2023), Instruct pix2pix Brooks et al. (2023), CrossViewDiff Croitoru et al. (2023) on CVUSA and
CVACT datasets. The results are shown in Table 3 and 2. For S2SP Shi et al. (2022), it applies the
geometry project equation to calculate the projection from satellite image to street-view panorama,
whose inverse process is not given in the original paper, so this method will not be compared at g2a
generation.
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Table 3: The comparison of existing competitive methods on CVUSA and CVACT. The comparison
of existing competitive methods on CVUSA and CVACT. Note that for the FoV-only model, we fol-
low Tang et al. (2019) and obtain the final panorama, which consists of four street images with a FoV
of 90 degrees. For a fair comparison, we discard the semantic maps as an input in SelectionGAN.

Direction Method CVUSA CVACT
SSIM↑ PSNR↑ LPIPS↓ FID↓ R@1↑ SSIM↑ PSNR↑ LPIPS↓ FID↓ R@1↑

a2g

Pix2Pix 0.2849 12.14 0.5712 82.84 0.01 0.3634 13.37 0.4943 86.21 0.00
XFork 0.3408 13.25 0.5611 79.75 6.41 0.3701 14.17 0.4919 47.98 8.72
SelectionGAN 0.3278 13.37 0.5331 90.72 4.58 0.4705 14.31 0.5141 95.67 6.67
PanoGAN 0.3024 13.67 0.4684 75.24 33.11 0.4631 14.18 0.4762 82.65 28.71
CDE 0.2980 13.87 0.4752 20.63 85.04 0.4506 13.98 0.4927 43.96 65.04
S2SP 0.3437 13.32 0.4688 44.15 10.09 0.4521 14.14 0.4718 39.64 29.39
PPGAN 0.3516 13.91 - - - - - - - -
Sat2Density 0.3390 14.23 - 41.43 - 0.3870 14.27 - 47.09 -
ControlNet 0.2770 11.18 - 44.63 - 0.3400 12.15 - 47.15 -
Instruct pix2pix 0.2550 10.66 - 68.75 - 0.3920 13.12 - 57.74 -
CrossViewDiff 0.3710 12.00 - 23.67 - 0.4120 12.41 - 41.94 -
Ours 0.3706 14.33 0.4302 13.57 96.25 0.4945 14.55 0.4540 21.83 87.90

g2a
Pix2Pix 0.1956 15.07 0.6220 121.95 7.85 0.0870 14.24 0.6612 133.39 13.06
CDE 0.2167 15.19 0.5706 121.98 14.73 0.0906 14.59 0.6689 160.81 14.99
Ours 0.2461 15.77 0.5181 41.65 95.14 0.1966 16.29 0.5551 36.54 87.81

Table 2: The comparison of existing competitive methods on our
newly proposed VIGOR-GEN.

Direction Method VIGOR-GEN
SSIM↑ PSNR↑ LPIPS↓ FID↓ R@1↑

a2g

Pix2Pix 0.3566 12.18 0.6114 100.25 0.01
SelectionGAN 0.3986 13.16 0.5234 104.22 7.41
PanoGAN 0.4031 13.83 0.5467 75.76 8.49
CDE 0.3672 12.72 0.6108 78.26 0.22
S2SP 0.4041 13.73 0.5422 69.28 4.54
Ours 0.4243 13.91 0.4548 13.64 37.94

g2a
Pix2Pix 0.1885 13.31 0.5876 96.26 2.41
CDE 0.1830 12.89 0.5734 95.13 3.25
Ours 0.1901 13.99 0.5278 30.93 34.58

Quantitative Results For
aerial-to-ground image synthe-
sis, our method outperforms the
existing methods S2SP Shi et al.
(2022) by 6 points in terms of
SSIM on the CVUSA dataset.
For PSNR and LPIPS, our
method achieves 1.01 and 0.0386
improvement, respectively. Our
method outperforms the ex-
isting state-of-the-art methods
CrossViewDiff Croitoru et al.
(2023) by 2.33 points in terms
of PSNR on the CVUSA dataset
and 2.14 points in terms of PSNR on the CVACT dataset and gains an important improvement by
0.0825 points in terms of SSIM on the CVACT dataset. In g2a image synthesis, compared to the
most competitive method CDE Toker et al. (2021), our model gains a significant improvement in
LPIPS (0.5181 versus 0.5706 on CVUSA), which proves that generated images are more consistent
with human visual perception. This is attributed to the embedding can be used as the condition on
the discriminator to guide the generator to improve the correspondence, which does not apply to
CDE Toker et al. (2021) as it introduces labeling uncertainty.

It is worth noting that our method has a larger improvement in FID compared to other models. For
example, our method gains a 7.06 point improvement compared to CDE Toker et al. (2021). This is
because we consider not only the view-invariant semantics across views but also the view-specific
semantics of the target view, which makes the synthesized images more realistic. Especially, in
ground-to-aerial image synthesis, it is challenging for other models to generate the obscured parts,
resulting in a decrease in realism. A lower FID can be observed on CVUSA (41.65 versus 121.95).

Experiments are also conducted on our newly proposed urban dataset VIGOR-GEN which is more
challenging due to its complex facades and inevitable occlusions. As a result, the exclusive infor-
mation in one view is more complicated in an urban setting. As shown in Table 2, our method
outperforms other methods in all metrics. For example, our proposed method sets the new state-of-
the-art FID of 13.64 at a2g and 30.93 at g2a on VIGOR-GEN while other methods have a higher
FID. For the R@1 metric, the multi-task framework CDE, which performs well on CVUSA and
CVACT, almost fails in VIGOR-GEN. In other words, CDE does not fit well in urban areas while
our method still produces images with higher quality.
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(a)
Input

(b) Pix2Pix (c) PanoGAN (d) CDE (e) S2SP (f) Ours (g) GT

Figure 4: Comparison with current methods at a2g direction on CVACT.

Qualitative Results We provide the qualitative results of our method on different datasets to val-
idate its effectiveness. From the qualitative comparison shown in Figure 4, we can observe our
method generates more realistic and detailed images with fewer artifacts compared to other meth-
ods.

Compared to other methods, as shown in the first group of Figure 4, our approach generates con-
sistent and clear roads with fewer artifacts on CVACT. This indicates that our method is capable
of overcoming the visual difference. In addition, our method exhibits exceptional performance in
complex scenes. For instance, in the first row in the second group of Figure 4, our method synthe-
sizes more realistic building facades, including intricate details such as windows and doors. Other
methods, by contrast, fail to produce these distinctive features in the panoramic view. The ability of
our method to generate exclusive information in the target view is a result of its consideration of not
only the correspondence between the source and target views but also the content difference between
them. As opposed to other models that struggle to address the difference of exclusive information,
our model is equally well-suited for urban areas.

(a) Input (b)
Pix2Pix

(c) CDE (d) Ours (e) GT

Figure 5: Comparison with current methods at g2a direction on
VIGOR-GEN

Further evidence support-
ing our idea is that when
generating aerial-view
images, other methods
only produce blurred
border regions. As
demonstrated in Figure
5, Pix2Pix Isola et al.
(2017) and CDE Toker
et al. (2021) generate
central areas that are
barely clear while intro-
ducing artifacts and blurs
in the roof or non-central
regions, where exclusive
aerial image information
resides. For more re-
sults, please refer to the
Appendix.

5.3 ABLATION STUDY

In this section, we conduct ablation studies to validate the effectiveness of each component in our
method. We report variant models at the g2a direction on CVUSA. As the key design of our method,
we first replace the retrieval embedder with a trainable pix2pix encoder (i). In this way, it is difficult
for the model to transform the information from the source view to the target view, as there still
exists a large domain gap.
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The second experiment omits the attn-AdaIN in our model (ii). This modification loses the advantage
of fusing retrieval embedding in the corresponding semantic region, which leads to a decrease in
similarity.

Table 4: Ablation studies of our network on the CVUSA
dataset.

Method CVUSA
SSIM↑ PSNR↑LPIPS↓ FID↓ R@1↑

Ours 0.3702 14.33 0.4302 13.57 96.25
(i)w/o Embedder 0.3312 13.66 0.4656 38.81 12.67
(ii)w/o Attn-AdaIN 0.3629 14.01 0.4461 16.51 89.42
(iii)w/o Style 0.3720 14.28 0.4412 17.88 94.23
(iv)w/o Ret. 0.3571 13.75 0.4377 15.74 87.67
(v)Same Structure 0.3490 14.06 0.4332 14.29 96.12
(vi)w/o coarse D 0.3454 14.11 0.4308 13.67 95.61

Next, we also analyze the role of the
style (iii) and retrieval embedding (iv)
in our generator. The fusion of re-
trieved information and style improves
the network from two perspectives: cor-
respondence and diversity. First, by
fusing embeddings in deep layers, the
model ensures the generation of seman-
tically consistent representations in the
target view against the visual difference.
We observe a degradation of the perfor-
mance in various metrics from Table 4,
especially in R@1 (with 9% drop). Sec-
ond, the additional style information promotes the diversity of visual features and enriches the visual
representations, which facilitates the generation of exclusive information in the target view. It has
a slight increase in SSIM, but a significant drop in LPIPS and FID. We then analyze the role of
different structures. If the model uses the same structure (i.e., ResBlock-S) to generate structural
and facade information, metrics such as FID and LPIPS rise. Besides, the performance of the model
degrades if the discriminator for coarse images is disabled. Consequently, facade generation mod-
ules reinforce the performance of the network in cross-view synthesis. To gain more insight into
the attn-AdaIN, we visualize the mask M learned on different feature levels in Figure 6, where the
brighter pixel indicates the higher weight for retrieval embedding.

Figure 6: Visualization of the weight map M on VIGOR-GEN

5.4 FURTHER DISCUSSION

Table 5: The comparison of different Embedder in our
generator on CVUSA at a2g.

Embedder CVUSA
SSIM↑ PSNR↑ LPIPS↓ FID↓ R@1↑

SAIG 0.3706 14.32 0.4302 13.57 96.25
LPN 0.3559 13.89 0.4544 25.29 30.45

The retrieval embedder bridges the do-
main gap and provides a stable direc-
tion of gradient descent. The embedder
trained using retrieval loss is smooth in
the embedding space. Once the model
generates an incorrect identity of the
target image, the embedding using re-
trieval loss can provide a good gradient
direction for the generator to change the identity correctly. In another type of embedder, which is
trained on a discriminative task, the space can become non-smooth. Therefore, we compare the use
of LPN Wang et al. (2021) in the generator, which regards cross-view image retrieval as a classifi-
cation and thus applies instance loss Zheng et al. (2020). As shown in Table 5, the performance of
the generator using LPN Wang et al. (2021) is significantly worse than the generator using SAIG.

6 CONCLUSION

In this work, we introduce a novel method for cross-view photo-realistic image synthesis. Specifi-
cally, we adopt a retrieval-guided framework that employs a retrieval network as the embedder and
thus extracts information corresponding to the target view from the source images. Furthermore,
we propose new generators for better-generating structure and facade, which facilitates correspon-
dence and the generation of view-specific semantics in the target view. In addition, we also build a
large-scale, more practical, and challenging dataset (VIGOR-GEN) in the urban setting. Through
extensive experiments, it is verified that our method outperforms other competitive methods.
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Table 6: Discriminator.
Discriminator

Synthesized image (3, H, W)
4×4 Conv + LeakyReLU (48, H/2, W/2)
4×4 Conv + LeakyReLU (96, H/4, W/4)
4×4 Conv + LeakyReLU (192, H/8, W/8)
4×4 Conv + LeakyReLU (384, H/16, W/16)
concat (embedding) (768, H/16, W/16)
4×4 Conv + LeakyReLU (96, H/32, W/32)
4×4 Conv + LeakyReLU (1, H/64, W/64)

One-way Discriminator The one-way discrimina-
tor is primarily employed in the text-to-image gener-
ation to guide the generation of images with consistent
semantics as the text. There exists a domain gap be-
tween the two modalities describing the same content,
similar to cross-view image pairs. A simple analogy is
that the images in both views depict the same location,
while the two images are greatly different in resolution
and representation. We introduce this discriminator in
the cross-view image synthesis task for its guidance of
the corresponding content. The embeddings from the
source view are spatially expanded and concatenated
with the image features. For mismatched embedding-image pairs or non-realistic images, the dis-
criminator will treat them as incorrect content. Tables 6 and 7 show the details of the one-way
discriminator.

Table 7: Discriminator for coarse images.

Discriminator
Synthesized image (3, H, W)

4×4 Conv + LeakyReLU (48, H/2, W/2)
3×3 Conv + LeakyReLU (96, H/2, W/2)

3×3 Conv + LeakyReLU (192, H/2, W/2)
4×4 Conv + LeakyReLU (384, H/4, W/4)

concat (embedding) (768, H/4, W/4)
4×4 Conv + LeakyReLU (96, H/8, W/8)

4×4 Conv + LeakyReLU (1, H/16, W/16)

Table 8: Generator.

Generator
Source Embedding (384)

Linear + reshape (384, H/128, W/128)
ResBlock-S (384, H/64, W/64)
ResBlock-S (384, H/32, W/32)
ResBlock-S (384, H/16, W/16)

ResBlock-S (384, H/8, W/8)
−→3×3 Conv + Tanh (3, H/16, W/16)

concat (Noise) (512, H/8, W/8)
ResBlock-T (256, H/4, W/4)
ResBlock-T (128, H/2, W/2)

ResBlock-T (64, H, W)
−→3×3 Conv + Tanh (3, H, W)

Generator The source embedding is fed into the generator and then concatenated a noise to re-
cover the target view image. Each ResBlock upsamples the feature map. The detail of the generator
is shown in Table 8.

Retrieval Embedder We apply the Simple Attention-based Image Geo-localization backbone
(SAIG) Zhu et al. (2023) as the embedder in our network. The SAIG backbone is a retrieval net-
work for cross-view image geo-localization, which has two branches for encoding the ground-view
images and the aerial-view images, respectively. We use a single branch with a fixed weight to
embed the corresponding view images. Since the SAIG brings the image pairs closer in the em-
beddings space without any preprocessing, the embeddings can be regarded as the representation
without a domain gap and thus support the generation. In this study, we utilize the variant model
SAIG-S+GAP+ASAM+Triplet Loss to gain the source embeddings.

A.2 VIGOR-GEN DATASET

The VIGOR dataset is originally proposed by Zhu et al. (2021) for the task of one-to-many cross-
view image geo-localization, covering four cities: New York, Chicago, Seattle, and San Francisco.
To fit the realistic scenarios, VIGOR is set up as a non-centrally aligned ground-aerial image of
urban areas. Each ground-view panorama corresponds to one positive aerial image and three semi-
positive images for the retrieval task. Inspired by VIGOR, to alleviate the shortage of datasets for
cross-view image synthesis in urban areas, we build a derived dataset VIGOR-GEN from VIGOR.
Moreover, to improve the stability and quality of the dataset, we remove the meaningless image
pairs, including those located in water, indoors, or with a lot of mosaic and distortion, etc. The
VIGOR-GEN dataset will be publicly available.
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A.3 ADDITIONAL QUANTITATIVE RESULTS

Following previous work Regmi & Borji (2018); Lu et al. (2020); Toker et al. (2021); Shi et al.
(2022), we adopt the widely used Structural-Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR)
and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) to measure the similarity
between the synthesized and real images at the pixel-wise level and feature-wise level, respectively.
Meanwhile, the realism of the generated images is measured by Fréchet Inception Distance (FID)
Heusel et al. (2017), which measures the feature distribution by a pre-trained Inception v3 network.
We extract retrieval embeddings using another cross-view image retrieval model SAIG-D Zhu et al.
(2023) and measure the recall accuracy from generated images to source images. We report the
Recall@1 (R@1) in our experiment, which indicates whether the first image returned by the retrieval
network is correct. A higher R@1 implies the generated images preserve the identity information
better and show a higher correspondence with the target-view image at the feature-wise level in
terms of retrieval. The performance of all compared methods was measured using source code
replication. Some methods use earlier versions of the code1 to measure the performance, which
leads to significant differences in SSIM. For a fair comparison, after we acquired the generated
images, we chose to measure SSIM and PSNR by the code of S2SP Shi et al. (2022)2 instead of the
code3. LPIPS is calculated by this code4. FID is calculated by this code5, whereas the reference
images are the validation set of the corresponding dataset.

Training Details We train our model with 200 epochs using Adam Kingma & Ba (2014) optimizer
and β1 = 0.5, β2 = 0.999. The learning rate of the generator and discriminator is set to 0.0001
and 0.0004, respectively. For each dataset, we use the maximum possible batch size on 4 32GB
NVIDIA Tesla V100 GPUs (bs=32 for CVUSA, bs=24 for CVACT, and bs=24 for VIGOR-GEN).
The diversity loss is computed every 4 steps. We use DiffAug Zhao et al. (2020) {Color, Cutout}
as a data augmentation strategy during the training. The λrec, λperc and λid is set to 50, 50 and 10.
The λdiv is set to 0.1 in CVUSA and CVACT, while is set to 1 in VIGOR-GEN. In previous work,
the val set was considered as the test set, note that we only took the final checkpoint for testing and
did not select the intermediate checkpoints.

A.4 ADDITIONAL QUANTITATIVE RESULTS

More Realistic We present more synthesized images to demonstrate the effectiveness of our
method in Figure 7, 4, 8, 9. Compared to other methods, our model generates images with clearer
roads, which are more realistic. This demonstrates that our model performs well in generating ex-
clusive information as well as resolving visual differences.

Higher Quality To better demonstrate the capability of our model, we perform higher resolution
(256 × 1024) cross-view image synthesis. Compared to the existing methods (SelectionGAN Tang
et al. (2019) and PanoGAN Wu et al. (2022)), our method performs better in all metrics, shown in
Table 9.

A.5 FURTHER DISCUSSION

Embedder The retrieval embedder not only compensates for the domain gap problem in cross-
view image synthesis but also provides a stable gradient descent direction, making the generator
easier to train.

The embedder trained using retrieval loss is smooth in the embedding space. Once the model gen-
erates an incorrect identity of the target image, the embedding using retrieval loss can provide a
good gradient direction for the generator to correctly change the identity. However, in a non-smooth

1https://github.com/kregmi/cross-view-image-synthesis/blob/master/
Evaluation/

2https://github.com/YujiaoShi/Sat2StrPanoramaSynthesis/tree/main/
evaluation_metrics

3https://github.com/kregmi/cross-view-image-synthesis/blob/master/
Evaluation/compute_ssim_psnr_sharpness.lua

4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/mseitzer/pytorch-fid
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Input Synthesized Image Ground Truth

Figure 7: Our synthesized images on CVUSA

(a)
Input

(b) Pix2Pix (c) PanoGAN (d) CDE (e) S2SP (f) Ours (g) GT

Figure 8: Comparison with current methods Pix2Pix Isola et al. (2017), PanoGAN Wu et al. (2022),
CDE Toker et al. (2021) and S2SP Shi et al. (2022) on VIGOR-GEN.

embedding space, the embedding would make discrete jumps that block the identity from being
corrected.

Table 9: The comparison of different methods with our generator on CVUSA at 256× 1024.

Dataset Method SSIM↑ PSNR↑ LPIPS↓ FID↓ R@1↑

CVUSA
SelectionGAN 0.4010 13.21 0.6169 103.27 3.81
PanoGAN 0.3575 13.47 0.5566 81.91 30.58
Ours 0.4232 14.11 0.4978 17.88 96.01

CVACT
SelectionGAN 0.4876 14.28 0.5232 97.63 5.76
PanoGAN 0.4915 14.31 0.4959 86.61 23.02
Ours 0.5513 14.48 0.4938 24.62 86.91

VIGOR-GEN
SelectionGAN 0.4154 13.11 0.5225 106.24 7.80
PanoGAN 0.4229 13.68 0.4933 79.72 8.26
Ours 0.4771 14.01 0.4876 23.54 36.18
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Figure 9: Comparison with current methods at g2a direction on CVACT

Moreover, we compare the use of LPN Wang et al. (2021) in the generator, which re-
gards a cross-view image retrieval as a classification and thus applies the instance loss
Zheng et al. (2020). This type of embedder, which is trained on a discriminative task,
makes the space non-smooth. Although the classification embedder can also bridge the do-
main gap, its generation performance and convergence speed are significantly lower than
that of the generator using the retrieval embedder, as shown in Table 5 and Figure 10.

Figure 10: The curve of ID loss in generator using
different embedder.

We believe that the key to cross-view image
synthesis lies in not only how to design the
models that bridge the domain gap, but also
how to integrate them organically with the gen-
erative model. We also believe this finding
will shed more light on future cross-view im-
age synthesis.

To quantify the smoothness of different cross-
view models (e.g., SAIG and LPN), we perform
a visual analysis of them. We first randomly
pick up two aerial-view images from the test
set and then compute the interpolations in the
embedding space. For each of the interpolating
points, we retrieve the closest images from the
train set. Commonly, if the embedding space is
smooth, the embedder is going to exhibit con-
tinuously changing identities Kim et al. (2022),
whereas others show repeated identities, imply-
ing non-smoothness. As shown in Figure 11, the images retrieved by the interpolated embedding
of the Retrieval embedder are smoother in terms of identities. The first row and the last row (the
twelfth row) are two randomly selected images from the test set, the interpolated result between
two embeddings is retrieved in the training set and the results are shown from the second row to
the eleventh row. It can be seen that the images retrieved using SAIG embedder have continuously
changing identities.
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LPN Embedder SAIG Embedder LPN Embedder SAIG Embedder

Group 1 Group 2

Figure 11: The retrieval results of different embedder.

Different Residual Block In Figure 12, we show the effect of using different residual blocks in
the experiments. It can be observed that the images generated using only Structure-S have more
artifacts. This can be further illustrated by the ablation study in the main paper.

‘

GT Structure-S Structure-S + Structure-T

Figure 12: Comparison of images generated by models using different Residual Blocks.
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Table 10: The comparison of model size with different model.

Model #Params FPS FID

Pix2Pix 41.8M 34.1 82.84
XFork 39.2M 33.8 79.75

SelectionGAN 58.3M 18.0 90.72
PanoGAN 88.0M 19.1 75.24

CDE 37.3M 35.9 20.63
S2SP 33.6M 22.1 44.15
Ours 25.9M 39.2 13.57

GT

Z1

Z2

Z3

Figure 13: Generated images using embeddings interpolated from two random images and different
Zlocal. The middle image is the result generated from the intermediate latent code between two
images. It can be observed that the generated images change smoothly with changing embeddings,
as well as the facades change with different Zlocal.

Model Size To better illustrate the overhead of our model, we show the comparison with different
models in terms of model size and speed. As illustrated in Table 10, our model has fewer parameters
and faster inference compared with other methods.

Interpolated Embedding Moreover, we show the effect of different Zlocal on generating exclu-
sive information in Figure 13. Different Zlocal render different building facades for images of the
same structure. We also randomly pick two embeddings and interpolate them as the input, where a
smooth change in identity can be observed.
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